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Magnetoresistance of granular superconducting metals in a strong magnetic field

I. S. Beloborodov
Theoretische Physik III, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

K. B. Efetov
Theoretische Physik III, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

and L.D. Landau Institute for Theoretical Physics, 117 940 Moscow, Russia

A. I. Larkin
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455;

L.D. Landau Institute for Theoretical Physics, 117 940 Moscow, Russia;
and Theoretische Physik III, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

~Received 4 October 1999!

The magnetoresistance of a granular superconductor in a strong magnetic field is considered. It is assumed
that this field destroys the superconducting gap in each grain, such that all interesting effects considered in the
paper are due to superconducting fluctuations. The conductance of the system is assumed to be large, which
allows us to neglect all localization effects as well as the Coulomb interaction. It is shown that at low
temperatures the superconducting fluctuations reduce the one-particle density of states but do not contribute to
transport. As a result, the resistivity of the normal state exceeds the classical resistivity approaching the latter
only in the limit of extremely strong magnetic fields, and this leads to a negative magnetoresistance. We
present detailed calculations of physical quantities relevant for describing the effect and make a comparison
with existing experiments.
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I. INTRODUCTION

In a recent experiment,1 transport properties of a syste
of Al superconducting grains in a strong magnetic field w
studied. The samples were quite homogeneous with a typ
diameter of the grains 120620 Å and the grains formed
three-dimensional array. As usual, sufficiently strong m
netic fields destroyed the superconductivity in the samp
and a finite resistivity could be seen above a critical m
netic field. The applied magnetic fields reached 17 T, wh
was more than sufficient to destroy also the superconduc
gap in each grain.

The dependence of the resistivity on the magnetic fi
observed in Ref. 1 was not simple. Although at extrem
strong fields the resistivity was almost independent of
field, it increasedwhen decreasing the magnetic field. On
at sufficiently weak magnetic fields the resistivity started
decrease and finally the samples displayed supercondu
properties. A similar behavior had been reported in a num
of publications.2,3

A negative magnetoresistance due to weak localiza
effects is not unusual in disordered metals.4 However, the
magnetoresistance of the granulated materials studied in
1 is quite noticeable in magnetic fields exceeding 10 T an
considerably larger than values estimated for the weak lo
ization.

The weak localization effects become very important
the system is near the Anderson metal-insulator transi
and one can expect there a complicated dependence o
magnetic field. One can, for example, argue2 that decreasing
the magnetic field drives the system to the metal-insula
transition, which gives a large negative magnetoresistanc
PRB 610163-1829/2000/61~13!/9145~17!/$15.00
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the superconducting transition occurs earlier one get
maximum of the resistivity near the transition characteris
for the experiments.1–3

Unfortunately, investigation of this possibility is no
simple. The metal-insulator transition occurs at values of
macroscopic conductanceJ of the order of unity. At such
values calculations are very difficult. The problem becom
even more complicated due to the Coulomb interaction. I
well known,5 that, at small values ofJ, the system must be a
insulator even if the superconducting gap is finite in a sin
grain. A microscopic consideration of all these effects an
confirmation of the existence of the negative magnetore
tance near the superconducting point forJ;1 is at present
hardly possible and we do not try to treat the problem he

Instead, we consider below the region of large cond
tancesJ@1, where the system without interactions would
a good metal. This region corresponds to large tunne
amplitudes between the grains. All effects of the weak loc
ization and the charging effects have to be small forJ@1,
which would imply that the resistivity could not considerab
depend on the magnetic field.

Nevertheless, we find that the magnetoresistance o
good granulated metal (J@1) in a strong magnetic field an
at low temperaturemust be negative.In our model, the su-
perconducting gap in each granule is assumed to be
pressed by the strong magnetic field. All the interesting
havior considered below originates from the superconduc
fluctuations that lead to a suppression of the density of st
~DOS! but do not help to carry an electric current. The ma
results have been already published6 and now we want to
present details of calculations and clarify some additio
questions. We consider, for example, influence of the Z
9145 ©2000 The American Physical Society
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man splitting on the resistivity, find the critical fieldHC2 of
the transition into the superconducting state, calculate
diamagnetic susceptibility, and estimate weak localizat
corrections.

Theory of superconducting fluctuations near the transit
into the superconducting state has been developed
ago7–9 ~for a review see Ref. 10!. Above the transition tem-
peratureTc , nonequilibrium Cooper pairs are formed and
new channel of charge transfer opens~Aslamazov-Larkin
contribution!.7 Another fluctuation contribution comes from
a coherent scattering of the electrons forming a Cooper
on impurities~Maki-Thompson contribution!.8 Both the fluc-
tuation corrections increase the conductivity and, whe
magnetic field is applied, lead to a positive magnetore
tance. Formation of the nonequilibrium Cooper pairs res
also in a fluctuational gap in the one-electron spectrum9 but
in conventional~nongranular! superconductors the first tw
mechanisms are more important nearTc and the conductivity
increases when approaching the transition. The total con
tivity for a bulk sample above the transition temperatureTc
can be written in the following form

s5sDrude1ds, ~1.1!

where sDrude5(e2tn)/m is the conductivity of a norma
metal without electron-electron interaction,t is the elastic
mean-free time,m andn are the effective mass and the de
sity of electrons, respectively. In Eq.~1.1!, ds is a correction
to the conductivity due to the fluctuations of the virtual co
per pairs

ds5dsDOS1dsAL1dsMT , ~1.2!

wheredsDOS is the correction to the conductivity due to th
reduction of the DOS anddsAL and dsMT stand for the
Aslamazov-Larkin~AL ! and Maki-Thompson~MT! contri-
butions the conductivity. Close to the critical temperatureTc
the AL correction is more important than both the MT a
DOS corrections types and its contribution can be written
follows7

dsAL

sDrude
5lS Tc

T2Tc
D b

, ~1.3!

wherel is a small dimensionless positive parameterl!1
and b51/2 for the three-dimensional case~3D!, 1 for 2D,
and 3/2 for quasi-1D. Eq.~1.3! was derived using a pertur
bation theory and therefore is valid provided the inequa
dsAL /sDrude!1 is fulfilled.

Although typically the AL and MT corrections are large
than the DOS contribution, a small decrease of the transv
conductivity is possible in layered materials11 in a tempera-
ture interval not very close to the transition. It is relevant
emphasize that all previous study of the fluctuations has b
done near the critical temperatureTc in a zero or a weak
magnetic field. In contrast, we are mainly concentrated
study of the transport at very low temperature in a stro
magnetic field. To the best of our knowledge, fluctuations
this region have not been considered so far.

A strong magnetic field destroys the superconducting
in each granule. However, even at magnetic fieldsH exceed-
ing the critical field Hc virtual Cooper pairs can still be
formed. It turns out, and it will be shown below, the influ
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ence of these pairs on the macroscopical transport is dr
cally different from that nearTc . The existence of the virtua
pairs leads to a reduction of the DOS but, in the limitT
→0, these pairs cannot travel from one granule to anot
As a result, the conductivitys can be atH.Hc considerably
lower than conductivitys0 of the normal metal without an
electron-electron interaction. It approaches the values0 only
in the limit H@Hc , when all the superconducting fluctua
tions are completely suppressed by the magnetic field.

The superconducting pairing inside the grains is destro
by both the orbital mechanism and the Zeeman splitting. T
critical magnetic fieldHc

or destroying the superconductivit
in a single grain, in this case can be estimated asHc

orRj
'f0, wheref05hc/e is a flux quantum,R is a radius of
single grain, andj5Aj0l is the superconducting coherenc
length. The Zeeman critical magnetic fieldHc

z can be written
asgmBHc

z5D0, whereD0 is a BCS gap for the single grai
at magnetic fieldH50 andg is a Lande factor. We notice
here thatHc

z is independent of the size of the grain where
for Hc

or the size of the grain is important. The ratio of the
two fields can be written in the form

Hc
or/Hc

z'Rc /R, ~1.4!

whereRc5j(p0l )21. We can see from Eq.~1.4! that for R
.Rc the orbital critical magnetic field is smaller than th
Zeeman critical magnetic fieldHc

or,Hc
z and the suppression

of superconductivity is due to the orbital mechanism. T
condition is well satisfied in grains withR;100 Å studied in
Ref. 1. This limit is opposite to the one considered recen
in Ref. 12, where the Zeeman splitting was assumed to be
main mechanism of destruction of the Cooper pairs. Ho
ever, the latter mechanism of the destruction of the Coo
pairs can be easily included into the scheme of our calc
tions.

The remainder of the paper is organized as follows.
Sec. II we formulate the model and discuss the fluctuatio
contributions to the total conductivity of the granulated s
perconductors. Section III contains the derivation of the c
rection to the conductivity of granulated superconductors
to single electron tunnelling~DOS contribution! at very low
temperaturesT!Tc and strong magnetic fieldsH2Hc
!Hc . In Sec. IV and Sec. V corrections to the conductiv
due to tunneling of virtual Cooper pairs are deriv
~Aslamazov-Larkin and Maki-Thompson corrections!. In
Sec. VI we discuss the influence of magnetic field on
phase of order parameter and calculate the critical field of
transition into the superconducting phase. The importanc
the Zeeman splitting is discussed in Sec. VII. The contrib
tion of fluctuating Cooper pairs to the diamagnetic susce
bility of granular system is derived in Sec. VIII. Section I
includes the results for conductivity atT2Tc!Tc and H
!Hc . A discussion of a recent experiment in Al grains a
a comparison with the theory is presented in Sec. X. O
results are summarized in the Conclusion.

II. CHOICE OF THE MODEL

We consider a 3D array of superconducting gra
coupled to each other, Fig. 1. The grains are not perfect
there can be impurities inside the grains as well as on
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surface. We assume that electrons can hop from grai
grain and can interact with phonons.

