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Magnetostatic modes of lateral metal magnetic superlattices

Cheng Jia
Department of Physics, Harbin Normal University, Harbin 150080, China

Xuan-Zhang Wang
CCAST (World Laboratory), P.O. Box 8730, Beijing 10080, China
and Department of Physics, Harbin Normal University, Harbin 150080, China

Shu-Chen Lu
Department of Physics, Harbin Normal University, Harbin 150080, China
(Received 11 March 1999; revised manuscript received 9 September 1999

We investigate magnetostatic modes of lateral magnetic superlattices composed of metallic magnetic layers
and insulating nonmagnetic layers, with an effective-medium theory. We assume that the in-plane waves
always propagate normal to the static magnetization for an arbitrary external field applied parallel to the
surface, and that the damping results from eddy currents. Some particular features of the frequency and
damping are seen, for example, the damping is not the lowest for a higher applied field vertical to the
magnetic-nonmagnetic layers, but it is the lowest for a smaller applied field. These features of the frequency
and damping are not only governed by the conductivity and wave number, but also by the direction and
magnitude of external magnetic field. The patterns of obtained calculation curves are complicated. Our results
in the limiting case of conductivityr=0 are consistent with those in the previous works. The numerical
calculations are presented for the Ni-vacuum superlattice.

[. INTRODUCTION periments of the attenuation total reflection on the
antiferromagnet Fefshow that some features of the retarded
Nowadays an interesting field has been formed in themodes, especially the nonreciprocity of the surface modes,
study of spin-wave dispersion properties in gyromagnetican be identified more precisely and the experimental results
mediums, especially in ferromagnets and antiferromagnetére consistent with the theoretical orfésn our last PQDE?. _
According to the wave number of spin waves, the range ofve discussed the effects of eddy currents in noninsulating
the spectrum can be divided roughly into four regiges-  antiferromagnets with a uniaxial anisotropy on the retarded
change, dipole-exchange, magnetostatic, and electromaflodes which requires an equal importance of both the real
netid, and the modes of the spin waves in each of thes®art and imaginary part o_f the_ comple_x dl_ele_:ctrlc coeff_|C|ent.
regions can be determined and detected with particular theo- The superlattice used in this paper is similar to that in Ref.
ries and variant experimental techniqdedWhile investi- 4 composed of metallic ferromagnetic layers and insulating
gating the dispersion relations of the spin-wave modes in th@onmagnetic layers. In contrast to Ref. 4, where the reflec-
magnetostatic and electromagnetic regions, dampings is ustion of electromagnetic radiation from the system was dis-
ally omitted, and this is practically feasible in the case ofcUssed, our aim is to investigate the dispersion properties of
insulating magnets with a perfectly crystal structure and af@gnetostatic waves. We propose that the damping results
low temperature. Recently, the authors of Ref. 4 advance§ompletely from eddy currents in the superlattice, and the
some discussions concerning the effects of eddy currents direction and magnitude of the external magnetic field in the
the reflection of electromagnetic radiation from a lateral me-Surface of the superlattice can be changed. For simplicity, we
tallic magnetic superlattice film. In this reference, due to thech00se a geometry similar to the Voigt geometry, in which
presence of the insulating spacers the electron motion is lim{h® wave propagates transversely to the static magnetization
ited in a certain direction, so that those features can be foun@nd along the surface. Of course, the direction of the mag-
from the magnetic excitations of the metallic magnetic Sys_netlz.at|on changes with both the direction and .mlagnlltude of
tem. More recently, in a discussion of influences of eddythe field, due to the presence of the demagnetizing field.

currents upon the magnetostatic modes in ferromagrtaes,

influences are proved to be more obvious when the ferro- Il. THEORY
magnets are metallic. The conductivity of metallic magnets
like Ni and Fe is so high, that the imaginary pétts related We studied magnetostatic and retarded modes in some

to the eddy currenisof the complex dielectric coefficient is high-symmetry configurations in Refs. 9—12, where the static
much larger than its real part, which can be omitted natumagnetization is always parallel to the applied field. For the
rally. As a result, the question enters into the field to studyinvestigation of magnetostatic modes, the direction of the
the magnetostatic modes of metallic magnets. In the electron-surface wave vector can be changed and there is a critical
magnetic region of spin waves, the retarded modes of antipropagation angle of surface modes. For studies of retarded
ferromagnets are more practically interesting. The recent exnodes, one always takes the Voigt geometry, where the
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Y(V) romagnetic and nonmagnetic layers, so tBatd;+d, is
the superlattice period. As befote!> we employ the
effective-medium approximation which means that the su-
perlattice is described as a homogeneous anisotropic medium
with an averaged magnetic permeability tensor and complex
dielectric coefficient tensor.

