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The issue of confinement and bose condensation is studied for gauge models ©f kigierconductors.
First the Abelian-Higgs model in (21)D, i.e., XY model coupled to lattice gauge fiedd with couplingg,
is studied taking into account both the instantons and vortices. This model corresponds to integer filling of the
bosons, and can be mapped to a dual superconductor. Our main result is that the instantons introduce a term
which couples linearly to the dual superconductor order parameter, and tend to pin its phase. As a result the
vortex condensation always occurs due to the instantons, and the Meissner effect for the gauggiield
absent, althougla, is massive. This state is essentially the same as the confining phase of the pure gauge
model. Away from integer fillig , a “magnetic field” . (the chemical potential of the bosgris applied to
this dual superconductor. Then the Higgs phase revives in the case ofjweakiarge boson density where
vortices do not condense in spite of the instantons. In the opposite case, i.e., gtaomgsmallx, phase
separation occurs, forming either microscopic patches or macroscopic stripe domains of the Mott insulating
state.

I. INTRODUCTION picture of spin-charge separation needs to be critically stud-
ied because the constraint is replaced by the average one in
It has been established that the strong Coulomb repulsiothe mean field theory and the more appropriate treatment of
between electrons is the key issue in the physics of fiigh- this constraint might change the whole picture. This con-
cuprates. Anderson proposed that this strong correlatiostraint can be taken care of by gauge field which corresponds
gives rise to resonating valence boi®\B) state, where the to the fluctuation of the phase of RVB order parameter and
spin and charge are carried by spinons and holons.agrange multiplier to impose the constraint. Therefore
respectively* This phenomenon is called spin-charge sepathe effective model is that of the spinons and holons coupled
ration, and has been subject to intensive studies. One way @ the gauge field. It should be noted here that the gauge field
formulating the strong electron repulsion is to exclude therepresents the constraint and does not have its own dynam-
double occupancy of the electrons on each site, and study thes. The effective action and the inverse of the coupling con-
effective Hamiltonian within that restricted Hilbert space. stant 1¢y for the gauge field is generated only after integrat-
Slave boson method is a useful tool to implement this coning over spinons and holons. Therefore it is a highly
straint and fits the idea of spin-charge separation, where twaontrivial and crucial issue if the weak coupling perturbative
species of particles, i.e., spino(fermionsf;r(,, fi,) and ho-  analysis with respect tg makes sense or not.
lons (bosonsb!, b;), are introduced to represent electron  This issue is closely related to the confinement/

operatorC/,, C;, ag™ deconfinement of the gauge fietd?® The original model is
defined on a lattice and the gauge field is compact, and it is
CiTa:fiTgbir well known that the gauge field is confining in the strong
coupling limit, i.e., largeg.® A simplified and rough picture
Ci,=fi,bi . (1)  of the confinement follows. On the lattice one can define the

gauge fluxb(p) penetrating each plaquefpe and the action
Here an electron is represented as the composite particle & periodic with respect td(p) with period 27. The sim-
spinon and holon. At the mean field level, these two specieplest potential energy fds(p) is —g~ tcosb(p), and the ki-
of particles are supposed to be independent of each othetetic energy ofb(p) is given by @/2)e? wheree is the
The mean field phase diagram is determined by two phaselectric field canonical conjugate bfp). A phase transition
transition lines, i.e., the spinon pairing transition and holonis possible between two states. One is the extended “Bloch
condensation characterized by the order parameters wave state” ofb(p) where the tunneling events between
=(fi,fj,) and B=(b;), respectively’* In strange metal different minima of the poriodic potential are driven by the
state bothA andB are zero, while onlyA is nonzero in the large kinetic energy, i.e., largg. The conjugate fielc is
underdoped “spin gap state” and onB is nonzero in the localized on the other hand, and the string of the electric field
overdoped “Fermi liquid state.” The superconductivity is is formed when positive and negative gauge charges are in-
realized only when botih andB are nonzero, and the onset serted with a separatidR This costs an energy proportional
of the superconductivity is identified as the holon condensato R because of the finite string tension of the electric field.
tion in the underdoped region. However this simple-mindedThis phenomenon is called confinement. For srgathn the
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other hand, the periodic potential is large dm@) is con- (1) In the limit g— 0, the gauge fields are frozen out and we
fined within one minimum. One can replace the periodic potecover theXY model. Ford+1=2, we expect a phase tran-
tential by the quadratic one (IPb?, which corresponds to sition atk= .. The ordered phase i+ 1=>3 is character-
the usual Maxwell Lagrangian. The Coulomb law is repro-ized by an order parametée'’)#0. For g nonzero, how-
duced in this case, and the periodicity is irrelevant. Theever, this object is not gauge invariant and can no longer
gauge field is deconfining in this case. In42)D these serve as an order parameteinstead we may fix the gauge
tunneling events are represented by the point singularities ab be, for instance, the unitary gauge=0 and consider
the gauge field configuration called magnetic monopoles osmall gauge fluctuations. Then we have the Higgs mecha-
instantons?! In the pure gauge model, the interaction be-nism where a ternp.a? appears in the actiorp(: the su-
tween the magnetic minopoles ig li.e., the Coulomb gas. perfluidity density. The gauge flux correlation has the form
Because the Coulomb gas in{24)D is in the screening
phase, the gauge field is always confining due to these mono- k2 K k
poles or instantons. (b,b,)= —< Opv— ”2 V)

