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Magnetostatic modes of lateral metal magnetic superlattices
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We investigate magnetostatic modes of lateral magnetic superlattices composed of metallic magnetic layers
and insulating nonmagnetic layers, with an effective-medium theory. We assume that the in-plane waves
always propagate normal to the static magnetization for an arbitrary external field applied parallel to the
surface, and that the damping results from eddy currents. Some particular features of the frequency and
damping are seen, for example, the damping is not the lowest for a higher applied field vertical to the
magnetic-nonmagnetic layers, but it is the lowest for a smaller applied field. These features of the frequency
and damping are not only governed by the conductivity and wave number, but also by the direction and
magnitude of external magnetic field. The patterns of obtained calculation curves are complicated. Our results
in the limiting case of conductivitys50 are consistent with those in the previous works. The numerical
calculations are presented for the Ni-vacuum superlattice.
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I. INTRODUCTION

Nowadays an interesting field has been formed in
study of spin-wave dispersion properties in gyromagne
mediums, especially in ferromagnets and antiferromagn
According to the wave number of spin waves, the range
the spectrum can be divided roughly into four regions~ex-
change, dipole-exchange, magnetostatic, and electrom
netic!, and the modes of the spin waves in each of th
regions can be determined and detected with particular th
ries and variant experimental techniques.1–3 While investi-
gating the dispersion relations of the spin-wave modes in
magnetostatic and electromagnetic regions, dampings is
ally omitted, and this is practically feasible in the case
insulating magnets with a perfectly crystal structure and
low temperature. Recently, the authors of Ref. 4 advan
some discussions concerning the effects of eddy current
the reflection of electromagnetic radiation from a lateral m
tallic magnetic superlattice film. In this reference, due to
presence of the insulating spacers the electron motion is
ited in a certain direction, so that those features can be fo
from the magnetic excitations of the metallic magnetic s
tem. More recently, in a discussion of influences of ed
currents upon the magnetostatic modes in ferromagnets,5 the
influences are proved to be more obvious when the fe
magnets are metallic. The conductivity of metallic magn
like Ni and Fe is so high, that the imaginary part~it is related
to the eddy currents! of the complex dielectric coefficient i
much larger than its real part, which can be omitted na
rally. As a result, the question enters into the field to stu
the magnetostatic modes of metallic magnets. In the elec
magnetic region of spin waves, the retarded modes of a
ferromagnets are more practically interesting. The recent
PRB 610163-1829/2000/61~14!/9494~7!/$15.00
e
c
ts.
f

g-
e
o-

e
u-

f
t
d

on
-
e

-
nd
-
y

-
s

-
y
o-
ti-
x-

periments of the attenuation total reflection on t
antiferromagnet FeF2 show that some features of the retard
modes, especially the nonreciprocity of the surface mod
can be identified more precisely and the experimental res
are consistent with the theoretical ones.6,7 In our last paper,8

we discussed the effects of eddy currents in noninsula
antiferromagnets with a uniaxial anisotropy on the retard
modes which requires an equal importance of both the
part and imaginary part of the complex dielectric coefficie

The superlattice used in this paper is similar to that in R
4, composed of metallic ferromagnetic layers and insulat
nonmagnetic layers. In contrast to Ref. 4, where the refl
tion of electromagnetic radiation from the system was d
cussed, our aim is to investigate the dispersion propertie
magnetostatic waves. We propose that the damping res
completely from eddy currents in the superlattice, and
direction and magnitude of the external magnetic field in
surface of the superlattice can be changed. For simplicity,
choose a geometry similar to the Voigt geometry, in whi
the wave propagates transversely to the static magnetiza
and along the surface. Of course, the direction of the m
netization changes with both the direction and magnitude
the field, due to the presence of the demagnetizing field.

II. THEORY

We studied magnetostatic and retarded modes in s
high-symmetry configurations in Refs. 9–12, where the st
magnetization is always parallel to the applied field. For
investigation of magnetostatic modes, the direction of
in-surface wave vector can be changed and there is a cri
propagation angle of surface modes. For studies of retar
modes, one always takes the Voigt geometry, where
9494 ©2000 The American Physical Society
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wave vector is normal to the magnetization and applied fie
We also discussed the magnetostatic modes in a l
symmetry geometry,13 where the direction of an applie
static field can be changed. In this paper, we consider a m
general configuration, i.e., the applied fieldH0 makes any
anglew with respect to the axisz transverse to the magnetic
nonmagnetic layers~see Fig. 1!. Due to the presence of th
demagnetizing field, the static magnetizationM0, generally
speaking, is not parallel toH0, so we assume that it make
the anglew8 with respect to thez axis. If the direction or
magnitude ofH0 is changed, the anglew8 varies. In theoret-
ical derivation we also need the other coordinate system w
the z8 axis parallel toM0, thex8 axis in the surface and th
y8 axis parallel to they axis. The wave always propagate
along thex8 axis. d1 and d2 indicate the widths of the fer