First, the effective-medium permeability of the superlat-
tice is given by®

Mi11 inp O
a'e=| —ipa ma O, (1)
0 0 1

where

pu=[u+(fo+fiu)ctart ¢ 1/(f1+fou+ctar? <P’)i .
2

poo=fotfiu—tifou?l(fi+futctart o), (2b)
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FIG. 1. Geometry considered in this paper. The applied figJd
makes an angle and the static magnetizatiod, (along thez’ _ —f 1+ctart o)/ (f++ fou+ctarf o’
axis) makes another angle’ with respect to the axis normal to p12= par=fape, ( eI (T1tTon ¢ )(20)
the magnetic-nonmagnetic layers. The wave always propagates
along thex’ axis normal to the magnetization, or say theaxis. ~ with f;=d,/D, f,=d,/D, and
Thex-z orx’-z' plane is the surface of the superlattice. Ty’ ) )
axis is perpendicular to the surfaced, andd, are the thicknesses w=1+wjon/(of - o), (33
of the magnetic and nonmagnetic layers. ) 5

© = onol (0] — %), (3b)
wave vector is normal to the magnetization and applled f|eldm which w,,=4myM, and
We also discussed the magnetostatic modes in a low-
symmetry geometry? where thg direction of an.applied w;=y[H3sir? ¢+ (Hocose—4mMgcose’)?]Y2  (4)
static field can be changed. In this paper, we consider a more _ . )
general configuration, i.e., the applied fietth makes any The relation betweew and ¢’ in formula (4) is
angle¢ with respect to the axigtransverse to the magnetic-
nonmagngtip Iayerésee Fig. ;L Due to t'he presence of the tang’ = —. (5)
demagnetizing field, the static magnetizatid, generally Ho cose—4mMgcose

speaking, is not parallel tblo, S0 we assume that it makes pqor ,—90° and 0°, the static field and magnetization have

the anglee’ with respect to thez axis. If the direction or  {4e same direction. Ab=90°, the demagnetizing field van-
magnitude o, is changed, the anglg’ varies. In theoret- ishes and it reaches its maximumgat 0°.
ical derivation we also need the other coordinate system with

thez' axis parallel toM, thex’ axis in the surface and the Second, we derive the expression of the effective-medium
y’ axis parallel to they axis. The wave always propagates dielectric coefficient tensor in the'y’z’ coordinate system
along thex’ axis.d; andd, indicate the widths of the fer- from that in thexyz system. In thexyz coordinate systefn

Hosing

exy=TF1e1tfres 0
0 eyy="F181+T5e 0
o= %% 1e1 2¢2 , (6)
€182
0 0 - -
2z f182+f281

wheree, is the dielectric constant of the nonmagnetic layersn formula(7), ey represents the vacuum dielectric constant,

ande; is the complex dielectric coefficient of the magnetic ¢, is the relative dielectric constant, amdis the electrical

layers, given by conductivity. Thus the effective-medium dielectric coeffi-
cient tensor in the'y’z’ coordinate system can be written
as

o
81280(8r+|_>' (7) g/e:Tg’eT—l (8)

Eqw
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where the transformation matrik is defined as Second, the tensa¥’ € included in Eqg.(13) is not diagonal.
) o, In thex'y'z’ coordinate system, we introduce a formal so-
cose’ 0 —sing lution of the field
T= 0 1 0 . 9
. © h=hexpikx'+ay’ —iwt) (y'<0), (168
sing’ 0 cosp’
After the substitution of Eq(9) into Eq. (8), we have h=hoexp(ikx' —ky'—iwt) (y'>0). (16D

In Egs. (16), k is the wave numbera can be a complex

0 . X -
1 c13 number, and its real part is the decay coefficient of the wave

ge= 0 1 0 (100 in the superlattice, but above this superlattice the decay co-
€31 0 eg3 efficient is equal td.
_ Applying solution(16a), Egs.(13) and
with
. (9 e

£11= €44 COF @' +&,,8IP @', (113 V’Xe=—a(/¢'e~h), 7

£33 ExxSIT @' +£,,C08 ¢, (11D we obtain
and .