When coupled to the holons and spinons, however, the Ps K
gauge field becomes dissipative when these particles are |r@2n)

tegrated over, and the deconfining phase becomes possible ir 1) dimensions, which is known to be confining due to the

the strange m'etal normal stah?eH'ow.ever, n thgz presence of appearance of instantofisThe instantons are singular con-
gapless fermion or boson excitations, the integration oveF

them is in general not justifiable. The fermion part is better'9urations of a which act as magnetic monopoles, i.e.,
controlled because of the presence of a large energy scal@ources and sinks of magnetic fields. Writmg ao+ ainst as

the Fermi energy, and techniques such as lrgan be used the sum of nonsingular and singular configurations, we have
to control the expansion. The boson part is much more prob-

()

The limit k=0 yields the compact QED model in (2

lematic because bosons tend to condense in the bottom of Binst=V X Qingt.- (4)
their band and we are faced with a strong coupling problem ) i )
of bosons and gauge fields. For a given instanton density, , we have the analog of

It has been argued that the strong inelastic scattering dug0isson’s equation
to gauge fluctuation suppresses the coherency and hence the .. Lo
ordering temperature, but the effects of the quantum fluctua- V- Bins= V- VX @jps= 4mppy. 5
tion in the strong coupling limit is a difficult problem which i ) ) i
remains unsolved. In this paper we hope that a duality mapl-f the_ instantons form a gas, the density-density correlation
ping of a simplified version of the boson-gauge field problemfUnction is given by
can shed some light on the issue. Summarizing the above,
there are two crucial and related issues in gauge models of - - Mgkz
high-T. superconductors, i.e., the Bose condensation and the (pm(K)pm(=K))= (47)% M2+K? )
confinement or deconfinement of the gauge field. 0

In order to clarify these two pictures, we study in this in analogy with the more familiar density-density correlation
paper a simplified model, i.e., a Higgs model coupled &)U  function of a Coulomb gas, wheid, plays the role of the

gauge field defined on a (21)D lattice, which is an impor-  jnverse screening length. Combining E6) and Eq.(6) we
tant model of broad interests both in condensed matter physimnd
ics and high-energy physi¢3!4 The action is given as

(i = 2 M8 0
inst~ins 2 2 2"
S=—«2 cogA,0(i)—qa,(i)] k™ Mo+k

n

When combined with the standard transverse correlation
_% 2 cog A a,(i)—A,a,()], ) from the nonsingular pad,, we have
plaquette
k,k, kk, M3 kK,
. . . . Co (b,b,y=6,,— -~ +-"~ L

wherei is the lattice point angl,v specify the direction in u uv

2 2 2 2 My 2 27
the (2+1)D lattice. The difference operatdr,, is defined as k K Motk Motk ®)
A f(i)="f(i+u)—1f(i). Both 6(i) anda,(i) are compact
and defined in the intervdl,27]. q is the (intege) charge  Equation(8) shows that the electromagnetic field acquires a
of the Higgs bosons ang=e (fundamental for the holons mass due to the gas of instantdhs.
while q=2e for the spinon pairing in the (1) gauge model Thus we see that in both thg—0 limit and thex=0
of high-T, cuprates. Hereafter we take the unit=1 except limits, the gauge field is massive. This inspired Fradkin and
for Eq. (27) in Sec. IV. The amplitude of the bose field has Shenkel® to consider whether the two limits are smoothly
been fixed, but the vortex excitations are allowed due to theonnected to each other. Their conclusion is as follows:
lattice and the compactness. Note that, in contrast to the higfl) When the charge is fundamentaj= 1), the strong cou-
T. problem, the gauge field dynamics is Maxwellian in thepling expansion argument shows that the Higgs phase with
continuum limit. This model has been studied extensivelyJarge k and smallg continues smoothly to the confinement
and the essential features are as follows: phase with largey and smallk.
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FIG. 2. (a) Vortex loop, (b) a vortex segment, angt) vortex
XY-transition segment broken into pieces by the instantons. A vortex segment
/ terminates at the instanton and anti-instanton.
K confinement
correlation function in the region commonly labeled as
confinement-Higgs after the work of Fradkin and SheriRer.
The point we want to raise in this paper is that even though
the gauge field is massive, the correlation function in the
Higgs phase and the confinement phase are very different,
being given by Eq(3) and Eq.(8), respectively. The ques-
s tion is then whether the correlation function is closer to Eq.
FIG. 1. Phase diagrams for Abelian Lattice Higgs model with (3) OF EQ.(8) in the confinement-Higgs region. As far as we
fundamental charge in (81)D (a) and (2+1)D (b). In (b) the  Know, this question has not been addressed. In this paper we
phase transition is isolated along tX&/-model line, i.e.g=0. In  include the effect of instantons for generaland g but we
the confinement phase, the gauge field is massive due to instantor®)me to quite a different conclusion than Einhorn and
although no Meissner effect occurs. Savit!* The phase diagram we propose is shown in Fig).1
The lineg=0 is an isolated line with an isolatedly transi-
(2) When the charge is not fundamental, eg=2, the tion. We also calculate the magnetic field correlation func-
Higgs and the confinement are different phases and can li®n and show that it takes the confinement form of E).
distinguished by the forces between the test chatgaes Thus we conclude that the Higgs-confinement phase is better
+1. described as the confinement phase. This is the main result of
In the bulk of this paper we will focus on thg=1 case. this paper which we discuss in Sec. Il.
The phase diagram for (831)D andq=1 case has been It is known that the model given by Eql) describes a
determined at least qualitatively, and consists of two phasefose gas on a lattice where the density is an integer per a
i.e., the Higgs-confinement and Coulomb phases as shown Iattice site. Thus the confinement phase may be understood
Fig. 1(a. In the Coulomb phase, the gauge field is deconfin-as a Bose Mott insulator. In Sec. Il we extend the discussion
ing and massless and the bose field remains disordereth the incommensurate case, when the density is not an inte-
However, the phase diagram for42)D andg=1, which  ger. We find two possibilities. The instantons may become
is the most relevant case to high- cuprates, remains irrelevant and the system becomes a superfl(htiggs
controversial®>1* One proposal is that th&Y transition be- ~phasg, or the system may break up into domains. In Sec. IV
comes first order once the couplimgto the gauge field is we briefly address the cagp=2 and also the case of two
turned on, due to the Weinberg-Coleman mecharifsihis ~ kinds of bosons with opposite gauge charges, which arises in
first order transition line terminates at some critical point.the SU2) formulation of thet-J model.
This resembles the vapor-liquid phase diagram. The other
one _is thgt a finite region_ of Coulomb p_hase extéts. Il. THE ABELIAN-HIGGS MODEL
Since instantons dominate the physics kot 0, the key
question is whether instantons play an important role for We start with the continuum action for E(®):
generalk andg. Vortex lines in the bose liquid carry unit
flux quanta and these can originate and terminate at instan- 1 - > 1 -
tonsqand anti-instantons. This ?s illustrated in Fig. 2. Einhorn S:f d*x EK[VG(X)_a(X)_A(X)]2+ E(an)z :
and Savit discussed the free energy of the finite vortex seg- 9
ments, and concluded that tieY transition remains at least
for weakg.** This leads to a picture of a finite region of the Here we have introduced the external electromangetic field
Coulomb phase mentioned earlier. Apart from the phase digf,.» Which is put to be zero for the moment. We allow the
gram, another issue is the behavior of the magnetic fielgingular configurations of anda corresponding to the vor-
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tex and instanton, respectively. As for the vorte¥Xx) is
divided into the single-valued pa#y and the multivalued