FIG. 1. Geometry considered in this paper. The applied fieldH0

makes an anglew and the static magnetizationM0 ~along thez8
axis! makes another anglew8 with respect to thez axis normal to
the magnetic-nonmagnetic layers. The wave always propag
along thex8 axis normal to the magnetization, or say thez8 axis.
Thex-z or x8-z8 plane is the surface of the superlattice. They or y8
axis is perpendicular to the surface.d1 andd2 are the thicknesse
of the magnetic and nonmagnetic layers.
rs
tic
.
-

re

th

romagnetic and nonmagnetic layers, so thatD5d11d2 is
the superlattice period. As before,9–13 we employ the
effective-medium approximation which means that the
perlattice is described as a homogeneous anisotropic med
with an averaged magnetic permeability tensor and comp
dielectric coefficient tensor.

First, the effective-medium permeability of the superla
tice is given by13

mJ 8e5S m11 im12 0

2 im21 m22 0

0 0 1
D , ~1!

where

m115@m1~ f 21 f 1m!c tan2 w8#/~ f 11 f 2m1c tan2 w8!,
~2a!

m225 f 21 f 1m2 f 1f 2m'
2 /~ f 11 f 2m1c tan2 w8!, ~2b!

m125m215 f 1m'~11c tan2 w8!/~ f 11 f 2m1c tan2 w8!
~2c!

with f 15d1 /D, f 25d2 /D, and

m511v ivm /~v i
22v2!, ~3a!

m'5vmv/~v i
22v2!, ~3b!

in which vm54pgM0 and

v i5g@H0
2 sin2 w1~H0 cosw24pM0 cosw8!2#1/2. ~4!

The relation betweenw andw8 in formula ~4! is

tanw85
H0 sinw

H0 cosw24pM0 cosw8
. ~5!

For w590° and 0°, the static field and magnetization ha
the same direction. Atw590°, the demagnetizing field van
ishes and it reaches its maximum atw50°.

Second, we derive the expression of the effective-med
dielectric coefficient tensor in thex8y8z8 coordinate system
from that in thexyz system. In thexyz coordinate system4

es
«J5S «xx5 f 1«11 f 2«2 0 0

0 «yy5 f 1«11 f 2«2 0

0 0 «zz5
«1«2

f 1«21 f 2«1

D , ~6!
nt,

fi-
n

where«2 is the dielectric constant of the nonmagnetic laye
and«1 is the complex dielectric coefficient of the magne
layers, given by

«15«0S « r1 i
s

«0v D . ~7!
,In formula ~7!, «0 represents the vacuum dielectric consta
« r is the relative dielectric constant, ands is the electrical
conductivity. Thus the effective-medium dielectric coef
cient tensor in thex8y8z8 coordinate system can be writte
as

«J8e5T«JeT21, ~8!
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where the transformation matrixT is defined as

T5S cosw8 0 2sinw8

0 1 0

sinw8 0 cosw8
D . ~9!

After the substitution of Eq.~9! into Eq. ~8!, we have

«J8e5S «11 0 «13

0 1 0

«31 0 «33

D ~10!

with

«115«xx cos2 w81«zzsin2 w8, ~11a!

«335«xx sin2 w81«zzcos2 w8, ~11b!

and

«135«315sinw8cosw8~«xx2«zz!. ~11c!

In two special geometries,w590° and 0°, matrix~10! is
diagonal. Becauses/(«0v)@« r in Eq. ~7! for the metallic
ferromagnetic layers, and we are interested in investiga
magnetostatic modes, the displacement current terms ar
nored on the right-hand side of the equation

¹83h5
]

]t
~ «J8e

•e! ~12!

but the conduction current terms are preserved, which le
to

¹83h5sJ8e
•e, ~13!

wheree is the induced electric field. According to Eqs.~7!
and ~11!, the nonzero components of the effective cond
tivity tensorsJ8e are presented as follows:

s115 f 1s~12F sin2w8!, ~14a!

s225 f 1s, ~14b!

s335 f 1s~12F cos2 w8!, ~14c!

and

s135s315 f 1s sinw8 cosw8F ~14d!

with

F512
«2

2

@~ f 1«21 f 2«0« r !
21~ f 2s/v!2#

. ~15!

