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Reduction of energy absorption by phonons and spin waves in a disordered solid
due to localization

J. B. Sokoloff
Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University,

Boston, Massachusetts 02115
~Received 27 August 1998; revised manuscript received 13 December 1999!

It is argued on the basis of the Chirikov overlap of resonances criterion for the development of chaos and
ergodicity that Anderson localization of the phonon modes or the spin-wave modes~in the case of ferromag-
netic resonance! can result in a large reduction in the rate of energy absorption by a solid from an oscillating
external field. This phenomenon is illustrated by numerical calculations on simple model systems.
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I. INTRODUCTION

The excitations of a solid, e.g., phonons or spin wa
~for a magnetic solid!, are usually approximated by harmon
oscillators. When we are interested in how energy is
sorbed by a solid interacting with an external field, howev
it is crucially important to include anharmonic contributio
to these excitations and to the coupling between differ
excitations. First of all, anharmonicity makes the frequen
of a given mode depend on its amplitude. As a conseque
the resonant frequency of the mode gets spread into a r
of resonant frequencies. Since the normal modes of a s
~in the harmonic approximation! are independent harmonic
oscillator modes, one must include the coupling of mod
resulting from anharmonicity in order to include spreading
energy among the modes. It was shown by Chirikov tha
single resonance in a nonlinear system will not abs
energy.1–3 It is only when a collection of such resonances a
coupled and overlap sufficiently in frequency that they
able to absorb energy from an external force acting on on
more of the resonances.1–3 Here it is argued that Anderso
localization4 of the phonon or spin-wave modes of a so
can suppress the exchange of energy among the va
modes, and thus by Chirikov’s overlap of resonances cr
rion for the occurrence of ergodicity and chaos, the ene
absorbtion by these modes from an external field will
suppressed.1–3

In previous work by the present author,5 it was argued on
the basis of the Chirikov overlap of resonances criterion
the occurrence of chaos1–3 that very small particles~of the
order of a few atoms! will absorb practically no energy on
the average from an external oscillating force acting on so
of the atoms at sufficiently low temperature. This argum
was proposed to show that such small particles might be
to slide with respect to each other with practically no kine
friction. It will be argued here on the basis of the Chiriko
idea that the rate of energy absorption by a larger solid fr
an external oscillating field~e.g., an electromagnetic field!
can be drastically reduced if the solid is sufficiently diso
dered for its phonon modes to be localized. I will also co
sider the case of an oscillating magnetic field interacting w
a classical Heisenberg model ferromagnet, which should
scribe ferromagnetic resonance.
PRB 610163-1829/2000/61~14!/9380~7!/$15.00
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The transition from energy absorbing to nonenergy
sorbing behavior as a function of decreasing system s
which was found in the model studies of Ref. 5, can
explained in terms of the overlap of resonances criterion
the occurrence of ergodic and/or chaotic behavior of the s
tem. The basic idea is that when weak anharmonicity is
cluded, the vibrational degrees of freedom can be modele
a collection of nonlinear resonances of the system,
modes whose resonance frequency depends on the amp
of vibration.1 As a result, a nonlinear resonance, has a ra
of resonance frequencies, rather than a single one. If su
resonance is acted on by a periodic driving force, it will n
gain energy from the force forever, because even if the re
nant frequency is initially equal to the frequency of the e
ternal driving force, since it depends on the vibrational a
plitude, it will not remain at that value. Consequently, t
energy of the system will oscillate as a function of time.
contrast, if there are two or more such resonances, the sy
might heat up if the driving force is sufficiently large. Whe
these ranges overlap, the resonances can exchange e
with each other, but when they do not, they behave as in
pendent resonances which, as was stated earlier, do not
tinuously absorb energy from the driving force.