vortex parté, as 6= 6y+ 6y, andVXx Ve, /2mw=], is the

vortex current. As for the instantona=ay+aj, and V-V
X ainsddm= py is the instanton density as defined in E@s.

and (5). We next derive a continuum version of the duality
representation of this problem. The duality representation is
a powerful tool which allows us to discuss the strong cou-
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that of a classical statistical mechanics. We first repeat the
argument of Einhorn and Savit.Let L be the length of the
vortex loop segement. Then the free energy is the sum of the
energy cost and the entropy'as

Floop=4m2«kD(0;m?)L—Inut,

Fsegment:4772KD(O;m2)L - |n(ﬁL|—7) +2Snst,  (16)

pling limit (largeg) and is particularly useful for the present \yhereS, =429~ 1D (0;m?) is the action for an instanton,

problem. Introducing the Stratonovich-Hubbard fidldep-
resenting the boson current, the action becomes

1
S= J' d3x

—J2+iJ[Va(x)—a(x)]+ i(v><ai)2
2k 29
(10)

and after integrating oved,, we obtainV-J=0 correspond-

ing to the conservation of the boson current. To enforce thi

conservation law, we introduce the vector potenfiaxb rep-

resent] asJ=V x c. Then after partial integration the action

becomes

S= f d3x

with b=V X a. After integrating ovelb, we obtain

S= J d3x

© (V)G — 50T+ o (B)2
2 (VXS +iG[2 ]y ~B00] + 55 (B)
ap

. (12

1 - - .
Z(VXC)ZJrg(c)eriZwojv

This is essentially equivalent to the action obtained b

Einhorn-Savit in terms of the lattice formulatidflt is noted

and z is a number of order unity which depends on lattice
and dimension. The main difference between closed loop and
open segment is that the two instanton action is added and
entropy is enhanced by the facto? (y>0) in the case of
open segmerlt. However the leading-linear terms are the
same for both of closed loop and open segment, and
Einhorn-Savit concluded that the proliferation of the vorti-
ges, i.e., the appearance of the infinite length loop/segment,
occurs at 4r2xD(0;m?) =Inu. This is theXY-like phase
transition viewed in the duality picture. However the above
consideration neglects the possibility that the long vortex
loop segment are cut by the instantons into small pieces, as
shown in Fig. 2c). Let us consider that the total lengthis

cut into n pieces of open segments. The free energy in this
case is

F(L,n)=[472kD(0;m?) — z]L— ynIn(L/n)+2SN.
(17)

Minimizing this with respect ta, we obtain the length of the
pieces ad /n=e!"?Snst/Y which is finite asL—o. Then
due to the finite density of instantons, the infinite length loop
Yor segment does not appear. Instead the vacuum is full of
finite size open segments and closed loops of vortex. The

that if we viewc as a gauge field coupled to the vortex tota| length of these loops and segments are infinite as the

current, the gauge symmetry is broken in Ef2), which

sample sizé. — o when 472D (0:m?) — <0, but they are

corresponds to the nonconservation of the vortex currengy finite size. Therefore we conclude that the phase diagram
i.e., V-jy can be nonzero, due to the instantons. After inte-of (24 1)D Abelian Higgs model is given by Fig(l), i.e.,

grating over the field in Eq. (12), the partition functior? is
given by the integral over the vortex configuratidns} in-

cluding both the vortex loop and open vortex segments thduality picture, i.e.,

two ends of which are instanton and anti-instan'tbn.

