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Confinement and Bose condensation in gauge theory of high-Tc superconductors
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The issue of confinement and bose condensation is studied for gauge models of high-Tc superconductors.
First the Abelian-Higgs model in (211)D, i.e., XY model coupled to lattice gauge fieldam with couplingg,
is studied taking into account both the instantons and vortices. This model corresponds to integer filling of the
bosons, and can be mapped to a dual superconductor. Our main result is that the instantons introduce a term
which couples linearly to the dual superconductor order parameter, and tend to pin its phase. As a result the
vortex condensation always occurs due to the instantons, and the Meissner effect for the gauge fieldam is
absent, althougham is massive. This state is essentially the same as the confining phase of the pure gauge
model. Away from integer filling , a ‘‘magnetic field’’m ~the chemical potential of the bosons! is applied to
this dual superconductor. Then the Higgs phase revives in the case of weakg and large boson densityx, where
vortices do not condense in spite of the instantons. In the opposite case, i.e., strongg and smallx, phase
separation occurs, forming either microscopic patches or macroscopic stripe domains of the Mott insulating
state.
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I. INTRODUCTION

It has been established that the strong Coulomb repul
between electrons is the key issue in the physics of highTc
cuprates. Anderson proposed that this strong correla
gives rise to resonating valence bond~RVB! state, where the
spin and charge are carried by spinons and holo
respectively.1 This phenomenon is called spin-charge se
ration, and has been subject to intensive studies. One wa
formulating the strong electron repulsion is to exclude
double occupancy of the electrons on each site, and stud
effective Hamiltonian within that restricted Hilbert spac
Slave boson method is a useful tool to implement this c
straint and fits the idea of spin-charge separation, where
species of particles, i.e., spinons~fermions f is

† , f is) and ho-
lons ~bosonsbi

† , bi), are introduced to represent electro
operatorCis

† , Cis as2–4

Cis
† 5 f is

† bi ,

Cis5 f isbi
† . ~1!

Here an electron is represented as the composite partic
spinon and holon. At the mean field level, these two spe
of particles are supposed to be independent of each o
The mean field phase diagram is determined by two ph
transition lines, i.e., the spinon pairing transition and ho
condensation characterized by the order parametersD
5^ f is f j s& and B5^bi&, respectively.2–4 In strange metal
state bothD andB are zero, while onlyD is nonzero in the
underdoped ‘‘spin gap state’’ and onlyB is nonzero in the
overdoped ‘‘Fermi liquid state.’’ The superconductivity
realized only when bothD andB are nonzero, and the ons
of the superconductivity is identified as the holon conden
tion in the underdoped region. However this simple-mind
PRB 610163-1829/2000/61~13!/9166~10!/$15.00
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picture of spin-charge separation needs to be critically st
ied because the constraint is replaced by the average on
the mean field theory and the more appropriate treatmen
this constraint might change the whole picture. This co
straint can be taken care of by gauge field which correspo
to the fluctuation of the phase of RVB order parameter a
Lagrange multiplier to impose the constraint.5–7 Therefore
the effective model is that of the spinons and holons coup
to the gauge field. It should be noted here that the gauge
represents the constraint and does not have its own dyn
ics. The effective action and the inverse of the coupling c
stant 1/g for the gauge field is generated only after integr
ing over spinons and holons. Therefore it is a high
nontrivial and crucial issue if the weak coupling perturbati
analysis with respect tog makes sense or not.

This issue is closely related to the confineme
deconfinement of the gauge field.5,8,9 The original model is
defined on a lattice and the gauge field is compact, and
well known that the gauge field is confining in the stro
coupling limit, i.e., largeg.10 A simplified and rough picture
of the confinement follows. On the lattice one can define
gauge fluxb(p) penetrating each plaquettep, and the action
is periodic with respect tob(p) with period 2p. The sim-
plest potential energy forb(p) is 2g21cosb(p), and the ki-
netic energy ofb(p) is given by (g/2) e2 where e is the
electric field canonical conjugate tob(p). A phase transition
is possible between two states. One is the extended ‘‘Bl
wave state’’ ofb(p) where the tunneling events betwee
different minima of the poriodic potential are driven by th
large kinetic energy, i.e., largeg. The conjugate fielde is
localized on the other hand, and the string of the electric fi
is formed when positive and negative gauge charges are
serted with a separationR. This costs an energy proportiona
to R because of the finite string tension of the electric fie
This phenomenon is called confinement. For smallg, on the
9166 ©2000 The American Physical Society
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other hand, the periodic potential is large andb(p) is con-
fined within one minimum. One can replace the periodic p
tential by the quadratic one (1/2g)b2, which corresponds to
the usual Maxwell Lagrangian. The Coulomb law is rep
duced in this case, and the periodicity is irrelevant. T
gauge field is deconfining in this case. In (211)D these
tunneling events are represented by the point singularitie
the gauge field configuration called magnetic monopoles
instantons.11 In the pure gauge model, the interaction b
tween the magnetic minopoles is 1/r , i.e., the Coulomb gas
Because the Coulomb gas in (211)D is in the screening
phase, the gauge field is always confining due to these m
poles or instantons.

When coupled to the holons and spinons, however,
gauge field becomes dissipative when these particles ar
tegrated over, and the deconfining phase becomes possib
the strange metal normal state.12 However, in the presence o
gapless fermion or boson excitations, the integration o
them is in general not justifiable. The fermion part is bet
controlled because of the presence of a large energy s
the Fermi energy, and techniques such as largeN can be used
to control the expansion. The boson part is much more pr
lematic because bosons tend to condense in the bottom
their band and we are faced with a strong coupling prob
of bosons and gauge fields.

