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It is argued on the basis of the Chirikov overlap of resonances criterion for the development of chaos and
ergodicity that Anderson localization of the phonon modes or the spin-wave niodie case of ferromag-
netic resonangecan result in a large reduction in the rate of energy absorption by a solid from an oscillating
external field. This phenomenon is illustrated by numerical calculations on simple model systems.

I. INTRODUCTION The transition from energy absorbing to nonenergy ab-

sorbing behavior as a function of decreasing system size,

The excitations of a solid, e.g., phonons or spin wavesvhich was found in the model studies of Ref. 5, can be

(for a magnetic soli] are usually approximated by harmonic €xplained in terms of the overlap of resonances criterion for

oscillators. When we are interested in how energy is abthe occurrence of ergodic and/or chaotic behavior of the sys-

sorbed by a solid interacting with an external field, howeverem. The basic idea is that when weak anharmonicity is in-
it is crucially important to include anharmonic contributions ¢luded, the vibrational degrees of freedom can be modeled as

to these excitations and to the coupling between differenft Collection of nonlinear resonances of the system, i.e.,
excitations. First of all, anharmonicity makes the frequencyM0des whose resonance frequency depends on the amplitude

of a given mode depend on its amplitude. As a consequenc@f ViPration. As a result, a nonlinear resonance, has a range
the resonant frequency of the mode gets spread into a ran éresonance frequencies, rather than a single one. If such a

of resonant frequencies. Since the normal modes of a solig Sonance is acted on by a periodic driving force, .it will not
(in the harmonic approximatiorare independent harmonic- gain energy from thg force forever, because even if the reso-
nant frequency is initially equal to the frequency of the ex-

oscnlgtor modes, one m.u.St .lnclude thg coupling of r,nOdeﬁernal driving force, since it depends on the vibrational am-
resulting from anharmonicity in order to include spreading of litude, it will not remain at that value. Consequently, the

energy among the modes. It was shown by Chirikov that @nergy of the system will oscillate as a function of time. In
single resonance in a nonlinear system will not absorbyqnirast, if there are two or more such resonances, the system
energy-° Itis only when a collection of such resonances armight heat up if the driving force is sufficiently large. When
coupled and overlap sufficiently in frequency that they arenese ranges overlap, the resonances can exchange energy
able to absorb energy from an external force acting on one agith each other, but when they do not, they behave as inde-
more of the resonancés? Here it is argued that Anderson pendent resonances which, as was stated earlier, do not con-
localizatiorf of the phonon or spin-wave modes of a solid tinuously absorb energy from the driving force.
can suppress the exchange of energy among the various In the case of small solids> the mode spacing is just the
modes, and thus by Chirikov’'s overlap of resonances critephonon mode spacing resulting from the fact that the solid is
rion for the occurrence of ergodicity and chaos, the energyinite. As a result the solid undergoes a transition from non-
absorbtion by these modes from an external field will beenergy absorbing behavior when it is sufficiently small to
suppressed:® energy absorbing behavior when it is lardand hence the

In previous work by the present authbit,was argued on modes are closer togethérin this paper, | wish to propose
the basis of the Chirikov overlap of resonances criterion foran alternative way to get nonabsorbing behavior, which can
the occurrence of chabs that very small particlegof the  occur for larger solids. If the solid is sufficiently disordered,
order of a few atomswill absorb practically no energy on the phonon modes might be localizbth this case it is sta-
the average from an external oscillating force acting on soméstically improbable that a mode localized around a particu-
of the atoms at sufficiently low temperature. This argumentar lattice site will be nearly in resonance with modes local-
was proposed to show that such small particles might be ableed around neighboring sites. Then, the Chirikov criterion
to slide with respect to each other with practically no kinetictells us that the phonon modes might behave as nearly un-
friction. It will be argued here on the basis of the Chirikov coupled nonlinear resonances. If these modes are acted on by
idea that the rate of energy absorption by a larger solid frona time-dependent driving force, they might not absorb energy
an external oscillating fielde.g., an electromagnetic figld from it.
can be drastically reduced if the solid is sufficiently disor-
dered for its phonon modes to be localized. | will also con-
sider the case of an oscillating magnetic field interacting with
a classical Heisenberg model ferromagnet, which should de- In order to illustrate effects of localization on energy ab-
scribe ferromagnetic resonance. sorption by phonon modes, let us consider a simple one-
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dimensional model, consisting of a chain of atoms, taken to @) ' ' '
represent a solid film, interacting with each other and with a
rigid substrate with anharmonic interactions of random
strength. Each of these atoms is then acted on by a sinusoi-
dally oscillating force, which represents the external field. 0.00008 - ;
The equation of motion for this model is