Z:Zo{z} exr{E —4m2kjy,())D (i — k,m)jy,(K) |,
Iv 13

whereD ,,(j — k,m?) is the propagator of the fieldwith the
massm?= kg. This propagator is given as

i—k,m?)=|é Buy j —k,m?
D/.LV(J_ ,m )_ nv m2 JD(J_ M )a (14)
whereD(j —k,m?) satisfies
(—AZ+m?)D(j —k,m?) = 5. (15)

The

Ne_m

ProPagator decays exponentially d3(j—k,m?)
i—k

are short range.

all the interior constitutes a single phase. Analogy of the
phase diagram with the Ising model is helpful here. In the
regarding the vortex field as the order
parameterx can be regarded as the temperatliyend the
instanton densitg "% s the magnetic fieldH. Then it is
natural that the ordered state ag#~, i.e., H=0, is the
isolated line while all the other phase diagram is connected
to the high temperature symmetric phase. Actually this anal-
ogy becomes more clear when one consider the path integral
formulation of the the Ising model in a magnetic fieddt "8
The partition function is represented by the sum over the
closed loop and the open segment ended at the magnetic field
vertexH. This is exactly similar to the present case where the
vortex segment terminates at instantons except that the vor-
tex loop/segment has a direction and instanton haszthe
topological charge.

Now what is the nature of this single phase? One crucial

question is whether the Meissner effect foremains or not.
It should be noted that the magnetic figddis tied to the

, and the interaction between the vortex Segmenté{Ol’tiCGS. In the case of closed |OOp the net magnetic ﬁetd

zero. The open segment, on the other hand, is a magnetic

Let us start with a qualitative estimate of the free energydipole which has ne. Therefore once the instanton fugacity
of the vortex loop segment regarding the partition function ass nonzero and there are vortex open segments, the magnetic
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@ ment between the instanton and anti-instanton also disap-
pears, and the magnetic dipole is liberated into free magnetic
charges. This is the “metal” of the magnetic charges, and

O O again the magnetic field cannot penetrate into the sample
due to the screening. This is shown in Fi¢c)3 This massive

gauge fieldo corresponds to the confining phase of the pure
O gauge model discussed by Polyakdvherefore the state in
the interior of the phase diagram in Fig(bL continues
smoothly not to the Higgs phase but to the pure gauge
O model, and should be called “confinement.”

In order to substantiate the above consideration, we now
go to the second quantization formulation of the vortex sys-

tem. Let us first divide the gauge fietinto the transverse
and longitudinal parts, i.e¢=c, +V¢. Then Eq.(11) is

® written as
+
N e 1 -, 9 -, 9
— 3yl 249 24 =2 2
) O 5= [ @5 (Vxc )+ 267+ S (va)
- +

where we have performed a partial integration and identified

V- jy with the instanton densitg,,. We can view Eq(18)
as describing world-lines of vortex-particles which are

- coupled to the gauge field by th@wc, - j, term. The vor-
tices may be created and annihilated at instantons located at
X1+ +X, and anti-instantons located §f- - -y,,. Alterna-
tively, we can write the action in terms of the second quan-
tized vortex fieldyn, . The action is given by

1 . . 9-.49 1
_ 2,47 2, 2 2 Tt
5 (VXC )25 (C)2H 5 (V) 2+ 5

S\,zf d3x

* o X[—K(V+ic, )2+ M2]yy+u(y )2 +id- pu |,

(19

+ whereM?=472kD(0;:m?) —In , andu represents the short
+ range repulsion between the vortex segments. The gradient
- term comes from the extra cost of the action when the vortex

line deviates from the straight line. This step is standard in

FIG. 3. Three possible states for the magnetic char@ggsThe  the duality mapping. The novel feature of creation and anni-
vacuum state where only vortex loops of finite size exist. The gaugdilation of vortices can be included by summing over all
flux b cannot exist inside the sample, i.e., the Meissner effect ocinstanton configurations as follows:
curs, and this is the superfluid state of the original bost)sThe
dielectrics with finite size vortex segments and loops. The magnetic R *
field b can penetrate into the sample, and the Meissner effect van- Z= f Dy{DyyDC, D >,
ishes. The string tension of the vortex then becomes zero, and the nm=0
]E:onflngment of the instanton and antl-lnstan.ton disappears. There- X[Ztﬁ{r,(xl)e' ¢(x1)]. . ~[Z¢//:r,(xn)e' ¢(xn)]
ore this state is unstable {@). (c) The metallic state of the mag-
netic charges. The metallic screening prevents the gauge field from x[zlr/,v(yl)e*itﬁ(yl)]. . ~[Z¢V(ym)e’i¢(ym)]e*5\/, (20)

penetrating into the sample. This is the confining state of the gauge ) ) ) L
field. wherez is the fugacity of the instantons which is roughly

given asz~e Snst. n,m are the number of instantons and
field b can penetrate into the sample, i.e., the Meissner effe@nti-instantons, but only the term=m survives when one
disappears and the gauge fidddbecomes massless. This INtegrates Ove’ﬂvj‘/f\T/- As in the usual Coulomb gas map-
corresponds to the “dielectrics” of the magnetic charge andPing, the summation over,m in Eq. (20) can be done, and
is illustrated in Fig. 8). The instantons and anti-instantons Our final result for the action, after reversing the step be-
appear to be bound into pairs. However, this state is notween Egs(11) and(12) to restore the original gauge fiedd
stable because once the Meissner effect is gone, the confinis-given as

Xm' 'an dyl' 'dym
n! f m!