In the case of small solids,2,5 the mode spacing is just th
phonon mode spacing resulting from the fact that the soli
finite. As a result the solid undergoes a transition from no
energy absorbing behavior when it is sufficiently small
energy absorbing behavior when it is larger~and hence the
modes are closer together!.5 In this paper, I wish to propose
an alternative way to get nonabsorbing behavior, which
occur for larger solids. If the solid is sufficiently disordere
the phonon modes might be localized.4 In this case it is sta-
tistically improbable that a mode localized around a parti
lar lattice site will be nearly in resonance with modes loc
ized around neighboring sites. Then, the Chirikov criteri
tells us that the phonon modes might behave as nearly
coupled nonlinear resonances. If these modes are acted o
a time-dependent driving force, they might not absorb ene
from it.

II. ENERGY ABSORPTION BY PHONONS

In order to illustrate effects of localization on energy a
sorption by phonon modes, let us consider a simple o
9380 ©2000 The American Physical Society
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PRB 61 9381REDUCTION OF ENERGY ABSORPTION BY PHONONS . . .
dimensional model, consisting of a chain of atoms, taken
represent a solid film, interacting with each other and wit
rigid substrate with anharmonic interactions of rando
strength. Each of these atoms is then acted on by a sinu
dally oscillating force, which represents the external fie
The equation of motion for this model is

q̈a52gq̇a2ga f ~qa!2Ka f ~qa2qa21!

1Ka11f ~qa112qa!1Fasin~vt !, ~1!

where qa represents the displacement of an atom with
spect to the substrate andga represents the force consta
which gives the coupling of the atom to the substrate.
will use this equation to study two models of a disorder
film. In both modelsKa , the force constant between theath
and (a11)st atoms, is chosen to be a random number
tween 0 andKmax. In one model called the substitution
impurity model,ga has a valuegmax on all except a few sites
chosen at random with probabilityc, on which it is equal to
zero. In the second model, which will be called the contin
ous random model,ga is chosen to be a random numb
between 0 andgmax, v is the frequency of the driving force
and f (x) is a nonlinear function given by

f ~x!5x2Ax21Bx3. ~2!

The coefficientsA andB in Eq. ~2! are arbitrarily chosen to
be equal to 9.354 434 7 and 49.007 713 9, respectively. Th
are the values of the coefficients for the expansion up to t
order of the Lennard-Jones interaction, but this particu
choice is not relevant for the present discussion. For the
riodic film that we study for comparison to the disorder
models,ga and Ka are chosen to be independent ofa and
equal togmax and Kmax, respectively.~This choice makes
the mode spacing larger for the periodic system than if
average values were used, which will if anything suppres
the energy absorption.! A linear in velocity damping term
with damping coefficientg can be included to simulate th
cooling effect of the coupling of the chain to the substra
For the substitutional impurity model, we will take the am
plitude of the driving forceFa to be independent ofa and
equal toFmax, but for the continuous random model and t
periodic comparison system described above,Fa is chosen to
be randomly distributed with a square distribution betwee
and Fmax, because if it were not random, it would on
couple to the zero wave-vector mode of the periodic co
parison system, making it an inappropriate comparison s
tem. The total energy of the chain was calculated as a fu
tion of time both for a disordered chain and for an orde
one.

In Fig. 1~a!, the energy of the chain is plotted as a fun
tion of time for the substitutional impurity model with con
centrationc equal to 0.05. The frequency of the driving forc
was chosen to be (0.43Kmax)

1/2, which puts it in the fre-
quency range of the vibrational states which are locali
around the impurity sites. In these runs the average value
ga andFa were taken to be 5.0K and 0.002Ka, respectively,
in order to insure that the low-frequency modes~‘‘impurity
modes’’! are well localized, anda is the interparticle spacing
in the chain, because our goal here is to study the effect
localization on energy absorption. In this run, the energy w
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found to increase with increasing time. In Fig. 1~b!, the en-
ergy is shown as a function of time for the same values
gmax, Kmax, andFa , but with a concentrationc equal to 0.1
but with the restriction placed on the impurity sites that the