On the above bases, we can derive the dispersion rela
of the magnetostatic waves in the superlattice with the e
currents. Since the main formulas~1!, ~10!, and~13! are all
given in thex8y8z8 coordinate system, the derivation of di
persion relations will be carried out in this system.

The derivation of the dispersion relations is different fro
those in Refs. 1 and 9–13. First, the term on the right-h
side of Eq.~13! is not zero so that we cannot introduce
magnetostatic potential to describe the real physical fie
g
ig-

ds

-

ns
y

d

s.

Second, the tensorsJ8e included in Eq.~13! is not diagonal.
In the x8y8z8 coordinate system, we introduce a formal s
lution of the field

h5h exp~ ikx81ay82 ivt ! ~y8,0!, ~16a!

h5h0 exp~ ikx82ky82 ivt ! ~y8.0!. ~16b!

In Eqs. ~16!, k is the wave number.a can be a complex
number, and its real part is the decay coefficient of the w
in the superlattice, but above this superlattice the decay
efficient is equal tok.

Applying solution~16a!, Eqs.~13! and

“83e52
]

]t
~mJ 8e

•h!, ~17!

we obtain

ahz5s11ex1
is13v

a
~m11hx1 im12hy!, ~18a!

hz5s22k
22~vhz2 iaex!, ~18b!

ikhy2ahx5s13ex1
ivs33

a
~m11hx1 im12hy!, ~18c!

and

ik~m11hx1 im12hy!5a~ im12hx2m22hy!, ~18d!

where Eq.~18d! results from“•b50. These four equa-
tions result in an equation satisfied bya, that is

ivs13
2 mv~s22v1 ik2!1~ is22a

22s11s22v2 is11k
2!

3S ivs33mv1a22
m11k

2

m22
D50, ~19!

wheremv5(m11m222m12
2 )/m22. We see from Eq.~19! that

there are two different solutions ofa, called a1 and a2 ,
which correspond to two different eigenmodes, respectiv
Thus this superlattice is birefringent. The presence of diff
ent solutions ofa can also be found by studying the dipol
exchange modes in magnetic films.1 The wave functionh in
the superlattice should be a linear combination of these
mode functions. Then the wave fieldh for y8,0 should be
rewritten as

h5@h1 exp~a1y8!1h2 exp~a2y8!#exp~ ikx82 ivt !.
~20!

This formula and Eq.~16b! will be used when the boundar
conditions are employed to find the dispersion equati
Above the superlattice (y8.0), “3h50. We should men-
tion that Re(a1).0 and Re(a2).0 for the physical solutions
Further using Eqs.~18a!–~18d! to find the expressions o
b i5hiy /hiz andg i5hix /hiz , one finds

b i5
1

vs22s13a imvm22
~a im122km11!

3@a i
2s221s11~ ivs222k2!#, ~21a!
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g i5
1

ivs22s13a imvm22
~a im222km12!

3@a i
2s221s11~ ivs222k2!#. ~21b!

The use of the boundary conditions at the surface of
superlattice results in an equation

m22~b22b1!1 i ~11m12!~g12g2!50. ~22!

Substituting formulas~21a! and~21b! into Eq.~22!, one finds
the final dispersion relation

a1a2s22@m22~a11a21mvk!2km12#1s11k~k22 ivs22!

3~m22mv2m12!50. ~23!

From the dispersion relations~23! and ~19!, we know that
v5V1 iG is complex and its real part is the mode fr
quency and the imaginary part represents the damping. T
are two interesting geometries, one corresponds tow50°
and the other tow590°. In these geometries,a1 anda2 are
shown by

a1
25

m11

m22
k22 ivs33mv , ~24a!

a2
25

s11

s22
k22 ivs11, ~24b!

and the dispersion relation is simplified as

a1myy1kmv2kmxy50. ~25!

The eddy current influences the dispersion properties o
throughs33. One can find thats33 increases withv or s in
the geometry ofw50°. Since we have proposed that th
damping results from the eddy current, the damping a
increases withv or s. For the geometry ofw590°, s33
5 f 1s, and we see only the influence of the eddy current
the damping that increases withs. The change of damping
with v can be seen from numerical calculations for the d
persion relation. The expression ofs33, formula ~14c! with
expression~15!, shows us that the effective conductivity
much lower in the first geometry than the second, wh
proves that the motion of electrons is limited effectively
the first geometry, so the energy loss of the waves shoul
lower.