0.00010 - 1

0.000086 - 1

da: - yqa_gaf(qa)_ Kaf(qa—qa,l)
+Kot1f(0e+1—0,) + Fosin(wt), (1) 0.00004 | ]

E (Ka®)

where g, represents the displacement of an atom with re-
spect to the substrate amy, represents the force constant
which gives the coupling of the atom to the substrate. We
will use this equation to study two models of a disordered 0.00000 20000 20000 30000
film. In both modelX ,, the force constant between th¢h t (t,)
and (¢+1)st atoms, is chosen to be a random number be-

tween 0 andK,,.x. In one model called the substitutional 00106 [(0) - - ]
impurity model,g, has a valug,,, ., 0n all except a few sites '

chosen at random with probability on which it is equal to
zero. In the second model, which will be called the continu-
ous random modelg, is chosen to be a random number
between 0 and,.x, w is the frequency of the driving force
andf(x) is a nonlinear function given by

0.00002 - T

6.0-1078 |- e

4.0-1078 | E

E (Ka®)

f(x)=x—Ax?+Bx. 2)

The coefficientsA andB in Eq. (2) are arbitrarily chosen to 2.0.10-8 i
be equal to 9.354 434 7 and 49.007 713 9, respectively. These
are the values of the coefficients for the expansion up to third
order of the Lennard-Jones interaction, but this particular o ‘ s s . .
choice is not relevant for the present discussion. For the pe- O~ 20000 40000 60000 60GOO - 100000
riodic film that we study for comparison to the disordered t (to)
models,g, andK, are chosen to be independent@fand , : : _
equal togyayx and K.y, respectively.(This choice makes ootzs}- (©) :
the mode spacing larger for the periodic system than if the
average values were used, which will if anything suppresses
the energy absorptionA linear in velocity damping term
with damping coefficienty can be included to simulate the
cooling effect of the coupling of the chain to the substrate.
For the substitutional impurity model, we will take the am-
plitude of the driving forceF, to be independent o and
equal toF .y, but for the continuous random model and the
periodic comparison system described abdvgis chosen to
be randomly distributed with a square distribution between 0 0.00025 .
and F,,,, because if it were not random, it would only
couple to the zero wave-vector mode of the periodic com-
parison system, making it an inappropriate comparison sys- 000000, 20000 40000 60000 60000
tem. The total energy of the chain was calculated as a func- t (to)
tion of time both for a disordered chain and for an ordered
one. FIG. 1. E in units ofKa? versust in units oft, for a 1000 atom

In Fig. 1(a), the energy of the chain is plotted as a func-chain for the substitutional impurity model witf an impurity
tion of time for the substitutional impurity model with con- concentratiore=0.05 with no restriction on the impurity locations,
centrationc equal to 0.05. The frequency of the driving force (b) with ¢=0.1 with the restriction that no two impurities can be
was chosen to be (O-K$nax)l/2, which puts it in the fre- less than a dlstanceaﬁpart,(c) a_perlodlc Iattlcg with the same
quency range of the vibrational states which are Iocalizedal,ues qfw andF but with the applied force restricted to 1% of the
around the impurity sites. In these runs the average values {ttice sites.
g, andF , were taken to be 5K0 and 0.00K a, respectively,
in order to insure that the low-frequency modésnpurity found to increase with increasing time. In Figb}, the en-
modes’) are well localized, and is the interparticle spacing ergy is shown as a function of time for the same values of
in the chain, because our goal here is to study the effects @max, Kmax, @ndF,, but with a concentration equal to 0.1
localization on energy absorption. In this run, the energy wasut with the restriction placed on the impurity sites that there
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wof ' ' ' ' ] ferences between the behavior of the two systems will tell us
’ something about the mechanisms for energy absorption. Fol-
lowing Ref. 1, the harmonic approximation solution of Eq.
o8| ] (1), for times sulfficiently long for the transient solutions to
g die out, can be written as
S 0.6 T
E . qa(t)zz J dt’Ga,a’(t_t’)fa’Sin(wot’)v (3)
S «
g 041 71 where wg is the driving frequency and the Green'’s function
&
o *  —iw(t—t)
o Sf"xasa' a’e
o0z ] Goo(t=t)=(2aN) 1Y | do—F""—— ,
T w,— 0w +tlyw
4
0.0 L g @
. . \ \ whereS, , is the oth normal mode of the system,, is its
0 200 400 600 800 1000 frequency, andy is the damping constant for the modes. For
position (a) t>+ ! the transients will have died out. Several of the low-