FIG. 1. E in units ofKa2 versust in units of t0 for a 1000 atom
chain for the substitutional impurity model with~a! an impurity
concentrationc50.05 with no restriction on the impurity locations
~b! with c50.1 with the restriction that no two impurities can b
less than a distance 5a apart,~c! a periodic lattice with the same
values ofv andF but with the applied force restricted to 1% of th
lattice sites.
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9382 PRB 61J. B. SOKOLOFF
must be a minimum spacing between impurity sites of fi
lattice sites. In this case, we see that despite the fact tha
concentration of impurities is larger, the energy does
increase with increasing time, implying that this system d
not absorb energy from the driving force. This implies th
the absorption that took place in the other case was du
the overlap of the localized modes~since in the present case
the restriction placed on the impurity site spacing guaran
that the modes do not overlap!. This is expected because o
the average, the number of pairs of impurity sites which
a distancen or fewer sites apart, wheren is the number of
sites to which a localized phonon state extends, isNnc2,
whereN is the number of sites in the chain. For comparis
in Fig. 1~c!, the energy is shown as a function of time for
periodic version of this model with all values ofga equal to
zero and all values ofKa equal toKmax. The frequency of
the driving force is the same as in the models of Figs. 1~a!
and 2~b!, but Fa is chosen to be zero on all sites except
1% of the sites chosen at random where it is set equa
Fmax. Here, we find that in contrast to the random case,
periodic system does absorb energy from the driving for
despite the fact that it acts only on a smaller fraction of
sites than it acts on in the calculations presented in Fig. 1~b!.
Disordered chains with 400 and 200 atom, without any
striction on the closeness of sites on whichga is zero, gen-
erally did not absorb energy.

It is expected that the initial energy absorption can
described in the harmonic approximation, since the anh
monic terms in Eq.~1! will only become important when the
amplitude of the driven motion of the chain becomes su
ciently large. Therefore, it is expected that one can gain so
insights into how the nonlinear system absorbs energy
studying the exact harmonic approximation solution@i.e.,
whenA andB are set equal to zero in Eq.~1!# and comparing
it to the numerical calculations on the nonlinear system. D

FIG. 2. The 10 lowest modes for the model presented in Fig
The square frequencies and positions of the peaks of each o
modes are, respectively 0.135 72t0

22 peaked at 400a, 0.255 33t0
22

peaked at 727a, 0.364 10t0
22 peaked at 63a, 0.495 28t0

22 peaked at
347a, 0.552 27t0

22 peaked at 401a, 0.603 92t0
22 peaked at 471a,

0.610 15t0
22 peaked at 788a, 0.627 32t0

22 peaked at 251a,
0.675 77t0

22 peaked at 440a, and 0.677 13t0
22 peaked at 334a.
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ferences between the behavior of the two systems will tel
something about the mechanisms for energy absorption.
lowing Ref. 1, the harmonic approximation solution of E
~1!, for times sufficiently long for the transient solutions
die out, can be written as

qa~ t !5(
a8

E dt8Ga,a8~ t2t8! f a8sin~v0t8!, ~3!

wherev0 is the driving frequency and the Green’s functio

Ga,a8~ t2t8!5~2pN!21(
s

E dv
Ss,aSs,a8

* e2 iv(t2t8)

vs
22v21 igv

,

~4!

whereSs,a is thesth normal mode of the system,vs is its
frequency, andg is the damping constant for the modes. F
t@g21 the transients will have died out. Several of the lo
frequency normal modes are plotted in Fig. 2 for the abo
choice of force constants for the substitutional impur
model 1000 atom chain withc50.05 and no restriction on
the spacings of the randomly chosen impurity sites. T
modes are clearly highly localized. Consistent with our h
pothesis that the energy absorption by the system is ca
by mode overlap, we see that there is a mode localized a
site at locations 400a and one at 401a. In order to illustrate
that this is precisely the place where almost all of the ene
absorption takes place in this system let us consider
quantityq̇a

21v0
2qa

2 called the amplitude function, which is
measure of the amplitude of the vibrations of theath atom.
We find using Eqs.~3! and ~4! that it is given by

q̇a
21v0

2qa
25v0

2U(
s

Ss,a(
s8

Ss8,a f a8

vs
22v0

22 igv0

U 2

, ~5!