III. NUMERICAL RESULTS AND DISCUSSION

We take the Ni-vacuum superlattice as an example
numerical calculations, in which the Ni layers are meta
and ferromagnetic, but the vacuum spacers are insulating
nonmagnetic. The motion of electrons along the direct
normal to the layers is limited, and furthermore, one may
some features of magnetic excitons or polaritons of meta
magnets from the reflection of magnetoelectric radiatio4

The parameters used in the numerical calculation
4pM056.032 kG, g51.933107, and s51.463107 V21

m21. Frequencies and damping are quoted in kG with
conversion 1 kG53.072 GHz. For Ni layers,s/(«0v)@1 so
that the displacement current term is omitted in Eq.~12! and
the conduction current term has obvious effects on the m
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netostatic modes. For simplicity we choose the propaga
direction of the magnetostatic mode perpendicular to
magnetization and along thex8 axis. This geometry is similar
to the Voigt geometry used in previous papers.

Because the direction of the applied fieldH0 can be
changed, generally speaking, the magnetizationM0 and the
applied fieldH0 do not have the same direction as the d
magnetizing field exists.M0 is directed alongH0 in two limit
cases, or the applied field is normal to the layers~along thez
axis! and it is parallel to the layers~along thex axis!. Figure
2 illustrates numerically the direction angle of the magne
zation as a function of the direction ofH0 for different values
of the field. We can imagine thatM0 is parallel toH0 when
H0→`, but a larger difference is seen for a smaller value
H0 , wherew andw8 are the direction angles ofH0 andM0,
respectively.

In our assumption, the damping and the mode freque
may be modified obviously in the presence of eddy curre
The eddy currents are induced by the electric field of
mode. For different propagation directions, the strength
direction of this field are different. The motion of electron
however, is limited only in the direction of thez axis. Thus
the mode frequency and damping must be related to
propagation direction of the magnetostatic waves. W
present the frequency and damping versus the direction oH0
in Fig. 3, where the wave number is fixed atk53.0
3104 m21). From Fig. 3~a! one sees that forH057.0 kG the
frequency and damping are the lowest when the fieldH0 is
normal to the layers, or sayw5w850° and are the highes
asH0 is parallel to the layers (w5w8590°). However, Fig.
3~b! shows that forH0514.0 kG the frequency is the lowes
at aboutw530°, but the damping is the lowest at aboutw
520°. One also finds that the frequency and damping do
change monotonously with the direction of the applied fie

In Fig. 4, we present the damping as a function of wa
number forH057.0 kG. The damping decreases first, a
then increases as the wave number is increased for sm
angles of the field, but it increases monotonously with
wave number for larger angles. We also see that the dam
is the lowest atw50° and the highest atw590°. This point
is the same as that obtained in Fig. 3 and the above sec

Now we show the mode frequency as a function of t

FIG. 2. The direction of the magnetization versus that of
applied field for different values of the field. Curves~a!–~ e! corre-
spond toH056.10, 7.0, 14.0, 21.0, and 28.0 kG, respectively.
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wave number for different direction angles where the field
fixed at 7.0 or 14.0 kG. Figure 5~a! corresponding toH0
57.0 kG, shows that the frequency always increases as
direction angle of the field is increased and those curves
w.30° have the smallest value, but the other curves sh
the frequency increase with the wave number. For a hig
field H0514.0 kG, Fig. 5~b! shows that except for some o
the characters presented in Fig. 5~a!, there are other new
features. The mode frequency increases faster for a s
direction angle than a large direction angle ofH0, and the
frequency of curvec related tow520° is the lowest at the
limit of small wave numbers. In addition, in the range
large wave numbers, the frequency increases as the dire
angle ofH0 is decreased, but for curvec w520° is still an
exception and it is below curvesa and b related tow50°
and 10°.

Comparing the present numerical results with those
tained without conductivity also is interesting. Fors50, our
mode becomes the surface magnetostatic mode becaus

FIG. 3. Frequency and damping of the mode versus the direc
of the applied field forf 150.8 and the wave numberk53.0. ~a!
H057.0 kG, and~b! H0514.0 kG. The solid curves represent th
frequency function and the dashed curves show the damping.
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FIG. 4. Damping as a function of wave number for differe
directions of the field forf 150.8 andH057.0 kG. Curves~a!–~f!
are related tow510°, 20°, 40°, 60°, 80°, and 90°, respectively.