The HamiltonianĤ of the system can be written as

Ĥ5Ĥ01ĤT , ~2.1!

where Ĥ0 is a conventional Hamiltonian for a single gra
with an electron-phonon interaction in the presence o
strong magnetic field

Ĥ05(
i ,k

Ei ,kai ,k
† ai ,k2ulu (

i ,k,k8
ai ,k

† ai ,2k
† ai ,2k8ai ,k81Ĥ imp ,

~2.2!

where i stands for the numbers of the grains,k[(k,↑),
2k[(2k,↓); l is an interaction constant, andĤ imp de-
scribes elastic interaction of the electrons with impuriti
The interaction in Eq.~2.2! contains diagonal matrix ele
ments only. This form of the interaction can be used p
vided the superconducting gapD0 is not very large

D0!Ec , ~2.3!

whereEc is the Thouless energy of the single granule. Eq
tion ~2.3! is equivalent to the conditionR!j0, whereR is
the radius of the grain andj0 is the superconducting cohe
ence length. In this limit, superconducting fluctuations in
single grain are zero-dimensional.

The termĤT in Eq. ~2.1! describes tunneling from grai
to grain and has the form~see, e.g., Ref. 14!

ĤT5 (
i , j ,p,q

t i jpqaip
† ajq expS i

e

c
Ad i j D1H.c., ~2.4!

whereA is the external vector potential;di j are the vectors
connecting centers of two neighboring grainsi and
j (udi j u52R); aip

† (aip) are the creation~annihilation! op-
erators for an electron the graini and statep.

It is assumed that the system is macroscopically a g
metal and this corresponds to a sufficiently large tunne
energyt

t@d, ~2.5!

where d5(n0V)21 is the mean level spacing in a sing
granule,n05mp0/2p2 is the DOS per one spin in the ab
sence of interactions,V is the volume of the granule, andD0
is the Bardeen-Cooper-Schrieffer~BCS! gap atT50 in the
absence of a magnetic field. Provided the inequality~2.5! is
fulfilled localization effects can be neglected~Ref. 13!.
Moreover, charging effects are also not important in t
limit because at such tunneling energies the Coulomb in
action is well screened.

The tunneling current operator is

FIG. 1. System of metallic grains.
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ĵ52 ied (
j ,p,q

t i jpqaip
† ajq expS i

e

c
Ad i j D2H.c. ~2.6!

Using standard formulas of the linear response theory
can write the currentj (t) in the form

j ~ t !5 i E
2`

t

^@ ĵ ~ t !, ĵ ~ t8!#&A~ t8!dt8

2 ie2d2E
2`

t

^@ĤT~ t !,ĤT~ t8!#&dt8A~ t !, ~2.7!

where the angle brackets stand for averaging over both q
tum states and impurities in the grains. All operators in
right-hand side of Eq.~2.7! are independent of the vecto
potential. In principle, the grains can be clean and the e
trons can scatter mainly on the surface of the grains. Ho
ever, provided the shape of the grains corresponds to a c
sically chaotic motion of the electrons, the clean limit shou
be described in the 0D case by the same formulas.

We carry out the calculation of the conductivity makin
expansion both in fluctuation modes and in the tunnel
termHT . This implies that the tunneling energyt is not very
large. Proper conditions will be written later but now w
mention only that the tunneling energyt will be everywhere
much smaller than the energyEc .

As in conventional bulk superconductors we can wr
corrections to the classical conductivity as a sum of corr
tions to the DOS and of Aslamazov-Larkin~AL ! sAL and
Maki-Thompson~MT! sMT corrections. Diagrams describ
ing these contributions are represented in Fig. 2.

The total conductivitys can be written as

s5sDOS1sAL1sMT , ~2.8!

wheresDOS is given by equation

sDOS5s0~4T!21E
2`

1`

@n~«!/n0#2 cosh22S «

2TDd«.

~2.9!

In Eq. ~2.9!, s052pe2R21(t/d)2 is the classical conductiv
ity of the granular metal. It can be rewritten in terms of t
dimensionless conductance of the systemJ as

s05
8Je2

pR
, ~2.10!

FIG. 2. Diagram a! describes correction to DOS, diagrams!
and c! describe corrections to conductivity due to superconduct
fluctuations. The wavy lines denote the propagator of the fluct
tions, the dashed lines stand for the impurity scattering.
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where the conductanceJ equals

J[~p2/4!~ t/d!2. ~2.11!

The inequality~2.5! is equivalent to the condition

J@1. ~2.12!

The functionn(«) in Eq. ~2.9! is the density of states. With
out the electron-electron interaction, this function is equa
the DOS of the ideal electron gasn0, which givessDOS
5s0. Taking into account the electron-electron attraction
can write the contributionsDOS to the classical conductivity
as

sDOS5s01dsDOS~ t,T,H !. ~2.13!

The correctiondsDOS(t,T,H) depends on temperatureT and
magnetic fieldH and is represented in Fig. 2~a!. As concerns
the long-range part of the Coulomb interaction~charging ef-
fects!, the conditionJ@1 allows us to neglect it.

Using Eq.~2.9! the correction to the conductivitydsDOS
at low temperatures can be written in terms of the correc
to the DOS at zero energydn(0) as

dsDOS/s052~dn~0!/n0!. ~2.14!

As we will see below, the main contribution to the condu
tivity due to the superconducting fluctuations comes from
change of the DOSdn. Its calculation will be presented in
detail in the next section.

III. SUPPRESSION OF THE CONDUCTIVITY
DUE TO DOS FLUCTUATIONS

In this section we consider the correction to the cond
tivity of granulated superconductors due to suppression
DOS. The main correctiondn(«) to the DOS of the nonin-
teracting electronsn0 is described by the diagram in the Fi
2~a!, while the termssMT and sAL are given by Figs. 2~b!
and 2~c!, respectively. The calculation of the diagrams c
be performed for the Matsubara frequencies«n5pT(2n
11) using temperature Green functions. At the end o
should, as usual Ref. 15, make the analytical continua
i«n→«. The magnetic field will be considered in the qua
classical approximationl !Lc , where l is a mean-free path
andLc is a cyclotron radius. In this approximation, the ma
netic field results in the appearance of additional phase
Green functions

G~ i en ,rW,rW8!5G(0)~ i en ,rW2rW8!expS ie

c ErW

rW8
AW drW D ,

~3.1!

whereG(0)( i en ,rW2rW8) is the Green function without mag
netic field. In the zero-order approximation in the superc
ducting fluctuations, the disorder averaged Green func
G(0) in the momentum representation has the form:

G(0)~ i«n ,p!5~ i«n2j~p!1 i ~2t!21sgn«n!21. ~3.2!

The diagrams in Fig. 2 contain the averaged one-part
Green functions, the impurity vertices proportional to the
called CooperonC and the propagator of the supercondu
ing fluctuationsK. The functionsC and K depend on the
o
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coordinates and time slower than the averaged one-par
Green functions because the characteristic scale for both
impurity vertices and the propagator of superconduct
fluctuationsK is the coherence lengthj, which is much
larger thanl. As a result, the magnetic field affects only th
vertex C and the propagatorK, whereas the phases of th
Green functions drawn in Fig. 2 outside these blocks can
So, reading the diagrams in Fig. 1 one should replace
solid lines by the functionsG(0)( i«n ,p). More complicated
diagrams containing crossings of impurity lines describe
weak localization effects are neglected here.

The impurity vertex entering these diagrams is equal
(2pn0t)21C( i«n ,iVk2 i«n), Fig. 3, wheret is the mean-
free time due to the scattering on impurities or on the gr
boundary,C is the Cooperon. It obeys the following equatio

~D0@2 i¹À~2e/c!A#21u2«n2Vku!C~r ,r 8!

52pn0d~r2r 8!, ~3.3!

whereD05v0
2t/3 is the classical diffusion coefficient. Th

vector potentialA(r ) should be chosen in the London gaug
If the shape of the grain is close to spherical, the vect
potential is expressed through the magnetic fieldH asA(r )
5@H3r ‡Õ2.

All relevant energies in the problem are assumed to
much smaller than the energy of the first harmonicsEc
5D0p2/R2 playing the role of the Thouless energy of
single grain and this allows us to keep only the zero harm
ics in the spectral expansion of the solutionC(r ,r 8) of Eq.
~3.3!. One can find the eigenvalueE0(H) of this harmonics
using the first order of the standard perturbation theory

E0~H !5~2e/c!2D0^A
2&0 , ~3.4!

where^•••&0 stands for the averaging over the volume of t
grain. For the grain of a nearly spherical form one obtain

E0~H !5
2

5 S eHR

c D 2

D05
2

5 S f

pf0
D 2

Ec , ~3.5!

wheref05pc/e is the flux quantum andf is the magnetic
flux through the granule.

Within the zero-harmonics approximation, the functionC
does not depend on coordinates and equals

C~ i«n ,iVk2 i«n!52pn0@ u2«n2Vku1E0~H !#21.
~3.6!

To calculate the propagator of the superconducting fl
tuationsK one should sum the sequence of the ladder d
grams represented in Fig. 4. The broken lines in this fig
denote the electron-electron interaction. As it has been m
tioned the characteristic energies of the propagatorK are low
and therefore, when calculating the functionK, one should
take into account the tunneling processes from grain

FIG. 3. Impurity vertex.
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grains. The tunneling HamiltonianHT , Eq. ~2.4!, is repre-
sented in Fig. 4 by crossed circles.

Of course, one can sum the ladder diagrams in Fig
directly. However, sometimes it is more convenient to d
couple the electron-electron interaction in Eq.~2.2! by a
Gaussian integration over an auxiliary fieldD ~Hubbard-
Stratonovich transformation!. Then, one can perform averag
ing over the electron quantum states, thus reducing the
culation to computation of a functional integral over the fie
D. In principle, one obtains within such a scheme a com
cated free-energy functional and the integral cannot be
culated exactly. The situation simplifies if the fluctuatio
are not very strong. Then, one can expand the free-en
functional in D and come to Gaussian integrals that can
treated without difficulties. For the problem considered
propagatorK is proportional to the average of the square
the field ^uDku2&. In terms of the functional integral thi
quantity is written as

^uDu2&5

E uDu2 exp~2bFe f f@D,D* # !DDDD*

E exp~2bFe f f@D,D* # !DDDD*
,

~3.7!

here b51/T and Fe f f@D,D* # is the effective free-energy
functional. We have chosen the parameters in such a
that the grains are zero dimensional. Therefore, it is su
cient to integrate over the zero-space harmonics only, wh
means that the fieldD in the integral in Eq.~3.7! does not
depend on coordinates. In the quadratic approximation in
field D the free-energy functionalFe f f includes two different
terms

Fe f f5Fe f f
(1)1Fe f f

(2) , ~3.8!

whereFe f f
(1) describes the superconducting fluctuations in

isolated grain andFe f f
(2) takes into account tunneling from

grain to grain. For the first term we obtain after standa
manipulations

Fe f f
(1)@D,D* #5V(

Vk
S 1/ulu2T (

2«n.uVku
2C~ i«n! D uD~Vk!u2,

~3.9!

where the functionC( i«n) is defined in Eq.~3.6! andV is the
volume of a single grain. In the limit of low temperature
T!E0(H) the sum over the frequencies«n in Eq. ~3.9! can
be replaced by the integral and we reduce the functio
Fe f f

(1)@D,D* # to the form

Fe f f
(1)@D,D* #5

1

d (
Vk

F lnS E0~H !1uVku
D0

D G uD~Vk!u2.

