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The magnetoresistance of a granular superconductor in a strong magnetic field is considered. It is assumed
that this field destroys the superconducting gap in each grain, such that all interesting effects considered in the
paper are due to superconducting fluctuations. The conductance of the system is assumed to be large, which
allows us to neglect all localization effects as well as the Coulomb interaction. It is shown that at low
temperatures the superconducting fluctuations reduce the one-particle density of states but do not contribute to
transport. As a result, the resistivity of the normal state exceeds the classical resistivity approaching the latter
only in the limit of extremely strong magnetic fields, and this leads to a negative magnetoresistance. We
present detailed calculations of physical quantities relevant for describing the effect and make a comparison
with existing experiments.

[. INTRODUCTION the superconducting transition occurs earlier one gets a
maximum of the resistivity near the transition characteristic
In a recent experimerttransport properties of a system for the experiment$:3
of Al superconducting grains in a strong magnetic field were Unfortunately, investigation of this possibility is not
studied. The samples were quite homogeneous with a typicaimple. The metal-insulator transition occurs at values of the
diameter of the grains 12020 A and the grains formed a macroscopic conductanckof the order of unity. At such
three-dimensional array. As usual, sufficiently strong magvalues calculations are very difficult. The problem becomes
netic fields destroyed the superconductivity in the samplesven more complicated due to the Coulomb interaction. It is
and a finite resistivity could be seen above a critical magwell known? that, at small values df, the system must be an
netic field. The applied magnetic fields reached 17 T, whichnsulator even if the superconducting gap is finite in a single
was more than sufficient to destroy also the superconductingrain. A microscopic consideration of all these effects and a
gap in each grain. confirmation of the existence of the negative magnetoresis-
The dependence of the resistivity on the magnetic fieldance near the superconducting point Jor1 is at present
observed in Ref. 1 was not simple. Although at extremelyhardly possible and we do not try to treat the problem here.
strong fields the resistivity was almost independent of the Instead, we consider below the region of large conduc-
field, it increasedwhen decreasing the magnetic field. Only tances)>1, where the system without interactions would be
at sufficiently weak magnetic fields the resistivity started toa good metal. This region corresponds to large tunneling
decrease and finally the samples displayed superconductirmgnplitudes between the grains. All effects of the weak local-
properties. A similar behavior had been reported in a numbeization and the charging effects have to be smallJorl,

of publications>? which would imply that the resistivity could not considerably
A negative magnetoresistance due to weak localizatiomlepend on the magnetic field.
effects is not unusual in disordered metaldowever, the Nevertheless, we find that the magnetoresistance of a

magnetoresistance of the granulated materials studied in Rejood granulated metal& 1) in a strong magnetic field and

1 is quite noticeable in magnetic fields exceeding 10 T and ist low temperaturenust be negativdn our model, the su-

considerably larger than values estimated for the weak locaperconducting gap in each granule is assumed to be sup-

ization. pressed by the strong magnetic field. All the interesting be-
The weak localization effects become very important ifhavior considered below originates from the superconducting

the system is near the Anderson metal-insulator transitiofluctuations that lead to a suppression of the density of states

and one can expect there a complicated dependence on tli2OS) but do not help to carry an electric current. The main

magnetic field. One can, for example, argjtieat decreasing results have been already publishethd now we want to

the magnetic field drives the system to the metal-insulatopresent details of calculations and clarify some additional

transition, which gives a large negative magnetoresistance. fuestions. We consider, for example, influence of the Zee-
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man splitting on the resistivity, find the critical fieldc, of  ence of these pairs on the macroscopical transport is drasti-
the transition into the superconducting state, calculate theally different from that neaf .. The existence of the virtual
diamagnetic susceptibility, and estimate weak localizatiorpairs leads to a reduction of the DOS but, in the lifit
corrections. —0, these pairs cannot travel from one granule to another.
Theory of superconducting fluctuations near the transitiorAs a result, the conductivity can be aH>H_ considerably
into the superconducting state has been developed lorigwer than conductivityo, of the normal metal without an
agd ~? (for a review see Ref. 20Above the transition tem- electron-electron interaction. It approaches the vaigenly
peratureT., nonequilibrium Cooper pairs are formed and ain the limit H>H_., when all the superconducting fluctua-
new channel of charge transfer opeffsslamazov-Larkin tions are completely suppressed by the magnetic field.
contribution.” Another fluctuation contribution comes from  The superconducting pairing inside the grains is destroyed
a coherent scattering of the electrons forming a Cooper paisy both the orbital mechanism and the Zeeman splitting. The
on impurities(Maki-Thompson contribution® Both the fluc-  critical magnetic fieldH2" destroying the superconductivity
tuation corrections increase the conductivity and, when g, g single grain, in this case can be estimatedH35R¢
magnetic field is applied, lead to a positive magnetoresis= 4 \here ¢,=hc/e is a flux quantumR is a radius of
tance. Formation of the nonequilibrium Cooper pairs resultgngle grain, anct= &l is the superconducting coherence

also in a flpctuational gap in the one-electron specﬂ?rbut length. The Zeeman critical magnetic fi¢tf can be written
in conventional(nongranular superconductors the first two asgugHZ=A,, whereA, is a BCS gap for the single grain

mechanisms are more important ”@“a.”.d the conductivity at magnetic fieldH=0 andg is a Lande factor. We notice
increases when approaching the transition. The total condu«lgl—ere thatHZ is independent of the size of the grain whereas
tivity for a bulk sample above the transition temperattige or . S o .

for H; the size of the grain is important. The ratio of these

can be written in the following form . ' !
two fields can be written in the form

7 Towde™ 00, . HO'/HZ~R. /R (1.4)
where op,4e=(€?7n)/m is the conductivity of a normal e e '

metal without electron-electron interaction,is the elastic whereR,=&(pol) "1. We can see from Eq1.4) that for R
mean-free timem andn are the effective mass and the den- >R. the orbital critical magnetic field is smaller than the
sity of electrons, respectively. In E€lL.1), do is a correction  Zeeman critical magnetic field2"<HZ and the suppression
to the conductivity due to the fluctuations of the virtual coo-of superconductivity is due to the orbital mechanism. This
per pairs condition is well satisfied in grains witR~ 100 A studied in
Ref. 1. This limit is opposite to the one considered recently
60=00post 0oaL+ SoT, (1.2 in Ref. 12, where the Zeeman splitting was assumed to be the
wheredaposis the correction to the conductivity due to the Main mechanism of destruction of the Cooper pairs. How-
reduction of the DOS ando,, and doyr stand for the ever, the latter mechanism of the destruction of the Cooper
Aslamazov-Larkin(AL) and Maki-Thompsor{MT) contri-  Pairs can be easily included into the scheme of our calcula-
butions the conductivity. Close to the critical temperaftige  tONS. _ _ _
the AL correction is more important than both the MT and _ The remainder of the paper is organized as follows. In
DOS corrections types and its contribution can be written asec. Il we formulate the model and discuss the fluctuational

follows’ contributions to the total conductivity of the granulated su-
perconductors. Section Il contains the derivation of the cor-
SoaL T, \# rection to the conductivity of granulated superconductors due
O'Drude: (T—TC) , 1.3  to single electron tunnellingDOS contribution at very low

temperaturesT<T. and strong magnetic field$d —H,
where\ is a small dimensionless positive parametetl  <H_. In Sec. IV and Sec. V corrections to the conductivity
and B=1/2 for the three-dimensional casgD), 1 for 2D, due to tunneling of virtual Cooper pairs are derived
and 3/2 for quasi-1D. Eq1.3) was derived using a pertur- (Aslamazov-Larkin and Maki-Thompson correctipngn
bation theory and therefore is valid provided the inequalitySec. VI we discuss the influence of magnetic field on the
S0 pLl opruge<<1 is fulfilled. phase of order parameter and calculate the critical field of the

Although typically the AL and MT corrections are larger transition into the superconducting phase. The importance of
than the DOS contribution, a small decrease of the transversae Zeeman splitting is discussed in Sec. VII. The contribu-
conductivity is possible in layered materidisn a tempera- tion of fluctuating Cooper pairs to the diamagnetic suscepti-
ture interval not very close to the transition. It is relevant tobility of granular system is derived in Sec. VIII. Section IX
emphasize that all previous study of the fluctuations has beencludes the results for conductivity dt—T.<T,. and H
done near the critical temperatulie in a zero or a weak <H,. A discussion of a recent experiment in Al grains and
magnetic field. In contrast, we are mainly concentrated om comparison with the theory is presented in Sec. X. Our
study of the transport at very low temperature in a strongesults are summarized in the Conclusion.
magnetic field. To the best of our knowledge, fluctuations in
this region have not been considered so far.