PRB 61

1
S= f d3x

- 1 - - -
_ 2, 7 2_ A,
2K(V><cl) +29(V><a) ic-VXxXa

1 -
+ S U= K(V+ic ) >+ Mgy + u(yain)?

—2(ye + e ') (2D
where it should be noted again thatc, + V¢ anda=a,

+ajg. The gauge transformationy— ye'?, i
—>¢:‘,e"¢ eliminates the exponential factor in ttzterm,

and also replaces, by c in the minimal coupling term. We
have

Z= f Dy4DyyyDcDae™ S, (223
s:f d%[%wxE)%%(Vxé)z—iawé
+%¢$[—K<V+i6>2+M2]¢V+u<¢wv>2
—z(yt i) |- (22b)
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which is the sine-Gordon model in (21)D. According to
the analysis of the pure gauge model by PolyaKothe
fugacity z is always relevant and the-field is massive. Re-
placing the cos term by the effective quadratic term as

1 -
Suner | BGIKUAT o+ 0%+ 220007 (29

which gives the massy=2z.4(K ) of the ¢ field corre-
sponding to the screening. After integrating owerwe ob-

tain the effective action for the gauge fields a and the
external electromagnetic fieldl as

1 9’ 9,9, )
S—E% ME | ?(%——qz— +Ky3| 8,0
9.9, B qﬂqv>
q2+mg q2

Xa,(q)a,(—q)—id,fla.(a)+Ala)]c,(~a)

O

1
cﬂ(q)cy(—q)+§

+cM(—q)[aV(q)+Av(q)]}]- (25

After integrating overc, we obtain the propagator of the

Except for the last term, Eq22b) is the standard duality gauge fluxb=Vxa as
representation of the Abelian Higgs model. The last term in
Eqg. (22b) represents the effect of the instantons and is the

b b,(—
main result of this paper. We note that it takes the form of an (bu(@b,(~))

external field coupled to the vortex field,. This is analo- 1

gous to the Josephson coupling to an external superfluid with :W Suv

an order parameter. The external order parameter will in-

duce a nonzero order parametgf,)+0, even whenM? glm3+ kK ¥+ g?]

>0. (Note we have fixed the gauge and the nonzero order _q“q”[mS(Kt,//g+g)/g+qz][K(K¢§+g)+q2]'

parameter is in the particular gauge chojide.is useful to
recall that vortices in the fielg, correspond to world lines
of the original bosons. Condensation of the vortex figld
means the absence of Bose condensation and vice versa. Iltrshould be noted that while the polegt/disappeared and
the first quantized picture of vortex loops and segments, thithe gauge field is massive, there is no Meissner effect be-
can also be understood as follows. Consider the correlatiopause Eq(26) is not proportional taj? as in Eq.(3). Rather,
functionC(i,i’)=<¢{r,(>Z) lﬁv(i'»- In the absence of instan- the _smallq beha_vior is essentially the same as _that ir11 the
tons, the pointx andx’ are connected by a vortex line and confining phase in the pure gauge model shown in(Ei:

long-range order is possible only when an infinite vortex lineAfter integrating over thé field, the effective action for the
has zero energy, i.eM?<0. However, with finitez, an in-  external e.m. field is-(V X A)?, which means that the sys-

stanton and an anti-instanton appear néaandx and create €M is insulating. This is perhaps not surprising if viewed in
two finite segments, so th&I()Z,)Z’) reaches a finite value the strong coupling ||m|g.—>oo, Then the gauge field does

, - - . not have its own dynamics and serves to impose the con-
even as the separation betweeandx’ goes to infinity.

- TSRS straint of integer occupation at each lattice site. The bosons
Recall that in the duality picturéy)#0 means that the 5o just frozen into place on each site, resulting in an insu-

original boson is not BoTse condensed. Thus we expect thakor This Mott insulator phase appears to extend to include
the effect of thez(yy,+ #y) term is to destroy the Meissner ihe entire phase diagram, as shown in Fi)1with the
effect of the original Abelian-Higgs theory. We check this by exception of the line 3=0.

an explicit calculation of the gauge field correlation function.
Let us representy, as ¢, = pe'?. Then the action for the
vortex field becomes

(26)

At finite temperaturel, the imaginary time axis becomes
finite, i.e., [0,8=1/T], in Eq. (23). Therefore Eq.(23)
desciribes the sine-Gordon model in 2D in the long wave-
length limit. Therefore we expect the KT transition, i.e.,
confinement-deconfinement transition, occurs at some criti-

1 -
| 3tk a2 2_
Slortex J' d XZ [Ko(Ve+c)®—4zyocose] (23 cal temperaturf ...
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I1l. BOSONS WITH NONINTEGER DENSITY However, since stripes occur only for positive interface en-
ergy in our model, the stripe size in expected to be mac-

The Abelian Higgs model in Eq1) corresponds to the roscpic , by ananogy with the laminar phase of type | super-
case of integer boson filling per each site. The deviation fromcondpuct’orsy Microsgg,/o ic stripes mi h? oceur WKEH-<O P
it is taken care of by introducing the winding number of the ) b P 9

phased along the time directiod® In the dual picture, the and other interactions such as long range Coulomb forces

L2 and commensurability energy are introduced. We have not
boson density is represented by theomponent of the gauge e this issue in this paper, and this is left for future

flux V¢, and the deviation from the integer filling is rep- sty dies.

resented by adding the ter|ﬂ1=|,ug(V><c*:)Z to the action Eq.