~3.10!

FIG. 4. Propagator of superconducting fluctuations with tunn
ing.
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Close to the critical magnetic fieldHc destroying the super
conducting gap in a single grain the energy of the first h
monicsE0(H) is equal to the BSC gap at zero temperatu
D0. This means that Eq.~3.10! can be written in this case in
the regionT!D0. NearHc small frequenciesVk are most
important and one can expand Eq.~3.10! in powers of the
small parameterVk /D0. Then, we obtain

Fe f f
(1)@D,D* #5

1

d (
Vk

F lnS E0~H !

D0
D1

uVku
D0

G uD~Vk!u2.

~3.11!

At strong magnetic fieldsH@Hc , one should use the mor
general formula, Eq.~3.10!.

The termFe f f
(2)@D,D* # describing the tunneling include

three different contributions represented in Fig. 5. The a
lytical expressionFe f f

(21)@D,D* # corresponding to the first dia
gram in Fig. 5 can be written as

Fe f f
(21)@D,D* #52t2/~2pn0t!2(

i , j
~D iD j* 1c.c.!V2

3E d3pi d3pj

~2p!6
T(

«n

G~ i«npi !

3G~2 i«npi !G~ i«npj !G~2 i«npj !.

~3.12!

Writing Eq. ~3.12! we put Vk50 in the expression for the
CooperonC and in the Green functions. This is justifie
because the energyFe f f

(2)@D,D* # is already small because
includes the parameterJ@d/E0(H)# that is assumed to be
small, whereJ is the dimensionless conductance of the s
tem specified by Eq.~2.11!. Next terms of the expansion ar
of the order ofJ@d/E0(H)#@Vk /E0(H)# and can be neglecte
for small Vk . The second and third diagrams in Fig. 5 a
equal to each other and have the opposite sign with respe
the first diagram. For simplicity we assume that the granu
are packed into a cubic lattice. Using the momentum rep
sentation with respect to the coordinates of the grains
taking into account all diagrams in Fig. 5 we reduce t
free-energy functionalFe f f

(2)@D,D* # to the form

Fe f f
(2)@D,D* #5~8/3p!~1/d!(

i 51

3

J@d/E0~H !#

3~12cosqid!uDu2, ~3.13!

where q is the quasimomentum andd52R. Eq. ~3.13! is
written in the limit

l-

FIG. 5. Diagrams describingFe f f
(2) .
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J!E0~H !/d. ~3.14!

The inequality~3.14! is compatible with the inequality
~2.12! provided the inequality

E0~H !@d ~3.15!

is fulfilled. If E0(H);D0, the condition, Eq.~3.15!, is at the
same time the condition for the existence of the superc
ducting gap in the single granule. The inequality~3.14! al-
lows us also to neglect influence of the tunneling on the fo
of the Cooperon, so we use for calculations Eq.~3.6!.

Writing the previous equations forFe f f
(2)@D,D* # we ne-

glected the influence of magnetic field on the phase of
order parameterD. In other words we omitted the phas
factor exp@i(e/c)*A(r )dr #. The effect of the magnetic field
on the phase will be discussed in detail later in Sec. VI.

Although the final result for the correction to the DOS c
be written for arbitrary temperaturesT and magnetic fieldsH,
let us concentrate on the most interesting caseT!Tc , H
.Hc . Using Eqs. ~3.7!,~3.10!,~3.13! we obtain for the
propagator of the superconducting fluctuationsK( iVk,q)

K~ iVk ,q!52n0
21F lnS E0~H !1uVku

D0
D1h~q!G21

,

h~q![~8/3p!F(
i 51

3

J„d/E0~H !…~12cosqid!G . ~3.16!

The pole of the propagatorK( iVk ,q) at q50, Vk50 deter-
mines the fieldHc , at which the BCS gap disappears in
single grain. From the form of Eq.~3.16! we find

E0~Hc!5D0 . ~3.17!

The result forHc , Eqs.~3.5! and ~3.17!, agrees with the
one obtained long ago by another method.16 We can see from
Eqs.~3.16! and ~3.17! that the termh(q) describing tunnel-
ing is very important ifH is close toHc .

Equations~3.6! and ~3.16! give the explicit formulas for
the functionsC andK and allow us to calculate the corre
tion dn to the DOS. The analytical expression for the d
gram, Fig. 2~a!, reads as follows

dn~ i«n!5~1/p!1/~2pn0t!2E d3q

~2p!3
T(

Vk

K~ iVk ,q!

3E d3p

2p3
C2~ i«n ,iVk2 i«n!G2~ i«n ,p!

3G~ iVk2 i«n ,p!. ~3.18!

Equation~3.18! contains integration over the momentum
the single grainp and the quasimomentumq. First, we inte-
grate over the momentump and reduce Eq.~3.18! for «n
.0 to the form

dn~ i«n!5
2iT

n0
(

Vk,«n

E K~ iVk ,q!

3C2~ i«n ,iVk2 i«n!
d3q

~2p!5
. ~3.19!
n-

e

-

After calculation of the sum overVk in Eq. ~3.19!, one
should make the analytical continuationi«n→«. At low
temperatures, it is sufficient to find the correction to the DO
at zero energydn[dn(0).

Remarkably, Eqs.~3.16!–~3.19! do not contain explicitly
the mean-free timet. This is a consequence of the zer
harmonics approximation, which is equivalent to using t
random matrix theory~RMT! Ref. 13.@The parametert en-
ters only Eq.~3.5! giving the standard combinationE0(H)
describing in RMT the crossover from the orthogonal to t
unitary ensemble#. This justifies the claim that the results ca
be used also for clean grains with a shape providing a cha
electron motion.

Using Eqs.~2.9!,~3.16!–~3.19! one can easily obtain an
explicit expression forsDOS for H2Hc!Hc . In this limit,
one expands the logarithm in the denominator of Eq.~3.16!
and neglects the dependence ofC on «n andVk because the
main contribution in the sum overVk comes from Vk
;E0(H)2E0(Hc)!D0. Using Eq. ~2.14! the result for
dsDOS5s02sDOS can be written as

dsDOS

s0
52

2d

D0 H 2p21^ lnh̃~q!&q , T/D0!h̃

2T

D0
^h̃21~q!&q , h̃!T/D0!1,

~3.20!

h̃~q!5h~q!12h, ^ . . . &q[VE
0

2p/d

~ . . . !dqÕ~2p!3,

where h5(H2Hc)/Hc and V is a volume of the single
grain. We see that the correction to the conductivity is ne
tive and its absolute value decreases when the magnetic
increases. The correction reaches its maximum atH→Hc .
At zero temperature and close to the critical fieldHc such
that J(d/D0)@h, the maximum value ofdsDOS/s0 from
Eq. ~3.20! is

UdsDOS

s0
U5 2

p

d

D0
K lnS 1

h~q! D L
q

5
1

3

d

D0
lnS D0

Jd D .

~3.21!

In the limit J(d/D0)!h&1, one can expand the logarithm i
Eq. ~3.20!. Then, takingh;1 the correction to the conduc
tivity at zero temperature can be estimated as

UdsDOS

s0
U;JS d

D0
D 2

. ~3.22!

Schematically, the suppression of the DOS due to the su
conducting fluctuations is shown in Fig. 6.

FIG. 6. Suppression of DOS due to superconducting fluct
tions.
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As temperature grows, the correction to the conductiv
due to the reduction of the DOS can become larger and re
for T;D0 andJ(d/D0)@h the order of magnitude ofJ21.

udsDOSu
s0

54~dT/D0
2!K 1

h1h~q!L
q

;
1

J
. ~3.23!

In the limit h'1@J(d/D0) and at temperatureT;D0 this
correction can be estimated as

dsDOS

s0
'

d

D0
. ~3.24!

We see from Eqs.~3.21!–~3.24! that the corrections to the
conductivity are smaller than unity provided we work in t
regime of a good metal, Eqs.~2.5! and ~2.12!, so the dia-
grammatic expansion we use is justified. Indeed, we can
glect the corrections of higher orders. For example, the
gram shown in Fig. 7 has the additional small factor
(d/D0)lnh̃ at T/D0!h̃ andd/(D0h̃) at h̃!T/D0.

The correction to the conductivity calculated in this se
tion could become comparable withs0 when J;1. How-
ever, such values ofJ mean that we would be in this case n
far from the metal-insulator transition. Then, we would ha
to take into account all localization effects. For values oJ
;1 one can use Eq.~3.20! for rough estimates only. Appar
ently, the parameters of the samples of Ref. 1 correspon
the regionJ;1, d/D0;1/3.

In the limit of strong magnetic fieldsH@Hc the correc-
tion to s0 can still be noticeable. In this case we can use
~3.10! as before but, with a logarithmic accuracy, we c
neglect the dependence of the superconducting propag
Eq. ~3.16!, on Vk and on the tunneling term. Then we obta
finally

dsDOS/s052~1/3!@d/E0~H !# ln21
„E0~H !/D0….

~3.25!

Equation~3.25! shows that in the regionH@Hc the correc-
tion to the conductivity decays essentially asdsDOS;H22.

Let us emphasize that the correction to the conductiv
coming from the DOS remains finite in the limitT→0, thus
indicating the existence of the virtual Cooper pairs even
T50.

