
PHYSICAL REVIEW B 1 JANUARY 2000-IIVOLUME 61, NUMBER 2
Parametric dislocation dynamics: A thermodynamics-based approach to investigations
of mesoscopic plastic deformation
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~Received 16 July 1999!

A thermodynamics-based variational method is developed to establish the equations of motion for three-
dimensional~3D! interacting dislocation loops. The approach is appropriate for investigations of plastic defor-
mation at the mesoscopic scale by direct numerical simulations. A fast sum technique for determination of
elastic field variables of dislocation ensembles is utilized to calculate forces acting on generalized coordinates
of arbitrarily curved loop segments. Each dislocation segment is represented by a parametric space curve of
specified shape functions and associated degrees of freedom. Kinetic equations for the time evolution of
generalized coordinates are derived for general 3D climb/glide motion of curved dislocation loops. It is shown
that the evolution equations for the position (P), tangent (T), and normal (N) vectors at segment nodes are
sufficient to describe general 3D dislocation motion. When crystal structure constraints are invoked, only two
degrees of freedom per node are adequate for constrained glide motion. A selected number of applications are
given for: ~1! adaptive node generation on interacting segments,~2! variable time-step determination for
integration of the equations of motion,~3! dislocation generation by the Frank-Read mechanism in fcc, bcc,
and dc crystals,~4! loop-loop deformation and interaction, and~5! formation of dislocation junctions.
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I. INTRODUCTION

A fundamental description of plastic deformation is no
actively pursued, where dislocations play a key role as b
elements of metal plasticity. Although continuum plastic
models are extensively used in engineering practice, t
validity is limited to the underlying database. The reliabili
of continuum plasticity descriptions is dependent on the
curacy of experimental data. Under complex loading sit
tions, however, the database is often hard to establish. M
over, the lack of a characteristic length scale in continu
plasticity makes it difficult to predict the occurance of cri
cal localized deformation zones. Although homogenizat
methods have played a significant role in determining
elastic properties of new materials from their constitue
~e.g., composite materials!, the same methods have failed
describe plasticity. It is widely appreciated that plastic str
is fundamentally heterogenous, displaying high strains c
centrated in small material volumes, with virtually und
formed regions in between. Experimental observations c
sistently show that plastic deformation is interna
heterogeneous at a number of length scales.1–4 Depending on
the deformation mode, heterogeneous dislocation struct
appear with definitive wavelengths. It is common to obse
persistent slip bands, shear bands, dislocation pile ups,
location cells, and subgrains. However, a satisfactory
scription of realistic dislocation patterning and strain loc
ization has been rather elusive. Attempts directed at
question have been based on statistical mechanics5–10

reaction-diffusion dynamics,11–13 and the theory of phas
transitions.14 Much of the efforts represented by Refs. 5–
have aimed at clarifying the fundamental origins of inhom
geneous plastic deformation.

A relatively recent approach to investigation of the fu
damental nature of plastic deformation is based on di
PRB 610163-1829/2000/61~2!/913~15!/$15.00
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numerical simulation of the interaction and motion of disl
cations. This approach, which is commonly known as dis
cation dynamics ~DD!, was first introduced for two-
dimensional ~2D! straight, infinitely long dislocation
distributions,15–27 and then later for complex 3D
microstructure.28–44 In DD simulations of plastic deforma
tion, the computational effort per time step is proportional
the square of the number of interacting segments, becaus
the long-range stress field associated with dislocation lin
The computational requirements for 3D simulations of pl
tic deformation of even single crystals are thus very ch
lenging. It is therefore advantageous to reduce the total n
ber of equations of motion during such calculation
Pioneering 3D DD simulations of plasticity using straig
segments are based on existing analytical solutions of
elastic field of pure screw and edge segments,28–38 or seg-
ments of mixed character.39–43 Zbib, Rhee, and Hirth43 de-
termined that the length of each straight segment is roug
limited to ;502200 units of Burgers vector. Longer seg
ments may have substantial force variations, thus limiting
usefulness of one single equation of motion for the en
segment. Singular forces and stresses arise at sharp inte
tion corners of straight segments, which result in diverge
of the average force over the straight segment as its leng
decreased. When the dislocation loop is discretized to o
screw or edge components on a crystallographic lattice,28–38

the accuracy of strong dislocation interactions is comp
mised because line curvatures are crudely calculated. In
dition, motion of dislocation segments on a fixed lattice p
duces inherent limitations to the resolution of space and t
events. Recently, Schwartz40–42 developed an adaptive
method to reduce the segment size when dislocation inte
tions become strong. Using a modified form of the Brow
formula45 for the self-force on a segment, the field dive
gence problem for very short segments was circumven
For closely interacting dislocations, substantial curvature
913 ©2000 The American Physical Society
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914 PRB 61N. M. GHONIEM, S.-H. TONG, AND L. Z. SUN
reconfiguration of dislocations occur during the formation
a junction, dipole, or other configurations.42 However, the
number of straight segments required to capture these
cesses is very large, because the segment size has to b
duced to a few Burgers vectors. Most of these difficult
arise from the linear segment approximation, thedifferential
treatment of the equations of motion, and the accuracy
representing the self-force.

Dislocation loops in DD computer simulations are trea
as dynamical systems, which can be described by the
dependence of specified coordinates. Obviously, if one
tempts to solve the equations of dynamics for each a
within and surrounding the dislocation core, the number
equations is prohibitively large. On the other hand, if o
knows that certain modes of motion for groups of atoms
closely linked, many equations can beadiabatically elimi-
nated, as is now conventional in the treatment of dynam
systems. Thus, instead of developing equations for the
tion of each atom, one can find a much smaller set of g
metric generalized coordinates, which would adequately de
scribe the dynamical behavior of an entire dislocation lo
In Lagrangian descriptions, a number of generalized coo
nates,qr , is selected, where the subscriptr represents a spe
cific degree of freedom~DOF! for the dynamical system. In a
numerical computer simulation, however, the size of the s
tem depends on availableNDF . Within the context of DD,
one would expect thatNDF is relatively small in loops, which
conform to specific crystallographic or mobility constrain
while NDF can be somewhat large in situations where stro
interactions, cross-slip, or similar processes take place
general, it is not of interest to follow every wiggle and bum
on dislocation lines, unless such details develop into f
fledged instabilities. For specific applications, however,
intend to reduceNDF as much as reasonable for the descr
tion of the physical situation at hand.

Our plan here is to describe the equations of motion
generalized coordinates in much the same way as in
grangian mechanics. We will develop anintegral equation of
motion for each curved segment within the loop, regardl
of dislocation loop shape complexity. For concreteness,
focus the current approach on dislocation line representa
by parametric dislocation segments, similar to the finite e
ment method. Thus, the equations of motion for the trans
of atoms within the dislocation core should be consist
with the thermodynamics of irreversibility. A challengin
prospect in such a description is the enormous topolog
complexity of materials containing dislocations. Dislocati
lines assume complex shapes, particularly during heavy
formation and at high temperatures, where they execute t
3D motion as a result of combined glide and climb forc
These dislocations can be highly curved because of t
strong mutual interactions, externally applied stress fields
well as other thermodynamic forces. It is apparent that wh
ever large curvature variations are expected, the accurac
computing the dynamic shape of dislocation loops becom
critical.

The paper is organized as follows. First, irreversible th
modynamics of dislocation motion is presented in Sec. II
which we discuss energy components and entropy prod
tion during loop motion. This leads to an integral form of t
variation in Gibbs energy in Sec. III. Aweak form of a
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variational procedure is pursued to formulate the equati
of motion for the degrees of freedom based on the Gale
approach. Computationalprotocols, which are used to handle
close-range interactions are then discussed in Sec. IV.
help illustrate the computational procedure, a simple
ample is also given. Applications of the present method
dislocation motion under physical constraints, and to sev
problems of loop-loop interaction and dislocation generat
in fcc, bcc, and diamond cubic~dc! Si crystals are given in
Sec. V. Finally, conclusions and discussions follow in S
VI.

