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Effects of isotopic disorder on the Raman spectra of crystals: Theory andab initio calculations
for diamond and germanium
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We present a method to study the effects of isotopic composition on the Raman spectra of crystals, in which
disorder is treatedexactlywithout resorting to any kind of mean-field approximation. The Raman cross section
is expressed in terms of a suitable diagonal element of the vibrational Green’s function, which is accurately and
efficiently calculated using the recursion technique. This method can be used in conjunction with both semi-
empirical lattice-dynamical models and with first-principles interatomic force constants. We have applied our
technique to diamond and germanium using the most accurate interatomic force constants presently available,
obtained from density-functional perturbation theory. Our method correctly reproduces the light scattering in
diamond—where isotopic effects dominates over the anharmonic ones—as well as in germanium, where
anharmonic effects are larger.
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I. INTRODUCTION

The striking successes met by the quantum theory of
ids over the past 70 years are mostly due to a careful exp
tation of the symmetry properties displayed by crystals
cause of translational invariance. The effects of isoto
composition on the vibrational spectrum of an otherwise p
fect crystal are possibly the simplest manifestation of
phenomena which occur when translational invariance
broken by disorder. From a theoretical point of view, t
study of these effects is particularly appealing because
order does not affect the interactions between atoms—w
can therefore be calculated with high accuracy using te
niques appropriate for periodic systems—but only the m
distribution in the dynamical matrix. On the experimen
side, the optical properties of isotopically enriched semic
ductor samples, particularly germanium samples, have
cently received a considerable attention motivated and t
gered by the ability to separate and to alloy different isoto
of a given element and to produce either isotopically pure
intentionally disordered high-purity crystals.1

The effects of substitutional disorder on the vibration
properties of crystals are usually treated by some kind
approximation aimed at defining an effective periodic d
namical matrix whose resolvent is the average Green’s fu
tion of the system~i.e., the Green’s function averaged ov
the different realization of the disorder!.2 The simplest of
such approximations is the virtual crystal approximati
~VCA! in which the fluctuations in the variables which d
termine the randomness in the system~the nuclear masses i
the case of isotopic disorder! are simply neglected and thes
variables replaced by their average value. Several impro
ments exist over the VCA—such as, notably, the cohere
potential approximation~CPA!—in which fluctuations in the
mass distribution are treated in the mean-field approxima
at different levels of sophistication.3
PRB 610163-1829/2000/61~14!/9387~6!/$15.00
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In this paper we show how the effects of isotopic disord
on the Raman spectra of crystals can be treated essen
without any approximations, besides those used for the
culation of the interatomic force constants. To this end,
first express the Raman cross section in terms of the vi
tional Green’s function of the crystal, and then we calcul
the latter by using the recursion method. Section II conta
our theoretical formulation, while in Sec. II we present t
results that we have obtained by applying our theory to d
mond and germanium crystals, and usingab initio inter-
atomic force constants.

II. THEORY

In the specific case of the Raman spectrum and in
adiabatic approximation, the cross section for the nonre
nant inelastic scattering of a photon polarized along theein
direction to a final state polarized along theeout direction is
given by

s~v!}(
i f

P~Ei !d~v2Ef1Ei !

3U E F f* ~u! eout* •x~u!•einF i~u!duU2

, ~1!

whereEi andEf indicate the energies of the initial~i! and of
the final ~f! vibrational states of the system,F i and F f the
corresponding wave functions,P the thermal distribution of
initial states,u the vibrational coordinates, andx(u) is the
static electronic polarizability tensor of the system expres
as a function of the nuclear coordinates. Let us assume
the system is initially in its ground state (T50). By expand-
ing x in powers of u up to linear order and making th
harmonic approximation for the lattice vibrations, the cro
section reads
9387 ©2000 The American Physical Society
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s~v!}(
n

d~v2vn!u(
l

x l8j l ,n^FnuQnuF0&u2, ~2!

where uF0& is the vibrational ground state of the syste
uFn& the state with one phonon emitted in thenth normal
mode, Qn and j l ,n the corresponding normal coordina
and displacement pattern (j l ,n[]ul /]Qn), and x l8
5]@eout* •x(u)•ein#/]ul . In Eq. ~2! and in the following thel
subscript labels an individual nuclear coordinate@as specified
by the position of the unit cellR, by the atomic position
within the unit cells, and by direction of the displacemen
from equilibriuma: ul[us,a(R)]. Taking into account that
the matrix element ofQn is proportional to (2vn)21/2, Eq.
~2! can be recast into the very simple form:

s~v!}
1

p
Im (

l l 8
x l8* Gll 8~v!x l 8

8 , ~3!

whereG5(Mv22K)21 is the vibrational Green’s function
of the system,K the matrix of the interatomic force con
stants, andM is the ~diagonal! matrix which specifies the
atomic mass distribution. In Eq.~3! it is assumed thatv has
an infinitesimal negative imaginary part. Equation~3! states
that the nonresonant Raman cross section is essentially g
by the imaginary part of a certain diagonal element of
vibrational Green’s function, calculated with respect to t
vector of the partial derivatives of the electronic polarizab
ity with respect to all the nuclear displacements.