In the region of not very smallh@Jd/D0, we can neglect
the tunneling termFe f f

(2)@D,D* # in the free-energy functiona
Fe f f@D,D* #. Then, we can write the correction to the co
ductivity in a rather general form. The superconducti
propagatorK can be written in this case as

FIG. 7. An example of high-order corrections to DOS.
y
ch
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f
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to
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or,

y

t

K~ iVk!52n0
21 ln21S E0~H !1uVku

D0
D . ~3.26!

Using Eq.~3.19! for the correction to the DOS and Eq.~2.14!
we obtain for the correction to the conductivity at zero te
perature

dsDOS

s0
52

1

3 S d

D0
D E

a

`exp~2x!

x
dx52

1

3 S d

D0
DEi~a!,

a52ln~11h!. ~3.27!

In the limit h!1, we reproduce with logarithmic accurac
Eq. ~3.21!, whereas in the opposite limiting caseh@1 we
come to Eq.~3.25!.

In order to calculate the entire conductivity, Eq.~2.8!, we
must investigate the AL and MT contributions@Figs. 2~c!
and 2~b!#. In conventional superconductors nearTc , these
contributions are most important leading to an increase of
conductivity. In the granular materials, the situation is mu
more interesting. It turns out that both the AL and MT co
tributionsvanishin the limit T→0 at allH.Hc and thus, the
correction to the conductivity comes from the DOS only. S
at low temperatures, estimating the total correction to
classical conductivitys0, Eq. ~2.10!, one can use the formu
las of this section.

IV. ASLAMASOV-LARKIN CORRECTION
TO THE CONDUCTIVITY

The Aslamasov-Larkin~AL ! correction to the conductiv-
ity sAL originates from the ability of virtual Cooper pairs t
carry an electrical current. In contrast to the one-elect
tunneling determiningsDOS, the probability of tunneling of
the Cooper pairs from one grain to another is proportiona
t4. The quantitysAL is related to the response functionQAL

as

sAL5QAL/~2 iv!,v→0,

where the diagram for theQAL( ivn) is represented in Fig
2~c!. Calculating integrals corresponding to this diagram
may putVk50 in the electron loops, because all singula
ties in the vicinity of the transition point are contained in t
propagator of the superconducting fluctuationsK( iVk).

7 The
analytical expression for the diagram in Fig. 2~c! has the
form

QAL~ ivn!54/3(
i 51

3 E d3q

~2p!3
T(

Vk

K~ iVk ,q!

3K~ iVk2 ivn ,q!B1
2~0,q!, ~4.1!

whereB1(0,q) corresponds to one electron loop. The analy
cal expression for this loop reads
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B1~0,q!524i E sinqi8d cos~qi2qi8!d
d3q8

~2p!3

edt2V2

~2pn0t!2

3E d3p1 d3p2

~2p!6
T(

«n

G~ i«n ,p1!G~2 i«n ,p1!

3G~ i«n ,p2!G~2 i«n ,p2!C2~ i«n!. ~4.2!

The functions sinqi8d and cos(qi2qi8)d in Eq. ~4.2! corre-
spond to the current and tunneling vertices, respectiv
Equation~4.1! is obtained by considering four different type
of AL diagrams that are obtained from each other by perm
tations of the current and tunneling vertices. Summing o
the spin of the electrons we get the additional factor 2. As
the preceding section we calculate the impurity vertices
glecting the tunneling term, which is justified if the inequa
ity ~3.14! is fulfilled. Integrating over the momentap1 andp2
in Eq. ~4.2! we reduce the functionsB1(0,q) to the following
form

B1~0,q!52
8

p2
J

ed

E0~H !
4i E sinqid cos~qi2qi8!d

d3q8

~2p!3
.

~4.3!

To calculate the response functionQAL for real frequencies
v one has to make an analytical continuation from the M
subara frequenciesvn . This can be done rewriting the sum
over Vk in Eq. ~4.1! in a form of a contour integral tha
allows us to make the continuationivn→v1 i0. As a result,
we obtain7

T(
Vk

K~ iVk ,q!K~ iVk2 ivn ,q!

→ 1

4p i S E2`

1`

coth
«

2T
@KR~«!2KA~«!#KA~«2v!d«

1E
2`

1`

coth
«

2T
@KR~«!2KA~«!#KR~«1v!d« D ,

~4.4!

where KR (KA) is retarded ~advanced! superconducting
fluctuation propagator. Expanding Eq.~4.4! in v we keep the
term that remains finite in the limitv→0 and the linear one
The zero-order term cancels with the contribution of a d
gram schematically represented in Fig. 2~c! but containing
instead of the current vertices the tunneling ones. The la
contribution originates from the second term in Eq.~2.7!.
The linear term giving the dc conductivity can be written

T(
Vk

K~ iVk ,q!K~ iVk2 ivn ,q!

→2 i
2vE 0

2~H !

pn0
2 E

0

1`

coth
«

2T

«~«22h2!

~h21«2!3
d«, ~4.5!

whereh(q) is defined in Eq.~3.16!. Using Eqs.~4.1!, ~4.3!,
and~4.5! the fluctuational contributionsAL to the conductiv-
ity is reduced in the limitT!Tc , H2Hc!Hc to the form
y.

-
r

n
-

t-

-

er

sAL

s0
5

16

9
J

d2T

D0
3 (

i 51

3

^A~q!@h̃~q!#23 sin2 qid&q , ~4.6!

whereA(q)54pT@3D0h̃(q)#21 for T!D0h̃ and A(q)51
for D0h̃!T,Tc .

Using Eq.~4.6! we can estimate the quantitysAL /s0.
Let us consider first the limitT!D0h̃. In this region,

provided the inequalityh!Jd/D0 is fulfilled, the main con-
tribution in Eq. ~4.6! comes from smallq. Calculating the
integral overq we obtain from Eq.~4.6!

sAL

s0
5

32p2

71
J

d2T2

D0
4 E

0

` x2 d3x

„h1J~d/D0!x2
…

4

;J23/2
T2

D0
3/2d1/2S Hc

H2Hc
D 3/2

. ~4.7!

From Eq.~4.7! we can see that at low temperatures the A
correction to the conductivity is proportional to the square
the temperaturesAL;T2 and vanishes in the limitT→0.

Let us compare the AL correction with correction due
suppression of the DOS considered in the previous sect
Using Eqs.~4.7! and ~3.21! we obtain

sAL

udsDOSu
;J23/2

T2

D0
1/2d3/2

ln21S D0

Jd D S Hc

H2Hc
D 3/2

. ~4.8!

We see from Eq.~4.8! that atT!D0h̃ the AL correction is
small usAL /dsDOSu!1. This means that the AL contributio
cannot change the monotonous increase of the resistivit
granulated superconductors when decreasing the mag
field. At very strong magnetic fieldsH@Hc , we can neglect
the second term in the denominator of Eq.~4.7!. Then the
AL correction can be estimated as

sAL

s0
;J

d2T2

D0
4 S Hc

H D 4

. ~4.9!

To compare this result with the correction due to the DO
we should use Eq.~3.25! that was also derived at stron
magnetic fieldH@Hc .

U sAL

dsDOS
U;J

dT2E0~H !

D0
4 S Hc

H D 4

lnS E0~H !

D0
D . ~4.10!

Using Eq.~3.5! for E0(H) we can see from Eq.~4.10! that
usAL /dsDOSuH@Hc

;H22.
Now let us consider the region of temperatures not

from the critical temperatureD0h̃!T<Tc . Using Eq.~4.6!
we have

sAL

s0
5

8p

27
J

d2T

D0
3 E Vd3q sin2 qd

@h1J~d/D0!~12cosqd!#3
.

~4.11!

In the limit J(d/D0)@h, the main contribution in Eq.~4.11!
comes from smallq and the contributionsAL can be written
as
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sAL

s0
5

8p

27
J~d2/D0

2!E x2 d3x

„h1J~d/D0!x2
…

3

;J23/2S D0

d D 1/2S Hc

H2Hc
D 1/2

. ~4.12!

We see that the AL contribution grows when approach
the critical fieldHc . In order to calculate the AL correctio
we used the perturbation theory. Therefore, the region of
validity of the results obtained is described by the inequ
ties sAL /s0!1 or h@J23(D0 /d).

Now let us compare the AL correction withdsDOS. From
Eqs.~4.11! and ~3.23! we obtain

sAL

udsDOSu
;J21/2S D0

d D 1/2S Hc

H2Hc
D 1/2

. ~4.13!

Equation~4.13! is correct only at fields close to the critica
field, such that the inequalityh!J21(D0 /d) is fulfilled. In
this region the total correction to the conductivity is positiv
which means the resistivity decays, when approaching
critical magnetic fieldHc . In the case of a strong magnet
field H@Hc , we can neglect the second term in the deno
nator of Eq.~4.11! and then we obtain

sAL

s0
;JS d

D0
D 2S Hc

H D 3

~4.14!

that issAL;H23 at H@Hc andT;D0.
To understand the behavior of the total conductivity of t

granulated superconductors in this region we should cons
also the Maki-Thompson contribution and this will be do
in the next section.

V. MAKI-THOMPSON CORRECTION
TO THE CONDUCTIVITY

Another contribution usually increasing the conductiv
is the Maki-Thompson~MT! contribution represented in Fig
2~b!. Again, we can putVk50 in the electron loop, becaus
characteristic frequencies in superconducting fluctua
propagatorK are of the orderVk;D0h̃!E0. The analytical
expression for this diagram reads

QMT~ ivn!52/3(
i 51

3 E d3q

~2p!3
T(

Vk

K~ iVk ,q!B2~ ivn ,q!,

~5.1!

whereB2( ivn ,q) is a function describing the contribution o
the loop. This function can be written as follows

B2~ ivn ,q!54E sinqi8d sin~qi2qi8!d
d3q8

~2p!3

e2d2t2V2

~2pn0t!2

3E d3p1 d3p2

~2p!6
T(

«n

G~2 i«n ,p1!G~ i«n ,p1!

3G~2 i«n1 ivn ,p1!G~ i«n2 ivn ,p2!