It has been argued that the strong inelastic scattering
to gauge fluctuation suppresses the coherency and henc
ordering temperature, but the effects of the quantum fluc
tion in the strong coupling limit is a difficult problem whic
remains unsolved. In this paper we hope that a duality m
ping of a simplified version of the boson-gauge field probl
can shed some light on the issue. Summarizing the ab
there are two crucial and related issues in gauge mode
high-Tc superconductors, i.e., the Bose condensation and
confinement or deconfinement of the gauge field.

In order to clarify these two pictures, we study in th
paper a simplified model, i.e., a Higgs model coupled to U~1!
gauge field defined on a (211)D lattice, which is an impor-
tant model of broad interests both in condensed matter p
ics and high-energy physics.13,14 The action is given as

S52k(
link

cos@Dmu~ i !2qam~ i !#

2
1

g (
plaquette

cos@Dman~ i !2Dnam~ i !#, ~2!

where i is the lattice point andm,n specify the direction in
the ~211!D lattice. The difference operatorDm is defined as
Dm f ( i )5 f ( i 1m)2 f ( i ). Both u( i ) and am( i ) are compact
and defined in the interval@0,2p#. q is the ~integer! charge
of the Higgs bosons andq5e ~fundamental! for the holons
while q52e for the spinon pairing in the U~1! gauge model
of high-Tc cuprates.7 Hereafter we take the unite51 except
for Eq. ~27! in Sec. IV. The amplitude of the bose field h
been fixed, but the vortex excitations are allowed due to
lattice and the compactness. Note that, in contrast to the
Tc problem, the gauge field dynamics is Maxwellian in t
continuum limit. This model has been studied extensive
and the essential features are as follows:
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~1! In the limit g→0, the gauge fields are frozen out and w
recover theXY model. Ford11>2, we expect a phase tran
sition atk5kc . The ordered phase ind11>3 is character-
ized by an order parameter^eiu&Þ0. For g nonzero, how-
ever, this object is not gauge invariant and can no lon
serve as an order parameter.15 Instead we may fix the gaug
to be, for instance, the unitary gaugeu50 and consider
small gauge fluctuations. Then we have the Higgs mec
nism where a termrsa

2 appears in the action (rs : the su-
perfluidity density!. The gauge flux correlation has the for

^bmbn&5
k2

rs
S dmn2

kmkn

k2 D . ~3!

~2! The limit k50 yields the compact QED model in (2
11) dimensions, which is known to be confining due to t
appearance of instantons.11 The instantons are singular con
figurations of aW which act as magnetic monopoles, i.e
sources and sinks of magnetic fields. WritingaW 5aW 01aW inst as
the sum of nonsingular and singular configurations, we h

bW inst5¹W 3aW inst. ~4!

For a given instanton densityrM , we have the analog o
Poisson’s equation

¹W •bW inst5¹W •¹W 3aW inst54prM. ~5!

If the instantons form a gas, the density-density correlat
function is given by

^rM~kW !rM~2kW !&5
1

~4p!2

M0
2k2

M0
21k2

~6!

in analogy with the more familiar density-density correlati
function of a Coulomb gas, whereM0 plays the role of the
inverse screening length. Combining Eq.~5! and Eq.~6! we
find

^binst
m binst

n &5
kmkn

k2

M0
2

M0
21k2

. ~7!

When combined with the standard transverse correla
from the nonsingular partaW 0, we have

^bmbn&5dmn2
kmkn

k2
1

kmkn

k2

M0
2

M0
21k2

5dmn2
kmkn

M0
21k2

.

~8!

Equation~8! shows that the electromagnetic field acquire
mass due to the gas of instantons.11

Thus we see that in both theg→0 limit and thek50
limits, the gauge field is massive. This inspired Fradkin a
Shenker13 to consider whether the two limits are smooth
connected to each other. Their conclusion is as follows:
~1! When the charge is fundamental (q51), the strong cou-
pling expansion argument shows that the Higgs phase w
large k and smallg continues smoothly to the confineme
phase with largeg and smallk.
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9168 PRB 61NAOTO NAGAOSA AND PATRICK A. LEE
~2! When the charge is not fundamental, e.g.,q52, the
Higgs and the confinement are different phases and ca
distinguished by the forces between the test chargesqtest5
61.

In the bulk of this paper we will focus on theq51 case.
The phase diagram for (311)D and q51 case has bee
determined at least qualitatively, and consists of two pha
i.e., the Higgs-confinement and Coulomb phases as show
Fig. 1~a!. In the Coulomb phase, the gauge field is decon
ing and massless and the bose field remains disorde
However, the phase diagram for (211)D andq51, which
is the most relevant case to high-Tc cuprates, remains
controversial.13,14 One proposal is that theXY transition be-
comes first order once the couplingg to the gauge field is
turned on, due to the Weinberg-Coleman mechanism.16 This
first order transition line terminates at some critical poi
This resembles the vapor-liquid phase diagram. The o
one is that a finite region of Coulomb phase exists.14

Since instantons dominate the physics fork50, the key
question is whether instantons play an important role
generalk and g. Vortex lines in the bose liquid carry un
flux quanta and these can originate and terminate at ins
tons and anti-instantons. This is illustrated in Fig. 2. Einho
and Savit discussed the free energy of the finite vortex s
ments, and concluded that theXY transition remains at leas
for weakg.14 This leads to a picture of a finite region of th
Coulomb phase mentioned earlier. Apart from the phase
gram, another issue is the behavior of the magnetic fi