In the adiabatic approximation, the electronic groun
state wave function of a crystal is lattice periodic and
unaffected by isotopic disorder. Because of periodicity,x l8
[xs,a8 (R) cannot depend on the position of the unit cellR.
In the absence of isotopic disorder,G(v) is also lattice pe-
riodic and the density of states~DOS! projected over a lattice
periodic vector can only be nonvanishing ifv coincides with
one of the zone-center vibrational frequencies of the syst
Thus, we recover the well known selection rule that, in
absence of disorder~and ignoring anharmonic effects! Ra-
man lines are delta functions centered atq50 vibrational
frequencies~further selection rules may obviously hold b
cause of point symmetry!. Isotopic disorder is often said t
allow lattice vibrations with a finite wave vector to be e
cited in the scattering process. Inspection of Eq.~3! suggests
a complementary picture: the momentum transferred by~vis-
ible or infrared! light to the crystal is always vanishingl
small, as dictated by kinematic selection rules or, equi
lently, by the fact thatx8 is lattice periodic. The broadenin
of the Raman lines may be seen as due to the fact that in
presence of disorderall the vibrational eigenstates have
nonvanishing component over the lattice-periodicx8 vector.
Of course, in the weak-disorder limit, it is expected that o
those vibrational eigenstates whose frequency is close
Raman-active mode of the virtual crystal may have an ap
ciable projection overx8, so that in this case Raman spec
still consist of well defined individual lines which are broa
ened by disorder. For crystals with the diamond structu
point symmetry dictates that

]xab

]us,g~R!
5const3~21!s3ueabgu, ~4!
,

en
e
e
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where Greek letters indicate Cartesian coordinates,s[$1,2%
indicates the two equivalent atomic sites in the unit cell, a
e is the Levi-Civita totally antisymmetric unit tensor.4 Ac-
cording to Eq.~4!, if the incoming light is polarized, say
along thex axis and the scattered photon is observed alo
the y direction, thenx l8 is proportional to the displacemen
vector of a zone-center optical phonon polarized along thz
direction. Equation~3! states that the Raman cross section
given by the diagonal matrix element of the vibration
Green’s function of the disordered crystal, calculated w
respect to this lattice periodic vector. The most efficie
method known to date to calculate diagonal matrix eleme
of this form is the Haydock’s recursion method.5

In order to apply the recursion method to the calculat
of the matrix element, Eq.~3!, we first rewrite it as

s~v!}Im K j0U 1

v22K̄
Uj0L , ~5!

where

K̄5M21/2KM21/2, ~6!

and

uj0&5M21/2ux8&. ~7!

Application of standard techniques5 leads to the continued
fraction expansion

s~v!}Im
1

v22a02
b1

2

v22a12
b2

2

�

, ~8!

where thea and b coefficients are given by the recursio
chain

uj21&50,

bnujn&5~K̄2an21!ujn21&2bn21ujn22&, ~9!

and

an5^jnuK̄ujn&, bn5^jnuK̄ujn21&. ~10!

The recursion method is almost invariably used as areal-
space technique, mainly to calculate the local density
states and related properties in disordered systems.6 How-
ever, this method can be applied as well in any represe
tion where the matrix-vector product appearing in Eq.~9!—
which is the time-consuming step of the algorithm—can
efficiently calculated. In the present case, this is most con
niently done using spectral techniques. In fact,K̄ is the prod-
uct of matrices which are either diagonal in real space (M),
or block-diagonal in reciprocal space (K). The recursion vec-
tors can be kept stored in either representation, and
matrix-vector products performed in the representat
where the matrix is~block! diagonal. The transformation
from one representation to the other is most efficiently do
using fast Fourier transform techniques~FFT!. In this way,
once the force-constant matricesK(q) are calculated on a
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regular mesh ofq vectors ~using either a semiempirica
model or first-principles techniques! the calculation of the
Raman cross section using Eqs.~8!–~10! can be easily car-
ried out.