II. IRREVERSIBLE THERMODYNAMICS
OF DISLOCATION MOTION

Consider a body in thermodynamic equilibrium, volum
V, and its boundaryS, containing a dislocation loop in an
initial position~1!, as shown in Fig. 1. Under the influence
external mechanical forces (Fe), and thermodynamic inter-
nal forces (Fi), the dislocation loop will undergo a transi
tion from the initial state to a new one designated as~2!.
During this transition of states, energy will be exchang
with the elastic medium, as given by the first law of therm
dynamics:

dUt1dEt5dQt1dCt1dWt, ~2.1!

wheredUt is the change in internal energy,dEt the change
in kinetic energy,dQt the change in heat energy,dCt the
change in chemical energy by atomic diffusion, anddWt the
change in its mechanical energy. The left-hand side of
~2.1! represents the total change in the energy of the bo
We will ignore here changes in kinetic energy, and rest
the applications of the present model to dislocation spe
less than approximately half of the transverse sou
speed.46–48

Now the total internal energy can be written as a volu
integral:dUt5*VdUdV, wheredU is the specific~per unit
volume! change of the internal energy. The mechani
power~commonly known as the rate of Peach-Koehler wo!
is composed of two parts:~1! change in the elastic energ
stored in the medium upon loop motion under the influen

FIG. 1. Representation of loop motion in an infinitesimal tra
sition, illustrating thermodynamic variables.
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PRB 61 915PARAMETRIC DISLOCATION DYNAMICS: A . . .
of its own stress. This is precisely the change in the lo
self-energy within a time intervaldt, ~2! the rate of work
done on moving the loop as a result of the action of exter
and internal stresses, excluding the stress contribution o
loop itself. ThusdWt5*Vs ikde ikdV. The change in the to
tal chemical energy can be written as a volume integra
the chemical potentialm i , over the atomic concentratio
changedni . This is negative by convention for mass tran
port out of the volume. Additionally, if loop motion produce
lattice defects~e.g., jogs and vacancies!, chemical energy is
deposited. ThusdCt5*V(dPd2( im idni)dV. Here,dPd is
the specific energy change associated with defect produc
Finally, the net change in heat is composed of two parts:~1!
heat energy (dH* ) generated by the loop as a result
atomic damping mechanisms~e.g., phonon and electro
damping!, and ~2! heat transported across the boundary
the external reservoir, which is negative by conventi
Hence, we have:dQt5*VdH* dV2*SQ•dS. HereQ is the
outgoing heat flux at the boundary. Using the divergen
theorem for boundary integrals, we obtain

E
V
F ~dU2dH* 2dPd!1S Qk,k1(

i
m idni2s ikde ikD GdV

50. ~2.2!

We will denote the enthalpy changedH5dH* 1dPd , as
the energy dissipated in defect generation and as heat.
noted that in the special case where there is no heat or m
transport ~i.e., Qi ,i5dni5dPd50), no loop motion~i.e.,
dWPK50), and under a hydrostatic stress field~i.e., s ik
52Pd ik), we get s ikde ik52Pd ikde ik52Pde i i 5
2PdV, for a unit initial volume. Thus, we recover the fa
miliar relationship between enthalpy and internal ene
dU5dH2PdV. For an isothermal process, the Gibbs e
ergy change is given bydG5dH2TdS. Thus,

dGt5E
V
F ~dU2TdS!1S Qi ,i1(

i
m idni2s ikde ikD GdV.

~2.3!

The Clausius-Duhem statement of the second law of th
modynamics dictates that loop motion must increase the t
entropy of the body and its surroundings.49,50 Accordingly,
we construct the following entropy production inequality f
the solid:

dF t5dSt2B2E
S
J•dS>0, ~2.4!

wheredF t[*VFdV is the totalentropy productionduring
dt, dSt the total change in entropy,b the local entropy
sourceper unit volume withB[*VbdV, andJ theentropy
influx due to heat input across the boundaryS. Utilizing the
divergence theorem again in Eq.~2.4!, we obtain the follow-
ing inequality per unit volume:

F5dS2b2Jk,k>0. ~2.5!

Now, the entropy flux crossing the boundary isJ5Q/T, and
the flux divergence is given by
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Jk,k5S Qk

T D
,k

5
1

T
Qk~ ln T! ,k2

1

T
Qk,k , ~2.6!

while the local entropy source is given by

B5E
V

dH

T
5E

V

1

T FdU1Qk,k2s ikde ik1(
i

m idni GdV.

~2.7!

Substituting Eqs.~2.6! and~2.7! into Eq. ~2.4!, we obtain

E
V
H ~dU2TdS!1Qk~ ln T! ,k2s ikde ik1(

i
m idni J dV

<0. ~2.8!

Comparing the entropy production inequality~2.8! with Eq.
~2.3!, we can immediately see that a consequence of irrev
ibility ~i.e., entropy production! is a decreasein Gibbs free
energy. Following arguments similar to Erringen,49 we write
the internal energy in terms of entropy variation as

dGt5E
V
F S ]U

]S
2TD dS1Qk~ ln T! ,k2s ikde ik

1(
i

m idni GdV <0. ~2.9!

Since the inequality must be valid for all variations ofdS, its
coefficient must vanish.49,50 Thus,

dGt5E
V
FQk~ lnT! ,k2s ikde ik1(

i
m idni GdV <0.

~2.10!

Under conditions where heat generation during dislo
tion motion is significant~e.g., high-speed deformation!, ad-
ditional equations must be solved for coupled point def
and heat conduction. Thus, equations for point-defect con
vation, as well as generalized forms of Fick’s and Four
laws must be added. These are expressed in the followin

C,t
g5Gg1Jk,k

g , ~2.11!

Jk
g52Dik

g C,i2DikS Q* C

kT2 DT,i , ~2.12!

Qa,t5Q-2k ikT,i2Q* DiaC,i , ~2.13!

whereGg is the specific defect production rate,k ia is the
thermal conductivity tensor,Dik

g the diffusion tensor of de-
fect g, Q* the heat of transport,Q- is the specific heat
generation rate from plastic work, andQk,t the rate of change
of the thermal energy.

We treat here the special case where thermal effects
small @i.e., the first term in Eq.~2.10! is ignored#. We also
consider climb motion to result from point defect absorpti
@i.e., the third term in Eq.~2.10! is summed over only vacan
cies and interstitials#. In Eq. ~2.10!, the volume integrals of
the elastic term and the chemical term~osmotic! can be con-
verted to line integrals over the dislocation loop. The str
tensor acting on any point is decomposed into a contribu
resulting from the loop itself~i.e., self-stresss ik

(s)), and a
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916 PRB 61N. M. GHONIEM, S.-H. TONG, AND L. Z. SUN
contribution resulting from other dislocations, defec
Peierls stress, and the applied stress field~i.e., external stress
s ik

(e)). Thus, when the stress tensor in Eq.~2.10! is written as
s ik5s ik

(s)1s ik
(e) , the elastic energy contributes two terms

Gibbs energy, while the chemical energy results in one
ditional term. We outline in the following how these thre
contributions can be converted to line integrals over the lo

Now consider an infinitesimal variation in the position
a dislocation loop, depicted by the motion of the segme
ø(AB,BC,CD, . . . ) in atime intervaldt. During this mo-
tion, the dislocation line length has changed fromL to L
1DL. The dislocation line vector is denoted bys5tusu,
wheret is a unit tangent vector. The change in position
atoms on the dislocation line is described by the vectordr .
For the change in the amount of work done on the dislo
tion loop during its transition from state~1! to state~2! in
Fig. 1 above, we assume that the stress field is unifor
acting on every surface elementdA5b3ds. The associated
element of virtual force is:dF5S•dA. During loop motion
from state~1! to state~2!, the variation in this Peach-Koehle
work51 obtained by integration along the pathG is given by

E
V

@s ikde ik# (e)dV5dWPK5 R
G
dF•dr

5 R
G
~b3ds•S!•dr

5 R
G
~b•S3t!•dr udsu

5 R
G
~P i jks jmbmtkdr i !udsu.

~2.14!