FIG. 1. Phase diagrams for Abelian Lattice Higgs model w
fundamental charge in (311)D ~a! and (211)D ~b!. In ~b! the
phase transition is isolated along theXY-model line, i.e.,g50. In
the confinement phase, the gauge field is massive due to instan
although no Meissner effect occurs.
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correlation function in the region commonly labeled
confinement-Higgs after the work of Fradkin and Shenke13

The point we want to raise in this paper is that even thou
the gauge field is massive, the correlation function in
Higgs phase and the confinement phase are very differ
being given by Eq.~3! and Eq.~8!, respectively. The ques
tion is then whether the correlation function is closer to E
~3! or Eq. ~8! in the confinement-Higgs region. As far as w
know, this question has not been addressed. In this pape
include the effect of instantons for generalk and g but we
come to quite a different conclusion than Einhorn a
Savit.14 The phase diagram we propose is shown in Fig. 1~b!.
The lineg50 is an isolated line with an isolatedXY transi-
tion. We also calculate the magnetic field correlation fun
tion and show that it takes the confinement form of Eq.~8!.
Thus we conclude that the Higgs-confinement phase is be
described as the confinement phase. This is the main resu
this paper which we discuss in Sec. II.

It is known that the model given by Eq.~1! describes a
Bose gas on a lattice where the density is an integer p
lattice site. Thus the confinement phase may be unders
as a Bose Mott insulator. In Sec. III we extend the discuss
to the incommensurate case, when the density is not an
ger. We find two possibilities. The instantons may beco
irrelevant and the system becomes a superfluid~Higgs
phase!, or the system may break up into domains. In Sec.
we briefly address the caseq52 and also the case of tw
kinds of bosons with opposite gauge charges, which arise
the SU~2! formulation of thet-J model.

II. THE ABELIAN-HIGGS MODEL

We start with the continuum action for Eq.~2!:

S5E d3xF1

2
k@¹u~x!2aW ~x!2AW ~x!#21

1

2g
~¹3aW !2G .

~9!

Here we have introduced the external electromangetic fi
Am , which is put to be zero for the moment. We allow th
singular configurations ofu andaW corresponding to the vor

ns,

FIG. 2. ~a! Vortex loop, ~b! a vortex segment, and~c! vortex
segment broken into pieces by the instantons. A vortex segm
terminates at the instanton and anti-instanton.
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PRB 61 9169CONFINEMENT AND BOSE CONDENSATION IN GAUGE . . .
tex and instanton, respectively. As for the vortex,u(x) is
divided into the single-valued partu0 and the multivalued
vortex partuV as u5u01uV , and ¹3¹uV /2p5 jWV is the
vortex current. As for the instantons,aW 5aW 01aW inst and¹•¹
3ainst/4p5rM is the instanton density as defined in Eqs.~4!
and ~5!. We next derive a continuum version of the dual
representation of this problem. The duality representatio
a powerful tool which allows us to discuss the strong co
pling limit ~largeg) and is particularly useful for the prese
problem. Introducing the Stratonovich-Hubbard fieldJW rep-
resenting the boson current, the action becomes

S5E d3xF 1

2k
JW21 iJW @¹u~x!2aW ~x!#1

1

2g
~¹3aW !2G

~10!

and after integrating overu0, we obtain¹•JW50 correspond-
ing to the conservation of the boson current. To enforce
conservation law, we introduce the vector potentialcW to rep-
resentJW asJW5¹3cW . Then after partial integration the actio
becomes

S5E d3xF 1

2k
(¹3cW )21 icW [2p jWV2bW ~x!] 1

1

2g
~bW !2G

~11!

with bW 5¹3aW . After integrating overbW , we obtain

S5E d3xF 1

2k
~¹3cW !21

g

2
~cW !21 i2pcW• jWVG . ~12!

This is essentially equivalent to the action obtained
Einhorn-Savit in terms of the lattice formulation.14 It is noted
that if we view cW as a gauge field coupled to the vorte
current, the gauge symmetry is broken in Eq.~12!, which
corresponds to the nonconservation of the vortex curr
i.e., ¹• jWV can be nonzero, due to the instantons. After in
grating over the fieldcW in Eq. ~12!, the partition functionZ is
given by the integral over the vortex configurations$ jWV% in-
cluding both the vortex loop and open vortex segments
two ends of which are instanton and anti-instanton.14

Z5Z0(
$ jWV%

expF( 24p2k j Vm~ j !Dmn~ j 2k,m2! j Vn~k!G ,
~13!

whereDmn( j 2k,m2) is the propagator of the fieldcW with the
massm25kg. This propagator is given as

Dmn~ j 2k,m2!5Fdmn2
DmDn

m2 G
j

D~ j 2k,m2!, ~14!

whereD( j 2k,m2) satisfies

~2Dm
2 1m2!D~ j 2k,m2!5d jk . ~15!

The propagator decays exponentially asD( j 2k,m2)
;e2mu j 2ku, and the interaction between the vortex segme
are short range.