which is independent of time. This quantity is plotted in F
3~a! in order to compare it with the same quantity found f
the full nonlinear system described by Eq.~1! for the substi-
tutional impurity model withc50.05 and no restriction on
the location of the impurity sites, which is plotted att
561 000t0 ~where t05K21/2, and whereK is the average
value of the intersite force constant! in Fig. 3~b!. @For com-
parison, the amplitude was also calculated for the perio
comparison model and and plotted in Fig. 3~c!. It is clearly
much more spread over the entire lattice than the func
plotted in Fig. 3~b!.# It appears as if the mode excited
position 400a, as shown in Fig. 3~a!, is now transferring its
vibrational energy to modes localized around neighbor
sites, consistent with the application of the Chirikov criteri
to the energy absorption problem.

Calculations were also done of similar quantities for t
continuous random model. It was found that whereas~for
200 and 400 atom chains!, the disordered system was foun
to not absorb energy on the average, the corresponding
odic chain did. The 1000 atom disordered chain, in contr
did absorb energy, but the absorption was found to oc
only in a small region of the chain.

Let us now consider the question of whether mode loc
ization is likely to lead to reduced energy absorption in t
long chain limit. For the periodic chain described by Eq.~1!

.
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FIG. 3. The amplitude function versus position in units ofa for
the substitutional impurity model, calculated forv250.1849t0

22 ~a!
in the harmonic approximation,~b! from the solution of the nonlin-
ear problem governed by Eq.~1!, and ~c! from the solution of the
nonlinear problem for the periodic comparison model describe
the text.
with Ka andga independent ofa, it is useful to expandqa in
terms of its harmonic approximation normal modes (Qk)
~i.e., qa5N21/2(ke

ikaaQk). Then the resulting equation o
motion for Qk is

Q̈k52gQ̇k2v2~k!Qk1N21/2A(
k8

Qk8Qk2k8

2N21B (
k8,k9

Qk8Qk9Qk2k82k9 , ~6!

where v(k) is the normal mode frequency. This equatio
results from Hamilton’s equations with the Hamiltonian

H5~1/2!(
k

@ uQ̇ku21v2~k!uQku2#

1~1/3!A(
k8

QkQ2k8Qk82k

2N21~1/4!B (
k8,k9

QkQ2k8Qk9Qk82k2k9 .

The k85k95k term in the third summation gives the non
linearity of the modeQk . ~The second summation does n
have a term containing only a singlek value.! From the dis-
cussion in Sec. 3.2 in Chirikov’s review article,1 this term
gives the inverse mass defined in Eq.~3.18! in that section,
implying that the inverse mass is proportional toN21. The
largest contribution to the coupling between modes~which
plays the role of the coupling of a mode to an external for
represented byVmn in Sec. 3.2! comes from the first summa
tion, and hence is proportional toN21/2. Thus, from Eq.
~3.22! in that section, we conclude that the width of th
nonlinear mode represented byQk is proportional toN23/4.
Since the mode spacing is proportional toN21, the number
of coupled modes that fall within the width of a single mo
is proportional toN1/4. Thus, since the total number of mode
is N, the number of overlapping mode pairs for a period
chain is proportional toN5/4. Since we saw earlier that th
number of overlapping mode pairs for the disordered chai
approximately equal tonNc2 ~wheren represents the spatia
extent of a localized mode!, we see that for the large-N limit,
the number of overlapping mode pairs~which according to
the Chirikov criterion can absorb energy! should be much
larger for the periodic than for the random chain.~Although
the number of overlapping modes for the periodic ch
grows faster than proportional toN, coupling to other de-
grees of freedom will likely result in the rate of energy a
sorption being only proportional toN.! The proportionality to
N5/4 is only indicative of the fact that the mode overla
should be much larger for the periodic chain.! For the con-
tinuously disordered case, the density of localized mode
proportional toN. Let us write it asNr0, wherer0 is an
intensive variable. Thus if the width of a single mode due
nonlinearity is denoted byDE, the number of modes within
a mode width isNr0DE. Thus from the above argument
we again conclude that a macroscopic random chain sh
be less dissipative than a periodic one.