Ghoniem and Sun52–54 showed that the stress tensor of
loop ensemble can be written as a fast numerical sum, g
by

s i j 5
m

4p (
g51

Nloop

(
b51

Ns

(
a51

Qmax

bnwaF1

2
R,mpp~P jmnr i ,u1P imnr j ,u!

1
1

12n
Pkmn~R,i jm2d i j R,ppm!r k,uG . ~2.15!

In Eq. ~2.15! above, the fast sum is carried over the nu
ber of loops (Nloop), the number of parametric segmen
within each loop (Ns), and the number of quadrature poin
on each curved segment (Qmax). The third-order tensor
R,abg contains successive derivatives of the radius vectoR
connecting a point on the dislocation loop to a field poi
r k,u are parametric derivatives of the Cartesian compone
which describe the 3D dislocation segment as a function
the parameter (u).52–54 The shear modulus ism, wa are
weight functions at the quadrature point set$a% on the
curved segment, andP i jk is the permutation tensor.

The total self-energy of the dislocation loop is obtain
by double integrals along the contourG. Gavazza and
Barnett55 have shown that the first variation in the se
energy of the loop can be written as a single line integra
the form:
,

d-

p.

ts
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f

E
V

@s ikde ik# (s)dV

5 R
G
S FE~ t!2@E~ t!1E9~ t!# lnS 8

«k D Gk
2J~L,P! Dn•dr udsu1@dU#core , ~2.16!

wheren is normal to the dislocation line vectort on the glide
plane, and«5ub/2u is the dislocation core radius.56 The first
term results from loop stretching during the infinitesimal m
tion, the second and third are theline tensioncontributions,
while J(L,P) is a nonlocal contribution to the self-energ
The dominant contributions to the self-energy~or force! are
dictated by the local curvaturek, and contain the preloga
rithmic energy termE(t) for a straight dislocation tangent t
the loop at pointP, and its second angular derivativeE9.
@dU#core is the contribution of the dislocation core to th
self-energy. Defining the angle between the Burgers ve
and the tangent asa5cos21(t•b/ubu), Gore57 showed that a
convenient form of the self-energy integral for an isotrop
elastic medium ofn5 1

3 can be written as

E
V

@s ikde ik# (s)dV5 R
G
H 2k@E~a!1E9~a!# lnS 8

«k D
1mb2FkS 211cos2a

64p D
1k̄S 2 cos2a21

2p D G J n•dr udsu,

~2.17!

where the energy prefactors are given byE(a)
5@mb2/4p(12n)#(12n cos2a), and E9(a) is its second
angular derivative. Accurate numerical calculations of t
self-energy of any complex-shape loop have been perform
by Ghoniem and Sun,54 where the double line integral i
converted to a fast summation over the loop segments
quadrature points. However, a purely numerical method
evaluation of the self-energy requires intensive computati
because of the need to use large quadrature order for g
accuracy.54 Equation ~2.17! is an alternate convenient ap
proximation, in which the contributions of various terms a
easily computed. Schwarz41 conducted a numerical study t
determine the effects of various terms on the self-force,
concluded that the major contribution results from the fi
two terms in Eq.~2.17!, which are the usual line tensio
approximation. However, the relative importance of the th
term ~which represents contributions from the dislocati
core and dislocation line stretching! and fourth term~which
is an approximation to nonlocal contributions from oth
parts of the loop! can be seen by a simple argument. T
nonlocal term is obtained by approximating the loop as
pure shear loop at an average curvature ofk̄. For a reason-
able size loop of approximate radius in the range 10
210 000ubu, it can be shown that the total contribution o
nonlocal, core and stretch terms is on the order of less t
18%. The contribution of the nonlocal term is about half
this amount for purely edge components. Hence, a comp
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PRB 61 917PARAMETRIC DISLOCATION DYNAMICS: A . . .
tionally efficient and very accurate method is obtained wh
all contributions are combined in Eq.~2.17!.

Absorption of point defects by dislocation segments c
be treated by considering the influence of the chemical t
in Eq. ~2.10! on its motion. Incorporation of atomic defec
into dislocation cores leads to dislocation climb. The therm
dynamic force associated with this motion is referred to
the osmoticforce. During climb motion of atoms within the
dislocation core, the number of vacancies~or interstitials! per
unit lengthdng /L, changes by the amount

dng

L
5

ubum•dr

Vg
, ~2.18!

whereVg is the vacancy~interstitial! volume, andm is a unit
vector normal to the glide plane. The change in chem
potential per vacancy~interstitial! is given by

mg5kT lnS Cg

Cg
eqD . ~2.19!

HereCg is the nonequilibrium concentration of vacancies~or
interstitials!. Cg may result from quenching, sudden tem
perature variation, irradiation, externally applied stress,58 or
dislocation segment annihilation and intersection.Cg

eq is the
thermodynamic equilibrium concentration of the atomic d
fect. The corresponding contribution from point defect flo
to the variation in Gibbs energy for the entire loop can n
be obtained by line integration. Incorporating Eqs.~2.14!,
~2.17!, ~2.18!, and~2.19! into inequality~2.10!, we obtain

dGt52 R
G
~ fS1fO1fPK!•dr udsu <0, ~2.20!

where we define the following generalized thermodynam
forces: fPK[ the Peach-Koehler forceper unit length5b
•S3t, fS[ the self-forceper unit length

H 2k@E~a!1E9~a!# lnS 8

«k D1mb2FkS 211cos2a

64p D
1k̄S 2 cos2a21

2p D G J n,

fO[ the totalosmotic force46 for defectg per unit length,
52(gg kT(ubu/Vg) ln(Cg /Cg

eq) m whereg5(21) for va-
cancies and~11! for interstitials.

In compact tensor form, Eq.~2.20! can be written as

dGt52 R
G

f k
t dr kudsu <0, ~2.21!

where f k
t is the k component of the total force:ft5fS1fO

1fPK , and dr k is the displacement of core atoms in thek
direction.

III. VARIATIONAL FORMULATION

A. Governing integral equation of motion

Inequality ~2.10! suggests that the components of Gib
energy can be written asconjugatepairs, representing the
inner products ofgeneralized thermodynamic forcesand
n

n
m

-
s

l

-

c

generalized displacements. The equations of motion can thu
be obtained if one defines an appropriate set of general
coordinates and conjugate generalized thermodyna
forces, in such a way as to result in entropy production an
corresponding decrease indG during a virtual infinitesimal
transition. Let us assume that atoms within the dislocat
core are transported in some general drift force field, a
consequence of the motion of atomic size defects~e.g., va-
cancies, interstitials, kinks, and jogs!. The drift velocity of
each atom is given by Einstein’s mobility relationship:Vl

5(1/kT)Dfl , whereVl is the drift velocity,D is a diffusion
tensor, andfl is a generalized thermodynamic force repr
senting processl. Similarly, the flux resulting from a given
process can be related to a corresponding thermodyna
force. We consider here three thermodynamic forces:~1!
forces of mechanical origin~i.e.,Peach-Koehler forces!, as a
result of variations in virtual work on the dislocation loo
and variations in the stored elastic energy in the medi
when the dislocation changes its shape,~2! gradients in point
defect concentrations within the surrounding medium~i.e.,
chemical forces!, and finally~3! temperature gradient force
associated with heat flow.