frequency normal modes are plotted in Fig. 2 for the above
FIG. 2. The 10 lowest modes for the model presented in Fig. 1choice of force constants for the substitutional impurity

The square frequencies and positions of the peaks of each of theiodel 1000 atom chain wita=0.05 and no restriction on
modes are, respectively 0.13572 peaked at 408, 0.25533,%  the spacings of the randomly chosen impurity sites. The
peaked at 724, 0.364 10, peaked at 68, 0.495 28, % peaked at modes are clearly highly localized. Consistent with our hy-
347a, 0.55221,% peaked at 404, 0.60392,° peaked at 474,  pothesis that the energy absorption by the system is caused
0.610 15, 2 peaked at 788 0.627 32522 peaked at 2¥, by mode overlap, we see that there is a mode localized at the
0.67571, " peaked at 448, and 0.677 16 ° peaked at 33 site at locations 4G9 and one at 404 In order to illustrate
that this is precisely the place where almost all of the energy

must be a minimum spacing between impurity sites of five;sqniion takes place in this system let us consider the

lattice sites. In this case, we see that despite the fact thatthe . -, 5 , ; _ L
concentration of impurities is larger, the energy does no uantityq,, + wgq, cal_led the ampllt_ude_funcnon, which is a
increase with increasing time, implying that this system doegnéasure Of the amplitide of the \{lb_ratlpns of thils atom.
not absorb energy from the driving force. This implies that'Ve find using Eqs(3) and(4) that it is given by

the absorption that took place in the other case was due to 2
the overlap of the localized modésince in the present case, swz St afar
the restriction placed on the impl.JriFy site spacing guarantees Pt ollewl| S o’ ©
that the modes do not overlgfrhis is expected because on Ao @ola=@o 02— 02— i yag '
a o 0