A strong magnetic field destroys the superconducting gap
in each granule. However, even at magnetic fiégldsxceed- We consider a 3D array of superconducting grains
ing the critical fieldH, virtual Cooper pairs can still be coupled to each other, Fig. 1. The grains are not perfect and
formed. It turns out, and it will be shown below, the influ- there can be impurities inside the grains as well as on the

Il. CHOICE OF THE MODEL
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FIG. 1. System of metallic grains. g Q

surface. We assume that electrons can hop from grain to FIG. 2. Diagram adescribes correction to DOS, diagrams b

grain and can interact with phonons. and 9 describe corrections to conductivity due to superconducting
The Hamiltoniand of the system can be written as fluctuations. The wavy lines denote the propagator of the fluctua-
tions, the dashed lines stand for the impurity scattering.
H=Hy+H, (2.1
. - e
whereH, is a conventional Hamiltonian for a single grain = —ied_z tiquafpajq exp( [ EAdij)—H.c. (2.6
j.p.a

with an electron-phonon interaction in the presence of a

strong magnetic field . .
g mag Using standard formulas of the linear response theory we

. . can write the curreni(t) in the form
HO:iZ( Ei,ka;r,kai,k_|)\| > aiT,kaiT,fkai,fk’ai,k"’_Himp:

ik’ too .
22 j(t)=if7 (OJEHDAR )Y
where i stands for the numbers of the graidss=(k,1),
—k=(—k,]); N\ is an interaction constant, an@limp de- ETIPY R N e ,
scribes elastic interaction of the electrons with impurities. le"d ,m<[HT(t)’HT(t DATAMD),  (2.7)
The interaction in Eq(2.2) contains diagonal matrix ele-
ments only. This form of the interaction can be used prowhere the angle brackets stand for averaging over both quan-

vided the superconducting gdy, is not very large tum states and impurities in the grains. All operators in the
right-hand side of Eq(2.7) are independent of the vector
Ap<E, (2.3 potential. In principle, the grains can be clean and the elec-

whereE_. is the Thouless energy of the single granule. Equa—tronS can scatter mainly on the sur_face of the grains. How-
ever, provided the shape of the grains corresponds to a clas-

tion (2.3 is equivalent to the conditioR< &, whereR is : ; . o
the radius of the grain anéb is the superconducting coher- sically ch'aotlc_ motion of the electrons, the clean limit should
ence length. In this limit, superconducting fluctuations in abe described in the 0D case by the same form_ul_as. .
single grain are zero-dimensional. We carry out 'Fhe calculz_itlon of the cond_uct|V|ty maklng
~ ) . . expansion both in fluctuation modes and in the tunneling
Th? termHy in Eq. (2.1) describes tunneling from grain o, H+. This implies that the tunneling enertys not very
to grain and has the forrsee, e.g., Ref. 34 large. Proper conditions will be written later but now we
A e mention only that the tunneling energwill be everywhere
Hr= 2 tiqua?pajq ex;{i—Adij) +H.c.,, (2.4  much smaller than the enerdg. .

RIS ¢ As in conventional bulk superconductors we can write
whereA is the external vector potentiaf;; are the vectors corrections to the classical conductivity as a sum of correc-
connecting centers of two neighboring grairis and  tions to the DOS and of Aslamazov-LarkiAL) o and
j (Id;j|=2R); ai‘rp (ajp) are the creatiorfannihilation op- _I\/Iak|-Thompson(M_T) opT corrections. D_|ag_rams describ-
erators for an electron the grairand statep. ing these contrlbutloln.s are represeqted in Fig. 2.

It is assumed that the system is macroscopically a good 1Ne total conductivityo can be written as

metal and this corresponds to a sufficiently large tunneling
energyt UZUDOS+ O-AL+0-MT1 (28)

t> 6, (2.5) whereoposiS given by equation

where 6= (v,V) ! is the mean level spacing in a single N _,| €

granule, vo=mpy/272 is the DOS per one spin in the ab- Tpos= 0o(4T) lwa [v(&)/v,)? cosh z(ﬁ)dg'

sence of interactiony/ is the volume of the granule, any, (2.9

is the Bardeen-Cooper-Schrieff@8CS) gap atT=0 in the

absence of a magnetic field. Provided the inequalt) is N EQ.(2.9), oo=27e’R™ (/) is the classical conductiv-

fulfilled localization effects can be neglecte@ef. 13. ity of the granular metal. It can be rewritten in terms of the

Moreover, charging effects are also not important in thisdimensionless conductance of the systeas

limit because at such tunneling energies the Coulomb inter-

action is well screened. . :% (2.10
The tunneling current operator is T AR ‘
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where the conductanckequals

J=(7?14)(t] 5)2. (2.11)

The inequality(2.5) is equivalent to the condition

J>1. (2.12 FIG. 3. Impurity vertex.

The functiony(e) in Eq. (2.9 is the density of states. With- coordinates and time slower than the averaged one-particle
out the electron-electron interaction, this function is equal tg . averag P
the DOS of the ideal electron gas, which gives opos Green functions because the characteristic scale for both the

= 0. Taking into account the electron-electron attraction Welmpurlty vertices and the propagator of superconducting

can write the contributiomr to the classical conductivit fluctuationsK is the coherence lengt§, which is much
as pos y larger thanl. As a result, the magnetic field affects only the

vertex C and the propagatoK, whereas the phases of the
Opos= To+ dpog(t, T,H). (2.13  Green functions drawn in Fig. 2 outside these blocks cancel.
So, reading the diagrams in Fig. 1 one should replace the
The correctiondopog(t,T,H) depends on temperatufeand  solid lines by the function&©)(ie,,,p). More complicated
magnetic fieldH and is represented in Fig(@. As concerns  diagrams containing crossings of impurity lines describe the
the long-range part of the Coulomb interacti@harging ef-  \eak localization effects are neglected here.
fects, the conditionJ>1 allows us to neglect it. The impurity vertex entering these diagrams is equal to
Using Eq.(2.9) the correction to the conductivi§opos  (2mvr) “1C(ie,,iQx—ie,), Fig. 3, wherer is the mean-
at low temperatures can be written in terms of the correctiofree time due to the scattering on impurities or on the grain

to the DOS at zero energyr(0) as boundaryC is the Cooperon. It obeys the following equation
50’DOS/0'0=2(5V(0)/V0). (2.14) (Do[_iv—(ZE/C)A]2+|28n—Qk|)C(r,r’)
As we will see below, the main contribution to the conduc- = 2mvoS(r—r") 3.3

tivity due to the superconducting fluctuations comes from the
change of the DOSv. Its calculation will be presented in whereD,=v37/3 is the classical diffusion coefficient. The

detail in the next section. vector potentialA(r) should be chosen in the London gauge.
If the shape of the grain is close to spherical, the vector-
Ill. SUPPRESSION OF THE CONDUCTIVITY potential is expressed through the magnetic flélés A(r)
DUE TO DOS FLUCTUATIONS =[HXrJ2.

All relevant energies in the problem are assumed to be
uch smaller than the energy of the first harmonits
Dom?/R? playing the role of the Thouless energy of a
single grain and this allows us to keep only the zero harmon-
ics in the spectral expansion of the solutiG(r,r’) of Eq.
(3.3). One can find the eigenvalug(H) of this harmonics
using the first order of the standard perturbation theory

In this section we consider the correction to the conduc-
tivity of granulated superconductors due to suppression 0?:1
DOS. The main correctiodv(e) to the DOS of the nonin-
teracting electrong, is described by the diagram in the Fig.
2(a), while the termsoy,+ and o, are given by Figs. @)
and Zc), respectively. The calculation of the diagrams can
be performed for the Matsubara frequencies= 7T (2n
+1) using temperature Green functions. At the end one Eo(H)=(2e/c)?Dy(A?)y, (3.9
should, as usual Ref. 15, make the analytical continuation
ie,—e. The magnetic field will be considered in the quasi- Where( - - - )o stands for the averaging over the volume of the
classical approximatioh<L., wherel is a mean-free path grain. For the grain of a nearly spherical form one obtains
andL. is a cyclotron radius. In this approximation, the mag-

G - " : 2 [eHR\|? 2( ¢ \?

netic field results in the appearance of additional phases in _Z _-

; &o(H) 0 Ee, (3.9
Green functions 5\ ¢ 5\ 7ég

. .. ie(r. . where ¢o= mc/e is the flux quantum ang is the magnetic

Glie, ,r,r’):G(O)(ien,r—r’)exp(?ﬁ Adr), flux through the granule.
' Within the zero-harmonics approximation, the functi©on
(3.9

does not depend on coordinates and equals

whereG(ie,,r—r') is the Green function without mag-
netic field. In the zero-order approximation in the supercon-
ducting fluctuations, the disorder averaged Green function
G in the momentum representation has the form:

Clien,iQu—ien)=2mvy[|2e,— Q|+ E(H)] L
(3.6

To calculate the propagator of the superconducting fluc-
0)/: T ; 1 -1 tuationsK one should sum the sequence of the ladder dia-

G ien,p)=(ieq—&(p)+i(27) 'sgney) . (3.2 grams represented in Fig. 4. The broken lines in this figure

The diagrams in Fig. 2 contain the averaged one-particlelenote the electron-electron interaction. As it has been men-

Green functions, the impurity vertices proportional to the sationed the characteristic energies of the propagétare low

called CooperorC and the propagator of the superconduct-and therefore, when calculating the functikn one should

ing fluctuationsK. The functionsC and K depend on the take into account the tunneling processes from grain to
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i€ - ie,

i€,

FIG. 4. Propagator of superconducting fluctuations with tunnel- K
ing. é } é ; ; )

grains. The tunneling HamiltoniaH;, Eq. (2.4), is repre-
sented in Fig. 4 by crossed circles. FIG. 5. Diagrams describing(3).

Of course, one can sum the ladder diagrams in Fig. 4
directly. However, sometimes it is more convenient to de-Close to the critical magnetic field . destroying the super-
couple the electron-electron interaction in HG.2) by a  conducting gap in a single grain the energy of the first har-
Gaussian integration over an auxiliary field (Hubbard- monics&y(H) is equal to the BSC gap at zero temperature
Stratonovich transformationThen, one can perform averag- Ao. This means that Eq3.10 can be written in this case in
ing over the electron quantum states, thus reducing the calhe regionT<A,. NearH. small frequencie€), are most
culation to computation of a functional integral over the fieldimportant and one can expand H.10 in powers of the
A. In principle, one obtains within such a scheme a compli-small parametef), /A,. Then, we obtain
cated free-energy functional and the integral cannot be cal-

culated exactly. The situation simplifies if the fluctuations ) AA*T= 2 | Eo(H) |Qk| A2
are not very strong. Then, one can expand the free-energy Feril 1= Plon Ao [A@Q*.
functional inA and come to Gaussian integrals that can be (3.11)

treated without difficulties. For the problem considered the

propagatoiK is proportional to the average of the square ofAt strong magnetic field$1>H,, one should use the more
the field (|A,?). In terms of the functional integral this general formula, Eq(3.10.

quantity is written as The term F(ff[A A*] describing the tunneling includes
three different contributions represented in Fig. 5. The ana-
lytical expressiorF GP[ A,A* ] corresponding to the first dia-