(22b). Here the chemical potential acts as the magnetic

field. Therefore the chemical potential and the vortex con- IV. OTHER ORDER PARAMETERS

densation compete with each other as in the case of the su- )

perconductor in a magnetic field. The only new aspect here is UP to now, we consider the chargebosons coupled to
the instanton terne(s,+ l/,:r/)_ When =0, this term in- the gauge field. This model corresponds to the boson sector
duces the vortex condensatiém,) even if M2 is positive ~ Of the U1) gauge theory. However other types of order pa-
and large. Foru#0, we may be tempted to consider an "@meter appear in gauge models of highsuperconductors,
Abrikosov vortex statgof the vortex fieldys,) in analogy ~ Which is the subject of this section.

with type Il superconductors. An ordered array of such vor-  First we consider the case qf=2e, which corresponds to
tices correspond to a Wigner crystal of bos8rdowever, the spinon pairing order parameter coupled to tii&) dauge

the phase of/y, changes by 2 around each vortex and we field. Here we take the unit wheree2 1 and the flux quan-
cannot gain the Josephson energy from the term(y,,  tization is reduces to half. Then the instanton becomes the
+y4)). We conclude that the Wigner crystal is suppressed bgnd point of two vortices, which modifies theterm in Eq.

the instantons. A second idea is to consider the analogy d2b) as

the intermediate state in type | superconductors, where the
stable configuration is the laminar structd?dn type | su-
perconductors the surface energy between the normal and
superconducting regions is positive. The surface energy is
proportional to the size along theaxis (8 in the present L
contexy and the spacing of the laminar structure is macro- -

scopic in size. In the Appendix, we perform a Ginzburg- +§¢$[_K(V+'C)2+MZ]‘ﬂVJFU(‘R/wV)Z
Landau calculation of the surface energy, and find that in
contrast to usual type | superonductors, it is negative in the
caseM?>0, i.e., when the superconductivity is induced by
Josephson coupling. This implies that the straight interface is
unstable, and the laminar phase will break up. One possibil-
ity is that the system breaks up into patches whgtg) It is noted that thez term is the quadratic term and does not
+0, separated by regions whefes,)=0. (This can be necessarily enforce the condensationyf, Therefore two
viewed as the complement of the Abrikosov vortex sjate. Possibilities arises in this case.

The order parameter can be real in each patch, gaining dh Single vortex condensation, i.€4y)+ 0. In this case the
extensive Josephson energy from the terma(yn,+ zp\T,). quantized charge, i.e., the integral §f X EL)Z is 2e and the
The magnetic field X ¢ can penetrate the normal region and Single charge cannot appear. Therefore the chaege con-
partially penetrate the patches. This state can maximize thgned. ) ) ] )

surface energy gain for a fixed patch area and the patchéd) Vortex pair condensation, i.&{#yy)#0 while (i)

will form some ordered structure. In the original boson rep-= 0. In this case the quantized charge is reduced to half, i.e.,
resentation, the absence of |Ong_range ordw\ljmneans that e. Thel’fOI’e the confinement of the Chargdoes not occur.

the bosons form a superfluid with Meissner effect. The in- Figure 4 shows the phase diagram &pr2e, where the
stantons become irrelevant in this case, in contrast tquthe above two possibilities correspond to | and I, respectively.
=0 case. The effect of the instanton is to cause a periodiés for the small fluctuation o& is concerned, there occurs
modulation of the boson densitgorresponding to the modu- no Meissner effect in either phase, althowgis massive and
lation of the magnetic fieldV xc by the patches This  takes the form of Eq(8). Therefore both phases are better
modulation is weak fok large (M? positive and largeand  called the confining phase for the charge. 2Vhat distin-
grows with decreasing. An ordered array of patches lead to guishes these two phases is the disctesymmetry It

a kind of incommensurate order. For very smaJIM?<0 has been discussed that the linrit is the Ising gauge
and there is a strong tendency for the order paramgjego  model, which shows confinement and deconfinement transi-
form in the dual picture. In this case the interface energy mayion of chargee at some critical value of =g, .*°

become positive and we cannot rule out a laminar picture. In Next we study the case of two species of bosbpsb,

the original boson picture this corresponds to stripes of sueoupled to the gauge field with opposite chargeend — e,
perfluids separated by Mott insulators. The transition berespectively. This situation occurs in the staggered flux state
tween the stripe phase depends on details of the parametaysan SU2) formulation for underdoped regidt In this case
and we have not attempted to work it out quantitatively.the dual model is given by

s=J d3x i(V><6)2+i(v><<f?\)2—i6.v><z?1
2k 29

— (i + wpv)]. (27)
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Zz2 Ising Gauge Model