ah= ot 2 hFiaghy), (189
£13=€31=SINQ'COSP' (exx—&77). (119 2O« Wy

In two special geometriesp=90° and 0°, matrix(10) is
diagonal. Because/(gow)>¢, in Eq. (7) for the metallic
ferromagnetic layers, and we are interested in investigating
magnetostatic modes, the displacement current terms are ig- ikhy— ahy= 058, +
nored on the right-hand side of the equation

h,= 0'22k72(whz_iaex): (180

iw0'33

o (paahxtipashy), (189

and

J
leh: — g"e.e 12 - H I
ot ( ) ( ) |k(/.L11hX+ | ,U/]_Zhy) = a(l MthX_ /'L22hy)1 (18d)

but the conduction current terms are preserved, which leadghere Eq.(18d) results fromV-b=0. These four equa-

to tions result in an equation satisfied by that is
V'Xh=5"%¢g, (13 i 0023, (0 20+ ik?) + (1 0900 % — 07110900 — 1 0711k?)
wheree is the induced electric field. According to EdS) G
and (11), the nonzero components of the effective conduc- X| iwogau, + a?— =0, (29
tivity tensor &'© are presented as follows: K22
3 o, where u, = (u11too— i) pas. We see from Eq(19) that
ou=to(1-Fsife), (143 here are two different solutions af, called a, and as,,
_¢ (14b which correspond to two different eigenmodes, respectively.
22— 11 Thus this superlattice is birefringent. The presence of differ-
B B , ent solutions ofx can also be found by studying the dipole-
o55=T10(1-Fcos ¢), (149 oxchange modes in magnetic fihghe wave functiorh in
and the superlattice should be a linear combination of these two
mode functions. Then the wave fieidfor y’ <0 should be
o13=03,=f10sing’ cose’F (14d  rewritten as
with h=[h; explayy’)+h, explasy’) lexpikx’ —iwt).
2 (20)
€2
F=1- [(freo+ foe08,) 2+ (fo0lw)?]" (15 This formula and Eq(16b) will be used when the boundary

conditions are employed to find the dispersion equation.
On the above bases, we can derive the dispersion relatiodsoove the superlatticey(>0), Vxh=0. We should men-
of the magnetostatic waves in the superlattice with the edd{ion that Re@;)>0 and Reg,)>0 for the physical solutions.
currents. Since the main formulé$), (10), and(13) are all  Further using Eqs(18a—(18d to find the expressions of
given in thex’y’z’ coordinate system, the derivation of dis- 8i=h;y /h;; and y;=h;,/h;,, one finds
persion relations will be carried out in this system.
The derivation of the dispersion relations is different from B 1 K
those in Refs. 1 and 9—13. First, the term on the right-hand Bi_a)g'zzg'lgailuvﬂzz(aiﬂlz— H11)
side of EqQ.(13) is not zero so that we cannot introduce a 5 ) 5
magnetostatic potential to describe the real physical fields. X[ajoptoy(iwop—Ko)], (219
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Yi (ajpo—Ku1o)

X[ af oyt o14(iwo—K?)]. (21b)

The use of the boundary conditions at the surface of the

superlattice results in an equation

oA Bo—B1) +i(1+ u1)(y1—v2)=0. (22

Substituting formula$21a and(21b) into Eq.(22), one finds
the final dispersion relation

a0 pon g+ ap+ p,K) —Kuiol + o k(K2 —iwoy,)

X(poopy = m12) =0. (23
From the dispersion relation23) and (19), we know that
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FIG. 2. The direction of the magnetization versus that of the

o=Q+il is cqmplgx and its real part is the que fre- applied field for different values of the field. Curves—( €) corre-
quency and the imaginary part represents the damping. Theggond toH,=6.10, 7.0, 14.0, 21.0, and 28.0 kG, respectively.

are two interesting geometries, one correspondg $o0°
and the other ta=90°. In these geometrieg,;; anda, are
shown by

a§=M—1lk2— iwoaal, (249
M22
(o
2= —iwoy,, (24b)
022
and the dispersion relation is simplified as
aypyyt K, —Kpgy=0. (25

netostatic modes. For simplicity we choose the propagation
direction of the magnetostatic mode perpendicular to the
magnetization and along tixé axis. This geometry is similar

to the Voigt geometry used in previous papers.