2 _ * *
J |A|* exp(— BFer{ A,A*])DADA gram in Fig. 5 can be written as

(1A%)= :
exp(— BFas{A,A*])DADA*
f M= BFerd ) FCUA, A*]——tz/(zmoT)ZZ (AjAF +c.c.)V2
(3.7)

here B=1/T and F.{A,A*] is the effective free-energy 3, d3p,
functional. We have chosen the parameters in such a way f JTE G(ieppi)
that the grains are zero dimensional. Therefore, it is suffi- (2m)°
cient to integrate over the zero-space harmonics only, which XG(—ie-D)G(ie-D)G(—ie.D:
means that the field in the integral in Eq(3.7) does not (—12nPi)Gliznp)) G(~ienp;).
depend on coordinates. In the quadratic approximation in the (3.12
Ilee}lﬁquA the free-energy function& ¢ includes two different Writing Eq. (3.12 we putQ,=0 in the expression for the

CooperonC and in the Green functions. This is justified
Forf= F,(slf)f+FEff)f (3.9 because the energ*}'(ff[A A*] is already small because it
includes the parametel 6/&y(H)] that is assumed to be
whereF ()} describes the superconducting fluctuations in arsmall, wherel is the dimensionless conductance of the sys-
isolated grain and={%} takes into account tunneling from tem specified by Eq2.11). Next terms of the expansion are
grain to grain. For the first term we obtain after standardof the order ofJ[ /&, (H) ][ /E(H)] and can be neglected
manipulations for small Q. The second and third diagrams in Fig. 5 are
equal to each other and have the opposite sign with respect to
. the first diagram. For simplicity we assume that the granules
F(elf)f[A'A*]ZV%:k (1/|)\|—T2€ ;QH 2C('8“)) A% are packed into a cubic lattice. Using the momentum repre-
" (3.9  sentation with respect to the coordinates of the grains and

) } ] i ) ] taking into account all diagrams in Fig. 5 we reduce the
where the functiorC(ie,) is defined in Eq(3.6) andV is the free-energy functionangf)f[A,A*] to the form

volume of a single grain. In the limit of low temperatures

T<&(H) the sum over the frequencies in Eq. (3.9 can 3
be replaced by the integral and we reduce the functional FOIAA*]= (8/377)(1/5)2 J[6/E(H)]
FIIA,A*] to the form
X (1—cosg;d)|A|?, (3.13
F(l)[A A*]:EE [ (M”m |2 I
effit= o Ag where q is the quasimomentum andl=2R. Eq. (3.13 is

(3.10 written in the limit
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J<&(H)/6. (3.14 V/Vy

The inequality(3.14) is compatible with the inequality
(2.12 provided the inequality

Eo(H)>6 (3.15

is fulfilled. If £,(H)~A,, the condition, Eq(3.15), is at the €
same time the condition for the existence of the supercon- &

ducting gap in the Slng_le granule. The |nequ_aﬁ&/14) al- FIG. 6. Suppression of DOS due to superconducting fluctua-
lows us also to neglect influence of the tunneling on the form; o

of the Cooperon, so we use for calculations E336).

Writing the previous equations de(ezf)f[A’A*] We ne-  After calculation of the sum ovef), in Eq. (3.19, one
glected the influence of magnetic field on _the phase of thgnould make the analytical continuation,—e. At low
order parameterl. In other words we omitted the phase temperatures, it is sufficient to find the correction to the DOS
factor expi(e/c)fA(r)dr]. The effect of the magnetic field gzt zero energyr=6v(0).

on the phase will be discussed in detail later in Sec. VI. Remarkably, Eqs(3.16—(3.19 do not contain explicitly
Although the final result for the correction to the DOS canne mean-free timer. This is a consequence of the zero-
be written for arbitrary temperatursand magnetic fieldsl,  harmonics approximation, which is equivalent to using the
let us concentrate on the most interesting C&se€Tc, H  random matrix theoryRMT) Ref. 13.[The parameter en-
>H.. Using Egs.(3.7,(3.10,(3.13 we obtain for the ters only Eq.(3.5) giving the standard combinatiofi,(H)
propagator of the superconducting fluctuati®(s (2, q) describing in RMT the crossover from the orthogonal to the
Eo(H)+ |0y 1 unitary ensemblk This just_ifies t_he claim that thg r_esults can
K(iQy,q)=—vpt ln(A—) +7(9) be used also for clean grains with a shape providing a chaotic
0 electron motion.
Using EQs.(2.9),(3.16—(3.19 one can easily obtain an
explicit expression fowrpgg for H—H <H,. In this limit,
;1 J(é/EO(H))(l—cosqid)} 318 one expands the logarithm in the denominator of Eq16)
] and neglects the dependencebn ¢, and(), because the
The pole of the propagatdt(i€2,,q) atq=0, Q=0 deter-  main contribution in the sum ovef), comes from €,
mines the fieldH., at which the BCS gap disappears in A~ g (H)—E(H) <A, Using Eq. (2.14 the result for

3
7(q)=(8/3m)

single grain. From the form of E¢3.16 we find S0pos= To— Tpos Can be written as
Eo(H)=Ay. 3.1 —1 ~
o= 317 soe 2| T M@, TIAe<T
The result forH., Egs.(3.5 and(3.17), agrees with the ZZpos_ i 2T ~ | -
one obtained long ago by another methi®ive can see from 7o ol - (m H(@)q, 7<T/Ap<1,
.Eqs'. (3.16 qnd (3.17 t.hat. the termn(q) describing tunnel- 0 (3.20
ing is very important ifH is close toH. .
Equations(3.6) and (3.16 give the explicit formulas for _ 27/d 5
the functionsC andK and allow us to calculate the correc-  7(d)=7n(q)+2h, (.. ->qEVfO (...)dd/(2m)",

tion év to the DOS. The analytical expression for the dia-
gram, Fig. 2a), reads as follows where h=(H—-H.)/H, and V is a volume of the single
grain. We see that the correction to the conductivity is nega-
TS K(iQ a j[ive and its absolute va!ue decreasgs When.the magnetic field
(2m)?® T ko increases. The correction reaches its maximurhl atH .
At zero temperature and close to the critical fiégld such

3

5v(isn)=(1/w)1/(27wor)2f

d*p . . _ that J(8/Ag)>h, the maximum value obopps/og from
XfFCZ(Isn,Iﬂk—lsn)Gz(lsn,p) Eq.(3.20 is
T
X G(iQy—ien,p). (3.18 %900y _2 0/ [ 1)) 19 (R0
. . . . o ™ Ag 7(q) 34 \J6
Equation(3.18 contains integration over the momentum in 4 (3.21)

the single grairp and the quasimomentum First, we inte- o _ _
grate over the momentump and reduce Eq(3.18 for ¢, In the limit J(8/Ag)<h=<1, one can expand the logarithm in
>0 to the form Eqg. (3.20. Then, takingh~1 the correction to the conduc-

tivity at zero temperature can be estimated as

_ 2iT .
Sv(ieg)=— 2 f K(iQy,q) Sopod [ 62
Vo Q<ep ~J A_ . (322
o 0
3
XC¥(ie, ,iQk—isn)d—q. (3.1 Schematically, the suppression of the DOS due to the super-

(27)° conducting fluctuations is shown in Fig. 6.
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FIG. 7. An example of high-order corrections to DOS.
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K(iQ)=—vo! In‘l(w) . (3.2
0

Using Eq.(3.19 for the correction to the DOS and E@..14)
we obtain for the correction to the conductivity at zero tem-
perature

As temperature grows, the correction to the conductivity
due to the reduction of the DOS can become larger and reach

for T~Aq andJ(58/A)>h the order of magnitude af 2.

1
3.

|5UDOS|

=4( 5T/A§)< (323

h+77(Q)>q~

In the limit h=1>J(6/Ag) and at temperatur&~ A this
correction can be estimated as

(3.29

We see from Eq9.3.21)—(3.24) that the corrections to the

5(TDOS 1/ 6 “eXF(—X) 1 )
o] e e P
a=2In(1+h). (3.27)

In the limit h<1, we reproduce with logarithmic accuracy
Eqg. (3.21), whereas in the opposite limiting cabe>1 we
come to Eq(3.25.

In order to calculate the entire conductivity, Eg.8), we
must investigate the AL and MT contributionfigs. 4c)
and Zb)]. In conventional superconductors néky, these
contributions are most important leading to an increase of the
conductivity. In the granular materials, the situation is much
more interesting. It turns out that both the AL and MT con-
tributionsvanishin the limit T—0 at allH >H_ and thus, the
correction to the conductivity comes from the DOS only. So,

conductivity are smaller than unity provided we work in the 4¢ o\ temperatures, estimating the total correction to the

regime of a good metal, Eq$2.5 and (2.12, so the dia-

classical conductivityry, Eq.(2.10, one can use the formu-

grammatic expansion we use is justified. Indeed, we can ngsg of this section.
glect the corrections of higher orders. For example, the dia-

gram shown in Fig. 7 has the additional small factor of

(8/Ao)In7 at T/Ay<7 and 8/(Ag7) at p<T/A,.

The correction to the conductivity calculated in this sec-

tion could become comparable withy whenJ~1. How-
ever, such values agfmean that we would be in this case not

far from the metal-insulator transition. Then, we would have

to take into account all localization effects. For values]of
~1 one can use Ed3.20 for rough estimates only. Appar-
ently, the parameters of the samples of Ref. 1 correspond
the regiond~1, 8/Ay~1/3.

In the limit of strong magnetic fieldsl>H_ the correc-

IV. ASLAMASOV-LARKIN CORRECTION
TO THE CONDUCTIVITY

The Aslamasov-LarkifAL) correction to the conductiv-
ity o, originates from the ability of virtual Cooper pairs to
carry an electrical current. In contrast to the one-electron
tunneling determiningrpos, the probability of tunneling of

e Cooper pairs from one grain to another is proportional to
t*. The quantityo,, is related to the response functi@f'“
as

tion to oy can still be noticeable. In this case we can use Eg.