Let us start with a qualitative estimate of the free ene
of the vortex loop segment regarding the partition function
is
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y

t,
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e
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y
s

that of a classical statistical mechanics. We first repeat
argument of Einhorn and Savit.14 Let L be the length of the
vortex loop segement. Then the free energy is the sum of
energy cost and the entropy as14

F loop54p2kD~0;m2!L2 lnm̃L,

Fsegment54p2kD~0;m2!L2 ln~m̃LLg!12Sinst, ~16!

whereSinst54p2g21D(0;m2) is the action for an instanton
and m̃ is a number of order unity which depends on latti
and dimension. The main difference between closed loop
open segment is that the two instanton action is added
entropy is enhanced by the factorLg (g.0) in the case of
open segment.17 However the leadingL-linear terms are the
same for both of closed loop and open segment,
Einhorn-Savit concluded that the proliferation of the vor
ces, i.e., the appearance of the infinite length loop/segm
occurs at 4p2kD(0;m2)5 ln m̃. This is theXY-like phase
transition viewed in the duality picture. However the abo
consideration neglects the possibility that the long vor
loop segment are cut by the instantons into small pieces
shown in Fig. 2~c!. Let us consider that the total lengthL is
cut into n pieces of open segments. The free energy in t
case is

F~L,n!5@4p2kD~0;m2!2m̃#L2gnln~L/n!12Sinstn.
~17!

Minimizing this with respect ton, we obtain the length of the
pieces asL/n5e112Sinst /g, which is finite asL→`. Then
due to the finite density of instantons, the infinite length lo
or segment does not appear. Instead the vacuum is fu
finite size open segments and closed loops of vortex.
total length of these loops and segments are infinite as
sample sizeL→` when 4p2kD(0;m2)2m,0, but they are
all finite size. Therefore we conclude that the phase diag
of (211)D Abelian Higgs model is given by Fig. 1~b!, i.e.,
all the interior constitutes a single phase. Analogy of t
phase diagram with the Ising model is helpful here. In t
duality picture, i.e., regarding the vortex field as the ord
parameter,k can be regarded as the temperatureT, and the
instanton densitye2const/g is the magnetic fieldH. Then it is
natural that the ordered state at 1/g5`, i.e., H50, is the
isolated line while all the other phase diagram is connec
to the high temperature symmetric phase. Actually this an
ogy becomes more clear when one consider the path inte
formulation of the the Ising model in a magnetic fieldH.17,18

The partition function is represented by the sum over
closed loop and the open segment ended at the magnetic
vertexH. This is exactly similar to the present case where
vortex segment terminates at instantons except that the
tex loop/segment has a direction and instanton has the6
topological charge.

Now what is the nature of this single phase? One cru
question is whether the Meissner effect foraW remains or not.
It should be noted that the magnetic fieldbW is tied to the
vortices. In the case of closed loop the net magnetic fieldbW is
zero. The open segment, on the other hand, is a magn
dipole which has netbW . Therefore once the instanton fugaci
is nonzero and there are vortex open segments, the mag
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9170 PRB 61NAOTO NAGAOSA AND PATRICK A. LEE
field bW can penetrate into the sample, i.e., the Meissner ef
disappears and the gauge fieldbW becomes massless. Th
corresponds to the ‘‘dielectrics’’ of the magnetic charge a
is illustrated in Fig. 3~b!. The instantons and anti-instanton
appear to be bound into pairs. However, this state is
stable because once the Meissner effect is gone, the con

FIG. 3. Three possible states for the magnetic charges.~a! The
vacuum state where only vortex loops of finite size exist. The ga
flux b cannot exist inside the sample, i.e., the Meissner effect
curs, and this is the superfluid state of the original bosons.~b! The
dielectrics with finite size vortex segments and loops. The magn
field b can penetrate into the sample, and the Meissner effect
ishes. The string tension of the vortex then becomes zero, and
confinement of the instanton and anti-instanton disappears. Th
fore this state is unstable to~c!. ~c! The metallic state of the mag
netic charges. The metallic screening prevents the gauge field
penetrating into the sample. This is the confining state of the ga
field.
ct

d

ot
ne-

ment between the instanton and anti-instanton also dis
pears, and the magnetic dipole is liberated into free magn
charges. This is the ‘‘metal’’ of the magnetic charges, a
again the magnetic fieldbW cannot penetrate into the samp
due to the screening. This is shown in Fig. 3~c!. This massive
gauge fieldbW corresponds to the confining phase of the pu
gauge model discussed by Polyakov.11 Therefore the state in
the interior of the phase diagram in Fig. 1~b! continues
smoothly not to the Higgs phase but to the pure gau
model, and should be called ‘‘confinement.’’

In order to substantiate the above consideration, we n
go to the second quantization formulation of the vortex s
tem. Let us first divide the gauge fieldcW into the transverse
and longitudinal parts, i.e.,cW5cW'1¹f. Then Eq.~11! is
written as

S5E d3xF 1

2k
~¹3cW'!21

g

2
~cW'!21

g

2
~¹f!2

1 i2pcW'• jWV1 if•rM G , ~18!

where we have performed a partial integration and identifi
¹• jWV with the instanton densityrM . We can view Eq.~18!
as describing world-lines of vortex-particles which a
coupled to the gauge field by thei2pcW'• jWV term. The vor-
tices may be created and annihilated at instantons locate
x1•••xn and anti-instantons located aty1•••ym . Alterna-
tively, we can write the action in terms of the second qua
tized vortex fieldcV . The action is given by

SV5E d3xF 1

2k
~¹3cW'!21

g

2
~cW'!21

g

2
~¹f!21cV

† 1

2

3@2K~¹1 icW'!21M2#cV1u~cV
†cV!21 if•rM G ,

~19!

whereM254p2kD(0;m2)2 ln m̃, andu represents the shor
range repulsion between the vortex segments. The grad
term comes from the extra cost of the action when the vor
line deviates from the straight line. This step is standard
the duality mapping. The novel feature of creation and an
hilation of vortices can be included by summing over
instanton configurations as follows:

Z5E DcV
†DcVDcW'Df (

n,m50

` E dx1••dxn

n! E dy1••dym

m!