Because the direction of the applied fieldy can be
changed, generally speaking, the magnetizalignand the
applied fieldH, do not have the same direction as the de-
magnetizing field existdvl, is directed alongdd in two limit
cases, or the applied field is normal to the lay@teng thez
axig) and it is parallel to the layer@long thex axis). Figure
2 illustrates numerically the direction angle of the magneti-
zation as a function of the direction bif, for different values

The eddy current influences the dispersion properties onl§f the field. We can imagine thd, is parallel toH, when

throughos;. One can find thatra; increases withw or o in

o—, but a larger difference is seen for a smaller value of

the geometry ofp=0°. Since we have proposed that the Ho, Whereg and ¢’ are the direction angles &fo andMy,
damping results from the eddy current, the damping alséespectively.

increases withw or o. For the geometry ofp=90°, o33

In our assumption, the damping and the mode frequency

=f, o, and we see only the influence of the eddy current of"ay be modified obviously in the presence of eddy currents.
the damping that increases with The change of damping The eddy currents are induced by the electric field of the
with  can be seen from numerical calculations for the dis-mode. For different propagation directions, the strength and
persion relation. The expression @k, formula (140 with direction of this field are different. The motion of electrons,
expression(15), shows us that the effective conductivity is NOWever, is limited only in the direction of treaxis. Thus
much lower in the first geometry than the second, which® mode frequency and damping must be related to the
proves that the motion of electrons is limited effectively in Propagation direction of the magnetostatic waves. We

the first geometry, so the energy loss of the waves should B&resent the frequency and damping versus the directiéf of
lower. in Fig. 3, where the wave number is fixed &t=3.0

x 10*m~1). From Fig. 3a) one sees that fdd,= 7.0 kG the
frequency and damping are the lowest when the fig¢jds
normal to the layers, or say=¢'=0° and are the highest
We take the Ni-vacuum superlattice as an example foasH, is parallel to the layers{= ¢’ =90°). However, Fig.
numerical calculations, in which the Ni layers are metallic3(b) shows that foH,=14.0 kG the frequency is the lowest
and ferromagnetic, but the vacuum spacers are insulating arat aboute=30°, but the damping is the lowest at abaut
nonmagnetic. The motion of electrons along the direction=20°. One also finds that the frequency and damping do not
normal to the layers is limited, and furthermore, one may seehange monotonously with the direction of the applied field.
some features of magnetic excitons or polaritons of metallic In Fig. 4, we present the damping as a function of wave
magnets from the reflection of magnetoelectric radiation. number forH,=7.0kG. The damping decreases first, and
The parameters used in the numerical calculation ar¢hen increases as the wave number is increased for smaller
47M=6.032 kG, y=1.93x10/, ando=1.46x10" Q"'  angles of the field, but it increases monotonously with the
m~L. Frequencies and damping are quoted in kG with thavave number for larger angles. We also see that the damping
conversion 1 k&3.072 GHz. For Ni layersg/(gqw)>1 so s the lowest atp=0° and the highest at=90°. This point
that the displacement current term is omitted in B@) and  is the same as that obtained in Fig. 3 and the above section.
the conduction current term has obvious effects on the mag- Now we show the mode frequency as a function of the

IIl. NUMERICAL RESULTS AND DISCUSSION
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FIG. 4. Damping as a function of wave number for different
45 directions of the field forf ;=0.8 andH,=7.0 kG. Curvega)—(f)

are related tap=10°, 20°, 40°, 60°, 80°, and 90°, respectively.
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FIG. 3. Frequency and damping of the mode versus the direction 0 0 2 4 6 — 8 10
of the applied field forf;=0.8 and the wave numbér=3.0. (a) @ K(0'm")

Hy=7.0kG, and(b) Hy=14.0kG. The solid curves represent the
frequency function and the dashed curves show the damping.

wave number for different direction angles where the field is
fixed at 7.0 or 14.0 kG. Figure(® corresponding tdH,
=7.0kG, shows that the frequency always increases as the
direction angle of the field is increased and those curves for
¢>30° have the smallest value, but the other curves show
the frequency increase with the wave number. For a higher
field Hy=14.0kG, Fig. Bb) shows that except for some of
the characters presented in Figa) there are other new
features. The mode frequency increases faster for a small
direction angle than a large direction angletdf, and the
frequency of curvee related top=20° is the lowest at the
limit of small wave numbers. In addition, in the range of
large wave numbers, the frequency increases as the direction

angle ofH, is decreased, but for cunee=20° is still an b) K(0*m)
exception and it is below curves andb related top=0°
and 10°. FIG. 5. Frequency as a function of wave numberffpr 0.8 and