(3.10 as before but, with a logarithmic accuracy, we can

UAL=QAL/(—iw),wHO,

neglect the dependence of the superconducting propagator,

Eq. (3.16, onQ, and on the tunneling term. Then we obtain
finally

Sopos! 0o=—(13)[ 8/E(H)IIN~H(EY(H)/Ag).
(3.2

Equation(3.25 shows that in the regioki>H, the correc-
tion to the conductivity decays essentially &pos~H 2.

where the diagram for th®”'(iw,) is represented in Fig.
2(c). Calculating integrals corresponding to this diagram we
may put),=0 in the electron loops, because all singulari-
ties in the vicinity of the transition point are contained in the
propagator of the superconducting fluctuatis($Q,).’ The
analytical expression for the diagram in FigcRhas the
form

Let us emphasize that the correction to the conductivity

coming from the DOS remains finite in the limiit—=0, thus

indicating the existence of the virtual Cooper pairs even at

T=0.
In the region of not very smah>Jé/A,, we can neglect
the tunneling ternF [ A,A* ] in the free-energy functional

d
(2
XK (iQ—iw,,q)B3(04),

3 3
Qo =483, [ LTS K(i0,.a
i=1 T)

0

4.9

Ferf A,A*]. Then, we can write the correction to the con-
ductivity in a rather general form. The superconductingwhereB,(0,q) corresponds to one electron loop. The analyti-
propagatoiK can be written in this case as cal expression for this loop reads
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L d3q’  edfVv? oA 16 6°T 5
Bl(O,q)——4|fsmqidCOS{q. qi)d FISERTy——r 0—0—3 —2 (A ()] 3 sir? g;d)q, (4.6

d®p, dp, where A(q)=47T[3A,7(q)] " for T<A,7 and A(g)=1
Xf (2m) TE Glien,p)G(~ien,Py) for Agp<T<T,.

Using Eq.(4.6) we can estimate the quantitys, / 0.

Let us consider first the limiT<Ay7. In this region,
The functions sig'd and cosg—q)d in Eq. (4.2) corre- provided the inequalith<<J&/Aj is fulfilled, the main con-
spond to the currlent and tunnellmg vertices, respectlvely fribution in Eq. (4.6) comes from smalfy. Calculating the
Equation(4.1) is obtained by considering four different types integral overq we obtain from Eq/(4.6)

of AL diagrams that are obtained from each other by permu-
tations of the current and tunneling vertices. Summing over

XG(iSn7p2)G(_i8nvp2)C2(i8n)- (4.2

oAl 327 5°T? jw x2 d3x
0

the spin of the electrons we get the additional factor 2. As in (o) 71 7 AG Jo (h+3(81A0)%x?)*

the preceding section we calculate the impurity vertices ne-

glecting the tunneling term, which is justified if the inequal- L T He |32

ity (3.14) is fulfilled. Integrating over the momenfg andp, ~J A32512\ H—H, 4.7)

in Eq. (4.2 we reduce the functior,;(0,q) to the following 0

form From Eq.(4.7) we can see that at low temperatures the AL

correction to the conductivity is proportional to the square of
8 ed d3q’ the temperaturer,, ~ T2 and vanishes in the limif—0.
B1(0.0)=— J—4|f sing;d cogq;—q;)d : Let us compare the AL correction with correction due to
m? - EolH) (2m)® ion of the DOS considered in th i i
4.3 suppression of the considered in the previous section.

Using Egs.(4.7) and(3.21) we obtain
To calculate the response functi@f‘" for real frequencies
. . . . T2 A H 3/2

 one has to make an analytical continuation from the Mat OAL 332 1/ B0 c 4.9
subara frequencies,. This can be done rewriting the sum |60pod AL25312 Jé/\H-H, =~

. . . 0
over Q in Eqg. (4.2) in a form of a contour integral that
allows us to make the continuatiom,— »+i0. As aresult, We see from Eq(4.8) that atT<A,7 the AL correction is
we obtair small|op / dopod<1. This means that the AL contribution
cannot change the monotonous increase of the resistivity of
granulated superconductors when decreasing the magnetic
field. At very strong magnetic fieldd>H_, we can neglect
the second term in the denominator of E4.7). Then the
AL correction can be estimated as

In™

Tg K(iQ, DK Q—iw,,q)
k

_’%( ijcoth;—T[KR(s)— KA(e)]KA(e — w)de

gaL 52T2

+fjwcothzs—T[KR(s)—KA(e)]KR(s+w)ds , 0o Aé

To compare this result with the correction due to the DOS
we should use Eq(3.25 that was also derived at strong

where KR (KA) is retarded (advancedl superconducting magnetic fieldH>H..

fluctuation propagator. Expanding Eg.4) in  we keep the )

term that remains finite in the limiv— 0 and the linear one. TAL |~J ST2E(H) (He)* | Eo(H)
The zero-order term cancels with the contribution of a dia- 80pog Ad )" Ag
gram schematically represented in Figc)2but containing

instead of the current vertices the tunneling ones. The lattddsing Eq.(3.5 for EO(H) we can see from Eq4.10 that
contribution originates from the second term in E@.7). |0’A|_/50'DOS|H>H ~H™ 2,

The linear term giving the dc conductivity can be written as  Now let us con3|der the region of temperatures not far
from the critical temperaturd ,7<T<T.. Using Eq.(4.6)

He\ 4
F) . 4.9

(4.9

) . (410

Tg K(i Qe q)K(iQ—iwp,,q) we have
k
8w &°T Vdiqsir? qd
2“’50("') 8 g(e?2—7?) AL _ 27;J ; q q .
— 5 ,5de (4.5 a0 A5 ) [h+J(8/A0)(1—cosqd)]
o (7°+2%) (4.11)

where 5(q) is defined in Eq(3.16). Using Eqgs.(4.1), (4.3), In the limit J(8/Ag)>h, the main contribution in Eq4.17)
and(4.5) the fluctuational contributiomr,, to the conductiv- comes from smalfj and the contributiorr,, can be written
ity is reduced in the limifT<T., H—H.<H, to the form as
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OaL 87T 2 2 d3 @
——=—=J(8%1A3) f 5
oo 27 (h+J3(8/A0)x?)° i !
[ C1 Cy
AO 1/2 Hc 1/2 Wl -
— L ] L )
AT o - i
¢ > S
{ A
We see that the AL contribution grows when approaching C3
the critical fieldH, . In order to calculate the AL correction _ _
we used the perturbation theory. Therefore, the region of the FIG. 8. Contour of integration.
validity of the results obtained is described by the inequali-
ties oa, log<1 orh=>J"3(A,/9). where, as beforep, and p, stand for the momenta in the
Now let us compare the AL correction withrpos. From — granules andg,q’ are quasi-momenta. Equatid®.1) in-
Egs.(4.11) and(3.23 we obtain cludes the contribution of two different MT diagrams and
summation over spins. In order to make the analytical con-
OAL A\ Y3 H, |2 tinuationi w,— w+1i0 in Egs.(5.1) and(5.2) it is convenient
(50004 1/2(7) (H—H ) (4.13  to rewrite the sum ovee, in the form of the following
Cc

contour integral:

Equation(4.13 is correct only at fields close to the critical
field, such that the inequalitg<J~1(Ao/6) is fulfilled. In 2

J tan z GA(—2z,p1)GR(z,py)
Cl I"ﬁ 1M1 1pl

this region the total correction to the conductivity is positive, ~ T Aqi
which means the resistivity decays, when approaching the !
critical magnetic fieldH. In the case of a strong magnetic X GA(—z+iwy,p)GR(z—iw,,p2)CR(2)
field H>H., we can neglect the second term in the denomi-
nator of Eq.(4.11) and then we obtain XCR(Z—iwn)dZ-i-f tanhzi
2 3 c2 T
ﬁq(i) (E (4.14 X GA(=2,p1)GR(z,p1)GR(—z+iw,,po)
Op AO H

X GA(z—iwp,p,)CR(2)CA(z—iw,)dz
that isoa ~H 3 atH>H, and T~A,,. ( n+P2) CR(2)CA( 0

To understand the behavior of the total conductivity of the R A
granulated superconductors in this region we should consider * L tanhG(~2,p1)G"(z,py)
also the Maki-Thompson contribution and this will be done $
in the next section. XGR(—z+iw,,p)GAz—iw,,p,)CA(2)
V. MAKI-THOMPSON CORRECTION XCA(Z—iwn)dZ , (5.3
TO THE CONDUCTIVITY

Another contribution usually increasing the conductivity where the contour€,,C,,C3 are shown in Fig. 8.
is the Maki-ThompsoriMT) contribution represented in Fig. As usual, the MT diagrams have both reguleontours
2(b). Again, we can puf), =0 in the electron loop, because C;,C3z) and anomalougcontour C,) part. NearT. and at
characteristic frequencies in superconducting fluctuatiorvery low magnetic field the anomalous part can be very
propagatoiK are of the ordef),~A,7<&,. The analytical large. In the limitH—0, it can even diverge and become
expression for this diagram reads larger than the AL correction giving a positive contribution
to the conductivity!® However, in the limit of high magnetic
fields andT—0, the situation is less intriguing. It turns out
q), that for the problem considered, the absolute values of the
regular and anomalous parts are equal in this limit but these
(5.9 contributions have the opposite signs. Making the analytical
continuation in Eq(5.3) and integrating over the momenta
we obtain in the lowest order i»

Q"T(iwy) =

whereB,(i w,,q) is a function describing the contribution of
the loop. This function can be written as follows

. L g e2d22V? LU +f +J
Bz(lwn’Q):‘lJS'”qidsm(% qi)d (2n )3m Ami\Je, Jo, Je,

d%p; d%p SWi“’fﬂ pe 2 o e
— n —_— , .
XJ# T, G(—isn,py)Glien,py) 52 Jo CUAT (g2152)%

where the energy§,= &y(H) is given by Eq(3.5. From Eq.
(5.4), we see that aT=0 the MT contribution vanishes,
XC(iey)C(—ie,Tiwy,ien—iwy), (5.2  which corresponds to the cancelation of the regular and

XG(—igytiow,,p1)G(ie,—iw,,ps)
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anomalous parts. At low but finite temperatuiigsthe final
result for the MT contribution can be written as

3

on? 2‘1 (B(q)cosq;d),,

our _ 16m°T?5

. (5.9
where B(q)=—7tIn7q) for T<Ayy and B(q)
=2T[Ag7(q)] * for Agnp<T=T,.