FIG. 5. Frequency as a function of wave number forf 150.8 and
different directions of the field.~a! H057.0 kG, and ~b! H0

514.0 kG. Curves~a!–~j! are related tow50°, 10°, 20°, . . . , 70°,
80°, and 90°, respectively.
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have Re(a).0 and Im(a)50 in this case. In order to see th
effects of conductivity on the magnetostatic waves, in Fig
we present the frequency and damping as a function of w
number for different values of conductivitys and field angle

FIG. 6. Frequency and damping versus wave number forH0

57.0 kG, f 150.8, and the field angle equal to~a! w50°, ~b! w
540°, and ~c! w590°. Curves~a!–~d! correspond tos51.46
3107, 0.733107, 1.463106, and 1.46V21 m21. The solid curves
show the frequency and the dashed curves represent the dam
6
ve

w. For w50° Fig. 6~a! shows that the frequency and dam
ing increase ass is decreased and they almost do not chan
with the wave number for a very small conductivity, whic
corresponds to a feature of the magnetostatic modes in

FIG. 7. Frequency and damping versus magnetic factionf 1 for
H057.0 kG, s51.463107 V21 m21 and the field angle equal to
~a! w50°, ~b! w540°, and~c! w590°. Curves~a!–~d! are related
to wave numberk53.03104 m21, 5.03104 m21, 7.03104 m21,
and 9.03104 m21. The solid curves show the frequency and t
dashed curves show the damping.g.
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evant systems without damping. The damping begins to
crease as the conductivity is decreased further froms
51.46 V21 m21. For s50 the frequency is 3.4 kG that i
consistent with that given by Fig. 3~a! in Ref. 11, where eddy
currents and damping are ignored. For keeping the fig
clear, some curves with very small conductivity are not p
in it. For w540°, Fig. 6~b! shows that the frequency an
damping have the smallest value in the region of low wa
number. Comparing Fig. 6~b! with 6~a! the damping is
higher so that eddy currents are stronger for this angle.
s50, the damping vanishes and frequency does not cha
with wave number. Forw590°, the demagnetizing field
does not exist so that the frequency becomes high, espec
for smaller values ofs, and the frequencyV510.8 kG for
s50. This value also can be obtained from Fig. 3 in Ref.
where conductivity and damping are ignored.

For a magnetic superlattice, the properties also
change with the magnetic factionf 1 . Figure 7 illustrates the
frequency and damping versusf 1 for different values of
wave number and at a fixed angle of the field. When the fi
is perpendicular to the layers, orw50° @see Fig. 7~a!# the
frequency decreases and the damping increases asf 1 is in-
creased. For the field withw540° or 90°@see Figs. 7~b! and
7~c!# a different feature is that the damping lowers as
magnetic faction is heightened. From Fig. 7 we see m
clearly that the damping is very low when the field is tran
verse to the layers.

IV. SUMMARY AND CONCLUSIONS

We have investigated magnetostatic modes of
ferromagnetic-nonmagnetic superlattice with a lateral s
face, where magnetic layers are metallic, but nonmagn
layers are insulating. In our calculations we assume the w
vector always is normal to the static magnetization, and
effects of eddy current and demagnetizing field are includ

Some interesting features of the magnetostatic modes
found. First, for a lower applied field (H057.0 kG), the
u
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wave frequency and damping is the lowest when the app
field is perpendicular to the magnetic or nonmagnetic lay
of the superlattice, and the highest when the field is para
to the layers. For a higher field (H0514.0 kG), the lowest
values of the frequency and damping are not at the fi
anglew50°. In addition, the frequency and damping curv
are very distinctive @see Fig. 3~b!#. Second, for H0
57.0 kG, the mode frequency always is lower for a low
field angle than for a higher field angle, but forH0
514.0 kG the situation is completely different@to compare
Fig. 5~a! with Fig. 5~b!#. Third, for the applied field trans
verse to the layers, the damping increases with the magn
faction, but for the field parallel to the layers the dampi
decreases as the faction is increased. For the conduct
s50, the damping vanishes, then our results are consis
with those in previous papers on relevant systems with
damping and eddy currents.11,16 In Ref. 4, the authors inves
tigate reflection of electromagnetic radiation from the met
lic magnetic multilayers with a structure the same as t
used in this paper, but we study the dispersion relation
properties of magnetostatic modes, and we use such a ge
etry with an applied field of arbitrary direction. The prope
ties of magnetostatic modes of this layered metallic magn
system may be seen with the optical technologies. We h
seen some practical systems,14,15 produced by patterning
magnetic films with the laser interference lithography, whi
are similar to the superlattice in this paper, but our super
tice is semi-infinite. Of course, it is more interesting th
magnetostatic modes of these practical systems are
cussed, and the relevant works have been started.
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