In the calculations presented here, the damping constag
in Eq. ~1! was assumed to be small compared to the m

in
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9384 PRB 61J. B. SOKOLOFF
spacing. Clearly, such an assumption cannot be made fo
infinite solid with a continuous distribution of force con
stants and/or atomic masses. The dampingg was included to
account for coupling of the modes of the solid under cons
eration due to anharmonicity with a substrate. Therefore
instead of including a parameterg in the calculation, we
think in terms of coupling to the substrate as being due
anharmonic coupling of the solid under consideration to
modes of the substrate, if the substrate is also a disord
solid, the arguments based on the Chirikov criterion can a
be applied to the coupling of the modes of the the solid
those of the substrate. Applying the arguments presente
this article to the suppression of the transfer of energy w
the substrate because of the Chirikov argument, we are
tified in settingg ~which is included in the model to repre
sent this energy transfer! equal to zero.

The spatial extent of a given localized mode should
pend only on the ratio of typical force constants connect
neighboring sites to the typical spread in the random on-
force constants, which would not depend significantly on
mensionality. It is expected, however, that in higher than o
dimension the nonlinear terms in the equation correspond
to Eq. ~1! will include contributions from coupling to more
localized modes because there are more directions in w
they can be found, in contrast to one dimension for wh
there are only two directions. Thus we would expect that i
higher than one-dimensional model, the parameters will h
to be chosen such that the modes are slightly more local
than is necessary in one dimension for this phenomeno
occur. The main qualitative results should, however, not
changed.

We will discuss in the next section ferromagnetic res
nance in highly disordered systems, where it will be p
posed that a similar phenomenon to that described in
section but due to spin-wave localization could occur.

III. REDUCTION IN FERROMAGNETIC RESONANCE
RELAXATION RESULTING FROM SPIN-WAVE

LOCALIZATION

Ferromagnetic resonance is an area in which the effec
localization of the excitations of a solid on absorption
energy when the solid is subject to an external field can
easily studied. In ferromagnetic resonance, a ferromagn
subject to an electromagnetic field, usually in the microwa
range. When the field’s frequency is close to that of one
the spin-wave modes, there is a resonant peak in the abs
tion of the radiation. For a crystalline solid, the radiati
only couples to the zero wave-vector spin wave becaus
wave-vector conservation. Each spin wave acquires a w
due to its interaction with the other spin waves, phonons,
sometimes electrons.6 If the spin waves were not broadene
the radiation could only be absorbed if its frequency w
exactly equal to that of one of the spin waves. This statem
is only true in the linear spin-wave approximation~where the
spin waves are treated as a collection of noninteracting
monic oscillators!.6 Once one goes beyond the linear a
proximation in the classical equations of motion for the s
waves, each of the spin waves can be thought of as a
linear oscillator which acquires a width, as the phonons d
because the spin-wave frequencies will shift with increas
an
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amplitude. The Chirikov overlap of resonances criteri
again implies for the spin waves, as was found for t
phonons, that even if the frequency of the radiation
slightly off resonance, the zero-wave-vector spin wave w
absorb energy from the field if the nonlinear resonance
this spin wave overlaps with other spin-wave resonances

Sufficient localization of the spin waves can lead to
situation in which the spin-wave modes localized arou
neighboring sites are far from being in resonance with e
other, and therefore do not absorb energy on the ave
~although they might heat up slightly initially!.

Our discussion will be based on the classical equation
motion for the spins, e.g., the Landau-Lifshitz equation
motion,6

dmW /dt52GmW 3HW 2gmW 3~mW 3HW !/m2, ~7!

where g is the damping parameter, to account for loss
energy from the spin degrees of freedom to the vibratio
degrees of freedom or from the magnetic material to a s
strate on which it is deposited6 and G is the gyromagnetic
ratio. The spin on each lattice site is assumed to obey
equation of motion, withHW taken to include the sum of al
external fields applied to the system, the exchange field
to neighboring spins and anisotropy field, except in t
damping ~i.e., the second! term where the ac field is no
included. In the calculations to be presented here, the fi
acting on thei th spinmW i is given by