Let us estimate the MT contribution in the different lim-

iting cases. At low temperaturds<A,7 andh<J&/A, we
have from Eq(5.5

our 167 T?8 | 1

oo 9 A3\ Ih+I(87Ag)(1-cosq)| O/
T26 5.6
XE .

Comparing Eq(5.6) with Eq. (3.21) we come to the follow-
ing estimate

O-MT T 2 o AO
|aaDos|~(A_o) I (E> S

If the magnetic fieldH is not very close tdH., such that
J6/IAg<h=1, we obtain from Eq(5.5

omMT (T)z
|50Dos| Ao/ -

We can see from Eqg$5.7) and(5.8) that the MT contribu-
tion oy is proportional at low temperatures T3, which is

(5.9

the same temperature dependence as that for the AL contf
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omT

——~1. 51
|5<TDos| (613

Equation(5.11) shows that at not very low temperatures the
MT contribution has the same order of magnitude as the
contribution due to the reduction of the DOS. At the same

time, the AL contribution in the regiod ,7<T=<T, can be
considerably larger than both the MT and DOS contribu-
tions.

From Egs.(4.12 and(5.10 we can see that &<T,

S 1/2

1/2
=l
Ao

Equations(5.11) and(5.12 show that, at not very low tem-
peratures, and not far from the critical field the AL correction
to the conductivity is the most important. This means that
approaching the transition in this region the resistivity de-
creases, which is in contrast to the behavior at very low
temperature, where the correction to the resistivity is deter-
mined entirely by the contribution to the DOS and is posi-
tive.

To conclude the last two sections we emphasize once
more that the temperature and magnetic field dependence of
oaL and oy is rather complicated but they are definitely
positive. The competition between these corrections and
opos determines the sign of the magnetoresistance. We see
from Eqgs.(4.6) and(5.5) that both the AL and MT contribu-
tions are proportional at low temperaturesTta Therefore
the opos in this limit is larger and the magnetoresistance is
negative for allH.. In contrast, alf~T, and close tdH_,
the AL and MT corrections can become larger thagos
resulting in a positive magnetoresistance in this region. Far
rom H. the magnetoresistance is negative again.

H—H,
He

omT

(5.12

oaL

bution. This means that, at sufficiently low temperatures, the

MT contribution is small,oyt/d0pos<1. Thus, we con-

clude that, in this region, the main correction to the classical

conductivity, Eq.(2.10 comes from the correction to the

DOS, Eq.(3.2). The latter correction is negative, so the
resistivity of the granulated superconductors exceeds its cla

sical value.

It is interesting to compare the AL and MT corrections. In

the limit T—0, andh<J&/A,, we obtain using Eqs4.7)
and (5.6
3/2(

Equation(5.9) shows that in this region, the AL contribu-

5
A,

oMt ( (5.9

H_HC 3/2
ol

OaL

VI. THE CRITICAL FIELD Hc,
IN THE GRANULATED SUPERCONDUCTORS

In the previous sections we considered transport in granu-
ated superconductors at magnetic fielisot far from the
ield H.. The fieldH. is the field destroying the supercon-
ducting gap in a single isolated granule. We have seen that
the main contribution due to the superconducting fluctuations
comes from the correction to the density of states,(BE®0),
and this correction remains finite in the linkit—H_. But is
the field H, a critical field in the system of the granules
coupled to each other by tunneling? If it were a critical field
what would happen & <H_.? Would the system be macro-
scopically the superconductor or normal metal? Or, maybe,
this would be a new state of matter?

tion is larger than the MT one. Let us consider another case To answer these questions we should derive the effective

of not very low temperatures\,7<T<T,. From Eq.(5.5)
we have

our  167° T?5 f T d3x cosx 1
oo 27 A3 Ao(h+I(8/Ag)(A—cosx)) I
(5.10

Equation(5.10 gives the possibility to compare the MT con-

actionF¢¢{ A,A* ], Egs.(3.8), (3.10, and(3.13, more care-
fully than it has been done in Sec. Ill. Namely, until now we
considered only the effect of the magnetic field on the elec-
tron motion inside the grains, neglecting its influence on the
correlation of the phases of the order paramateof differ-

ent grains. However, to understand whether the system is
macroscopically superconductor or not, we must consider the
macroscopic motion and thus, the effect of the magnetic field

tribution with the DOS in this temperature interval. Recalling on the phase correlation.

Eq. (3.23 we obtain

In this section we come back to the derivation of effective
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actionF¢¢{ A,A* ] taking into account the influence of mag- through the elementary cell of the lattice of the granules is
netic field on the phases of the order parameter. First, wemall. Therefore, we can expand the functions
consider this problem qualitatively and then, quantitatively.exdi(e/c)fA(r)dr] in A and write gradients instead of the
It is clear that if the magnetic field is strong enough, it in- finite differences ofA; in Eq. (3.12. Essential frequencies
duces macroscopic currents that finally, at a fiHIgiZ, de- Q are also small and the free-energy functional in such a
stroy the superconductivity. continuum approximation takes the form

Let us estimate the critical magnetic fieIHjC2 using the 1 H 0
Ginzburg-Landau theory. We assume that the granulated sys-  F[A A*]= 5 > [m(i)) + l

tem under consideration is in the macroscopically supercon- Q Ao Eo(H)
ducting state. Then, the Josephson part of the free energy in 2 . 9
: ; 4d S 2ie
the coordinate representation, not too close toHfe can _J V-—A] ||A]
be written in the form &o(H)

(6.9

(Ai—A))? (VA)?
F= E Ey——=— A2 fdsr RAZ Ej. (6.)  The critical magnetic fielH., can be found writing the
0 0 propagator of the superconducting fluctuatkrorrespond-
whereE;=JA, is the Josephson energlg>1 is the dimen- ing to the free energy, E@6.5). Making Fourier transforma-
sionless conductance, E@.11), A, is the BCS gap at zero tion of the functionA in the eigenfunctions of the operator
magnetic field ancR is a radius of the single grain. The entering Eq(6.5 and calculating Gaussian integrals we ob-
gradient expansion in E@6.1) was done under the assump- tain for the propagatoK,(0,q,) in the spectral representa-
tion that the magnetic flux through one grain is smaller thartion at,=0
the flux quantumep,.
In the conventional Ginzburg-Landau free energy the co-

2
E(H)\ 4d o
efficient in front of the gradient term is proportional to the n(00,)==7o"|In Ay + gJ E(H)
square of the coherence lengthTherefore, using Eq6.1) 1oL
we can extract the macroscopic coherence leggtRecall- 2 "
ing that the free energy of a single grainigA?, whereV is x| gz 4(n+1/2) bo ' 6.6
a volume of single grain, we obtain ) )
whereq, is a component of the quasimomentum parallel to
E2~IR2(81A ). (6.2  the magnetic field andh=0,1... are thenumber of the

Landau levels. To calculate the critical magnetic fitel(;l2

e should consider poles of the superconducting propagator.
aking the lowest Landau number=0 and puttingg,=0
we obtain the following equation determining the critical
field He,

If the conductance] is large enough the behavior of the
granulated superconductors is the same as in a bulk sam
with the effective coherence lengéh Now we estimate the

critical magnetic fieldH c, that destroys the superconductiv-

ity in the system a$i £~ ¢o. This field is different from

the fieldH.. Using Eq.(3.17 we can compare these two EMH)\ 8d2 [ §\H
fields. The result for the ratio of these two fields is In( 2 ) +—J —|-—==o0. (6.7
AO 377 AO ¢0
i%‘li R (6.3 Expanding the first term in E¢6.7) nearH. we find the
He, & critical field H,
Equation(6.3) for H, is valid providedH. <H., which 20 | s 2
corresponds to the inequality>(Aq/6)Véo/R. However, He,=Hc 1__2J<A_) \/—I . (6.9
we are interested in the opposite case when ™ 0 €0
1<J<(Ag/d) m. 6.4) Equation(6.8) shows us that the critical fielblC2 is close to

the field H., so long as {d&/Ag)(R/&)<1, where ¢
This contradicts the assumption made and means that, in the(£,1)2 is the coherence length in the superconducting
region specified by Eq6.4), the critical fieldH, is close to  grains. Equatiori3.14) and the assumption that the grains are
the fieldH. and|H, —He, |/H can be conS|dered as a small zerodimensional guarantee the fulfillment of this inequality.
parameter. For the ballistic motion of electrons inside the grdthe

Now let us calculate the critical magnetic fit, more radius of the grairR is of the order of the mean-free path,

rigorously taking into account the influence of the magneticRNI) the critical f|eIdch can be written in the form

field on the macroscopic motion. The magnetic field results

in an additional phase factor €x(@/c)[A(r)dr] in the su- He=He, 40 (s \/ﬁ
perconducting fieldd; in Eq. (3.12. We assume that this Ho 72 \Ag §_O<l' 6.9
magnetic field is not far frontH. determined by Eqs3.5)

and (3.17). The fieldH, is of order ¢o/R¢&, which means Equation(6.8) is the main result of this section. Below the
that, in the limit under consideratidR<¢, the magnetic flux magnetic fieldH.,, one should add in Ed6.5) a term quar-
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ticin A, which gives a nonzero order parameferThus, at 5. I

field H<H, the granular system is in the superconducting A~ (PaD) PR (7.2)
0 0

state.