A generalization of the previous analysis can be acco
plished if one postulates that near equilibrium, thermod
namic forces are sufficientlyweakthat we might expand the
flux in a power series infl .59 Let us denoteJk$fl% as type-k
flux as a result of a generalized thermodynamic forcel,
$fl%. Thus, a generalization of Einstein’s phenomenologi
transport relationship is given by

Jk$fl%5Jk~0!1(
l

S ]Jk

]fl
D

0

fl1
1

2 (
lm

S ]2Jk

]fl]fm
D

0

flfm1•••.

~3.1!

In the linear range of irreversible processes, Eq.~3.1! is
restricted to only the first two terms in the expansion. Mo
over, at thermodynamic equilibrium in the absence of gen
alized forces, all modes of atom transport vanish, and
first term, J(0), is identically zero. Taking the velocity o
atoms on the dislocation line~i.e., representing the core! to
be proportional to the atomic flux, and defining generaliz
mobilities via the tensor L with components: Li j
5(]V i /]f j )0, the phenomenological relationship@Eq. ~3.1!#
is simplified to

Vb$fl%5(
l

Lblfl . ~3.2!

Measurements of dislocation speed47 reveal that the ve-
locity is a nonlinear function of the local shear stress, a
that it is limited by the Rayleigh wave speed. At dislocati
speeds close to this limit, one must account for iner
effects.48 In practice, however, most DD simulations ha
assumed a nonlinear stress-velocity relationship, with ex
nents that are adjusted over specified stress ranges.19,20 Over
a small range of local forces, a linearization technique can
invoked to allow for incremental utilization of the relation
ship given by Eq.~3.2!.

As a consequence of the increase in entropy produc
F, or equivalently the decrease in Gibbs energydG,
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Prigogine59 showed thatLblfbfl>0. This relationship gives
a positive definite quadratic form, which imposes restrictio
on the matrix of coefficients to be positive. The generaliz
mobilities Li j are subject to additional temporal symmetri
as a result of the principle of detailed balance, as shown
Onsager:60 Lbl5Llb . The mobility matrix relates the influ
ence of an independent thermodynamic force of thel type to
the partial flux of thek type. In most applications of DD so
far, the mobility matrixLlb is assumed to be diagonal an
independent of the type of thermodynamic force. Howev
we will assume that dislocation mobility is spatially anis
tropic, since the speed of screw segments is usually sm
than edge segments as a consequence of the crystal stru
These simplifications lead to direct proportionality betwe
the velocity and total force along each independent direct
Thus, we can denoteBak as a diagonal resistivity~inverse
mobility! matrix, and substitute in Eq.~2.21! to obtain the
following equivalent form of the Gibbs energy variation:

dGt52 R
G
BakVadr kudsu <0. ~3.3!

The resistivity matrix can have three independent com
nents~two for glide and one for climb!, depending on the
crystal structure and temperature. It is expressed as

@Bak#5F B1 0 0

0 B2 0

0 0 B3
G . ~3.4!

Combining Eq.~2.21! with Eq. ~3.3!, we have

R
G
~ f k

t 2BakVa!dr kudsu50. ~3.5!

The magnitude of the virtual displacementdr k is not speci-
fied, and hence can be arbitrary. This implies that Eq.~3.5!
represents force balance on every atom of the disloca
core, where the acting force componentf k

t is balanced by
viscous dissipation in the crystal via the termBakVk . How-
ever, this is not necessarily desirable, because one nee
reduce the independent degrees of freedom that describe
motion, yet still satisfies the laws of irreversible thermod
namics described here. To meet this end, we develop a
eral method, with greatly reduced degrees of freedom for
motion of dislocation core atoms.

B. The Galerkin method

Assume that the dislocation loop is divided intoNs curved
segments. The line integral in Eq.~3.5! can be written as a
sum over each parametric segmentj, i.e.,

(
j 51

Ns E
j
dr i~ f i

t2BikVk!udsu50. ~3.6!

Note that in Eq.~3.6!, we sum over the number of segmen
j and follow the standard rules of 3D tensor analysis. W
s
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now choose a set of generalized coordinatesqm at the two
ends of each segmentj. Then, the segment can be parame
cally described as

r i5 (
m51

NDF

Cim~u!qm , ~3.7!

whereCim(u) are shape functions, dependent on the para
eteru (0<u<1). Equation~3.7! is a general parametric rep
resentation of the dislocation line for segmentj. Possible
convenient parameterization methods are discussed in R
@52–54#. In Sec. IV we introduce quintic splines as flexib
and convenient parametric curves for complex dislocat
loop geometry, while the applications in Sec. V illustrate t
utilization of several types of parametric elements on
same loop. It is noted that the indexm is assumed to be
summed from 1 toNDF , whereNDF is the number of total
generalized coordinates at two ends of the loop segm
Accordingly, the three components of the displacement v
tor are given by

dr i5 (
m51

NDF

Cim~u!dqm . ~3.8!

On the other hand, we have for the velocity of any po
on the dislocation line, within segmentj:

Vk5r k,t5 (
n51

NDF

Cknqn,t . ~3.9!

And the arc length differential for segmentj is given by

udsu5~r l ,ur l ,u!1/2du5S (
p,s51

NDF

qpClp,uCls,uqsD 1/2

du.

~3.10!

An ensemble of dislocation loops is considered a conti
ous dynamical system, where every point on dislocation li
is subject to continuous displacement. The finite elem
process in continuum mechanics is based on approxima
the continuous displacement field by a linear combination
piece-wise known shape functions over specified doma
To obtain the unknown coefficients in the linear combin
tion, an integral form of the governing equation is form
lated, and an element-by-element assembly is extracted.
result is a system of equations forstandard discrete systems,
which can be handled by numerical methods. We will follo
a similar approach here, in which the weight functions in t
integral form are the same as the shape functions of the p
lem. Minimization of the weighted residuals results in sym
metric matrices, which simplifies integration of the equatio
of motion. This variational approach is thus coincident w
the Galerkin method as a special case of the method
weighted residuals. Recently, a number of investigators
mulated microstructure evolution problems in a simi
manner.61,62

At this point, we may substitute Eqs.~3.8!, ~3.9!, and
~3.10! into the governing Eq.~3.6!, and obtain the following
form:
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(
j 51

Ns E
0

1

(
m51

NDF

dqmCim~u!F f i
t2Bik (

n51

NDF

Cknqn,tG
3S (

p,s51

NDF

qpClp,uCls,uqsD 1/2

du50. ~3.11!

Appropriate collection of terms into more convenient fun
tions can reduce the apparent complexity of this form of
equation of motion. We will define here two such function
an effective force and an effective resistivity. Ageneralized
force, f m , is defined as

f m5E
0

1

f i
tCim~u!S (

p,s51

NDF

qpNlp,uNls,uqsD 1/2

du, ~3.12!

while a resistivity matrixelement,gmn , is given by

gmn5E
0

1

Cim~u!BikCkn~u!S (
p,s51

NDF

qpClp,uCls,uqsD 1/2

du.

~3.13!

It is noted that@gmn# is a symmetric matrix because of th
structure of the above definition and symmetric mobilitie
With these two parameters defined above, the variationa
tegral form of the Gibbs energy equation is readily tra
formed to a discrete form, given by

(
j 51

Ns F (
m51

NDF

dqmS f m2 (
n51

NDF

gmnqn,tD G50. ~3.14!