the average, the number of pairs of impurity sites which are
a distancen or fewer sites apart, whene is the number of which is independent of time. This quantity is plotted in Fig.
sites to which a localized phonon state extendslNisc?, 3(a) in order to compare it with the same quantity found for
whereN is the number of sites in the chain. For comparison the full nonlinear system described by Ed) for the substi-
in Fig. 1(c), the energy is shown as a function of time for a tutional impurity model withc=0.05 and no restriction on
periodic version of this model with all values gf, equal to  the location of the impurity sites, which is plotted at
zero and all values ok, equal toK,,c. The frequency of =6100Q, (wheret,=K Y2 and whereK is the average
the driving force is the same as in the models of Figs) 1 value of the intersite force constann Fig. 3(b). [For com-
and 2b), butF,, is chosen to be zero on all sites except forparison, the amplitude was also calculated for the periodic
1% of the sites chosen at random where it is set equal toomparison model and and plotted in Figc)3 It is clearly
Fmax- Here, we find that in contrast to the random case, thenuch more spread over the entire lattice than the function
periodic system does absorb energy from the driving forceplotted in Fig. 3b).] It appears as if the mode excited at
despite the fact that it acts only on a smaller fraction of theposition 40@, as shown in Fig. @), is now transferring its
sites than it acts on in the calculations presented in Rlg. 1 vibrational energy to modes localized around neighboring
Disordered chains with 400 and 200 atom, without any resites, consistent with the application of the Chirikov criterion
striction on the closeness of sites on whighis zero, gen- to the energy absorption problem.
erally did not absorb energy. Calculations were also done of similar quantities for the
It is expected that the initial energy absorption can becontinuous random model. It was found that wheréas
described in the harmonic approximation, since the anhar200 and 400 atom chaipghe disordered system was found
monic terms in Eq(1) will only become important when the to not absorb energy on the average, the corresponding peri-
amplitude of the driven motion of the chain becomes suffi-odic chain did. The 1000 atom disordered chain, in contrast
ciently large. Therefore, it is expected that one can gain somdid absorb energy, but the absorption was found to occur
insights into how the nonlinear system absorbs energy bgnly in a small region of the chain.
studying the exact harmonic approximation solutiorm., Let us now consider the question of whether mode local-
whenA andB are set equal to zero in E€l)] and comparing ization is likely to lead to reduced energy absorption in the
it to the numerical calculations on the nonlinear system. Difdlong chain limit. For the periodic chain described by ER.
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@ ! ' ' ' with K, andg,, independent oé, it is useful to expand,, in
terms of its harmonic approximation normal mod&3,X
(i.e., g,=N"Y%z,ek*3Q,). Then the resulting equation of
motion for Qy is

150 - b

100l ] Q= — yQ— 0?(K)Q+N"2AY Qu Qi
k/

~N"'B > QuQuQu—i—kr (6)
k’,k”

sor J where w(k) is the normal mode frequency. This equation

results from Hamilton’s equations with the Hamiltonian

amplitude function

I IS B e H=(12) 2, [1Qd*+0*(0|Q?)

0 200 400 600 800 1000
position (a)
+(13AD QQ— Qi —«
k!

(b)

0.008 - -

—“N"YUHB DY QQ 1 Qu Q-
k/,k”

0.008 - . The k’=k"=k term in the third summation gives the non-
linearity of the modeQ, . (The second summation does not
have a term containing only a singtevalue) From the dis-
cussion in Sec. 3.2 in Chirikov’s review articlethis term
gives the inverse mass defined in Eg.18 in that section,
implying that the inverse mass is proportionalNo *. The
largest contribution to the coupling between modekich
0.002 . plays the role of the coupling of a mode to an external force,
represented by, in Sec. 3.2 comes from the first summa-
tion, and hence is proportional td~ Y2 Thus, from Eq.
. . I ‘ (3.22 in that section, we conclude that the width of the
90005 200 400 600 800 1000 nonlinear mode represented Ky, is proportional toN =4,
position (a) Since the mode spacing is proportionalNo *, the number
of coupled modes that fall within the width of a single mode
is proportional taNY. Thus, since the total number of modes
is N, the number of overlapping mode pairs for a periodic
chain is proportional tdN\®* Since we saw earlier that the
number of overlapping mode pairs for the disordered chain is
approximately equal taN¢ (wheren represents the spatial
extent of a localized modgewe see that for the largd-limit,
the number of overlapping mode paimhich according to
the Chirikov criterion can absorb enejgshould be much
larger for the periodic than for the random chdialthough
the number of overlapping modes for the periodic chain
grows faster than proportional td, coupling to other de-
grees of freedom will likely result in the rate of energy ab-
sorption being only proportional t4.) The proportionality to
N5 is only indicative of the fact that the mode overlap
should be much larger for the periodic chaiRor the con-
tinuously disordered case, the density of localized modes is
. proportional toN. Let us write it asNpy, wherep, is an
position (a) intensive variable. Thus if the width of a single mode due to
FIG. 3. The amplitude function versus position in unitsadbr nonlinearity is (?'e”Oted bAE, the number of modes within
the substitutional impurity model, calculated fiof=0.1849,2 () @ mode width isNpoAE. Thus from the above arguments,
in the harmonic approximatiortb) from the solution of the nonlin- W€ again conclude that a macroscopic random chain should
ear problem governed by E¢l), and(c) from the solution of the D€ less dissipative than a periodic one.
nonlinear problem for the periodic comparison model described in  In the calculations presented here, the damping congtant
the text. in Eqg. (1) was assumed to be small compared to the mode
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spacing. Clearly, such an assumption cannot be made for amplitude. The Chirikov overlap of resonances criterion
infinite solid with a continuous distribution of force con- again implies for the spin waves, as was found for the
stants and/or atomic masses. The dampingas included to  phonons, that even if the frequency of the radiation is
account for coupling of the modes of the solid under considslightly off resonance, the zero-wave-vector spin wave will
eration due to anharmonicity with a substrate. Therefore, ibsorb energy from the field if the nonlinear resonance of
instead of including a parameter in the calculation, we this spin wave overlaps with other spin-wave resonances.
think in terms of coupling to the substrate as being due to Sufficient localization of the spin waves can lead to a
anharmonic coupling of the solid under consideration to thesituation in which the spin-wave modes localized around
modes of the substrate, if the substrate is also a disorderawighboring sites are far from being in resonance with each
solid, the arguments based on the Chirikov criterion can alsother, and therefore do not absorb energy on the average
be applied to the coupling of the modes of the the solid taalthough they might heat up slightly initiajly
those of the substrate. Applying the arguments presented in Our discussion will be based on the classical equations of
this article to the suppression of the transfer of energy withmotion for the spins, e.g., the Landau-Lifshitz equation of
the substrate because of the Chirikov argument, we are jugaotion,
tified in settingy (which is included in the model to repre- R L L
sent this energy transfeequal to zero. dm/dt=—T'mxH—ymx (mxH)/m?, (7)