3C~ i«n!C~2 i«n1 ivn ,i«n2 ivn!, ~5.2!
g

e
i-

,
e

i-

er

n

where, as before,p1 and p2 stand for the momenta in th
granules andq,q8 are quasi-momenta. Equation~5.1! in-
cludes the contribution of two different MT diagrams an
summation over spins. In order to make the analytical c
tinuationivn→v1 i0 in Eqs.~5.1! and~5.2! it is convenient
to rewrite the sum over«n in the form of the following
contour integral:

T(
«n

. . . 5
1

4p i F EC1

tanh
z

2T
GA~2z,p1!GR~z,p1!

3GA~2z1 ivn ,p2!GR~z2 ivn ,p2!CR~z!

3CR~z2 ivn!dz1E
C2

tanh
z

2T

3GA~2z,p1!GR~z,p1!GR~2z1 ivn ,p2!

3GA~z2 ivn ,p2!C
R~z!CA~z2 ivn!dz

1E
C3

tanh
z

2T
GR~2z,p1!GA~z,p1!

3GR~2z1 ivn ,p2!GA~z2 ivn ,p2!CA~z!

3CA~z2 ivn!dzG , ~5.3!

where the contoursC1 ,C2 ,C3 are shown in Fig. 8.
As usual, the MT diagrams have both regular~contours

C1 ,C3) and anomalous~contour C2) part. NearTc and at
very low magnetic field the anomalous part can be v
large. In the limitH→0, it can even diverge and becom
larger than the AL correction giving a positive contributio
to the conductivity.10 However, in the limit of high magnetic
fields andT→0, the situation is less intriguing. It turns ou
that for the problem considered, the absolute values of
regular and anomalous parts are equal in this limit but th
contributions have the opposite signs. Making the analyt
continuation in Eq.~5.3! and integrating over the moment
we obtain in the lowest order inv

1

4p i S EC1

1E
C2

1E
C3

D
→ 8p iv

d2 E
0

1`

tanh
«

4T

«~E 0
22«2!

~E 0
21«2!3

d«, ~5.4!

where the energyE05E0(H) is given by Eq.~3.5!. From Eq.
~5.4!, we see that atT50 the MT contribution vanishes
which corresponds to the cancelation of the regular a

FIG. 8. Contour of integration.
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anomalous parts. At low but finite temperaturesT, the final
result for the MT contribution can be written as

sMT

s0
5

16p2T2d

9D0
3 (

i 51

3

^B~q!cosqid&q , ~5.5!

where B(q)52p21 lnh̃(q) for T!D0h̃ and B(q)
52T@D0h̃(q)#21 for D0h̃!T&Tc .

Let us estimate the MT contribution in the different lim
iting cases. At low temperaturesT!D0h̃ andh!Jd/D0 we
have from Eq.~5.5!

sMT

s0
5

16p

9

T2d

D0
3 K lnS 1

h1J~d/D0!~12cosq! D cosqL
q

;
T2d

D0
3

. ~5.6!

Comparing Eq.~5.6! with Eq. ~3.21! we come to the follow-
ing estimate

sMT

udsDOSu
;S T

D0
D 2

ln21S D0

Jd D . ~5.7!

If the magnetic fieldH is not very close toHc , such that
Jd/D0!h&1, we obtain from Eq.~5.5!

sMT

udsDOSu
;S T

D0
D 2

. ~5.8!

We can see from Eqs.~5.7! and ~5.8! that the MT contribu-
tion sMT is proportional at low temperatures toT2, which is
the same temperature dependence as that for the AL co
bution. This means that, at sufficiently low temperatures,
MT contribution is small,sMT /dsDOS!1. Thus, we con-
clude that, in this region, the main correction to the class
conductivity, Eq.~2.10! comes from the correction to th
DOS, Eq. ~3.21!. The latter correction is negative, so th
resistivity of the granulated superconductors exceeds its c
sical value.

It is interesting to compare the AL and MT corrections.
the limit T→0, andh!Jd/D0, we obtain using Eqs.~4.7!
and ~5.6!

sMT

sAL
'S J

d

D0
D 3/2S H2Hc

Hc
D 3/2

. ~5.9!

Equation~5.9! shows that in this region, the AL contribu
tion is larger than the MT one. Let us consider another c
of not very low temperatures,D0h̃!T<Tc . From Eq.~5.5!
we have

sMT

s0
5

16p3

27

T2d

D0
3 E T d3x cosx

D0~h1J~d/D0!„12cosx!…
;

1

J
.

~5.10!

Equation~5.10! gives the possibility to compare the MT con
tribution with the DOS in this temperature interval. Recalli
Eq. ~3.23! we obtain
tri-
e

l

s-

e

sMT

udsDOSu
;1. ~5.11!

Equation~5.11! shows that at not very low temperatures t
MT contribution has the same order of magnitude as
contribution due to the reduction of the DOS. At the sam
time, the AL contribution in the regionD0h̃!T&Tc can be
considerably larger than both the MT and DOS contrib
tions.

From Eqs.~4.12! and ~5.10! we can see that atT&Tc

sMT

sAL
'J1/2S d

D0
D 1/2S H2Hc

Hc
D 1/2

. ~5.12!

Equations~5.11! and ~5.12! show that, at not very low tem
peratures, and not far from the critical field the AL correcti
to the conductivity is the most important. This means th
approaching the transition in this region the resistivity d
creases, which is in contrast to the behavior at very l
temperature, where the correction to the resistivity is de
mined entirely by the contribution to the DOS and is po
tive.

To conclude the last two sections we emphasize o
more that the temperature and magnetic field dependenc
sAL and sMT is rather complicated but they are definite
positive. The competition between these corrections
sDOS determines the sign of the magnetoresistance. We
from Eqs.~4.6! and~5.5! that both the AL and MT contribu-
tions are proportional at low temperatures toT2. Therefore
the sDOS in this limit is larger and the magnetoresistance
negative for allHc . In contrast, atT;Tc and close toHc ,
the AL and MT corrections can become larger thansDOS
resulting in a positive magnetoresistance in this region.
from Hc the magnetoresistance is negative again.

VI. THE CRITICAL FIELD H C2

IN THE GRANULATED SUPERCONDUCTORS

In the previous sections we considered transport in gra
lated superconductors at magnetic fieldsH not far from the
field Hc . The fieldHc is the field destroying the supercon
ducting gap in a single isolated granule. We have seen
the main contribution due to the superconducting fluctuati
comes from the correction to the density of states, Eq.~3.20!,
and this correction remains finite in the limitH→Hc . But is
the field Hc a critical field in the system of the granule
coupled to each other by tunneling? If it were a critical fie
what would happen atH,Hc? Would the system be macro
scopically the superconductor or normal metal? Or, may
this would be a new state of matter?

To answer these questions we should derive the effec
actionFe f f@D,D* #, Eqs.~3.8!, ~3.10!, and~3.13!, more care-
fully than it has been done in Sec. III. Namely, until now w
considered only the effect of the magnetic field on the el
tron motion inside the grains, neglecting its influence on
correlation of the phases of the order parameterD i of differ-
ent grains. However, to understand whether the system
macroscopically superconductor or not, we must consider
macroscopic motion and thus, the effect of the magnetic fi
on the phase correlation.

In this section we come back to the derivation of effecti
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actionFe f f@D,D* # taking into account the influence of mag
netic field on the phases of the order parameter. First,
consider this problem qualitatively and then, quantitative
It is clear that if the magnetic field is strong enough, it i
duces macroscopic currents that finally, at a fieldHc2

, de-
stroy the superconductivity.

Let us estimate the critical magnetic fieldHc2
using the

Ginzburg-Landau theory. We assume that the granulated
tem under consideration is in the macroscopically superc
ducting state. Then, the Josephson part of the free energ
the coordinate representation, not too close to theHc2

, can
be written in the form

F5(
i

EJ

~D i2D j !
2

D0
2

'E d3r
~¹D!2

RD0
2

EJ , ~6.1!

whereEJ5JD0 is the Josephson energy,J@1 is the dimen-
sionless conductance, Eq.~2.11!, D0 is the BCS gap at zero
magnetic field andR is a radius of the single grain. Th
gradient expansion in Eq.~6.1! was done under the assum
tion that the magnetic flux through one grain is smaller th
the flux quantumf0.

In the conventional Ginzburg-Landau free energy the
efficient in front of the gradient term is proportional to th
square of the coherence lengthj. Therefore, using Eq.~6.1!
we can extract the macroscopic coherence lengthj. Recall-
ing that the free energy of a single grain isnVD2, whereV is
a volume of single grain, we obtain

j2;JR2~d/D0!. ~6.2!

If the conductanceJ is large enough the behavior of th
granulated superconductors is the same as in a bulk sa
with the effective coherence lengthj. Now we estimate the
critical magnetic fieldHc2

that destroys the superconducti

ity in the system asHc2
j2'f0. This field is different from

the field Hc . Using Eq.~3.17! we can compare these tw
fields. The result for the ratio of these two fields is

Hc

Hc2

'J
d

D0
AR

j0
. ~6.3!

Equation ~6.3! for Hc2
is valid providedHc2

!Hc , which

corresponds to the inequalityJ@(D0 /d)Aj0 /R. However,
we are interested in the opposite case when

1!J!~D0 /d!Aj0 /R. ~6.4!

This contradicts the assumption made and means that, in
region specified by Eq.~6.4!, the critical fieldHc2

is close to

the fieldHc and uHc2Hc2
u/Hc can be considered as a sma

parameter.
Now let us calculate the critical magnetic fieldHc2

more
rigorously taking into account the influence of the magne
field on the macroscopic motion. The magnetic field resu
in an additional phase factor exp@i(e/c)*A(r )dr # in the su-
perconducting fieldD i in Eq. ~3.12!. We assume that this
magnetic field is not far fromHc determined by Eqs.~3.5!
and ~3.17!. The field Hc is of orderf0 /Rj, which means
that, in the limit under considerationR!j, the magnetic flux
e
.

s-
n-
in

n

-

ple

he

c
s

through the elementary cell of the lattice of the granules
small. Therefore, we can expand the functio
exp@i(e/c)*A(r )dr # in A and write gradients instead of th
finite differences ofD i in Eq. ~3.12!. Essential frequencies
Vk are also small and the free-energy functional in suc
continuum approximation takes the form

F@D,D* #5
1

d (
Vk

F lnS E0~H !