For the entire dislocation loop, we map all local degre
of freedomqi

( j ) of each segmentj onto a set of global coor
dinates, such that the global coordinates are equal to the
coordinates at each beginning node on the segment:

$q1
(1) ,q2

(1) ,q3
(1) , . . . ,q1

(2) ,q2
(2) ,q3

(2) , . . . %

5$Q1 ,Q2 ,Q3 , . . . ,QN%T, ~3.15!

where N is the total number of degrees of freedom of t
loop. Similar to the finite element procedure, the local s
ment resistivity matrix@gmn# is added into correspondin
global locations in the global resistivity matrix@Gkl#, such
that

(
j 51

Ns

(
m51

NDF

(
n51

NDF

@dqmgmnqn,t#
( j )5 (

k51

Ntot

(
l 51

Ntot

dQkGklQl ,t ,

~3.16!

whereNtot5NsNDF is the total number of degrees of fre
dom for the loop. The global resistivity matrix@Gkl# is also
symmetric and banded or sparse. The componentGkl is zero
if the degrees of freedomk andl are not connected through
segment. In addition, the global force vector$Fk% can simi-
larly be represented as

(
j 51

Ns

(
m51

NDF

@dqmf m# ( j )5 (
k51

Ntot

dQkFk . ~3.17!

Therefore, Eq.~3.14! can be expressed as
-
e
:

.
n-
-

s

cal

-

(
k51

Ntot

dQkS Fk2(
l 51

Ntot

GklQl ,tD 50. ~3.18!

Since the virtual displacements in the generalized coo
nates are totally arbitrary, the previous equation can only
satisfied if

Fk5(
l 51

Ntot

GklQl ,t . ~3.19!

Equation~3.19! represents a set of time-dependent ordin
differential equations, which describe the motion of disloc
tion loops as an evolutionary dynamical system. Similar m
crostructure evolution equations have been derived by S62

in connection with grain and void growth phenomena. F
thermore, the above spatially resolved equations can be
cretized in time by the so-calledgeneralized trapezoida
family of methods63 as

(
l 51

Ntot

Gkl
(n1a)Ql

(n11)5(
l 51

Ntot

Gkl
(n1a)Ql

(n)1DtF k
(n1a) ,

~3.20!

whereDt is the time-step andn is the time-step index. In
addition,a is a parameter, which determines explicit or im
plicit time-integration, taken to be in the interval@0,1# such
that: a50 for forward difference integration~Euler!, a
51/2 for midpoint or trapezoidal integration,a52/3 for
Galerkin integration, anda51 for backward difference~Eu-
ler! integration.63

IV. COMPUTATIONAL GEOMETRY
OF DISLOCATION LOOPS

A. Curved spline parametrization

Recently, simplified parametric representation of 2D d
location loops has been successfully implemented.64 In the
following, however, we develop a more general method
geometric representation of 3D dislocation loops. Each d
location loop is described as a composite spline curve, m
up by connecting curved segments together at their comm
nodes. Each segment is described as an independent
metric space curve, with the parameteru varying in the range
0 to 1. A general vector form of the dislocation line equati
for segment~j! can be expressed as

r ( j )~u!5(
i 50

n

A i
( j ) ui , ~4.1!

wheren is a polynomial order andA i represent the assoc
ated vector coefficients. The value ofn determines the seg
ment type. Thus, whenn51 the segment is a straight line
whenn53 the segment is a cubic polynomial, and whenn
55, the segment is a fifth-order~quintic! polynomial. The
coefficientsA i are determined by boundary conditions im
posed on beginning and end nodes. These boundary co
tions can be described in terms of specified geometric pr
erties, such as the nodal position, tangent, curvature,
torsion.

In the following, we restrict ourselves to the more gene
quintic spline representation of loops. Composite linear a
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cubic spline shapes can be easily determined by a sim
approach. The six coefficients of a quintic spline segment
determined by assigning six independent vectors, obta
from six boundary conditions. These arer ( j )(0), r ( j )(1),
r ,u

( j )(0), r ,u
( j )(1), r ,uu

( j ) (0), and r ,uu
( j ) (1), where r ,u

( j )5dr ( j )/du
and r ,uu

( j ) 5d2r ( j )/du2. Geometrically,r ( j )(0) andr ( j )(1) are
the position vectors of nodesj and j 11, i.e.,P( j ) andP( j 11).
The vectorsr ,u

( j )(0) and r ,u
( j )(1) are the tangent vectors o

nodesj and j 11, i.e.,TE
( j )t( j ) andTB

( j 11)t( j 11), respectively,
whereTE

( j ) and TB
( j 11) are magnitudes of tangent vectors

the end~E! and beginning~B! of each segment, while th
unit vectorst( j ) andt( j 11) are the dislocation sense vectors
nodes j and j 11, respectively. The vectorsr ,uu

( j ) (0) and
r ,uu

( j ) (1) are linear combinations of the tangent and norm
vectors because they lie on the plane spanned by them.
cause the resultant loop profile is a composite curve, di
cation line continuity may not be maintained at each nod
boundary conditions on segments are arbitrarily assigned
general,C0~position! andC1~tangent! continuity can be eas
ily satisfied if we assign the same position and tangent v
tors at each node. However, since self-forces on disloca
segments are proportional to the local curvature Eq.~2.17!,
C2 continuity will ensure the continuity of self-forces at se
ment nodes as well. The curvature of a general point
segmentj can be expressed as

k ( j )~u!5
ir ,u

( j )~u!3r ,uu
( j ) ~u!i

ir ,u
( j )~u!i3

. ~4.2!

To maintainC2 continuity at each node, we let the curvatu
of the end point of segmentj be equal to the curvature at th
beginning node of curved segmentj 11: k ( j )(1)
5k ( j 11)(0). Because r ,uu

( j ) is a linear combination of
T and N, the tangent component of vectorr ,uu

( j ) does not
influence the line curvature. Therefore, we can just assign
normal vectorsNE

( j )n( j ) and NB
( j 11)n( j 11) for r ,uu

( j ) (1) and
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r ,uu
( j 11)(0), respectively, whereNE

j andNB
( j 11) represent mag-

nitudes associated with the unit vectorsn( j ) andn( j 11). After
substituting all boundary conditions into Eq.~4.1! and rear-
ranging terms, we obtain

r ( j )~u!5C1P( j )1C2P( j 11)1C 3TE
( j )t( j )1C 4TB

( j 11)t( j 11)

1C 5NE
( j )n( j )1C 6NB

( j 11)n( j 11). ~4.3!

Note that the superscript on the LHS of Eq.~4.3! refers to
segmentj, while on the RHS, it is associated with nodesj
and j 11 on the same segment. The coefficientsC1 to C6 are
invariant shape functions, and can be expressed in term
parameter (0<u<1) as

C1526u5115u4210u311,

C256u5215u4110u3,

C3523u518u426u31u,

C4523u517u424u3,

C5520.5u511.5u421.5u310.5u2,

C650.5u52u410.5u3.

We can cast the parametric Eq.~4.3! into a convenient
matrix form for a single parametric quintic spline of a se
ment, if we reorganize the generalized coordinatesqm as

$qm%5$q1 ,q2 ,q3 , . . . ,q18%
T, ~4.4!

where the first nine components are for the beginning n
of the segment; withq12q3 being three components of po
sition, q42q6 three components of the tangent vector, a
q72q9 three components of the normal vector. Correspo
ingly, q10 to q18 indicate all coordinates at the end of a se
ment. The shape functions for the quintic spline can also
organized in the following matrix form:
@Cim#5F C1 0 0 C3 0 0 C5 0 0 C2 0 0 C4 0 0 C6 0 0

0 C1 0 0 C3 0 0 C5 0 0 C2 0 0 C4 0 0 C6 0

0 0 C1 0 0 C3 0 0 C5 0 0 C2 0 0 C4 0 0 C6
G . ~4.5!
.
nal

the

;
an-
ur-
s,

A
of
ent
gni-
With this notation, Eq.~4.3! can be cast in the computa
tional form of Eq.~3.7!. The total number of available de
grees of freedom for afree quintic spline segment is thu
equal to the number of components in the Cartesian ve
qm , i.e., NDF5633518. However, because of geometr
and physical restrictions on dislocation motion,NDF can be
greatly reduced, as we will discuss next.