The spatial extent of a given localized mode should de- . .
pend only on the ratio of typical force constants connecting'€"e ¥ IS the damping parameter, to account for loss of

neighboring sites to the typical spread in the random on—sitcgnergy frofn’; the spin d;agree.; of freedo.m to thg \llibrational
force constants, which would not depend significantly on di-d€g9rees of freedom or from the magnetic material to a sub-
trate on which it is depositBand I is the gyromagnetic

mensionality. It is expected, however, that in higher than oné"" . ) o .
dimension the nonlinear terms in the equation correspondinbat'o' The spin on each Jatnce site is assumed to obey this
to Eq. (1) will include contributions from coupling to more €quation of motion, wittH taken to include the sum of all
localized modes because there are more directions in whicgxternal fields applied to the system, the exchange field due
they can be found, in contrast to one dimension for whichfo neighboring spins and anisotropy field, except in the
there are only two directions. Thus we would expect that in &lamping (i.e., the secondterm where the ac field is not
higher than one-dimensional model, the parameters will havécluded. In the calculations to be presented here, the field
to be chosen such that the modes are slightly more localizeacting on theith spinm; is given by

than is necessary in one dimension for this phenomenon to
occur. The main qualitative results should, however, not be
changed.

We will discuss in the next section ferromagnetic reso-
nance in highly disordered systems, where it will be pro-whereJ; ; is the exchange interaction acting betweenithe
posed that a similar phenomenon to that described in thigndjth lattice sitesA; is the single-ion anisotropy parameter
section but due to spin-wave localization could occur. andz is a unit vector in the direction, which is assumed to

be the symmetry axis of the crystal. This expression for the
field follows from the fact that

ﬁi:ﬁext"_z \]l'JrﬁJ+2A|mJZi, (8)
J

Ill. REDUCTION IN FERROMAGNETIC RESONANCE
RELAXATION RESULTING FROM SPIN-WAVE He=—gH/om?, (9)
LOCALIZATION
herem is the ath component of the spin on théh lattice