Seff: J d3X

E 2 v = \2 E \v ~\2
ZKlpO 2(Vepstcy) +2( ®atCa)
II

XY-transition

Y —2zy5c0 ¢,) |, (31)

K confinement

I where only the antisymmetric part is coupled to the instan-

tons. Therefore the action for the antisymmetric part is the
same as that in Ed23), i.e., ¢, is fixed by thez term, and
the vortex of thep, field is forbidden. Calculations similar to
Egs.(23)—(26) show that there is no Meissner effect for the

gauge fielda, although it is massive as in the pure gauge
1/g model. This corresponds to the binding or confinement of the

FIG. 4. Phase diagram far=2e. In region I the single vortex WO Species of bosonb, and b, because Y xc,), is the
condensation occurs and chargds confined. In region Il only difference between the boson densitiesbgfand b,. This

vortex pairs condense and chamés not confined. In the limite ~ Means that the single Bose condesation is suppressed. The

=, the model is reduced to Ising gauge model, which shows $£0s0n pairing condensation, on the other hand, is not dis-

phase transition. turbed by thez term. Therefore when the field is disor-
dered, we have the boson pair condensation and finite super-

1 R . 1 . fluidity density ps. Then the effective action for the test
SIJ d3x{Z[(Vx01)2+(VXcz)2]+E(VXa)2 fieldsA,, A, is given after integrating over fields as
~iCLVX(@+ Ay —iCy VX (—at Ay —1u[VX(Cy Su= | PxlpuAut Ao VX (A=A P, (32
- 1 -
+cy)],+ > gz{[ —K(V+ic,2+)M? ]y + z//;[ —K(V wherey, is a diamagnetic susceptibility of the antisymmetric
part. Then the system show the Meissner effect only for the
+iC0) 2+ M2]4h,—2( Yo+ b)) Hul (Pl)? symmetric test fieldh; + A,. Therefore the system shows the

Meissner effect to the external electromagnetic field

+(Ph) 2]+ 2w () (W) ¢, (28)
V. CONCLUSIONS

wherec; (i=1,2) is the gauge field representing the boson In this paper, we studied the interplay between the con-
current ofb; , ¥ is the corresponding vortex field aig is ~ finement and the condensation of the order parameters. At

the test field coupled to it. The real electromagnetic fieldntéger-filling of the bosons with chargg there is only one
corersponds th = A.=A. It is noted here that again the phase in (2 1)D with theXY transition restricted to the line

1= AT A _ . i . i .
instanton term £ term) is quadratic ing’s and cannot induce 9_0' The nature of th|§ SO called Higgs-confinement phase
nonvanishingy, and i, when z is not large enough. The is the same as the confining phase of the pure gauge model,
Bose condens;tion djz andb. should occur in this .case and no Meissner effect for the gauge field occurs. This is
Wheng andz s large vthich iszrelevant to the highs prob- " because the instantons act as the ordering field for the vortex

lem, the amplitudes of both, and y, are induced and we condensation. For non-integer filling, Bose condensation is
) pi _ 1 2 ) . recovered for weak coupling. However, the Bose conden-
write ¢; = pe'¥. Here the singluar vortex configuration of

) . - i fi ith h oth hi
¢; is allowed, which corresponds to the original boson. The sation and confinement compete with each other, and this

. . SN ncompetition leads to phase separation for strong coupling.
the effective action for the phase fielg is given by In this paper we have focused our attention to the problem

1 of bosons coupled to gauge fluctuations. It is only a first step
EK‘!’S[(V‘P1+Cl)2+(v¢2+c2)2] towards addressing the problem which arises out of the
gauge theory formulation of the high: problem, which in-
volves both fermions and bosons coupled to gauge fields.
i (29 Nevertheless, we would like to put the present work in the
context of the highF. problem and attempt to draw a few
inferences. The effect of the fermion is twofold. First, if the
gauge field is confining, it allows the possibility of confining
1 fermion-antifermion pairs to form spin excitations and con-
©1= st > %a fining fermion and boson to re-constitute the physical elec-
tron. The former is believed to happen in the half-filled case
where the AF ordering may be described as chiral symmetry
B 1 breaking and confinement of Dirac fermicits?® Secondly,
P17 ™ 5 % (30) the presence of massless Dirac particles changes the dynam-
o ics of the gauge field and, in general, it would not take the
andcg, c, in a similar way. Then Eq(29) is written as Maxwellian form assumed in this paper. We can divide the

Seffz f d3X

- 22'#3 cog o1~ ¢2)

Here we define the symmetric and antisymmetric parts as
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gauge propagator is proportional {@? instead ofg? in the  the support by NSF-MRSFC Grant No. DMR-98-08941.
Maxwell theory® The instantons have logarithmic

interactior? and undergo a Kosterlitz-Thouless transition in APPENDIX: SURFACE TENSION
the 2+ 1 dimensions as a function &, the number of fer- _ _ _
mion flavors. It is believed that the physical caseNof 2 In this appendix, we show the calculation of the surface

lies on the disordered side of this transition, so that the intension between the normal and superconducting regions of
stanton gas behaves as free (@sopposed to instanton anti- the dual superconductor following Ref. 26. The free energy
instanton bound paiysSince our consideration is based on of the dual superconductor is given by