B. Constrained glide motion and reduced degrees of freedom

It is apparent that general dislocation motion would
volve many degrees of freedomNDF in the most genera
case. Fortunately, however,NDF is small in practice. As a
result of segment connectivity at common nodes, only hal
or

-

f

the total DF’s are required per segment, andNDF59 for
general 3D motion, andNDF56 for motion on a glide plane
The direction of the Peach-Koehler force imposes additio
constraints. As can be seen from Eqs.~2.14! and~2.17!, both
external and self-forces on a dislocation node are along
normal directionn on the glide plane. Also, becausen–t
50, NDF is reduced further from 6 to 4 for 2D glide motion
that is one for the displacement magnitude, two for the t
gent vector, and one for the magnitude of the normal. F
thermore, we introduce here two additional condition
which simplify the loop profile calculations even further.
smoothnesscondition is invoked such that rapid variations
curvature are avoided when two segments of vastly differ
lengths are connected via a composite spline. If the ma
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tude of the tangent is not related to nodal positions, unde
able cuspsmay develop on the dislocation line. Thus, w
take the magnitude of the tangent vector to be estima
from the arc length between previous nodal positions on
segment. This criterion is exact when the parameteru5s,
wheres is the arc length itself. On the other hand, the li
curvature can be independently computed from the dislo
tion configuration and nodal loading in a simple manner
the forces at the node are not near equilibrium~i.e., the act-
ing forces are much larger than the self-force!, the curvature
is determined from three neighboring nodes on the dislo
tion line. On the other hand, near equilibrium~e.g., close to
strong pinning points!, the curvature of a node is readil
computed from Eq.~2.17!, once the local external force i
known. These approximations can lead to an additional
duction of two degrees of freedom, and we are left w
solving for only two equations per node. These constra
can be relaxed, if one is interested in more complex detail
dislocation motion. We will show later in Sec. V that disl
cation glide motion can be adequately described in m
cases with only two degrees of freedom per node.

We derive here constrained discrete equations of mot
when dislocation lines are confined to their glide plane.
this special case, there is a total of six independent
knowns. That is,DPx ,DPy ,DTx ,DTy ,DNx ,DNy , which
correspond to incremental displacements, tangents, and
mals in thex andy directions, respectively. Let us first con
sider the geometric constraints. Because the normal is alw
perpendicular to the tangent at the node, we have: (T( i )

1DT)•(N( i )1DN)50, where the symbols with superscri
~i! refer to a previous time-step of known values~i.e.,
T( i 11)5T( i )1DT). Furthermore, from a geometric point o
view, the curvature of the loop at a current time-step is
lated to the normal and tangent vectors ask5uuNuu/uuTuu2.
Where the curvature is assumed to be determined by l
forces or nodal positions, as discussed earlier. The n
~magnitude! of the current tangent vector is proportional
the previous arc length of a segment. That isuuTuu5h, where
h is determined by the arc length of the previous time-st
Finally, the displacement vector is perpendicular to the t
gent direction of the considered node,

DPy

DPx
52

Tx
( i )

Ty
( i )

5g, ~4.6!

whereg is a constant determined by previous tangent co
ponents. Thus, by introducing an angleu, which is the angle
between the tangent vector and thex direction, the six inde-
pendent unknowns can be reduced to only two:DPx andu,
such that all constraints are automatically satisfied:

DPx5DPx , DPy5gDPx , ~4.7!

DTx5h cosu2Tx
( i ) , DTy5h sinu2Ty

( i ) , ~4.8!

DNx52kh2 sinu2Nx
( i ) , DNy5kh2cosu2Ny

( i ) .
~4.9!

Moreover, a linearization technique can be used to
proximate sine and cosine functions in terms ofDu, as long
as the time step is small, and hence the tangent angle v
ir-
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tion is small between time steps. Based on the above c
straints, Eq.~3.8! may finally be simplified with a reduced
set of shape functionsC̃ as

$dxi%5@ C̃im~u!#$dqm%, ~4.10!

where

$dr i%5H dx

dyJ , $dqm%55
dPxB

duB

dPyE

duE
6 ,

@ C̃im~u!#5F C1 D1 C2 D2

gC1 D3 gC2 D4G ,

and

D152hLC3sinuB2kBhB
2C5cosuB , ~4.11!

D252hEC4sinuE2kEhE
2C6cosuE , ~4.12!

D35hLC3cosuB2kBhB
2C5sinuB , ~4.13!

D45hEC4cosuE2kEhE
2C6sinuE . ~4.14!

It is noted that the subscriptsB andE refer tobeginningand
endnodes of one segment of the dislocation loop.

C. Adaptive protocols for node and time-step assignments

Because of the evolving nature of dislocation line geo
etry as a result of strong interactions, it is highly desirable
develop adaptive methods that capture essential phy
without excessive computations. Control of the magnitude
the computational time-step and nodal positions on each
ment has a direct influence on the final accuracy of DD sim
lations. For node redistribution, we first compute a refere
curvaturek̄ for the entire loop, which is normally taken a
the average curvature of all nodes. Then, we compare
curvaturek i of each node withk̄, and classify nodes into
high curvature groups (k i.k̄) and low curvature groups
(k i,k̄). Finally, we increase the number of nodes for ea
high curvature group and decrease the number of nodes
each low curvature group. After adding or removing nod
we redistribute the nodes evenly for that group. To prev
the number of nodes from increasing or decreasing too f
we only add or remove one node at a time. If the numbe
nodes for a low curvature group is less than a specified m
mum, we keep the current nodes because a prescribed m
mum number of nodes is required to maintain the loop
ometry. After redistributing nodes on each segment,
calculate the displacement and tangent angle of each
node based on the current loop geometry. The radius of
vature of each new node is determined by a linear interp
tion from old nodes for open loops, or by circular arc a
proximations for closed loops. The highest curvature occ
always at fixed nodes or in the close proximity of other d
locations. In regions of high curvature, large self-forces
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cur and the curvature at the segment will be near its equ
rium value. Thus, the curvature in these special locations
be determined directly from the equilibrium condition on t
segment. The entire geometry of the loop is finally det
mined by using Eq.~4.3! at next time step.

Time step selection is determined by dislocation segm
velocity and its adjacency to other segments. The time-s
is selected such that, on average, dislocation-dislocation
teraction is resolved within about 100 steps. If the dislo
tion density isr, the average distance between segment
on the order ofr21/2;102621025 m. In fcc crystals, the
dislocation resistivity is on the order of 531025 Pa s, while
it is about 8 orders of magnitude higher for screw segme
in bcc crystals.65 These considerations lead to a time-step
;1 ns for fcc crystals and;0.1 s for bcc crystals at low
temperatures. When two loop segments approach each o
a short-range reaction occurs, and the time step must b
duced to determine whether the reaction will lead to ann
lation or junction formation. In case of annihilation, tw
loops join together and form different new loops as a mo
of plastic recovery. On the other hand, junction formati
leads to hardening and stabilization of dislocation patte
In either case, the minimum distance between segment
the loop itself, or on two adjacent loops is determined
calculating all local minimum distances from each node t
curved segment. By scanning all possible nodes on a lo
we obtain the minimum distancedmin between two loops or
between two segments on the loop itself. If this value is l
than two times the maximum displacement, i.e., 2dmax, then
the time step is adjusted to 0.25dmin /dmax. This procedure is
repeated until loop annihilation or junction formation is com
pleted. After annihilation or junction formation is complete
the time step is gradually increased to its maximum assig
value, as discussed above. During short-range encoun
local dislocation segment velocity can approach the so
speed, and inertial effects may have to be accounted fo
one is interested in the exact details of the short-ra
reaction.48