Ferromagnetic resonance is an area in which the effects ite andH is the Hamiltonian given by

localization of the excitations of a solid on absorption of
energy when the solid is subject to an external field can be o R _
easily studied. In ferromagnetic resonance, a ferromagnetis H= —Z Ji jm;- mj—z A(mH)2—Hgy E m;. (10
subject to an electromagnetic field, usually in the microwave h : :

range. When the field's frequency is close to that of one oft \yas shown by Srivastava and Mulfethat Eg. (7)

the spin-wave modes, there is a resonant peak in the absorgspresents Hamilton's equations for this system  if
tion of the radiation. For a crystalline solid, the radiation . - . . -
only couples to the zero wave-vector spin wave because Sfe write . m-in spherical coorc_ilnat(_es asm
wave-vector conservation. Each spin wave acquires a width_ m;(Sin 6iCosé; sin fisin ¢ ,cos), and identity 4; and

due to its interaction with the other spin waves, phonons, anEfq‘COSf9i with the.coordLnate ar]d canonical momentum, re-
sometimes electrorfsif the spin waves were not broadened, SPectively. We will takeH ¢,q; to include both a static dc field
the radiation could only be absorbed if its frequency wasHyz and an ac magnetic field;x sinwt, due to an external
exactly equal to that of one of the spin waves. This statemermadiation field of frequencw. The quantities; ;, A;, andh;

is only true in the linear spin-wave approximatighere the  were taken to be random variables with square distributions
spin waves are treated as a collection of noninteracting haranging from 0 t0J;ayx, Amax, andhyay, respectively. For
monic oscillators® Once one goes beyond the linear ap-comparison, a nondisordered system with andA; chosen
proximation in the classical equations of motion for the spinequal to the average value for these quantities for the disor-
waves, each of the spin waves can be thought of as a nomlered crystal was studied as well. Since we wish to study the
linear oscillator which acquires a width, as the phonons didsystem at temperatures low compared to the Curie tempera-
because the spin-wave frequencies will shift with increasingure, which is where ferromagnetic resonance is usually per-
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FIG. 5. E in units of J versus time in units ok/J for a 1000
atom Heisenberg model with a 10% impurity concentration with the
restriction that no two impurities can be closer thanith A4,
=2.50,h=H=0.1J (the lower curveg and for comparison, the en-
ergy for a periodic chain with the same values/gf,,, h andH
(the upper curveis shown.
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energy of the magnet increases as a function of time for the
nondisordered crystal until the energy of the system is near
I | zero, but for the disordered crystal it does not continue to
0 =t '20'00- : 40'00 moé s inc_reae_“,e but levels o_ff gr)ql fluctuatgs ab_out a finite v_alue
which is not far from its initial value, implying that the dis-
t (3/J) order suppresses the ability of the magnet to absorb energy
e T from the ac field. In order to support this premise, the devia-
2ol © B tion of the mean anisotropy energy for the disordered system
. ] N™'A;Z(S])? from its maximum value ofA at the end of
the run is plotted as a function of position in the lattice in
Fig. 4(c). Again, we find that whatever energgnostly an-
isotropy energyis absorbed, it seems to be absorbed only in
localized regions in the crystal. The calculations were re-
peated with a small nonzero value ¢f The spin system’s
energy increased as a function of time for both random and
I periodic systems but the rate of heating was again much
0.5 larger for the periodic case. This is analogous to the behavior
i found for the nonlinear vibrational mode model.
UAJ\ UJ |LL | | | We have also done some runs with the substitutional im-
0.0, T T BEETTE purity model defined as follows: The distribution of the ex-
change interactiond is the same as that in the model for
FIG. 4. Energy(in units of J) as a function of tim¢in units of  disorder described earlier in this section. The anisotropy pa-
(fi/3)] for a 200 spin magnetic chain with=2.5) andw?=5.1J.  rameterA takes on the valud,,,, on all sites except for a
The_upper curve _is for a periodic and the !ower one is for a randomggy randomly chosen impurity sites where it is zero. Since
chain in the continuous random model with the same mean valuege are interested in studying this system at temperatures low
of K-andg. (&) For y=0.0 and(b) y=0.02/%. (c) Deviation of the ~ ompared with the Curie temperature, we begin the run with