III. RESULTS

We have applied the formalism presented above to
mond and germanium for which a good deal of experimen
information is available. Natural diamond form a binaryiso-
topic alloycomposed of 98.9% of12C and 1.1% of13C. The
Raman spectrum of artificially13C-enriched samples ha
been determined for different concentrations13C.7–9 Natural
germanium has a more complex composition with 22%
70Ge, 28% of 72Ge, 8% of 73Ge, 35% of 74Ge, and 6% of
76Ge.1 The Raman spectra of pure isotopes as well as tha
the binary alloy 70Ge0.5

76Ge0.5 have also been
determined.1,10–12

The force-constant matricesK(q) have been calculate
using density functional perturbation theory~DFPT! ~Ref.
13! on a regular~8,8,8! grid of q points in the reciproca
space of the face-centered cubic lattice. These matrices
then been Fourier-interpolated onto a~32,32,32! grid, fol-
lowing the same procedure as in Ref. 14. The real-sp
image of such a grid is a supercell containing 23323

565536 atoms. We have used the plane-wave pseudopo
tial method with norm-conserving pseudopotentials fro
Ref. 15 for C and Ref. 16 for Ge. Plane waves up to
kinetic-energy cutoff of 40 and 16 Ry were used for C a
Ge, respectively, and the Brillouin-zone integrations w
performed using 10 specialk points. All the calculations
were done at the theoretical equilibrium crystal volume, c
responding to 11.1 and 43.7 Å3 for diamond and germa
nium, respectively, and the slight dependence of the volu
on the isotopic composition17 has been neglected. The resu
ing optical frequencies at zone center are 1309 and 303 c21

in diamond and germanium, respectively—when calcula
with a value of the mass equal to the natural average—to
compared with the experimental values of 1331~Ref. 18!
and 304~Ref. 19! cm21.

FIG. 1. Raman intensities in diamond, calculated for differe
isotopic compositions.
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The recursion chain, Eqs.~9!,~10!, has been implemente
by generating a random distribution of nuclear masses in
above mentioned supercell, corresponding to any given
topic composition. The chain was truncated after 600 st
of recursion, and the results averaged over 5–10 indepen
mass distributions corresponding to a same isotopic com
sition. Ghoststates may appear while generating such lo
chains20 due to the numerical loss of orthogonality amo
different recursion vectors. The existence of these gho
however, does not affect the value of the Green’s funct
we are interested in, as it was explicitly verified by reo
thogonalizing the chain vectors. Anharmonic effects on
Raman line shape were taken into account semi-empiric
by evaluating the Green’s function at the complex frequen
v2 iGanh, where Ganh is the inverse lifetime of the LTO
zone-center phonon, as determined theoretically using th
order DFPT.21

In Fig. 1 we display the Raman lines calculated in d
mond for different isotopic compositions. The main effect
the variation of the13C concentrationx is that the position of
the peak is inversely proportional to the square root of
average mass, as predicted by the VCA. Asx varies, the
width of the peaks changes from a minimum correspond
to the two pure-isotope limits (x50 andx51)—where only
anharmonic effects contribute to the phonon lifetime—to
maximum occurring nearx'0.7 where effects of disorde
are the largest. In Fig. 2 we display the dependence of
disorder-induced frequency shift and linewidth upon13C
concentration. Formally these two quantities coincide w
the real and imaginary parts of the disorder-induced pho
self-energy. The former is obtained by subtracting the p
diction of the VCA from the position of the maximum of th
line, whereas the latter is increased by twice the theoret
anharmonic inverse lifetime in order to compare with expe

t

FIG. 2. Raman shift~upper panel! and linewidth~lower panel!
in diamond as functions of13C. Experimental data are from Ref.
~filled diamonds! and Ref. 22~triangles!. The resolution of the spec
trometer is included in the experimental linewidth and has b
estimated to 1.8 cm21.9
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9390 PRB 61NATHALIE VAST AND STEFANO BARONI
ments. We see that, while the accuracy of our calcula
force constants limits the absolute precision of our pred
tions to '20 cm21 ~which is the error in the prediction o
the zone-center optical frequency at natural isotopic com
sition!, the dependence upon composition of the disord
induced frequency shifts and linewidths are very well rep
duced by our calculations. In particular, in agreement w
experiments7 and with previous calculations based on t
CPA and on a semiempirical force field,8 the maximum of
the disorder-induced self-energy is shifted towards hea
average masses (x'0.7). The scattering probability i
roughly proportional to the vibrational density of states a
the self-energy is enhanced at lower~higher! frequency when
the perturbing atoms are13C (12C).8,22 Therefore, maximum
effects are found at a composition for which the avera
mass is heavier than that corresponding tox50.5, for which
the mass disorder is maximum~Fig. 2!. We note that, at
variance with our data which are obtained treating disor
exactly, the bowing of the Raman shift curve is strong
reduced when the CPA is used in conjunction withab initio
interatomic force constants.22

The self-energy predicted by our calculations is syste
atically smaller than observed experimentally by Ram
scattering. Self-energy effects are relatively large in diamo
because of the large density of states available for scatte
LTOG phonons off the zone center.8 This large density of
states is due to the overbending of the phonon disper
near the zone center.23,24 Actually, first-principles calcula-
tions predict a maximum of the phonon DOS more than
cm21 above the LTOG frequency,24 whereas according to
second-order Raman experiments,25 this maximum should be
located only a few cm21 above. This fact seems to be su
ported by recent inelastic x-ray scattering measurement
the phonon dispersions in diamond26 which display a smaller
overbending than predicted by first-principles calculatio
We conclude that first-principles calculations slightly ove
estimate the overbending of phonon dispersions at zone
ter in diamond, and they also underestimate the vibratio
DOS near the LTOG frequency.