Comparing the present numerical results with those obdifferent directions of the field(a H,=7.0kG, and(b) H,
tained without conductivity also is interesting. Fo#=0, our  =14.0kG. Curvesa)—(j) are related tap=0°, 10°, 20°. .., 70°,
mode becomes the surface magnetostatic mode because 8@, and 90°, respectively.
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FIG. 7. Frequency and damping versus magnetic fadtiofor
Ho=7.0kG, 0=1.46x10" Q"I m™! and the field angle equal to
(@ ¢=0°, (b) ¢=40°, and(c) ¢=90°. Curvega)—(d) are related
to wave numberk=3.0x10"m™1, 5.0x10*m™%, 7.0x10°m™1,

and 9.x10*m™. The solid curves show the frequency and the

show the frequency and the dashed curves represent the dampingashed curves show the damping

have Re§¢)>0 and Img)=0 in this case. In order to see the ¢. For ¢=0° Fig. 6a) shows that the frequency and damp-
effects of conductivity on the magnetostatic waves, in Fig. Gng increase ag is decreased and they almost do not change
we present the frequency and damping as a function of waveith the wave number for a very small conductivity, which

number for different values of conductivityand field angle  corresponds to a feature of the magnetostatic modes in rel-
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evant systems without damping. The damping begins to dewave frequency and damping is the lowest when the applied
crease as the conductivity is decreased further fram field is perpendicular to the magnetic or nonmagnetic layers
=1.46 QO *m™L For o=0 the frequency is 3.4 kG that is of the superlattice, and the highest when the field is parallel
consistent with that given by Fig(® in Ref. 11, where eddy to the layers. For a higher fieldHo=14.0kG), the lowest
currents and damping are ignored. For keeping the figurgalues of the frequency and damping are not at the field
clear, some curves with very small conductivity are not putanglee=0°. In addition, the frequency and damping curves
in it. For ¢=40°, Fig. 8b) shows that the frequency and are very distinctive [see Fig. &)]. Second, for H,
damping have the smallest value in the region of low wave=7.0kG, the mode frequency always is lower for a lower
number. Comparing Fig. (B) with 6(a) the damping is field angle than for a higher field angle, but fdt,
higher so that eddy currents are stronger for this angle. Foe 14.0 kG the situation is completely differeftb compare
o=0, the damping vanishes and frequency does not chandeg. 5a) with Fig. 5b)]. Third, for the applied field trans-
with wave number. Forp=90°, the demagnetizing field verse to the layers, the damping increases with the magnetic
does not exist so that the frequency becomes high, especialfgction, but for the field parallel to the layers the damping
for smaller values ofr, and the frequenc$)=10.8kG for decreases as the faction is increased. For the conductivity
o=0. This value also can be obtained from Fig. 3 in Ref. 16,0=0, the damping vanishes, then our results are consistent
where conductivity and damping are ignored. with those in previous papers on relevant systems without
For a magnetic superlattice, the properties also camamping and eddy current§®In Ref. 4, the authors inves-
change with the magnetic factidn. Figure 7 illustrates the tigate reflection of electromagnetic radiation from the metal-
frequency and damping versds for different values of lic magnetic multilayers with a structure the same as that
wave number and at a fixed angle of the field. When the fieldised in this paper, but we study the dispersion relation and
is perpendicular to the layers, gr=0° [see Fig. 7@)] the  properties of magnetostatic modes, and we use such a geom-
frequency decreases and the damping increasds msin-  etry with an applied field of arbitrary direction. The proper-
creased. For the field with=40° or 90°[see Figs. b) and ties of magnetostatic modes of this layered metallic magnetic
7(c)] a different feature is that the damping lowers as thesystem may be seen with the optical technologies. We have
magnetic faction is heightened. From Fig. 7 we see moreeen some practical systefts? produced by patterning
clearly that the damping is very low when the field is trans-magnetic films with the laser interference lithography, which

verse to the layers. are similar to the superlattice in this paper, but our superlat-
tice is semi-infinite. Of course, it is more interesting that
IV. SUMMARY AND CONCLUSIONS magnetostatic modes of these practical systems are dis-

) _ ) cussed, and the relevant works have been started.
We have investigated magnetostatic modes of a

ferromagnetic-nonmagnetic superlattice with a lateral sur-
face, where magnetic layers are metallic, but nonmagnetic
layers are insulating. In our calculations we assume the wave
vector always is normal to the static magnetization, and the The work was supported by the National Natural Science
effects of eddy current and demagnetizing field are included-oundation of China with Grant No. 19574014, the Out-

Some interesting features of the magnetostatic modes astanding Youth Science Foundation, and Natural Science
found. First, for a lower applied fieldHy,=7.0kG), the Foundation of Heilongjiang Province, China.
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