assuming the existence of the free instanton gas, this would

be the case where our consideration has the best chance of 1 - 1 -

being applicable. Nevertheless, we still have not included theF = f d’r| —(Vxc, )%+ ¢\T,§[— K(V+ic, )2 +M?]yy
possibility of bosons combining with fermions to form 2K

physical holes in an AF background. This would correspond

to the formation of small Fermi liquid pockets in a reduced —2(hy+ ) Fu(yh )2

, Al
Brillouin zone. Leaving this possibility aside, we can con- (A1)

clude from the results of Sec. Il that instantons suppress the r—1_ -1 _q _

formation of a Wigner crystal of doped holes. FurthermoreWhere '~ “=«""+(dn/du) "~ (dn/du: the charge com-
the possibility of phase separation into microscopic patcheBressibility. Here the classicaltime-independentconfigu-
is interesting, in that it suggests incommensurate structurd@tion is assumed an¥l is the gradient in 2D space. The
which appear experimentally in this part of the phase diaGinzburg-Landau equations are obtained by taking the varia-
gram. However, the superfluid state that appear in our picturgon with respect to&,b:r, and sc:

does not appear to resemldevave pairing, as long as the

fermions remain confined in the AF state. It is also interest- ) s M?2 B

ing that phase separation into larger scale laminar domain is S (ZIV=Cc)%Pyt gyt ul*hy=2,  (A2)

a possibility. Finally in the S(®2) formulation, the result of

Sec. IV suggests the possibility of bosons forming a pairing
state, leading to a coexistence of superconductivity and AF.

(i) Underdoped regionHere the normal state is the where
pseudogap state which is deas?é:;z)edjaﬂave pairing of fer- K
mions or a staggered flux phaseAgain initially the fermion s _ . _ 22
spectrum is Dirac and the gauge propagation is proportional =g (W Vi = (Vi) - g) Algwle . (A4)
to Jg” and it is not clear that the present paper is applicabIeNOW we consider the case of instanton driven dual supercon-
Nevertheless, we can ask whether the low-temperature phagg tiyity. Namely, thez term is the driving force of the vor-
is a confinement phase where instantons are free and play A condensation ank2>0 . Then we assums? is large

important role. There are three possible scenarios for th T2
onset of the low-temperature superconducting phase. Thgenough andi(yyy)” term can be neglected. In the absence

first is a binding of fermions with bosons to form physical Of the magnetic fieldc, , ¢ = Yvo=22IM?, and the free
quasiparticles. Since the fermions are already paired, a s@nergy measured from that in the normal stéfg is given
perconducting state appears. This possibility is clearly beby
yond the scope of the present work. The second and third
possibilities are the Bose condensation of single bosons in F_F. —_
the U(1) formulation, or the pairing of two kinds of bosons no
in the SU2) formulation?! The latter problem is treated in i ) . i )
Sec. IV. What we learn from the present study is that instanWhere He is the thermodynamic critical field and is the
tons tend to suppress Bose condensation when the couplif@!ume of the system. Assume that the interface between the
constantg is larger. Furthermore, instantons favor the bind-SUPerconducting and normal regions is localized nead,
ing of the two species of SI) bosons to form pairs which and x>0 region is superconducting. Physical quantmias de-
then condense, leading tocawave superconductor ground pend only onx, and we choose the Coulomb gauGec,
state. =0. Therefored,c, ,=0, and we put, ,=0 . The boundary

(i) The overdoped regionHere the high-temperature condition is
phase is the strange metal phase and it has been argued that

VX(VXc,)=«']y, (A3)

272 H2
Vi =ov—
M 2k’

(A5)

it is a deconfining phase due to dissipation in the gauge field Vxe :dciy —H -0 _
dynamics? The low temperature Fermi liquid phase is best (VXe) dx v =0 X=me,
described as a confinement of fermions and bosons. These
are clearly outside of the scope of the present paper. - dc

g P PrESETE pap (VXC)=— 2 =0, ty=tho, X—+. (AB)
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=iy ! Pyo, °
b= no - f_ dx(F-T.)
C:CLy/(Hc)\)a (A7)
. 2 \2
where N is the penetration depth and is given by :f dx er E(|¢\'/|2
=(4K«'Z?/M*)~Y2 The correlation lengtlt is given by - 2k’ 2
£é=K/[M?[, and we define the ratig=\/¢. Using these M2
normalized quantities, the GL equations become +c2|y|?) + 7|¢v|2—2( vt g)
Y'=n1-(c*+ 1)yl c'=cy?, (A8) ]
o o Ho(Vxc,), 27°
where /" =d“y/dx* etc., and the boundary condition is —T‘*‘ IVE
c'=1, ¢'=0, x—-—o, NH2 = 1
= Tf dx| (¢'—1)%+ —(¢')?
c'=0, ¢=1, X—+x, (A9) K- 7
It can be easily shown from E@A8) that 1 (C24 1) g2 2], (A12)
1 ~ ~
?¢’2+(cz+ 1)y?—2y—c'?=—1. (A10)  wheref, is thef in the normal state. Using E¢A10),
AH2 (=
The surface tension,s is given as follows. First define the ans:_,c dxc’'(c’'—1). (A13)

free energy density under the magnetic fielti as

Because the normalized magnetic flux densityis O

Fof_ ﬂ (ALD) <c¢'<1 in the interface region, the integral in E\13) is
P negative andy,,;<0. Therefore we conclude that the surface
tension is negative in the instanton-driven dual supercon-

Then a,s is given by ductor.
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