HW i5HW ext1(
j

Ji , jmW j12Aimj
zẑ, ~8!

whereJi , j is the exchange interaction acting between thei th
and j th lattice sites,Ai is the single-ion anisotropy paramet
and ẑ is a unit vector in thez direction, which is assumed to
be the symmetry axis of the crystal. This expression for
field follows from the fact that

Hi
a52]H/]mi

a , ~9!

wheremi
a is theath component of the spin on thei th lattice

site andH is the Hamiltonian given by

H52(
i , j

Ji , jmW i•mW j2(
i

Ai~mi
z!22HW ext•(

i
mW i . ~10!

It was shown by Srivastava and Muller7 that Eq. ~7!
represents Hamilton’s equations for this system
we write mW in spherical coordinates as mW i
5mi(sinuicosfi ,sinuisinfi ,cosui), and identify f i and
micosui with the coordinate and canonical momentum,
spectively. We will takeHW ext,i to include both a static dc field
H0ẑ and an ac magnetic fieldhi x̂ sinvt, due to an externa
radiation field of frequencyv. The quantitiesJi , j , Ai , andhi
were taken to be random variables with square distributi
ranging from 0 toJmax, Amax, andhmax, respectively. For
comparison, a nondisordered system withJi , j andAi chosen
equal to the average value for these quantities for the di
dered crystal was studied as well. Since we wish to study
system at temperatures low compared to the Curie temp
ture, which is where ferromagnetic resonance is usually p
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PRB 61 9385REDUCTION OF ENERGY ABSORPTION BY PHONONS . . .
formed, our starting spin configuration will have almost
of the spins aligned with the dc field, but with 4 out of 20
spins chosen at random having their direction changed f
being lined up with thez axis to making an angle of 0.1
radians with thez axis ~lying in thex-z plane!. The results of
solving Eq.~3! are shown in Fig. 4~a! for a 200 atom chain
with g set equal to zero and forg50.02J/\ in Fig. 4~b!. The

FIG. 4. Energy~in units of J) as a function of time@in units of
(\/J)# for a 200 spin magnetic chain withA52.5J andv255.1J.
The upper curve is for a periodic and the lower one is for a rand
chain in the continuous random model with the same mean va
of K andg. ~a! For g50.0 and~b! g50.02J/\. ~c! Deviation of the
anisotropy energy fromN for the disordered 200 spin magnet
chain considered ina as a function of position in the lattice~in units
of a).
l

m

energy of the magnet increases as a function of time for
nondisordered crystal until the energy of the system is n
zero, but for the disordered crystal it does not continue
increase but levels off and fluctuates about a finite va
which is not far from its initial value, implying that the dis
order suppresses the ability of the magnet to absorb en
from the ac field. In order to support this premise, the dev
tion of the mean anisotropy energy for the disordered sys
N21Aj ( j (Sj

z)2 from its maximum value ofA at the end of
the run is plotted as a function of position in the lattice
Fig. 4~c!. Again, we find that whatever energy~mostly an-
isotropy energy! is absorbed, it seems to be absorbed only
localized regions in the crystal. The calculations were
peated with a small nonzero value ofg. The spin system’s
energy increased as a function of time for both random
periodic systems but the rate of heating was again m
larger for the periodic case. This is analogous to the beha
found for the nonlinear vibrational mode model.

We have also done some runs with the substitutional
purity model defined as follows: The distribution of the e
change interactionJ is the same as that in the model fo
disorder described earlier in this section. The anisotropy
rameterA takes on the valueAmax on all sites except for a
few randomly chosen impurity sites where it is zero. Sin
we are interested in studying this system at temperatures
compared with the Curie temperature, we begin the run w
all of the spins lined up with the dc fieldHẑ except for 20
spins, chosen at random, which make an angle of 0.1 rad
with the dc field. For these calculations,hi has the value
hmax on all sites. The results are given in Fig. 5 for a 10
spin chain withAmax equal to 2.5J, H andhmax equal to 0.1
J, and driving frequency equal to 0.1J/\, with 10% impurity
sites. The distribution of the impurity sites was random b
with the restriction that no two impurity sites be less th
five spin sites apart as in the vibrational case. For comp
son, calculations are also shown for a periodic Heisenb

m
es

FIG. 5. E in units of J versus time in units of\/J for a 1000
atom Heisenberg model with a 10% impurity concentration with
restriction that no two impurities can be closer than 5a with Amax