In order to understand the behavior of the resistivity as avhich showsd./A, can be both smaller thans{Ao)exper
function of the magnetic fieltH in the regionH, <H<H, and larger depending on the valuesland &,. Using the

we can consider the quantitydH (8o’ o). We can use as 'esult forée, Eq.(7.2), we can rewrite Eq(7.1) as
before Eq(3.19 but now, calculating the integral, we should

make the following replacement He' _[9R 1
dg  H dq, ¢
f (.. ')(277)3_’(70] = (.. ')ﬁ' In the experiment,both the mechanisms are in principle

_ . important. One can come to this conclusion using the fact
whereq; is a component of the quasimomentum parallel tothat the Zeeman critical magnetic fieldi€~3.5 T and this

the magnetic field. is not far from the peak in the resistivity at the fiekd
The correction to the DOS dt=0 takes the form ~2.5 T. Below, we consider the corrections to the DOS and
conductivity due to the Zeeman mechanism. We will see that
H dq at temperatureT=0 th ti be of th
B 2 n . z perature ese corrections can be of the same
ov(0)= 2772V0C o <¢O>n§0 K”('Qk'qz)(zw)‘ order of magnitude as the correction due to orbital mecha-
(6.10  hism.

. o . . Let us calculate first the critical magnetic field, de-
The main contribution to the correctiaiv(0) in Eq.(6.10  stroying the superconducting gap in a single grain taking into
comes from the term witm=0. Using the fact thabo/oy  account both the orbital and Zeeman mechanisms of the de-

=26vlvg, taking the first derivative with respect to the struction. The Green function for the noninteracting elec-
magnetic field and finally, integrating over the frequey trons in this case is

and quasimomenturg, we obtain
' (7.4

J (0| 15VG:1 8
oH\ og) 24H.\JA,
(6.11 whereE;=gugH is the Zeeman energy. Including the inter-

whereH,_is given by Eq.(6.8). We can see from Eq6.11)  action between the magnetic field and electron spins we ob-
2 ; - .

that the valued/dH(Solo) diverges wherH approaches tain the following form of the Cooperon:

H_°2' Thus, the critical fleld-|cz is characterlzgq by the infi- Cliey,—ien) =2mvol| 260 —IEzsgN(ey) +E(H)] L

nite slope on the dependence of the resistivity on the mag-

netic field. This property might help to identify this field on

1
12 O =
Ciiien ) = g T 72+ (112)sgnen) "

He,
H—H,,

1/2( R? ) 12
&ol

experimental curves Repeating the calculations of Sec. lll with the modified
' Cooperon, Eq(7.5), we find atT<T, the new critical mag-
VII. ZEEMAN SPLITTING netic fieldHo
In our previous consideration we neglected interaction be- E§(Ho) +EZ(Ho)=AJ. (7.9

tween the magnetic field and spins of the electrons. Thi

approximation is justified if the size of the grains is not VeTY pital mechanism is more important, EF.6) reproduces the
small. Then, the critical fieldd2" destroying the supercon- previous result for the critical mag,netic field E@.17). In
ducting gap is smaller than the paramagnetic lighitH ‘the opposite limiting case, when the Zeeman mechanism
fAO and the orbital mechanls'm' dominates the magnetig|ays the major role, we obtal, = A,. In the general case,
field effect on the superconductivity. However, the Zeemanyhen poth the mechanisms of the destruction of the conduc-

spl_itting leading to_ the destr_uction of the superconductin_qivity are important, one should solve E.6) and the result
pairs can become important if one further decreases the sizg,qs

of the grains.

T the limit of a very week Zeeman splitting, when the or-

Let us discuss now the effect of Zeeman splitting. We can 1[gugH,)2 1/gugH\? 12
- . . or .o . BMc MmBHc
rewrite Eq.(1.4) for the ratio of orbitalH2" magnetic field to Ho=H¢ —5|———| +\/7|———| +1] .
o c 21 A 41 Ay
the Zeeman magnetic field in the following form 7.7
HY™ [ 6\Y8 Using Eq.(3.17 for a critical fieldH, we can estimate the
_Hg =\5) (7.2)  ratio ugH¢/Ao= (& /R)(PoR) “X(pol) “1<1. If this param-

eter is small(the orbital mechanism is more importartie

wheres,~1/(vR%), R.=&(pol) 1, andé= J&I. To under-  critical field Ho is close to the fielH.

stand whether the Zeeman splitting is important for an ex- 1/ gugH, )2
MB c) )

periment we can estimate the rati/A, and compare it Ho=H (1__
. . . . 0 c
with the proper experimental result. We find easily 41 Ap

(7.9
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When Zeeman splitting is more important than orbitalthing unusual measuring the dependence of the susceptibility
mechanism then from Eq7.7) we obtaingugHy=A,. This  as a function of the magnetic field?

is the point of the absolute instability of the paramagnetic The diamagnetic susceptibility of a bulk sample above the
state. AtgugH<A,, the superconducting state is the only critical temperaturel. in a weak magnetic field has been
stable one. studied long agd® In this section, we want to present results

Let us calculate the correction to the DOS taking intofor the diamagnetic susceptibilify of the granular supercon-
account both the Zeeman splitting and orbital mechanism ofluctors in the opposite limit of strong magnetic fields and
the suppression of superconductivity. Using E(64) and  low temperatures. As will be shown below, the fluctuations
(7.5 we obtain for the superconducting propagafor of virtual Cooper pairs always increase the absolute value of
the diamagnetic susceptibility of the granulated system. In
contrast to the conductivity, the diamagnetic susceptibility is
t@)] . determined mainly by currents inside the granules and is

(7.9 finite even in isolated granules. Therefore, the fact that the
virtual Cooper pairs cannot move from grain to grain, which
In the regionh=(H—H)/Hy<1, whereH, is given Eq. is crucial for the conductivity, is not very important for the
(7.7), expanding the logarithm in the superconducting propamagnetic susceptibility and the latter does not show a non-
gator we obtain monotonic behavior characteristic for the resistivity.

To derive explicit formulas, let us consider first the limit
of very low temperatureT<T, and strong magnetic field
Ag H—H.<H.. The effective free-energy functional

. . F[A,A* ,H] in the quadratic approximation in the order pa-
Usm_g_Eqs.(3.19)_and (2.14) for the correction to the con- rameterA has been already obtained for this case and is
ductivity we obtain the same result as before, 820, but given by Eqs(3.8), (3.11, and(3.13. The diamagnetic sus-

\évrig: (t:f;ienewho. Egs.(3.21~(3.24) are correct for the gen- ceptibility y can be calculated using the standard relations

In the limit of a strong magnetic fielli>1 we can ne- X= —(1N)<,92F/(9H2>q, (8.1
glect with logarithmic accuracy th@ -dependence of super-
conducting propagator in E7.9). Using Egs(3.19, (7.5,  Where the free-energy has the form
and(2.14 we obtain for the correction to the conductivity at

-1

K(iQ)=—v"

1 ((50<H>+|nk|)2+E§
— In
2 Ag

|y

-1
K(iQ=—ryt 2ﬁ+—+n(q)) . (7.10

strong magnetic fields F=—TIn J dA dA* eXF{_IBFe”(A’A*,H)])’
=—_ arcta
o0 31Ez(H) Eo(H) where, as beforey is the volume of a single grain and the

(7.11) derivative in Eq.(8.1) and using Eqs(3.8), (3.11), (3.13,

-t SO FESH)
and(8.2) we find for the diamagnetic susceptibility

averaging . . .)q is specified in Eq(3.20. Calculating the
Aj )

From Eq.(7.11) we can see that if the orbital mechanism is 1 Ho Q] 8 H 5
more important than the Zeeman one, that i&€3/£,<1, X=- <VTZ (H—HC+ ?CA—Jr 3. 76 (A_)
we reproduce the previous result for the correction to the O 0 m 0
conductivity at strong magnetic field, E(.25. If the Zee- 3 -2
man mechanism is more importal /£,>1, then we ob- X D (1—Cosqid)) > (8.3
tain for the correction to the conductivity i=1 q
00pos T O _,[Ez(H) At very low temperaturel/Ag<h=(H—-H.)/H., we can
o0 ~7 % E,(H) ' Ay | (7.12 replagf: Fhe sum over frequeny, by an integral. As a result
we obtain
Equation(4.13 has the same structure as KE8.25 but the
function &y(H) is replaced byE,(H). This changes the 3 | 4 s\ 3 -1
asymptotic behavior at strong magnetic fields becausey=— EXL<§) h+ 3—J(A—)E (1—-cosq;d) ,
E,(H)~H in contrast taS,(H) ~H?. So, we conclude from T \20fi=t q
Eq. (7.12 that opos/oo~H 1. (8.9
where x, =€?vy/127°hc? is the Landau diamagnetic sus-
VIIl. DIAMAGNETIC SUSCEPTIBILITY ceptibility. In the limith>J(8/A,) tunneling between grains
OF GRANULAR SUPERCONDUCTORS is not important and the diamagnetic susceptibility of the

In previous sections we have demonstrated that the resig_ra_nulated system is equal to _the_ suscept_ibi_lity of a single
tivity of the granulated superconductors grows when apgral.n..lfthe motion of electrons inside a grain is more or less
proaching the superconducting state from the region of verf@llistic (I=R) the result takes the form:
strong magnetic fields. Resistivity is a quantity studied ex- H H
perimentally most often. Another quantity accessible experi- y(H)=— EXL(—C) ~— 10—7( _C) . (8.5
mentally is the magnetic susceptibility. Can one observe any- 107"\ H—H, H—H,
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From Eq.(8.5), we can see that the fluctuation-induced dia- i j i Jj_i i
magnetic susceptibilityy can appreciably exceed the value ¥ - :—®—®—: " :_:
x. due to the Landau diamagnetism. In order to probe the L ®— ' ' L R—Q—
diamagnetism due to the superconducting fluctuations ex- 1] i 1] 1
perimentally one can measure the field-dependent part of . o
susceptibility and compare it with E¢8.5). FIG. 9. Diagrams contributing to the self-energy.