anisotropy energy fronN for the disordered 200 spin magnetic . . . L
chain corr)éidereg)i/a as a function of position in the Ia?tic(m ur?its aII_of the spins lined up W'th_the dc fieldz except for 20 .
of ). spins, chosen at random, which makg an angle of 0.1 radians
with the dc field. For these calculationls, has the value
formed, our starting spin configuration will have almost all h,,,, on all sites. The results are given in Fig. 5 for a 1000
of the spins aligned with the dc field, but with 4 out of 200 spin chain withA ., equal to 2.5J, H andh,,,,xequal to 0.1
spins chosen at random having their direction changed frord, and driving frequency equal to 0/%, with 10% impurity
being lined up with thez axis to making an angle of 0.1 sites. The distribution of the impurity sites was random but
radians with the axis (lying in thex-z plan@. The results of  with the restriction that no two impurity sites be less than
solving Eg.(3) are shown in Fig. @) for a 200 atom chain five spin sites apart as in the vibrational case. For compari-
with y set equal to zero and far=0.02J/% in Fig. 4b). The  son, calculations are also shown for a periodic Heisenberg

[

E/N (J)
T
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model with A equal to zero on all sites arfg chosen to be model disordered magnetic solid are studied in order to dem-
nonzero only on sites corresponding to the impurity sites ironstrate that Anderson localization of the excitations of the
the disordered model, since these were the only sites teolid can lead to a suppression of the rate of energy absorp-
which the field coupled in the case of the disordered modefion from an external field by a disordered solid. The model
that we just discussetbecause the field is only close to could describe absorption of electromagnetic waves by a
being in resonance with modes localized on these)sité®  solid or kinetic friction. The magnetic system can describe
frequency is again chosen to be I//L. As can be seen, the ferromagnetic resonance by a highly disordered solid.
disordered Heisenberg model does not absorb energy from | 5 solid that is sufficiently disordered the vibrational
the .f|eld, while the corresp_ond[ng p(_arlodlc model does'modes(or spin-wave modes for a magnetic soliate highly
Again, the behavior shown in Fig. 5 is analogous to thaj, qjized. As a consequence, mode resonances that are close
fSound”m Fig. 2 for the analogous vibrational mode study 'Nto each other in frequency and to the frequency of the exter-
e'(lz'.he. mechanism of energy absorption from the field thatnal field do not overlap significantly with each other, and as

we are speaking of corresponds to the energy absorption ﬁit/result, energy absorption from the external field will be

spin waves which is known as transverse pumping, whic ighly suppressed, in the sense that there might be no ab-

occurs at high powet At lower incident power, the primary sorption at gll except by_modes localized on clo_se lying si'tes.
mechanisms of energy absorption by the solid are due QMY coupling of the film to the substrate will result in
damping of the spin waves resulting from coupling of theProadening of thes_e mode_s, which makes them able to ab-
mode in question with a continuum of spin wave, phonon ofSOTP energy, but this coupling can often be reduced to very
electron excitation§.The concept being put forward here, small values. As the size of the system increases, however,
which should apply in the low power regime as well, is thatthere is often a non-negligible probability that in large sys-
localization of such modes in a disordered solid can suppregéms some modes that are close in frequency will be local-
damping mechanisms, by not allowing modes to exchangi&ed on neighboring lattice sites, resulting in considerable
energy with each other. It will certainly be the case if theenergy absorption by these modes, as has been seen in some
primary mechanism for spin-wave damping is due to spin-of the calculations presented here. It was shown, however,
wave—spin-wavgand phonon-phonorinteraction resulting that in the large system limit, the number of overlapping
from the nonlinear nature of the equations of motion. mode pairs which are close in frequency can be much larger
We have not included the dipole-dipole interaction be-for a periodic than for a disordered solid, which, according to
cause it is generally considerably weaker than the interaghe Chirikov criterion, implies that there will be much more
tions that were includedSimilarly, the dipole-dipole inter- energy absorption for a periodic than for a disordered solid.
action due to elasticity has not been included in the phonon The arguments used in this paper are based on classical
case) Since this interaction falls off slowly with distance mechanics. The justification for this is that it is expected that
(i.e., asr‘3), it can couple states localized around distantcoupling of the system to the outside world should lead to
lattice sites. Although this interaction leads to diffusion in decoherence of the quantum system, allowing classical chaos
the Anderson localization problefrhecause it is very weak, to occur®
the additional energy diffusion that it introduces in the
present problem is expected to be too small to affect our
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