52.5J,h5H50.1J ~the lower curve!, and for comparison, the en
ergy for a periodic chain with the same values ofAmax, h and H
~the upper curve! is shown.
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model withA equal to zero on all sites andhi chosen to be
nonzero only on sites corresponding to the impurity sites
the disordered model, since these were the only site
which the field coupled in the case of the disordered mo
that we just discussed~because the field is only close t
being in resonance with modes localized on these sites!. The
frequency is again chosen to be 0.1J/\. As can be seen, th
disordered Heisenberg model does not absorb energy
the field, while the corresponding periodic model do
Again, the behavior shown in Fig. 5 is analogous to t
found in Fig. 2 for the analogous vibrational mode study
Sec. II.

The mechanism of energy absorption from the field t
we are speaking of corresponds to the energy absorptio
spin waves which is known as transverse pumping, wh
occurs at high power.6 At lower incident power, the primary
mechanisms of energy absorption by the solid are due
damping of the spin waves resulting from coupling of t
mode in question with a continuum of spin wave, phonon
electron excitations.6 The concept being put forward her
which should apply in the low power regime as well, is th
localization of such modes in a disordered solid can supp
damping mechanisms, by not allowing modes to excha
energy with each other. It will certainly be the case if t
primary mechanism for spin-wave damping is due to sp
wave–spin-wave~and phonon-phonon! interaction resulting
from the nonlinear nature of the equations of motion.

We have not included the dipole-dipole interaction b
cause it is generally considerably weaker than the inte
tions that were included.~Similarly, the dipole-dipole inter-
action due to elasticity has not been included in the pho
case.! Since this interaction falls off slowly with distanc
~i.e., asr 23), it can couple states localized around dista
lattice sites. Although this interaction leads to diffusion
the Anderson localization problem,4 because it is very weak
the additional energy diffusion that it introduces in t
present problem is expected to be too small to affect
results.

IV. CONCLUSION

Models consisting of a force field acting on a model d
ordered nonmagnetic solid and a magnetic field acting o
,

n
to
el

m
.
t

t
by
h

to

r

t
ss
e

-

-
c-

n

t

r

-
a

model disordered magnetic solid are studied in order to d
onstrate that Anderson localization of the excitations of
solid can lead to a suppression of the rate of energy abs
tion from an external field by a disordered solid. The mod
could describe absorption of electromagnetic waves b
solid or kinetic friction. The magnetic system can descr
ferromagnetic resonance by a highly disordered solid.

In a solid that is sufficiently disordered the vibration
modes~or spin-wave modes for a magnetic solid! are highly
localized. As a consequence, mode resonances that are
to each other in frequency and to the frequency of the ex
nal field do not overlap significantly with each other, and
a result, energy absorption from the external field will
highly suppressed, in the sense that there might be no
sorption at all except by modes localized on close lying sit
Only coupling of the film to the substrate will result i
broadening of these modes, which makes them able to
sorb energy, but this coupling can often be reduced to v
small values. As the size of the system increases, howe
there is often a non-negligible probability that in large sy
tems some modes that are close in frequency will be lo
ized on neighboring lattice sites, resulting in considera
energy absorption by these modes, as has been seen in
of the calculations presented here. It was shown, howe
that in the large system limit, the number of overlappi
mode pairs which are close in frequency can be much la
for a periodic than for a disordered solid, which, according
the Chirikov criterion, implies that there will be much mo
energy absorption for a periodic than for a disordered so

The arguments used in this paper are based on clas
mechanics. The justification for this is that it is expected t
coupling of the system to the outside world should lead
decoherence of the quantum system, allowing classical ch
to occur.8
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