If new loops are generated during the short-range re
tion, all nodes on the loop are rearranged. For loop junc
formation, new loops are not generated, and the nodes
ordered to allow formation of straight junction segmen
However, five possible cases for generating new loops
considered during segment annihilation. On the glide pla
a full dislocation loop may be totally closed, or may ha
closure on other glide plane via sessile threading a
formed by cross slip. Thus, we may have one of the follo
ing possibilities: ~1! annihilation of two segments on th
same open loop to produce one new open loop and one
closed loop;~2! annihilation of two segments on the sam
closed loop to produce two new closed loops;~3! annihila-
tion of two segments on two different open-loops to produ
two new open loops;~4! annihilation of two segments, on
an open loop and the other on a closed one to produce
new open loop;~5! annihilation of two segments on tw
different closed loops to produce one new closed loop
each case, the nodes on generated loops are reordered

V. APPLICATIONS OF PARAMETRIC DISLOCATION
DYNAMICS

A. Illustrative example: Initial bow-out of a pinned dislocation

To illustrate the computational procedure involved in t
present method, we consider here a very simple exam
-
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where the equations of motion can be solved analytically
just one time step. Our purpose here is to highlight the
sential features of the present computational method.
sume that we are interested in determining the shape
dislocation line, pinned at two ends and under the influe
of pure shear loading on its glide plane. The glide mobility
assumed to be isotropic and constant, and the segments
be taken as linear for illustrative purposes only. The dislo
tion line is pinned at pointsL andR, with only two linear and
equal segments connected at pointA, as shown in Fig. 2. We
will compute the shape of the line, advancing it from
initial straight configuration to a curved position. Und
these simplifications, the variation in Gibbs free energy,dG
for any one of the two segments is given by

dG52BE
0

1

Vdr udsu52E
0

1

f tdr udsu. ~5.1!

Now, we expand the virtual displacement and velocity
only two shape functions:C15u, C2512u. Thus, dr k
5dqikCi , andVk5qik,tCi . Since we allow the displacemen
to be only in a direction normal to the dislocation line (y
direction!, we drop the subscriptk as well. For arbitrary
variations ofdqik , the following equation is applicable to
any of the two segments (LA,AR),

2E
0

1

Dt~ f PK1 f S!Ci udsu52BE
0

1

DqmCmCi udsu. ~5.2!

Equation~5.2! can be explicitly integrated over a short tim
interval Dt. The resistivity matrixelements are defined by
g im[B*0

1CiCmudsu, and the force vector elements by f i

[*0
1Ci( f PK1 f S)udsu. With these definitions, we have th

following (232) algebraic system for each of the two el
ments:

Dqmg im5 f i3Dt. ~5.3!

For any one linear element, the line equation can be
termined by

@x y#5Fu 0

0 ~12u!
G H q1

q2
J . ~5.4!

And the resistivity matrix can the be simplified as

FIG. 2. Nodal displacements for the first time-step of an initia
straight segment.
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@gmn#5
Bl

6 F 2 1

1 2G .

Furthermore, as a result of the shear stresst and the absence
of self-forces during the first time step only, the distribut
applied force vector reads

$ f m%5
tbl

2 H1
1J .

Since the dislocation line is divided into two equal segmen
we can now assemble the force vector, resistivity matrix,
displacement vector in the global coordinates, and arriv
the following equation for the global nodal displaceme
DQi :

Bl

12F 2 1 0

1 4 1

0 1 2
G H DQ1

DQ2

DQ3
J 5

tblDt

4 H 1

2

1
J 1Dt H F1

0

F3

J .

~5.5!
An important point to note here is that at the two fix

ends, we know the boundary conditions, but the reac
forces needed to satisfy overall equilibrium are unknow
These reactions act on the fixed obstacles atL andR, and are
important in determining the overall stability of the config
ration ~e.g., if they exceed a critical value, the obstacle
destroyed, and the line is released!. If DQ15DQ350 at both
fixed ends, we can easily solve for the nodal displacem
DQ253/2(tbDt/B) and for the unknown reaction forces
the two ends:F15F352 1

8 tbl. If we divide the dislocation
line into more equal segments, the size of the matrix eq
tion expands, but nodal displacements and reaction fo
can be calculated similarly. Results of analytical solutio
for successively larger number of nodes on the disloca
segment are shown in Fig. 2.

B. Dislocation loop generation

Generation of new dislocation loops is an important p
cess in determining the rate of hardening in materials un
deformation. The basic mechanism involves the propaga
of a dislocation segment from two immobile~fixed! ends
under the action of applied stress. If the applied stress
ceeds the resistance offered by the self-force, lattice frict
and additional forces from nearby dislocations, the segm
length will increase. In fcc metals, the Peierls~ friction!
stress is very small, on the order of 1025m, and is thus lower
than typical applied stresses of 1023m. Dislocation mobility
is isotropic at all relevant temperatures because of the
value of Peierls stress in comparison to applied and
stresses on dislocation segments. Thus, the influence o
underlying crystal structure on dislocation generation is
pronounced. On the other hand, high anisotropic Pei
stresses in both fcc and diamond cubic materials~e.g., Si!
imposes constraints on the shapes of generated disloc
loops in these systems, as discussed next.

1. Isotropic mobility of screw and edge segments

Figure 3 shows the results of shape computations for
Frank-Read source in a bcc crystal at high temperat
s,
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where the dislocation segment mobility can be assumed t
isotropic on thê 110& glide plane. In this simulation, we us
composite quintic spline segments to construct the loop a
each time-step computation of the nodal displacement
tangent angle. The loop starts from an edge line segm
with two fixed ends normal to thê111̄& direction, for which
we assign only three nodes at the first time step. The tan
vectors at the two end nodes are those of circular arcs c
structed from three adjacent nodes. When the loop expa
more nodes are added around the two fixed end nodes~high
curvature regions!, while the number of nodes is automat
cally reduced in the low curvature region of the loop. Aft
each time-step, the minimum distance between loop s
ments is calculated. If the minimum distance is detected
be less than 6ubu, and cos21(t1•t2)5(160.05)p, the two
segments are annihilated. Here,t1 and t2 are the tangent
vectors for segments 1 and 2, respectively. The value of 6ubu
for the critical annihilation distance in fcc is taken from e
perimental measurements on Cu~Ref. 66! and Ni ~Ref. 67!.
Results of calculations are shown in Fig. 3, where no
positions are indicated on each loop. Details of node re
rangement before and after an annihilation reaction betw
two curved segments on the Frank-Read source are show
Fig. 4.

The influence of the self-force on dislocation motion
significant, especially during short-range interaction of dis
cation segments. In Fig. 5, the angular distribution of t
self-force on the glide dislocation loop, immediately after
formation by annihilation of opposite segments on the ori
nal dislocation line is shown. It is clear that the distributio
of the self-force is negative everywhere on the loop, exc
for the small range of angles surrounding the newly form
dislocation segment. In this region, the self-force is positi
and thus it will assist the applied stress in expanding t
curved region faster than others on subsequent time-st
The action of applied and self-forces tend to even out cur
ture variations on the entire loop, once the short-range re

FIG. 3. Operation of the Frank-Read source for isotropic dis
cation mobility on the glide plane.
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tion is completed. The self-force is seen to be higher for
screw segments atu590° and 270°, as compared to se
ments with a pure edge character.