3@zcV
†~x1!eif(x1)#•••@zcV

†~xn!eif(xn)#

3@zcV~y1!e2 if(y1)#•••@zcV~ym!e2 if(ym)#e2SV, ~20!

where z is the fugacity of the instantons which is rough
given asz;e2Sinst. n,m are the number of instantons an
anti-instantons, but only the termn5m survives when one
integrates overcV ,cV

† . As in the usual Coulomb gas map
ping, the summation overn,m in Eq. ~20! can be done, and
our final result for the action, after reversing the step b
tween Eqs.~11! and~12! to restore the original gauge fieldaW ,
is given as
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S5E d3xF 1

2k
~¹3cW'!21

1

2g
~¹3aW !22 icW•¹3aW

1
1

2
cV

†@2K~¹1 icW'!21M2#cV1u~cV
†cV!2

2z~cV
†eif1cVe2 if!G ~21!

where it should be noted again thatcW5cW'1¹f and aW 5aW 0

1aW inst. The gauge transformationcV→cVeif, cV
†

→cV
†e2 if eliminates the exponential factor in thez-term,

and also replacescW' by cW in the minimal coupling term. We
have

Z5E DcV
†DcVDcWDaW e2S, ~22a!

S5E d3xH 1

2k
~¹3cW !21

1

2g
~¹3aW !22 icW•¹3aW

1
1

2
cV

†@2K~¹1 icW !21M2#cV1u~cV
†cV!2

2z~cV
†1cV!J . ~22b!

Except for the last term, Eq.~22b! is the standard duality
representation of the Abelian Higgs model. The last term
Eq. ~22b! represents the effect of the instantons and is
main result of this paper. We note that it takes the form of
external field coupled to the vortex fieldcV . This is analo-
gous to the Josephson coupling to an external superfluid
an order parameterz. The external order parameter will in
duce a nonzero order parameter^cV&Þ0, even whenM2

.0. ~Note we have fixed the gauge and the nonzero or
parameter is in the particular gauge choice.! It is useful to
recall that vortices in the fieldcV correspond to world lines
of the original bosons. Condensation of the vortex fieldcV
means the absence of Bose condensation and vice vers
the first quantized picture of vortex loops and segments,
can also be understood as follows. Consider the correla
functionC(xW ,xW8)5^cV

†(xW )cV(xW8)&. In the absence of instan

tons, the pointsxW andxW8 are connected by a vortex line an
long-range order is possible only when an infinite vortex l
has zero energy, i.e.,M2,0. However, with finitez, an in-
stanton and an anti-instanton appear nearxW8 andxW and create
two finite segments, so thatC(xW ,xW8) reaches a finite value
even as the separation betweenxW andxW8 goes to infinity.

Recall that in the duality picture,^cV&Þ0 means that the
original boson is not Bose condensed. Thus we expect
the effect of thez(cV1cV

†) term is to destroy the Meissne
effect of the original Abelian-Higgs theory. We check this
an explicit calculation of the gauge field correlation functio
Let us representcV as cV5c0eiw. Then the action for the
vortex field becomes

Svortex5E d3x
1

2
@Kc0

2~¹w1cW !224zc0 cosw# ~23!
n
e
n

th

er

. In
is
n

at

.

which is the sine-Gordon model in (211)D. According to
the analysis of the pure gauge model by Polyakov,11 the
fugacity z is always relevant and thew-field is massive. Re-
placing the cos term by the effective quadratic term as

Svortex5E d3x
1

2
@Kc0

2~¹w1cW !212zeffc0w2# ~24!

which gives the massm05A2zeff(Kc0) of thew field corre-
sponding to the screening. After integrating overw, we ob-
tain the effective action for the gauge fieldscW , aW and the
external electromagnetic fieldAW as

S5
1

2 (
q

(
mn

H Fq2

k S dmn2
qmqn

q2 D1Kc0
2S dmn

2
qmqn

q21m0
2D Gcm~q!cn~2q!1

1

gS dmn2
qmqn

q2 D
3am~q!an~2q!2 idmn$@am~q!1Am~q!#cn~2q!

1cm~2q!@an~q!1An~q!#%J . ~25!

After integrating overcW , we obtain the propagator of th
gauge fluxbW 5¹3aW as

^bm~q!bn~2q!&

5
1

g1Kc0
21q2/k

dmn

2qmqn

g@m0
21kKc0

21q2#

@m0
2~Kc0

21g!/g1q2#@k~Kc0
21g!1q2#

.

~26!

It should be noted that while the pole 1/q2 disappeared and
the gauge field is massive, there is no Meissner effect
cause Eq.~26! is not proportional toq2 as in Eq.~3!. Rather,
the smallq behavior is essentially the same as that in
confining phase in the pure gauge model shown in Eq.~8!.11

After integrating over thebW field, the effective action for the
external e.m. field is;(¹3AW )2, which means that the sys
tem is insulating. This is perhaps not surprising if viewed
the strong coupling limitg→`. Then the gauge field doe
not have its own dynamics and serves to impose the c
straint of integer occupation at each lattice site. The bos
are just frozen into place on each site, resulting in an in
lator. This Mott insulator phase appears to extend to inclu
the entire phase diagram, as shown in Fig. 1~b!, with the
exception of the line 1/g50.