D0
D1

uVku
E0~H !

1
4d2

3p
JS d

E0~H ! D S ¹2
2ie

c
AD 2G uDu2.

~6.5!

The critical magnetic fieldHc2
can be found writing the

propagator of the superconducting fluctuationK correspond-
ing to the free energy, Eq.~6.5!. Making Fourier transforma-
tion of the functionD in the eigenfunctions of the operato
entering Eq.~6.5! and calculating Gaussian integrals we o
tain for the propagatorKn(0,qz) in the spectral representa
tion at Vk50

Kn~0,qz!52n0
21F lnS E0~H !

D0
D1

4d2

3p
JS d

E0~H ! D
3S qz

214~n11/2!
H

f0
D G21

, ~6.6!

whereqz is a component of the quasimomentum parallel
the magnetic field andn50,1 . . . are thenumber of the
Landau levels. To calculate the critical magnetic fieldHc2

we should consider poles of the superconducting propaga
Taking the lowest Landau numbern50 and puttingqz50
we obtain the following equation determining the critic
field Hc2

lnS E0~Hc2
!

D0
D 1

8d2

3p
JS d

D0
DHc

f0
50. ~6.7!

Expanding the first term in Eq.~6.7! near Hc we find the
critical field Hc2

Hc2
5HcF12

40

p2
JS d

D0
DAR2

j0l G . ~6.8!

Equation~6.8! shows us that the critical fieldHc2
is close to

the field Hc so long as (Jd/D0)(R/j)!1, where j
;(j0l )1/2 is the coherence length in the superconduct
grains. Equation~3.14! and the assumption that the grains a
zerodimensional guarantee the fulfillment of this inequali
For the ballistic motion of electrons inside the grain~the
radius of the grainR is of the order of the mean-free path
R; l ) the critical fieldHc2

can be written in the form

Hc2Hc2

Hc
5

40

p2
JS d

D0
DAR

j0
!1. ~6.9!

Equation~6.8! is the main result of this section. Below th
magnetic fieldHc2

, one should add in Eq.~6.5! a term quar-
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tic in D, which gives a nonzero order parameterD. Thus, at
field H,Hc2

the granular system is in the superconduct
state.

In order to understand the behavior of the resistivity a
function of the magnetic fieldH in the regionHc2

,H,Hc

we can consider the quantity]/]H(ds/s0). We can use as
before Eq.~3.19! but now, calculating the integral, we shou
make the following replacement

E ~ . . . !
d3q

~2p!3
→ H

f0
E (

n50

`

~ . . . !
dqz

2p
,

whereqz is a component of the quasimomentum parallel
the magnetic field.

The correction to the DOS atT50 takes the form

dn~0!5
1

2p2n0

C2T (
Vk,0

S H

f0
D (

n50

` E Kn~ iVk ,qz!
dqz

~2p!
.

~6.10!

The main contribution to the correctiondn(0) in Eq. ~6.10!
comes from the term withn50. Using the fact thatds/s0
52dn/n0 , taking the first derivative with respect to th
magnetic field and finally, integrating over the frequencyV
and quasimomentumqz we obtain

]

]H S ds

s0
D5215Ap

24

1

Hc
S d

JD0
D 1/2S R2

j0l D
1/2S Hc2

H2Hc2

D 1/2

,

~6.11!

whereHc2
is given by Eq.~6.8!. We can see from Eq.~6.11!

that the value]/]H(ds/s0) diverges whenH approaches
Hc2

. Thus, the critical fieldHc2
is characterized by the infi

nite slope on the dependence of the resistivity on the m
netic field. This property might help to identify this field o
experimental curves.

VII. ZEEMAN SPLITTING

In our previous consideration we neglected interaction
tween the magnetic field and spins of the electrons. T
approximation is justified if the size of the grains is not ve
small. Then, the critical fieldHc

or destroying the supercon
ducting gap is smaller than the paramagnetic limitgmHc

Z

5D0 and the orbital mechanism dominates the magn
field effect on the superconductivity. However, the Zeem
splitting leading to the destruction of the superconduct
pairs can become important if one further decreases the
of the grains.

Let us discuss now the effect of Zeeman splitting. We c
rewrite Eq.~1.4! for the ratio of orbitalHc

or magnetic field to
the Zeeman magnetic field in the following form

Hc
or

Hc
Z

5S d

dc
D 1/3

, ~7.1!

wheredc'1/(nRc
3), Rc5j(p0l )21, andj5Aj0l . To under-

stand whether the Zeeman splitting is important for an
periment we can estimate the ratiodc /D0 and compare it
with the proper experimental result. We find easily
a

g-

-
is

ic
n
g
ize

n

-

dc

D0
5~p0l !A l

j0
, ~7.2!

which showsdc /D0 can be both smaller than (d/D0)exper.
and larger depending on the values ofl and j0. Using the
result fordc , Eq. ~7.2!, we can rewrite Eq.~7.1! as

Hc
or

Hc
Z

5S d

D0

R

l D 1/2

. ~7.3!

In the experiment,1 both the mechanisms are in princip
important. One can come to this conclusion using the f
that the Zeeman critical magnetic field isHc

Z'3.5 T and this
is not far from the peak in the resistivity at the fieldH
'2.5 T. Below, we consider the corrections to the DOS a
conductivity due to the Zeeman mechanism. We will see t
at temperatureT50 these corrections can be of the sam
order of magnitude as the correction due to orbital mec
nism.

Let us calculate first the critical magnetic fieldH0 de-
stroying the superconducting gap in a single grain taking i
account both the orbital and Zeeman mechanisms of the
struction. The Green function for the noninteracting ele
trons in this case is

G↑↓
(0)~ i«n ,p!5

1

i«n2j~p!6EZ/21~ i /2t!sgn~«n!
,

~7.4!

whereEZ5gmBH is the Zeeman energy. Including the inte
action between the magnetic field and electron spins we
tain the following form of the Cooperon:

C~ i«n ,2 i«n!52pn0@ u2«nu2 iEZsgn~«n!1E0~H !#21.
~7.5!

Repeating the calculations of Sec. III with the modifie
Cooperon, Eq.~7.5!, we find atT!Tc the new critical mag-
netic fieldH0

E 0
2~H0!1EZ

2~H0!5D0
2 . ~7.6!

In the limit of a very week Zeeman splitting, when the o
bital mechanism is more important, Eq.~7.6! reproduces the
previous result for the critical magnetic field Eq.~3.17!. In
the opposite limiting case, when the Zeeman mechan
plays the major role, we obtainEZ5D0. In the general case
when both the mechanisms of the destruction of the cond
tivity are important, one should solve Eq.~7.6! and the result
reads

H05HcS 2
1

2 S gmBHc

D0
D 2

1A1

4 S gmBHc

D0
D 4

11D 1/2

.

~7.7!

Using Eq.~3.17! for a critical fieldHc we can estimate the
ratio mBHc /D05(j0 /R)(p0R)21(p0l )21!1. If this param-
eter is small~the orbital mechanism is more important! the
critical field H0 is close to the fieldHc

H05HcS 12
1

4 S gmBHc

D0
D 2D . ~7.8!
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When Zeeman splitting is more important than orbi
mechanism then from Eq.~7.7! we obtaingmBH05D0. This
is the point of the absolute instability of the paramagne
state. AtgmBH,D0, the superconducting state is the on
stable one.

Let us calculate the correction to the DOS taking in
account both the Zeeman splitting and orbital mechanism
the suppression of superconductivity. Using Eqs.~7.4! and
~7.5! we obtain for the superconducting propagatorK

K~ iVk!52n0
21F1

2
lnS „E0~H !1uVku…21EZ

2

D0
2 D 1h~q!G21

.

~7.9!

In the regionh̃5(H2H0)/H0!1, whereH0 is given Eq.
~7.7!, expanding the logarithm in the superconducting pro
gator we obtain

K~ iVk!52n0
21S 2h̃1

uVku
D0

1h~q! D 21

. ~7.10!

Using Eqs.~3.19! and ~2.14! for the correction to the con
ductivity we obtain the same result as before, Eq.~3.20!, but
with the newh0. Eqs.~3.21!–~3.24! are correct for the gen
eral case.

In the limit of a strong magnetic fieldh̃@1 we can ne-
glect with logarithmic accuracy theV-dependence of super
conducting propagator in Eq.~7.9!. Using Eqs.~3.19!, ~7.5!,
and~2.14! we obtain for the correction to the conductivity
strong magnetic fields

dsDOS

s0
52

2

3 S d

EZ~H ! DarctanS EZ~H !

E0~H ! D
3 ln21S E 0

2~H !1EZ
2~H !

D0
2 D . ~7.11!

From Eq.~7.11! we can see that if the orbital mechanism
more important than the Zeeman one, that is ifEZ /E0!1,
we reproduce the previous result for the correction to
conductivity at strong magnetic field, Eq.~3.25!. If the Zee-
man mechanism is more importantEZ /E0@1, then we ob-
tain for the correction to the conductivity

dsDOS

s0
52

p

6 S d

EZ~H ! D ln21S EZ~H !

D0
D . ~7.12!

Equation~4.13! has the same structure as Eq.~3.25! but the
function E0(H) is replaced byEZ(H). This changes the
asymptotic behavior at strong magnetic fields beca
EZ(H);H in contrast toE0(H);H2. So, we conclude from
Eq. ~7.12! that dsDOS/s0;H21.

VIII. DIAMAGNETIC SUSCEPTIBILITY
OF GRANULAR SUPERCONDUCTORS

In previous sections we have demonstrated that the re
tivity of the granulated superconductors grows when
proaching the superconducting state from the region of v
strong magnetic fields. Resistivity is a quantity studied
perimentally most often. Another quantity accessible exp
mentally is the magnetic susceptibility. Can one observe a
l

c

of

-

e

e

is-
-

ry
-
i-
y-

thing unusual measuring the dependence of the susceptib
as a function of the magnetic field?