In the limit h<T/A,, it is sufficient to take into account
only one term with(2,=0 in the sum in Eq(8.3). Then, the o E (8.10
result for the diamagnetic susceptibiligycan be written in X=X g5 '
the form:

Equation(8.10 shows that the diamagnetic susceptibility of
2 )T 4 5 the granular superconductors ndaris still larger than the
X=- EXL<§) (A_)< + 3_‘]<A ) magnitude of the Landau diamagnetism.
0 ™ 0 In all previous considerations we did not take into account
3 -2 the spin paramagnetism. When the size of the grains is large,
x> (1—cosqid)) > (8.6) R>R.=¢&(pol) 71, this effect is small in comparison with
i=1 the diamagnetism.

h

q

In the limit whenh>J(6/A,) and =R, Eq. (8.6) can be

simplified and one comes to the following expression: IX. CORRECTION TO CONDUCTIVITY AT |T—T|<T,

H 2 The effect of superconducting fluctuations on DOS of iso-

_C) _ (8.7)  tropic bulk samples has been considered in the limitT,
H—H, <T,andH<H long ago® The AL and MT contributions to

Equations(8.6) and (8.7) show that the diamagnetic suscep- the conductivity were c_onsidered in the same limit for lay-

tibility y diverges in a power law when magnetic fieddis ered superconductors in Ref. 10. Here we want to extend

close to the fielcH, but the powers are different for the two these results to the case of the granulated superconductors.

different regions of the fields. Experimentally, only a small increase of the resistivity

At zero temperatur@ =0, as we can see directly from 9P/Po~0.03-0.04 has been observed in this regfomhe

Eq. (8.4), the susceptibilityy remains finite even in the limit "€ason for the reduction of the effect in the vicinity of the

H—H,. However, as we have discussed in Sec. VI, the fielcf'lical temperaturd; is that the AL and MT corrections are

H. does not correspond to any phase transition. The transhot small in comparison with the correction from the DOS.

tion to the superconductivity occurs at a lower field . So, Repeating the calcu!ations of S_ecs_. Il and IV for- T,
o . . . . 2 <T.andH=0 we write the contribution from the DOS and
it is interesting to consider the critical behavior neay.

i . . 2'  the AL correction as
Proper calculations of the diamagnetic susceptibility in

)= d T
X( )__%XLA_O

the regionH, <H<H_ and at temperatur&<A, can be Sopos  7L(3) & 1
carried out without any difficulty. The free-energy functional == > T _ .9
S . . . . (4] 272 Tc{ T-T¢
is given in this case by Ed6.5 and we obtain for the dia- +75(q)
: o T
magnetic susceptibility ¢ q
HCJ da, g 2 2 sir? g;d
=7 ¢ == ZAL _ !
X g:k o) 27 oo =075 3 [ 2\ . 92
2 _9 ¢ T + 7]2(q)
He [Qy 2d°Js , c q
X|H=H¢,+ 5 =—+Hcz—+0;| . (88
2 Ao 37 Ao where 7,(q)=1/352_ ,J(8/T,)(1— cosgd).
In the limit T—0 we replace the summation ovér, by To calculate the MT correction, Fig.(1, we should
integration. Integrating over the frequency and the quasimotenormalize the impurity vertices taking into account the tun-
mentumg, we obtain neling term. This is necessary, because in the anomalous MT

contribution strongly diverges in low dimension if the mag-
a2 (Ag\ Y3 1\ Y3 He, 12 netic field is weak. So, the tunnelling from grain to grain can
X=— \/?))(L(J—(S (§—O> H—H (8.9 provide convergence of the mtegra_\ls giving the anomalous
€2 MT contribution. The Dyson equation for the CooperGn
We see from Eq(8.9) that the diamagnetic susceptibiliyy ~ ¢an be written as
diverges in a power law wheH —H, but the power 1/2 is

different from those in Eq<8.5), (8.7) describing the behav-

ior of the conductivity in the regioi>H. . where all diagrams for the self-ener§yare shown in Fig. 9.
The case of temperatures close to the critical temperatur€he functionC, in Eq. (9.3 is the Cooperon in a single

T—T.<T. and weak magnetic fieldd <H_. has been con- grain.

sidered for bulk samples long addSo, we present here the  Solving Eq.(9.3) we see that the proper propagator for the

result for the diamagnetic susceptibilify of the granulated anomalous part of the MT correction has an additional dif-

superconductors only in the limiffT.)/T. andl=~R fusion pole in comparison with the regular part. Therefore, in

C=Cy+Cy3C, 9.3
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the limit T.> 7,(q), the anomalous MT contribution to the
conductivity {3 is larger than the regular ong{\29 and
their ratio is proportional t@ ./ 7,(q). At the same time, the

anomalous contributiowmr);¥ is positive, which means that

both the AL and MT corrections give a positive contribution

to the conductivity. Explicit formulas for the regular and
anomalous parts of the conductivity can be written as

o T3 5 cosq,d
oo 4agp2 T (T-T
° ° ( T )
¢ q
(9.9
(an) 3
o ) cosq;d
MT 50 E i
0o ci=1 -T
72(q) T + 72(Q)
C
q
(9.9

Equations(2.8), (9.1), (9.2), (9.4), and (9.5 describe com-
pletely the behavior of the conductivity nebs. We see that
the termso,, and am) giving positive contributions to the
conductivity diverge in the limiiT— T, whereas the terms
opos and o{i2? reducing the conductivity converge in this

limit. Therefore, sufficiently close td ., the superconduct-

ing fluctuations increase the conductivity. A weak magnetic

field shifts the critical temperaturg; and one can describe

also the dependence of the conductivity on the magneti
field. Apparently, far from the transition point one can obtain
an increase of the resistivity due to the superconducting fluc-_
tuations and thus, a peak in the resistivity. However, thig"
peak should be small, which correlates with the experiment

observation neaf .. It is only the region of low tempera-
tures considered in the previous sections where a consid
able negative magnetoresistance is possible.

X. EXPERIMENTS ON AL GRAINS
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tions can be written in the form:

(10.7)

At low temperaturesT <T,., the contributiondopgg Origi-
nating from the reduction of DOS due to the formation of the
virtual Cooper pairs is larger than the contributieng and
out Since the latter vanish in the limif—0. So, let us
concentrate on estimating the contributiod®pog and
50’W|_.

It is clear that the sample 1 undergoes a metal-insulator
transition, which results in the complete suppression of the
superconductivity. The parameters of the sample 2 that is of
the main interest for us are not far from those of the sample
1. Using Eq.(2.11), the valueR=60 A for the radius of the
grains, and the value of the resistivitypg
~1.9x10 2 Qcm we findJ~0.1.

The small value ofl is not in the contradiction with the
possibility for the system to be in the metallic phase. The
Anderson metal-insulator transition in granular metals was
considered using an effective medium approximatiof.
The critical pointJ. in the present notations is given for the
3D cubic lattice by the equatiofEq. (12.67 of the book

Ref. 13
%) vl
| Inl=]==.
T 4).] 5

fve can see from Eq(10.2 that the critical value ofl.
102 is really very small. Therefore, we believe that the
etal-insulator transition observed in the sample 1 is not a

U:0'0+ 50—DOS+ O'AL+ U'MT+ 50—WL'

(10.2

qonventional Anderson transition. Apparently it occurs due

ato formation of the superconducting gap. Then, the transition

¢an be described following the scenario of Ref. 5.

Why can one be sure that the experimentally weak local-
ization corrections are small? A similar effect of the negative
magnetoresistance has been observed in Ref. 2 and the au-
thors of that work attributed it to the weak localization ef-

The theoretical study presented in this paper was motifects. Could it be that this effect is really due to the weak

vated by the experimental wortkLet us compare the avail-
able experimental results with our theory. In the arfitheee

localization corrections and the present theory is not relevant
to the experiment?

samples were studied. We concentrate our attention on the HOWever, itis not difficult to show that in the case under

samples 1 and 2, Fig. 4, of that work.

We analyze the case of very low temperaturesT, and
magnetic fielddH>H,, whereT.~1.6 K is the critical tem-
perature for Al grains studied in the experiment &hgdis the

consideration the weak localization corrections originating
from a contribution of Cooperons are totally suppressed by
the magnetic field. This is not in contradiction with the fact

that the system is close to the metal-insulator transition be-

critical magnetic field that suppresses the superconductivity@USe strong localization is possible even if the Cooperons

in a single grain, Eqs(3.5 and (3.17). At temperatureT
=0.3 K and magnetic fieldd=4 T these samples show a

large negative magnetoresistance. The resistivity of th

sample 2 has the maximumldt=2.5 T and the value of this

peak is more than twice as large as the resistivity in th

normal state(that is, atH>H_, when all superconducting
fluctuations are completely suppressedl negative magne-
toresistance due to weak localizatioiVL) effects is also not

unusual in disordered metals and, to describe the experimen-
tal data, its value should be estimated as well as the effects of
the superconducting fluctuations discussed in the previous

chapters.

are absent.
To calculate the contributioar,, coming from the Coop-

grons we extended the standard derivation of the corréétion

to the case of the granulated metal. Using approximations
eveloped previously one can obtain without difficulties the

ollowing expression for a three-dimensional cubic lattice of
the grains

ZW/qu(O)"osq |
COsq;

16 3
— 2 22:

The total conductivity of the granular metal under consid-where the functiorC,(0) is the Cooperon taken at the fre-
eration including effects of WL and superconducting fluctua-quencyw=0 and quasimomenturm
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What remains to do is to take the explicit expression forment charging effects become important reducing addition-
the Cooperon and compute the integral over the quasimally the density of states. However, study of the effects of the
mentumg. However, if we use Eq.3.6) derived previously Coulomb interaction is beyond the scope of the present pa-
we get identically zero. This is because E8}6) was derived  per.
without taking into account tunneling. We can modify Eq. We see from Eq(3.25 that, if the orbital mechanism of
(3.6) writing as in Sec. IX the Dyson equation, E®.3), the destruction of the superconductivity is more important

with 3 represented in Fig. 9. As a result, we obtain than the Zeeman one, then in the region of ultra high mag-
netic fieldsH>H_ the correction to the resistivity decays as
Cyliwy) 6plpo~H 2. In the opposite limiting case, when the Zee-
3 1 man splitting is more important, we see from E@.12 that
=27 w| |wy|+ E’ng (1—cosq;d) + E(H) _ 5p/p0~l_-|_‘1._Thi§ means that the correction to the classical
T =1 conductivity is still sensitive to the magnetic field far away