At finite temperatureT, the imaginary time axis become
finite, i.e., @0,b51/T#, in Eq. ~23!. Therefore Eq.~23!
desciribes the sine-Gordon model in 2D in the long wa
length limit. Therefore we expect the KT transition, i.e
confinement-deconfinement transition, occurs at some c
cal temperatureTc .
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III. BOSONS WITH NONINTEGER DENSITY

The Abelian Higgs model in Eq.~1! corresponds to the
case of integer boson filling per each site. The deviation fr
it is taken care of by introducing the winding number of t
phaseu along the time direction.19 In the dual picture, the
boson density is represented by thez component of the gaug

flux ¹3cW , and the deviation from the integer filling is rep

resented by adding the term2m(¹3cW )z to the action Eq.
~22b!. Here the chemical potentialm acts as the magneti
field. Therefore the chemical potential and the vortex c
densation compete with each other as in the case of the
perconductor in a magnetic field. The only new aspect her
the instanton termz(cV1cV

†). When m50, this term in-
duces the vortex condensation^cV& even if M2 is positive
and large. FormÞ0, we may be tempted to consider a
Abrikosov vortex state~of the vortex fieldcV) in analogy
with type II superconductors. An ordered array of such v
tices correspond to a Wigner crystal of boson.19 However,
the phase ofcV changes by 2p around each vortex and w
cannot gain the Josephson energy from the term2z(cV

1cV
†). We conclude that the Wigner crystal is suppressed

the instantons. A second idea is to consider the analog
the intermediate state in type I superconductors, where
stable configuration is the laminar structure.20 In type I su-
perconductors the surface energy between the normal
superconducting regions is positive. The surface energ
proportional to the size along thez axis (b in the present
context! and the spacing of the laminar structure is mac
scopic in size. In the Appendix, we perform a Ginzbur
Landau calculation of the surface energy, and find tha
contrast to usual type I superonductors, it is negative in
caseM2.0, i.e., when the superconductivity is induced
Josephson coupling. This implies that the straight interfac
unstable, and the laminar phase will break up. One poss
ity is that the system breaks up into patches where^cV&
Þ0, separated by regions where^cV&50. ~This can be
viewed as the complement of the Abrikosov vortex sta!
The order parameter can be real in each patch, gaining
extensive Josephson energy from the term2z(cV1cV

†).

The magnetic field¹3cW can penetrate the normal region a
partially penetrate the patches. This state can maximize
surface energy gain for a fixed patch area and the pat
will form some ordered structure. In the original boson re
resentation, the absence of long-range order incV means that
the bosons form a superfluid with Meissner effect. The
stantons become irrelevant in this case, in contrast to thm
50 case. The effect of the instanton is to cause a perio
modulation of the boson density~corresponding to the modu
lation of the magnetic field¹3cW by the patches!. This
modulation is weak fork large (M2 positive and large! and
grows with decreasingk. An ordered array of patches lead
a kind of incommensurate order. For very smallk, M2,0
and there is a strong tendency for the order parametercV to
form in the dual picture. In this case the interface energy m
become positive and we cannot rule out a laminar picture
the original boson picture this corresponds to stripes of
perfluids separated by Mott insulators. The transition
tween the stripe phase depends on details of the param
and we have not attempted to work it out quantitative
-
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However, since stripes occur only for positive interface e
ergy in our model, the stripe size in expected to be m
roscpic , by ananogy with the laminar phase of type I sup
conductors. Microscopic stripes might occur whenM2,0
and other interactions such as long range Coulomb for
and commensurability energy are introduced. We have
examined this issue in this paper, and this is left for futu
studies.

IV. OTHER ORDER PARAMETERS

Up to now, we consider the chargee bosons coupled to
the gauge field. This model corresponds to the boson se
of the U~1! gauge theory. However other types of order p
rameter appear in gauge models of high-Tc superconductors
which is the subject of this section.

First we consider the case ofq52e, which corresponds to
the spinon pairing order parameter coupled to the U~1! gauge
field. Here we take the unit where 2e51 and the flux quan-
tization is reduces to half. Then the instanton becomes
end point of two vortices, which modifies thez term in Eq.
~22b! as

S5E d3xH 1

2k
~¹3cW !21

1

2g
~¹3aW !22 icW•¹3aW

1
1

2
cV

†@2K~¹1 icW !21M2#cV1u~cV
†cV!2

2z~cV
†cV

†1cVcV!J . ~27!

It is noted that thez term is the quadratic term and does n
necessarily enforce the condensation ofcV , Therefore two
possibilities arises in this case.
~I! Single vortex condensation, i.e.,^cV&Þ0. In this case the
quantized charge, i.e., the integral of (¹3cW')z is 2e and the
single chargee cannot appear. Therefore the chargee is con-
fined.
~II ! Vortex pair condensation, i.e.,^cVcV&Þ0 while ^cV&
50. In this case the quantized charge is reduced to half,
e. Therfore the confinement of the chargee does not occur.