The diamagnetic susceptibility of a bulk sample above
critical temperatureTc in a weak magnetic field has bee
studied long ago.18 In this section, we want to present resu
for the diamagnetic susceptibilityx of the granular supercon
ductors in the opposite limit of strong magnetic fields a
low temperatures. As will be shown below, the fluctuatio
of virtual Cooper pairs always increase the absolute valu
the diamagnetic susceptibilityx of the granulated system. In
contrast to the conductivity, the diamagnetic susceptibility
determined mainly by currents inside the granules and
finite even in isolated granules. Therefore, the fact that
virtual Cooper pairs cannot move from grain to grain, whi
is crucial for the conductivity, is not very important for th
magnetic susceptibility and the latter does not show a n
monotonic behavior characteristic for the resistivity.

To derive explicit formulas, let us consider first the lim
of very low temperatureT!Tc and strong magnetic field
H2Hc!Hc . The effective free-energy functiona
F@D,D* ,H# in the quadratic approximation in the order p
rameterD has been already obtained for this case and
given by Eqs.~3.8!, ~3.11!, and~3.13!. The diamagnetic sus
ceptibility x can be calculated using the standard relation

x52~1/V!^]2F/]H2&q, ~8.1!

where the free-energyF has the form

F52T lnS E dD dD* exp@2bFe f f~D,D* ,H !# D ,

~8.2!

where, as before,V is the volume of a single grain and th
averaginĝ . . . &q is specified in Eq.~3.20!. Calculating the
derivative in Eq.~8.1! and using Eqs.~3.8!, ~3.11!, ~3.13!,
and ~8.2! we find for the diamagnetic susceptibility

x52K 1

V
T(

Vk
S H2Hc1

Hc

2

uVku
D0

1
8

3p

Hc

2
JS d

D0
D

3(
i 51

3

~12cosqid!D 22L
q

. ~8.3!

At very low temperatureT/D0!h5(H2Hc)/Hc , we can
replace the sum over frequencyVk by an integral. As a resul
we obtain

x52
3

5
xLS l

RD K S h1
4

3p
JS d

D0
D(

i 51

3

~12cosqid!D 21L
q

,

~8.4!

where xL5e2v0/12p2\c2 is the Landau diamagnetic sus
ceptibility. In the limith@J(d/D0) tunneling between grains
is not important and the diamagnetic susceptibility of t
granulated system is equal to the susceptibility of a sin
grain. If the motion of electrons inside a grain is more or le
ballistic (l'R) the result takes the form:

x~H !52
p

10
xLS Hc

H2Hc
D'21027S Hc

H2Hc
D . ~8.5!
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From Eq.~8.5!, we can see that the fluctuation-induced d
magnetic susceptibilityx can appreciably exceed the valu
xL due to the Landau diamagnetism. In order to probe
diamagnetism due to the superconducting fluctuations
perimentally one can measure the field-dependent par
susceptibility and compare it with Eq.~8.5!.

In the limit h!T/D0, it is sufficient to take into accoun
only one term withVk50 in the sum in Eq.~8.3!. Then, the
result for the diamagnetic susceptibilityx can be written in
the form:

x52
p2

5
xLS l

RD S T

D0
D K S h1

4

3p
JS d

D0
D

3(
i 51

3

~12cosqid!D 22L
q

. ~8.6!

In the limit when h@J(d/D0) and l'R, Eq. ~8.6! can be
simplified and one comes to the following expression:

x~H !52
p3

30
xL

T

D0
S Hc

H2Hc
D 2

. ~8.7!

Equations~8.6! and ~8.7! show that the diamagnetic susce
tibility x diverges in a power law when magnetic fieldH is
close to the fieldHc but the powers are different for the tw
different regions of the fields.

At zero temperatureT50, as we can see directly from
Eq. ~8.4!, the susceptibilityx remains finite even in the limi
H→Hc . However, as we have discussed in Sec. VI, the fi
Hc does not correspond to any phase transition. The tra
tion to the superconductivity occurs at a lower fieldHc2

. So,

it is interesting to consider the critical behavior nearHc2
.

Proper calculations of the diamagnetic susceptibility
the regionHc2

,H,Hc and at temperatureT!D0 can be
carried out without any difficulty. The free-energy function
is given in this case by Eq.~6.5! and we obtain for the dia
magnetic susceptibilityx

x52T(
Vk

Hc

f0
E dqz

2p

3S H2Hc2
1

Hc

2

uVku
D0

1Hc

2d2

3p

Jd

D0
qz

2D 22

. ~8.8!

In the limit T→0 we replace the summation overVk by
integration. Integrating over the frequency and the quasim
mentumqz we obtain

x52
p3/2

A20
xLS D0

Jd D 1/2S l

j0
D 1/2S Hc2

H2Hc2

D 1/2

. ~8.9!

We see from Eq.~8.9! that the diamagnetic susceptibilityx
diverges in a power law whenH→Hc2

but the power 1/2 is
different from those in Eqs.~8.5!, ~8.7! describing the behav
ior of the conductivity in the regionH.Hc .

The case of temperatures close to the critical tempera
T2Tc!Tc and weak magnetic fieldsH!Hc has been con-
sidered for bulk samples long ago.18 So, we present here th
result for the diamagnetic susceptibilityx of the granulated
superconductors only in the limit (T2Tc)/Tc and l'R
-

e
x-
of

d
si-

l

o-

re

x'2xL

Tc

Jd
. ~8.10!

Equation~8.10! shows that the diamagnetic susceptibility
the granular superconductors nearTc is still larger than the
magnitude of the Landau diamagnetism.

In all previous considerations we did not take into acco
the spin paramagnetism. When the size of the grains is la
R@Rc[j(p0l )21, this effect is small in comparison with
the diamagnetism.

IX. CORRECTION TO CONDUCTIVITY AT zTÀTcz™Tc

The effect of superconducting fluctuations on DOS of is
tropic bulk samples has been considered in the limitT2Tc
!Tc andH!Hc long ago.9 The AL and MT contributions to
the conductivity were considered in the same limit for la
ered superconductors in Ref. 10. Here we want to ext
these results to the case of the granulated superconduc
Experimentally, only a small increase of the resistiv
dr/r0;0.0320.04 has been observed in this region.1 The
reason for the reduction of the effect in the vicinity of th
critical temperatureTc is that the AL and MT corrections ar
not small in comparison with the correction from the DO
Repeating the calculations of Secs. III and IV forT2Tc
!Tc andH50 we write the contribution from the DOS an
the AL correction as

dsDOS

s0
52

7z~3!

2p2

d

Tc K 1

T2Tc

Tc
1h2~q!L

q

, ~9.1!

sAL

s0
50.17

t2

Tc
2 (

i 51

3 K sin2 qid

S T2Tc

Tc
1h2~q! D 3L

q

, ~9.2!

whereh2(q)[1/3( i 51
3 J(d/Tc)(12cosqid).

To calculate the MT correction, Fig. 2~b!, we should
renormalize the impurity vertices taking into account the tu
neling term. This is necessary, because in the anomalous
contribution strongly diverges in low dimension if the ma
netic field is weak. So, the tunnelling from grain to grain c
provide convergence of the integrals giving the anomal
MT contribution. The Dyson equation for the CooperonC
can be written as

C5C01C0SC, ~9.3!

where all diagrams for the self-energyS are shown in Fig. 9.
The functionC0 in Eq. ~9.3! is the Cooperon in a single
grain.

Solving Eq.~9.3! we see that the proper propagator for t
anomalous part of the MT correction has an additional d
fusion pole in comparison with the regular part. Therefore

FIG. 9. Diagrams contributing to the self-energy.
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the limit Tc@h2(q), the anomalous MT contribution to th
conductivity sMT

(an) is larger than the regular onesMT
(reg) and

their ratio is proportional toTc /h2(q). At the same time, the
anomalous contributionsMT

(an) is positive, which means tha
both the AL and MT corrections give a positive contributio
to the conductivity. Explicit formulas for the regular an
anomalous parts of the conductivity can be written as

sMT
(reg)

s0
52

7z~3!

48p2

d

Tc
(
i 51

3 K cosqid

S T2Tc

Tc
1h2~q! D L

q
~9.4!

sMT
(an)

s0
50.06

d

Tc
(
i 51

3 K cosqid

h2~q!S T2Tc

Tc
1h2~q! D L

q

.

~9.5!

Equations~2.8!, ~9.1!, ~9.2!, ~9.4!, and ~9.5! describe com-
pletely the behavior of the conductivity nearTc . We see that
the termssAL andsMT

(an) giving positive contributions to the
conductivity diverge in the limitT→Tc , whereas the terms
sDOS and sMT

(reg) reducing the conductivity converge in th
limit. Therefore, sufficiently close toTc , the superconduct
ing fluctuations increase the conductivity. A weak magne
field shifts the critical temperatureTc and one can describ
also the dependence of the conductivity on the magn
field. Apparently, far from the transition point one can obta
an increase of the resistivity due to the superconducting fl
tuations and thus, a peak in the resistivity. However, t
peak should be small, which correlates with the experime
observation nearTc .1 It is only the region of low tempera
tures considered in the previous sections where a cons
able negative magnetoresistance is possible.

X. EXPERIMENTS ON AL GRAINS

The theoretical study presented in this paper was m
vated by the experimental work.1 Let us compare the avail
able experimental results with our theory. In the article1 three
samples were studied. We concentrate our attention on
samples 1 and 2, Fig. 4, of that work.

We analyze the case of very low temperaturesT!Tc and
magnetic fieldsH.Hc , whereTc'1.6 K is the critical tem-
perature for Al grains studied in the experiment andHc is the
critical magnetic field that suppresses the superconduct
in a single grain, Eqs.~3.5! and ~3.17!. At temperatureT
.0.3 K and magnetic fieldH.4 T these samples show
large negative magnetoresistance. The resistivity of
sample 2 has the maximum atH52.5 T and the value of this
peak is more than twice as large as the resistivity in
normal state~that is, atH@Hc , when all superconducting
fluctuations are completely suppressed!. A negative magne-
toresistance due to weak localization~WL! effects is also not
unusual in disordered metals and, to describe the experim
tal data, its value should be estimated as well as the effec
the superconducting fluctuations discussed in the prev
chapters.

The total conductivity of the granular metal under cons
eration including effects of WL and superconducting fluctu
c
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tions can be written in the form:

s5s01dsDOS1sAL1sMT1dsWL . ~10.1!