(10.4 from H.. As concerns the weak localization correction
' dow. given by Eq.(10.9), it decays at large magnetic fields

In the limit under consideration, E¢3.14), the second term asH™* and is always small.
in the brackets in Eq(10.4) is much smaller than the third The dependence of the conductivity on the magnetic
one and one can expand the functiog(i»,), considering field H is completely different at temperaturfb—T |<T,
the second term as a perturbation. Restricting ourselves lyecause in this region all types of the corrections considered
the first order, substituting the result into EG0.3 and us- in the previous sections can play a role depending on the
ing Eg. (2.10 we write the final result for the correction value of the magnetic field. At low magnetic fields the

Say in the form Aslamazov-Larkin 6o, and anomalous Maki-Thompson
) 53 corrections give the main contribution because they
SowL _ 8_J( 6 ) (105 ae most divergent near the critical point. At the same time,
oo 7\ EH)) ' as the magnetic field grows they decay faster than the cor-

rection dopos oOriginating from the reduction of the density

f states. At a certain magnetic fiekd* all the corrections

an become of the same order of magnitude. In this region of

the fields, one can expect a negative magnetoresistance, al-

though it cannot be large. Comparing all the types of the

800s 16 (A, corrections with each other we estimate the characteristic
= — ( ) (10.6 magnetic field asd* ~H.J " 1(Ay/8). The theory presented

%0 34 here was developed under the assumptiort(A,/8)>1

obtained in Sec. Ill fof =0 can be considerably larger. The and, hence, the characteristic field is very laigé>H,.

Equation(10.5 shows that the weak localization correction
in the strong magnetic fields considered here is always smalg
In contrast, the correction to the conductivity coming from
the DOS

ratio of these two corrections takestt-H, the form Experimentally, the peak in the resistivity at temperatures
close toT. can be estimated a8p/py~3.5 and is much
dowL 24[J5\ _,[Ag smaller than the peak at low temperatures. This correlates, at
50p0s . A_o n 3_5) (10.7 least qualitatively, with our results.

which must be small in the limid<<A,/4.

Now, let us estimate the correctiod®rpog and doyy,
using the parameters of the experiméifor the typical di- In this paper we presented a detailed theory of the new
ameter 126:20 A of Al grains studied in Ref. 1 the mean mechanism of the negative magnetoresistance in granular su-
level spacings is approximatelys~1 K. Using the critical  perconductors in a strong magnetic field suggested reently
temperaturel ;=1.6 K for Al we obtain for the BCS gap in to explain the experimentWe considered the limit of a
a single grain the following resulky=~1.8T.~3 K. Substi- large conductance, thus neglecting localization effects. It has
tuting the extracted values of the parameters into (£Q.6 been demonstrated that even if the superconducting gap in
we can estimate the maximal increase of the resistivity. As @ach granule is destroyed by the magnetic field the virtual
result, we obtain §p/pg)max=0.4, which is somewhat Cooper pairs can persist up to extremely strong magnetic
smaller but not far from the valuesp/p).~1 observed fields. However, the contribution of the Cooper pairs to
experimentally. transport is proportional at low temperaturesTtoand van-

Although our theory gives smaller values ofd/po)max  ishes in the limitT—0. In contrast, they reduce the one-
than the experimental ones, the discrepancy cannot be attriparticle density of states in the grains evenTat0, thus
uted to the weak localization effects. Using the experimentatliminishing the macroscopic conductivity. The conductivity
values ofJ, 8, andA, we find from Eq.(10.7) that S0 is  can reach its classical value only in extremely strong mag-
ten times smaller thadopos. The value of the correction netic fields when all the virtual Cooper pairs do not exist
Saw oo, Eq. (10.5, nearH. equals 2.&10 2. Strictly  anymore. This leads to the negative magnetoresistance.
speaking, all calculations have been done under the assump- We analyze both the orbital and Zeeman mechanisms of
tion of a largeJ>1, while experimentally this parameter is the destruction of superconductivity as well as the limits of
not large. This means that our theory does not take into adew temperatures and temperatures close to the critical tem-
count all effects that might be relevant for the experintent. peratureT.. The results demonstrate that, at low tempera-
Possibly, at such small values dfas one has in the experi- turesT<T,., there must be a pronounced peak in the depen-

Xl. CONCLUSION
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T-Tg<T,

-—————-—- -

H,H H H
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the resistivityR on the magnetic field at temperatures near

is more complicated. Already far from the field. the su-
perconducting fluctuations start contributing to transport and
the resistivity goes down when decreasing the magnetic field.
A negative magnetoresistance is possible in this region only
at magnetic field$i*, that can be much larger than the field
H..
The theory developed gives a good description of existing
experiments. Although the experimental systems are close to
the metal-insulator transition and localization effects as well
as Coulomb interaction can play an essential role, our theory,
where all these effects were neglected, gives reasonable val-
ues of physical quantities and allows us to reproduce the

FIG. 10. Resistivity of the granulated superconductors as a funcmain features of experimental curves.

tion of the magnetic field at fixed temperatures in different regimes.

It was important for our calculations that the dimension-
less conductancé>1 of the sample was limited also from

dence of the resistivity on the magnetic field. This peakabove, such that the inequalify<A,/S5 was fulfilled. This

should be much smaller in the region of temperatufes

means that the granulated structure of the superconductor

<T, because, in this region the superconducting fluctuationgsas essential for us. However, the fact that the contribution
can contribute to transport, thus diminishing the role of theof the superconducting fluctuations vanishes in the lifit
reduction of the density of states. We were able also to con--0 (AL and MT corrections are proportional ft¥) seems

sider different regions of the magnetic fields.

to be rather general and not restricted by this inequality.

Qualitatively, the results are summarized in Fig. 10,Apparently, the negative magnetoresistance above the criti-

where typical curves for the low temperaturés< T, and

cal magnetic field persists and can be possible even in con-

temperatures close b, are represented. Both the functions ventional bulk superconductors. We leave the region of large

reach asymptotically the value of the classical resistiRgy
only at extremely strong magnetic fields. The resistiRtgat

low temperatures grows monotonously when decreasing the
magnetic field. The function does not have any singularity at

the magnetic field . destroying the superconducting gap

in a single grain. The real transition into the superconductin

state occurs at a lower fieIdCZ. This field, in the region of

parameters involved, is close to the fiéld. The resistivity
R(H) remains finite aH—H, but its derivative diverges

resulting in the infinite slope at = He,. The dependence of

conductanced= A,/ for a future study.

ACKNOWLEDGMENTS

The authors thank I. Aleiner, B. Altshuler, and F. Hekking
for helpful discussions in the course of the work. A support
Df the Graduiertenkolleg 384 and the Sonderforschungsbe-
reich 237 is greatly appreciated. The work of one of the
authors(A.l.L.) was supported by the NSF Grant No. DMR-
9812340. He thanks also the Alexander von Humboldt Foun-
dation for a support of his work in Bochum.

1A. Gerber, A. Milner, G. Deutscher, M. Karpovsky, and A. Glad-
kikh, Phys. Rev. Lett78, 4277(1997.

2T. Chui, P. Lindenfeld, W. L. McLean, and K. Mui, Phys. Rev.
Lett. 47, 1617 (1981).

3v. F. Gantmakher, M. Golubkov, J. G. S. Lok, and A. K. Geim,
Zh. Eksp. Teor. Fiz82, 958(1996 [JETP82, 951(1996]; V. F.
Gantmakher, cond-mat/97090Unpublished

4B. L. Altshuler, D. E. Khmelnitskii, A. I. Larkin, and P. A. Lee,
Phys. Rev. B22, 5142(1980.

SK.B. Efetov, Zh. EKsp. Teor. Fiz.78, 2017 (1980 [Sov. Phys.
JETP51, 1015(1980)].

61.S. Beloborodov and K.B. Efetov, Phys. Rev. Le#2, 3332
(1999.

L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Telaeningrad
10, 1104(1968 [Sov. Phys. Solid Stat&0, 875 (1968 ].

8K. Maki, Prog. Theor. Phys39, 897(1968; 40, 193(1968; R. S.
Thompson, Phys. Rev. B, 327 (1970.

9E. Abrahams, M. Redi, and J. Woo, Phys. Revl,R208(1970.

0A, A. Varlamov, G. Balesterino, E. Milani, and D.V. Livanov,
Adv. Phys.48, 655(1999.

1L, B. loffe, A. I. Larkin, A. A. Varlamov, and L. Yu, Phys. Rev.
B 47, 8936(1993.

12| L. Aleiner and B. L. Altshuler, Phys. Rev. Le@t9, 921(1997;
H. Y. Kee, I. L. Aleiner, and B. L. Altshuler, Phys. Rev. 8B,
5757(1998.

13K, B. Efetov, Supersymmetry in Disoder and Cha@ambridge
University Press, New York, 1997

141, 0. Kulik and I. K. YansonThe Josephson Effect in Supercon-
ducting Tunneling Structuredalsted, Jerusalem, 1972

I5A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskijethods
of Quantum Field Theory in Statistical PhysiRrentice-Hall,
Englewood Cliffs, NJ, 1963

18A. 1. Larkin, zZh. Eksp. Teor. Fiz.48, 232 (1965 [Sov. Phys.
JETP21, 153(1965].

YB. L. Altshuler, A. G. Aronov, A. I. Larkin, and D. E.
Khmelnitskii, Zh. Esp. Teor. Fiz.81, 768 (1981 [Sov. Phys.
JETP54, 411(1981)].

18A. Schmid, Phys. Rev180, 527 (1969.

19K, B. Efetov, Zh. Ksp. Teor. Fiz.94, 357 (1998 [Sov. Phys.
JETP67, 199(1988)].