Figure 4 shows the phase diagram forq52e, where the
above two possibilities correspond to I and II, respective
As for the small fluctuation ofaW is concerned, there occur
no Meissner effect in either phase, althoughaW is massive and
takes the form of Eq.~8!. Therefore both phases are bett
called the confining phase for the charge 2e. What distin-
guishes these two phases is the discreteZ2 symmetry.13 It
has been discussed that the limitk5` is the Ising gauge
model, which shows confinement and deconfinement tra
tion of chargee at some critical value ofg5gc .10

Next we study the case of two species of bosonsb1 , b2
coupled to the gauge field with opposite chargese and2e,
respectively. This situation occurs in the staggered flux s
of an SU~2! formulation for underdoped region.21 In this case
the dual model is given by
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S5E d3xH 1

2k
@~¹3cW1!21~¹3cW2!2#1

1

2g
~¹3aW !2

2 icW1•¹3~aW 1AW 1!2 icW2•¹3~2aW 1AW 2!2 im@¹3~cW1

1cW2!#z1
1

2
c1

†@2K~¹1 icW1
21 !M2#c11c2

†@2K~¹

1 icW2!21M2#c22z~c1
†c21c2

†c1!1u@~c1
†c1!2

1~c2
†c2!2#12w~c1

†c1!~c2
†c2!J , ~28!

whereci
W ( i 51,2) is the gauge field representing the bos

current ofbi , c i is the corresponding vortex field andAW i is
the test field coupled to it. The real electromagnetic fi
corersponds toAW 15AW 25AW . It is noted here that again th
instanton term (z term! is quadratic inc ’s and cannot induce
nonvanishingc1 and c2 when z is not large enough. The
Bose condensation ofb1 and b2 should occur in this case
Wheng andz is large, which is relevant to the high-Tc prob-
lem, the amplitudes of bothc1 andc2 are induced and we
write c i5c0eiw i. Here the singluar vortex configuration o
w i is allowed, which corresponds to the original boson. Th
the effective action for the phase fieldw i is given by

Seff5E d3xF1

2
Kc0

2@~¹w11cW1!21~¹w21cW2!2#

22zc0
2 cos~w12w2!G . ~29!

Here we define the symmetric and antisymmetric parts a

w15ws1
1

2
wa ,

w15ws2
1

2
wa , ~30!

andcW s , cWa in a similar way. Then Eq.~29! is written as

FIG. 4. Phase diagram forq52e. In region I the single vortex
condensation occurs and chargee is confined. In region II only
vortex pairs condense and chargee is not confined. In the limitk
5`, the model is reduced to Ising gauge model, which show
phase transition.
n

d

n

Seff5E d3xF1

2
Kc0

2F2~¹ws1cW s!
21

1

2
~¹wa1cWa!2G

22zc0
2 cos~wa!G , ~31!

where only the antisymmetric part is coupled to the inst
tons. Therefore the action for the antisymmetric part is
same as that in Eq.~23!, i.e., wa is fixed by thez term, and
the vortex of thewa field is forbidden. Calculations similar to
Eqs.~23!–~26! show that there is no Meissner effect for th
gauge fieldaW , although it is massive as in the pure gau
model. This corresponds to the binding or confinement of
two species of bosonsb1 and b2 because (¹3cWa)z is the
difference between the boson densities ofb1 and b2. This
means that the single Bose condesation is suppressed.
boson pairing condensation, on the other hand, is not
turbed by thez term. Therefore when the fieldws is disor-
dered, we have the boson pair condensation and finite su
fluidity density rs . Then the effective action for the tes
fields AW 1 , AW 2 is given after integrating overcW fields as

SA5E d3x$rs~AW 11AW 2!21xa@¹3~AW 12AW 2!#2%, ~32!

wherexa is a diamagnetic susceptibility of the antisymmet
part. Then the system show the Meissner effect only for
symmetric test fieldAW 11AW 2. Therefore the system shows th
Meissner effect to the external electromagnetic fieldAW .

V. CONCLUSIONS

In this paper, we studied the interplay between the c
finement and the condensation of the order parameters
integer-filling of the bosons with chargee, there is only one
phase in (211)D with theXY transition restricted to the line
g50. The nature of this so-called Higgs-confinement ph
is the same as the confining phase of the pure gauge mo
and no Meissner effect for the gauge field occurs. This
because the instantons act as the ordering field for the vo
condensation. For non-integer filling, Bose condensation
recovered for weak couplingg. However, the Bose conden
sation and confinement compete with each other, and
competition leads to phase separation for strong couplin

In this paper we have focused our attention to the prob
of bosons coupled to gauge fluctuations. It is only a first s
towards addressing the problem which arises out of
gauge theory formulation of the high-Tc problem, which in-
volves both fermions and bosons coupled to gauge fie
Nevertheless, we would like to put the present work in t
context of the high-Tc problem and attempt to draw a few
inferences. The effect of the fermion is twofold. First, if th
gauge field is confining, it allows the possibility of confinin
fermion-antifermion pairs to form spin excitations and co
fining fermion and boson to re-constitute the physical el
tron. The former is believed to happen in the half-filled ca
where the AF ordering may be described as chiral symm
breaking and confinement of Dirac fermions.22–25 Secondly,
the presence of massless Dirac particles changes the dy
ics of the gauge field and, in general, it would not take
Maxwellian form assumed in this paper. We can divide t

a
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doping region of the phase diagram into three regimes.
~i! Doping into the AF(x!1). Here the starting point is a

p-flux phase for the fermions with a Dirac spectrum. T
gauge propagator is proportional toAq2 instead ofq2 in the
Maxwell theory.6 The instantons have logarithmi
interaction6 and undergo a Kosterlitz-Thouless transition
the 211 dimensions as a function ofN, the number of fer-
mion flavors. It is believed that the physical case ofN52
lies on the disordered side of this transition, so that the
stanton gas behaves as free gas~as opposed to instanton ant
instanton bound pairs!. Since our consideration is based o
assuming the existence of the free instanton gas, this w
be the case where our consideration has the best chan
being applicable. Nevertheless, we still have not included
possibility of bosons combining with fermions to form
physical holes in an AF background. This would correspo
to the formation of small Fermi liquid pockets in a reduc
Brillouin zone. Leaving this possibility aside, we can co
clude from the results of Sec. III that instantons suppress
formation of a Wigner crystal of doped holes. Furthermo
the possibility of phase separation into microscopic patc
is interesting, in that it suggests incommensurate struct
which appear experimentally in this part of the phase d
gram. However, the superfluid state that appear in our pic
does not appear to resembled-wave pairing, as long as th
fermions remain confined in the AF state. It is also intere
ing that phase separation into larger scale laminar doma
a possibility. Finally in the SU~2! formulation, the result of
Sec. IV suggests the possibility of bosons forming a pair
state, leading to a coexistence of superconductivity and