However, increasing the DOS near the LTOG frequency
has little effects—when using the CPA—on the real part

FIG. 3. Raman intensities in76Gex
70Ge12x , calculated for dif-

ferent isotopic compositionsx.
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the self-energy but increases the imaginary part by a facto
large as 2.9 Then we believe that both the inaccuracy
calculated DOS and the experimental resolution—estima
to be '1.8 cm21 ~Ref. 9!—do explain the discrepancy be
tween the theoretical and experimental linewidths, but
the whole discrepancy on the Raman shifts.

So far, we have compared our theoretical Raman shift
broadening to the Raman-scattering experiment of Ref. 7
recent investigation of the isotopic effects on the frequen
shift both by cathodoluminescence and Raman meas
ments22 estimates the value of 0.5 meV~4 cm21) as an upper
bound for the shift of the LTOG frequency within the@x
50,x50.5# concentration range for the13Cx

12C12x . Our
theoretical Raman shifts are in better agreement with th
measurements~Fig. 2!.

In Figs. 3 and 4 we display the shape of the Raman pe
and the magnitude of the disorder-induced frequency sh
and linewidths, as calculated for different isotopic compo
tions in 76Gex

70Ge12x . In this case the effects of disorde
are of the order of 1 cm21 and are much smaller than i
diamond, due to the fact that theGLTO phonon lies at the
edge of the optical band, where the vibrational DO
vanishes.1 Even though the comparison of our results w
experiments is for this reason extremely difficult and to so
extent even questionable, our calculations are indeed ab
describe some fine details of the observed line shape
very high accuracy. This is illustrated in Fig. 5 which show
how the two shoulders in the low-energy tail of the Ram
peak in 76Ge0.5

70Ge0.5, corresponding to theLTO and XTO
critical points of the density of states12 are well reproduced
by our calculations.

In the germanium alloy the theoretical Raman shift is
very close—and somewhat fortuitous—agreement with
sole measurement made atx'0.5 ~Fig. 4!. Our theoretical
results predict that the maximal effect is expected at t

FIG. 4. Raman shift~upper panel! and line width~lower panel!
in 76Gex

70Ge12x as functions ofx. Experimental data are from Re
11. Pure70Ge and76Ge have a theoretical anharmonic linewidth
0.67 cm21.21
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composition although the curve is not symmetric with
spect tox50.5.

The linewidth of natural germanium is small and therefo
difficult to measure. Different values have recently been
ported, ranging from 0.51~Ref. 27! to 0.64~Ref. 28! and to
0.97 cm21,10 while the theoretical estimate for the pure
anharmonic contribution is 0.67 cm21.21 The theoretical
broadening in the binary alloys is also small over the wh
range of concentrations~Fig. 4!, and it is predicted to in-
crease with respect to the purely anharmonic width over

FIG. 5. Low-energy tail of the Raman line of76Ge0.5
70Ge0.5.

The frequencies of theLTO andXTO critical points are marked by an
arrow. Experiment is from Refs. 11,12. The theoretical peak
been shifted so that the maximum of the peak coincides with
experimental value~304.5 cm21).
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whole range of concentration. However, the smallness of t
effect does not allow us to make any quantitative meaning
prediction about its dependence uponx. For x'0.5, the line-
width reaches'0.9 which is'0.2 cm21 larger than the pure
anharmonic broadening occurring in the nondisordered ca
This figure is an order of magnitude larger than the expe
mental value, as a 0.02 cm21 broadening is reported.1 This
discrepancy in the theoretical and experimental linewidt
also appears on Fig. 5, where the experimental low-ene
tail of the Raman line is slightly broader than the theoretic
one.

IV. CONCLUSIONS

In conclusion, we present a theoretical method to inves
gate the effects of isotopic disorder on the lattice dynam
of crystals, which does not rely on any kind of mean-fie
approximations. For diamond, our results are in reasona
agreement with experiments although they depend se
tively on the calculated vibrational DOS at the LTOG fre-
quency, which is presumably underestimated by the pres
DFPT calculations. The effects for Ge are much weak
Nevertheless the agreement between our results and ex
ment is still very satisfactory also in this case.
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