2. bcc metals at low temperature

In bcc metals, the primary slip system is$110%^111&, al-
though slip on secondary$112% and $123% planes are
possible.46 Slip trace analysis at low temperature68,69 indi-
cates that the main slip planes are$110%, and that disloca-
tions are either of the screw or edge type. At temperatu
below Ta;0.15Tm , dislocations in bcc metals tend to mov
as straight lines, indicating that the mobility of the edge co

FIG. 4. Details of nodal arrangements before annihilation
opposite-character segments.

FIG. 5. Angular variation of the self force~units of s/ma) in
copper for the Frank-Read source after segment annihilation.
angleu is defined in the insert. All distances on the figure are
units of the lattice constant.
e

s

-

ponent is extremely high.65 The mobility of screw segment
is controlled by double kink nucleation below theathermal
temperature,Ta . Peierls lattice friction stress on screw com
ponents is very high, and the corresponding mobility is lo
As the temperature increases, the influence of lattice frict
on screw component mobility is reduced, and the mobility
screw and edge dislocations become comparable. It is
pected, therefore, that dislocations become very straigh
low temperatures, and that significant curvatures develo
higher temperatures. To adequately represent this phys
picture, we use composite cubic spline curves joined w
linear segments when necessary, and still maintainC2 con-
tinuity at all nodes. In this case, the tangent directions
each curved segment are predetermined by crystallogra
~i.e., ^111& directions for screw components!, and only the
magnitude of the tangent vector needs to be calculated f
the condition of continuity. Additionally, nodes on expan
ing loops in this case are not redistributed, but are selecte
ensure construction of polygonal loop shapes, as is exp
mentally observed at low temperature.69 The construction
procedure of polygonal loop geometry is described as
lows.

First, straight linear segments are assigned parallel to
cific crystallographic directions~i.e., ^111&) for screw com-
ponents. The displacement is computed for the entire lin
segment in the normal edge direction. Then, two adjac
nodes at each corner of a the resulting rectangle are assig
such that the distance of each node from the corner is
portional to the magnitude of the displacement, which is
termined by the anisotropic mobility. Finally, after nodes a
generated, the tangent direction of each node is aligned
the side of the polygon or is assigned a prescribed angle
the polygonal direction as an additional degree of freedo
For example, if the temperature is increased in bcc cryst
slight curvatures can be expected, and the tangent ma
tudes can be solved for by applying the condition ofC2

continuity. It is noted that at very low temperatures in b
metals, the mobility of edge components~kinks! is much
higher than that of screw segments, and thus dislocation l
will be predominantly of the screw type. These features
adaptive shape computations are illustrated in Fig. 6 for l
temperature and Fig. 7 for higher temperatures.

3. Dislocation sources in Si

Motion of dislocations on the glide plane of dc crysta
such as Si, occurs by breaking and reconstruction of str

f

he

FIG. 6. Double-ended Frank-Read source in bcc metals.
straight segments are either screw or edge, while the curved co
are of mixed type.
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covalent bonds. Thus, the resistance of the lattice to dislo
tion motion is significant up to very high temperatures~e.g.,
1200 K in Si!. The dislocation must overcome a large ener
barrier in the direction of maximum bond strength~i.e., the
three ^110& close-packed directions on the$111% family of
slip planes!, and a smaller one in directions660° to those
primary ones. Dislocation segment mobility in Si is rath
low, which leads to a time step on the order of 0.01 s, sim
to the situation in bcc metals.70

When general cubic spline segments are used, we m
solve for tangent vectors at each node, in addition to no
displacements in order to generate the dislocation loop
ometry at successive time steps. However, for special
lygonal loop geometries, additional constraints are neede
maintain accurate loop profiles. For this purpose, we use
types of segments: linear ones for the sides and curved
ments for polygonal corners. The curvature of all nodes
thus constrained to be zero, which guarantees the alignm
of polygonal sides to crystallographic directions, as can
seen in Fig. 8. The procedure outlined above produces
agonal loops with rounded corners, in agreement with
experimental observations on dislocation sources in Si
Dash.71

C. Dislocation loop interactions

In Fig. 9, two initial screw segments of equal length a
assumed to be collinear, and of the same initial length on
@110#-slip plane of a bcc crystal at high temperature, an
high shear stress is applied on the slip plane. Bowing of
two segments is tracked with nodal displacements and
gent vector direction, and the loops are reconstructed
quintic spline segments after each time-step. The proce
repeated until any two curved segments on the same loo
on the two different loops, approach each other. The ann

FIG. 7. Dislocation loop generation by the Frank-Read mec
nism for anisotropic mobility of screw and edge components.
a-

y

r
r

st
al
e-
o-
to
o
g-

is
nt
e
x-
e
y

e
a
e
n-
y
is
or
i-

lation criterion is applied, leading to the loop profiles show
in Fig. 9. The applied stress is higher than the maxim
value of the self energy after the two loops join one anoth
because the nodal curvatures are much smaller than c
sponding values near the fixed ends of the each loop. He
further nodal displacements are not influenced as much w
nodal curvatures, once the two loops join together as a sin
loop. Another illustration of loop-loop interaction is show
in Fig. 10, where two glide loops on different$111% planes
interact and form a sessile junction at the intersection
tween the two glide planes. In this case, the Burgers ve
of the resulting junction does not lie on any of the two s
planes.

VI. SUMMARY AND CONCLUSIONS

In a previous paper,54 we presented a computation
method for accurate calculation of the isotropic elastic fi
of arbitrary-shape dislocation loops. The main motivati
behind this work was to enable calculations of thermod
namic forces on dislocation segments in deforming mat
als. This task has been addressed in the present work, w
we developed a variational method, which can be utilized
derive the equations of motion of arbitrary-shape dislocat
loops in complex 3D geometry. The present method is in

-

FIG. 8. Dislocation generation in covalently bonded silicon. T
directions of the hexagon sides are along^111& orientations for
screw segments, and660° for mixed ones.

FIG. 9. Coplanar dislocation loop interaction.
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spirit of the finite element method in structural mechani
where the dislocation line is segmented and described
known shape functions in a linear combination of unkno
generalized coordinates, such as position, tangent, and
mal vectors. Physical arguments are used to ascribe
straints on these generalized coordinates, and thus reduc
number of equations of motion. The method is illustrated
a number of applications on dislocation loop generation
interactions in bcc, fcc, and dc materials. Many applicatio
of the present method are feasible, especially in areas w
continuum descriptions of plastic deformation fall short. O
such application is the simulation of the onset of plastic
stabilities and the formation of dislocation channels in ir

FIG. 10. Formation of a dislocation junction in bcc metals.
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diated materials.72,73 It is concluded that the present metho
offers a number of potential advantages.

~1! The method provides a general and natural descrip
of dislocation loop geometry that is not determined by
underlying computational mesh, and which easily confor
to physical constraints imposed by the crystal structure.

~2! Numerical force divergence problems for very sho
straight segments are totally avoided. Force computations
also accurate for long segments as well. The moments of
total force distribution function are determined by sampli
from positions on the entire segment.

~3! The method is accurate in rather complex situatio
involving high curvature regions, strongly interacting disl
cations, cross slip, strong pinning, etc.

~4! Various segment types can be easily mixed within
same computation, thus leading to a reduction in the ove
computational burden.

~5! Since the final equation is of a matrix form for th
DOF’s, the method is automatically compatible with th
standard finite element technique. It is thus natural to dire
couple the present formulation with the computational me
ods of continuum mechanics.

~6! The computational speed of stress, force, and ene
calculations per segment is comparable to purely analyt
solutions of straight segments.53 One of the main advantage
of the present method is the possibility of reducing the nu
ber of necessary segments by two orders of magnitude~in fcc
simulations, for example!, and hence the number of intera
tions by four orders of magnitude.
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