~ii ! Underdoped region. Here the normal state is th
pseudogap state which is described asd-wave pairing of fer-
mions or a staggered flux phase.21 Again initially the fermion
spectrum is Dirac and the gauge propagation is proportio
to Aq2 and it is not clear that the present paper is applica
Nevertheless, we can ask whether the low-temperature p
is a confinement phase where instantons are free and pla
important role. There are three possible scenarios for
onset of the low-temperature superconducting phase.
first is a binding of fermions with bosons to form physic
quasiparticles. Since the fermions are already paired, a
perconducting state appears. This possibility is clearly
yond the scope of the present work. The second and t
possibilities are the Bose condensation of single boson
the U~1! formulation, or the pairing of two kinds of boson
in the SU~2! formulation.21 The latter problem is treated i
Sec. IV. What we learn from the present study is that inst
tons tend to suppress Bose condensation when the cou
constantg is larger. Furthermore, instantons favor the bin
ing of the two species of SU~2! bosons to form pairs which
then condense, leading to ad-wave superconductor groun
state.

~iii ! The overdoped region. Here the high-temperatur
phase is the strange metal phase and it has been argue
it is a deconfining phase due to dissipation in the gauge fi
dynamics.12 The low temperature Fermi liquid phase is be
described as a confinement of fermions and bosons. T
are clearly outside of the scope of the present paper.
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APPENDIX: SURFACE TENSION

In this appendix, we show the calculation of the surfa
tension between the normal and superconducting region
the dual superconductor following Ref. 26. The free ene
of the dual superconductor is given by

F5E d2r F 1

2k8
~¹3cW'!21cV

† 1

2
@2K~¹1 icW'!21M2#cV

2z~cV1cV
† !1u~cV

†cV!2G , ~A1!

where k8215k211(dn/dm)21 (dn/dm: the charge com-
pressibility!. Here the classical~time-independent! configu-
ration is assumed and¹ is the gradient in 2D space. Th
Ginzburg-Landau equations are obtained by taking the va
tion with respect todcV

† anddcW :

K

2
~2 i¹2cW'!2cV1

M2

2
cV1uucVu2cV5z, ~A2!

¹3~¹3cW'!5k8 jWV , ~A3!

where

jWV5
K

2i
~cV

†¹cV2~¹cV
†!•cV!2AucVu2cW' . ~A4!

Now we consider the case of instanton driven dual superc
ductivity. Namely, thez term is the driving force of the vor-
tex condensation andM2.0 . Then we assumeM2 is large
enough andu(cV

†cV)2 term can be neglected. In the absen

of the magnetic fieldcW' , cV5cV052z/M2, and the free
energy measured from that in the normal stateFn0 is given
by

F2Fn052V
2z2

M2 [2V
Hc

2

2k8
, ~A5!

where Hc is the thermodynamic critical field andV is the
volume of the system. Assume that the interface between
superconducting and normal regions is localized nearx50,
andx.0 region is superconducting. Physical quantities d
pend only onx, and we choose the Coulomb gauge¹•cW'

50. Therefore]xc'x50, and we putc'x50 . The boundary
condition is

~¹3cW'!z5
dc'y

dx
5Hc , cV50, x→2`,

~¹3cW'!z5
dc'y

dx
50, cV5cV0 , x→1`. ~A6!

Here we introduce normalized quantities.

x5x/l,
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c5cV /cV0 ,

c5c'y /~Hcl!, ~A7!

where l is the penetration depth and is given byl
5(4Kk8Z2/M4)21/2. The correlation lengthj is given by
j5AK/uM2u, and we define the ratioh[l/j. Using these
normalized quantities, the GL equations become

c95h2@12~c211!c#, c95cc2, ~A8!

wherec95d2c/dx2 etc., and the boundary condition is

c851, c850, x→2`,

c850, c51, x→1`. ~A9!

It can be easily shown from Eq.~A8! that

1

h2 c821~c211!c222c2c82521. ~A10!

The surface tensionans is given as follows. First define th
free energy densityf̃ under the magnetic fieldH as

f̃ 5 f 2
HB

k8
. ~A11!

Thenans is given by
-

u

Jp

of

B

e

ans5E
2`

`

dx~ f̃ 2 f̃ n!

5E
2`

`

dxF ~¹3cW'!2

2k8
1

K

2
~ ucV8 u2

1cW'
2 ucVu2!1

M2

2
ucVu22z~cV1cV

† !

2
Hc~¹3cW'!z

k8
1

2z2

M2G
5

lHc
2

2k8
E

2`

`

dxF ~c821!21
1

h2 ~c8!2

1~c8211!c222cG , ~A12!

where f̃ n is the f̃ in the normal state. Using Eq.~A10!,

ans5
lHc

2

k8
E

2`

`

dxc8~c821!. ~A13!

Because the normalized magnetic flux densityc8 is 0
,c8,1 in the interface region, the integral in Eq.~A13! is
negative andans,0. Therefore we conclude that the surfa
tension is negative in the instanton-driven dual superc
ductor.
s
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