At low temperaturesT!Tc , the contributiondsDOS origi-
nating from the reduction of DOS due to the formation of t
virtual Cooper pairs is larger than the contributionssAL and
sMT since the latter vanish in the limitT→0. So, let us
concentrate on estimating the contributionsdsDOS and
dsWL .

It is clear that the sample 1 undergoes a metal-insula
transition, which results in the complete suppression of
superconductivity. The parameters of the sample 2 that i
the main interest for us are not far from those of the sam
1. Using Eq.~2.11!, the valueR560 Å for the radius of the
grains, and the value of the resistivity r0
'1.931022 V cm we findJ'0.1.

The small value ofJ is not in the contradiction with the
possibility for the system to be in the metallic phase. T
Anderson metal-insulator transition in granular metals w
considered using an effective medium approximation.19,13

The critical pointJc in the present notations is given for th
3D cubic lattice by the equation@Eq. ~12.67! of the book
Ref. 13#

S 4Jc

p D 1/2

lnS 1

4Jc
D5

1

5
. ~10.2!

We can see from Eq.~10.2! that the critical value ofJc
51023 is really very small. Therefore, we believe that th
metal-insulator transition observed in the sample 1 is no
conventional Anderson transition. Apparently it occurs d
to formation of the superconducting gap. Then, the transit
can be described following the scenario of Ref. 5.

Why can one be sure that the experimentally weak loc
ization corrections are small? A similar effect of the negat
magnetoresistance has been observed in Ref. 2 and the
thors of that work attributed it to the weak localization e
fects. Could it be that this effect is really due to the we
localization corrections and the present theory is not relev
to the experiment?

However, it is not difficult to show that in the case und
consideration the weak localization corrections originat
from a contribution of Cooperons are totally suppressed
the magnetic field. This is not in contradiction with the fa
that the system is close to the metal-insulator transition
cause strong localization is possible even if the Cooper
are absent.

To calculate the contributionsWL coming from the Coop-
erons we extended the standard derivation of the correcti17

to the case of the granulated metal. Using approximati
developed previously one can obtain without difficulties t
following expression for a three-dimensional cubic lattice
the grains

dsWL52
16

3
e2Jdd2(

i 51

3 E
0

2p/dCq~0!

2pn0
cosqid

d3q

~2p!3
,

~10.3!

where the functionCq(0) is the Cooperon taken at the fre
quencyv50 and quasimomentumq.
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What remains to do is to take the explicit expression
the Cooperon and compute the integral over the quasi
mentumq. However, if we use Eq.~3.6! derived previously
we get identically zero. This is because Eq.~3.6! was derived
without taking into account tunneling. We can modify E
~3.6! writing as in Sec. IX the Dyson equation, Eq.~9.3!,
with S represented in Fig. 9. As a result, we obtain

Cq~ ivn!

52pn0S uvnu1
16

p
Jd(

i 51

3

~12cosqid!1E0~H !D 21

.

~10.4!

In the limit under consideration, Eq.~3.14!, the second term
in the brackets in Eq.~10.4! is much smaller than the third
one and one can expand the functionCq( ivn), considering
the second term as a perturbation. Restricting ourselve
the first order, substituting the result into Eq.~10.3! and us-
ing Eq. ~2.10! we write the final result for the correctio
dsWL in the form

dsWL

s0
52

8J

p S d

E0~H ! D
2

. ~10.5!

Equation~10.5! shows that the weak localization correctio
in the strong magnetic fields considered here is always sm
In contrast, the correction to the conductivity coming fro
the DOS

dsDOS

s0
52

1

3

d

D0
lnS D0

Jd D ~10.6!

obtained in Sec. III forT50 can be considerably larger. Th
ratio of these two corrections takes atH;Hc the form

dsWL

dsDOS
5

24

p S Jd

D0
D ln21S D0

Jd D , ~10.7!

which must be small in the limitJ!D0 /d.
Now, let us estimate the correctionsdsDOS and dsWL

using the parameters of the experiment.1 For the typical di-
ameter 120620 Å of Al grains studied in Ref. 1 the mea
level spacingd is approximatelyd'1 K. Using the critical
temperatureTc.1.6 K for Al we obtain for the BCS gap in
a single grain the following resultD0'1.8Tc'3 K. Substi-
tuting the extracted values of the parameters into Eq.~10.6!
we can estimate the maximal increase of the resistivity. A
result, we obtain (dr/r0)max'0.4, which is somewha
smaller but not far from the value (dr/r)exp'1 observed
experimentally.

Although our theory gives smaller values of (dr/r0)max
than the experimental ones, the discrepancy cannot be a
uted to the weak localization effects. Using the experimen
values ofJ, d, andD0 we find from Eq.~10.7! that dsWL is
ten times smaller thandsDOS. The value of the correction
dsWL /s0, Eq. ~10.5!, near Hc equals 2.831022. Strictly
speaking, all calculations have been done under the assu
tion of a largeJ@1, while experimentally this parameter
not large. This means that our theory does not take into
count all effects that might be relevant for the experimen1

Possibly, at such small values ofJ as one has in the exper
r
o-

by

ll.

a

ib-
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c-
.

ment charging effects become important reducing additi
ally the density of states. However, study of the effects of
Coulomb interaction is beyond the scope of the present
per.

We see from Eq.~3.25! that, if the orbital mechanism o
the destruction of the superconductivity is more importa
than the Zeeman one, then in the region of ultra high m
netic fieldsH@Hc the correction to the resistivity decays a
dr/r0;H22. In the opposite limiting case, when the Ze
man splitting is more important, we see from Eq.~7.12! that
dr/r0;H21. This means that the correction to the classi
conductivity is still sensitive to the magnetic field far awa
from Hc . As concerns the weak localization correctio
dsWL given by Eq.~10.5!, it decays at large magnetic field
asH24 and is always small.

The dependence of the conductivitys on the magnetic
field H is completely different at temperaturesuT2Tcu!Tc
because in this region all types of the corrections conside
in the previous sections can play a role depending on
value of the magnetic field. At low magnetic fields th
Aslamazov-Larkin dsAL and anomalous Maki-Thompso
dsMT

(an) corrections give the main contribution because th
are most divergent near the critical point. At the same tim
as the magnetic field grows they decay faster than the
rectiondsDOS originating from the reduction of the densit
of states. At a certain magnetic fieldH* all the corrections
can become of the same order of magnitude. In this regio
the fields, one can expect a negative magnetoresistance
though it cannot be large. Comparing all the types of
corrections with each other we estimate the character
magnetic field asH* ;HcJ

21(D0 /d). The theory presented
here was developed under the assumptionJ21(D0 /d)@1
and, hence, the characteristic field is very large,H* @Hc .

Experimentally, the peak in the resistivity at temperatu
close to Tc can be estimated asdr/r0;3.5 and is much
smaller than the peak at low temperatures. This correlate
least qualitatively, with our results.

XI. CONCLUSION

In this paper we presented a detailed theory of the n
mechanism of the negative magnetoresistance in granula
perconductors in a strong magnetic field suggested rece6

to explain the experiment.1 We considered the limit of a
large conductance, thus neglecting localization effects. It
been demonstrated that even if the superconducting ga
each granule is destroyed by the magnetic field the virt
Cooper pairs can persist up to extremely strong magn
fields. However, the contribution of the Cooper pairs
transport is proportional at low temperatures toT2 and van-
ishes in the limitT→0. In contrast, they reduce the on
particle density of states in the grains even atT50, thus
diminishing the macroscopic conductivity. The conductiv
can reach its classical value only in extremely strong m
netic fields when all the virtual Cooper pairs do not ex
anymore. This leads to the negative magnetoresistance.

We analyze both the orbital and Zeeman mechanism
the destruction of superconductivity as well as the limits
low temperatures and temperatures close to the critical t
peratureTc . The results demonstrate that, at low tempe
turesT!Tc , there must be a pronounced peak in the dep
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dence of the resistivity on the magnetic field. This pe
should be much smaller in the region of temperaturesT
!Tc because, in this region the superconducting fluctuati
can contribute to transport, thus diminishing the role of
reduction of the density of states. We were able also to c
sider different regions of the magnetic fields.

Qualitatively, the results are summarized in Fig. 1
where typical curves for the low temperaturesT!Tc and
temperatures close toTc are represented. Both the function
reach asymptotically the value of the classical resistivityR0
only at extremely strong magnetic fields. The resistivityR at
low temperatures grows monotonously when decreasing
magnetic field. The function does not have any singularity
the magnetic fieldHc destroying the superconducting gapD
in a single grain. The real transition into the superconduct
state occurs at a lower fieldHc2

. This field, in the region of

parameters involved, is close to the fieldHc . The resistivity
R(H) remains finite asH→Hc2

but its derivative diverges

resulting in the infinite slope atH5Hc2
. The dependence o

FIG. 10. Resistivity of the granulated superconductors as a fu
tion of the magnetic field at fixed temperatures in different regim
d-

v.

,

,

,

k

s
e
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,

he
t

g

the resistivityR on the magnetic field at temperatures nearTc
is more complicated. Already far from the fieldHc the su-
perconducting fluctuations start contributing to transport a
the resistivity goes down when decreasing the magnetic fi
A negative magnetoresistance is possible in this region o
at magnetic fieldsH* , that can be much larger than the fie
Hc .

The theory developed gives a good description of exist
experiments. Although the experimental systems are clos
the metal-insulator transition and localization effects as w
as Coulomb interaction can play an essential role, our the
where all these effects were neglected, gives reasonable
ues of physical quantities and allows us to reproduce
main features of experimental curves.

It was important for our calculations that the dimensio
less conductanceJ@1 of the sample was limited also from
above, such that the inequalityJ!D0 /d was fulfilled. This
means that the granulated structure of the supercondu
was essential for us. However, the fact that the contribut
of the superconducting fluctuations vanishes in the limitT
→0 ~AL and MT corrections are proportional toT2) seems
to be rather general and not restricted by this inequal
Apparently, the negative magnetoresistance above the c
cal magnetic field persists and can be possible even in c
ventional bulk superconductors. We leave the region of la
conductancesJ*D0 /d for a future study.
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