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Parametric dislocation dynamics: A thermodynamics-based approach to investigations
of mesoscopic plastic deformation

N. M. Ghoniem, S.-H. Tong, and L. Z. Sun
Mechanical and Aerospace Engineering Department, University of California, Los Angeles, California 90095-1597
(Received 16 July 1999

A thermodynamics-based variational method is developed to establish the equations of motion for three-
dimensional3D) interacting dislocation loops. The approach is appropriate for investigations of plastic defor-
mation at the mesoscopic scale by direct numerical simulations. A fast sum technique for determination of
elastic field variables of dislocation ensembles is utilized to calculate forces acting on generalized coordinates
of arbitrarily curved loop segments. Each dislocation segment is represented by a parametric space curve of
specified shape functions and associated degrees of freedom. Kinetic equations for the time evolution of
generalized coordinates are derived for general 3D climb/glide motion of curved dislocation loops. It is shown
that the evolution equations for the positioR) ( tangent T), and normal N) vectors at segment nodes are
sufficient to describe general 3D dislocation motion. When crystal structure constraints are invoked, only two
degrees of freedom per node are adequate for constrained glide motion. A selected number of applications are
given for: (1) adaptive node generation on interacting segme(@syariable time-step determination for
integration of the equations of motio(8) dislocation generation by the Frank-Read mechanism in fcc, bcc,
and dc crystals(4) loop-loop deformation and interaction, aff) formation of dislocation junctions.

[. INTRODUCTION numerical simulation of the interaction and motion of dislo-
cations. This approach, which is commonly known as dislo-
A fundamental description of plastic deformation is now cation dynamics (DD), was first introduced for two-
actively pursued, where dislocations play a key role as basigimensional (2D) straight, infinitely long dislocation
elements of metal plasticity. Although continuum plasticity distributions;>*" and then later for complex 3D
models are extensively used in engineering practice, thefficrostructuré®=**In DD simulations of plastic deforma-
validity is limited to the underlying database. The reliability tion, the computational effort per time step is proportional to
of continuum plasticity descriptions is dependent on the acthe square of the number of interacting segments, because of

curacy of experimental data. Under complex loading situathe Iong-rangg stress flgld associated W|t_h d|slgcat|on lines.
"he computational requirements for 3D simulations of plas-

tions, however, the database is often hard to establish. Moré'._

over, the lack of a characteristic length scale in continuunf'cn diifor:??t'?hn rOff erven d\S/mrgtle crystatlsrage thutﬁ v;erty Icr?arlr;
plasticity makes it difficult to predict the occurance of criti- enging. 111s therelore advantageous to reduce the tota’ nu

cal localized deformation zones. Although homogenizatio per of equations of motion during such calculations.
e 9 gen r\Dioneering 3D DD simulations of plasticity using straight
methods have played a significant role in determining th

: . . ) ) esegments are based on existing analytical solutions of the
elastic properties of new materials from their constituents, 1ctic field of pure screw and edge segmé&t® or seg-

(e.g., composite materia/she same methods have failed t0 ants of mixed characté?=43 Zbib, Rhee, and Hirth de-
describe plasticity. It is widely appreciated that plastic strainkarmined that the length of each straight segment is roughly
is fundamentally heterogenous, displaying high strains confmited to ~50— 200 units of Burgers vector. Longer seg-
centrated in small material volumes, with virtually unde- ments may have substantial force variations, thus limiting the
formed regions in between. Experimental observations congsefulness of one single equation of motion for the entire
sistently show that plastic deformation is internally segment. Singular forces and stresses arise at sharp intersec-
heterogeneous at a number of length scalé®epending on  tion corners of straight segments, which result in divergence
the deformation mode, heterogeneous dislocation structuresf the average force over the straight segment as its length is
appear with definitive wavelengths. It is common to observedecreased. When the dislocation loop is discretized to only
persistent slip bands, shear bands, dislocation pile ups, discrew or edge components on a crystallographic latficé,
location cells, and subgrains. However, a satisfactory dethe accuracy of strong dislocation interactions is compro-
scription of realistic dislocation patterning and strain local-mised because line curvatures are crudely calculated. In ad-
ization has been rather elusive. Attempts directed at thiglition, motion of dislocation segments on a fixed lattice pro-
question have been based on statistical mechantés, duces inherent limitations to the resolution of space and time
reaction-diffusion dynamic¥.; 2 and the theory of phase events. Recently, Schwaffz*> developed an adaptive
transitions-* Much of the efforts represented by Refs. 5—14method to reduce the segment size when dislocation interac-
have aimed at clarifying the fundamental origins of inhomo-tions become strong. Using a modified form of the Brown
geneous plastic deformation. formuld® for the self-force on a segment, the field diver-
A relatively recent approach to investigation of the fun-gence problem for very short segments was circumvented.
damental nature of plastic deformation is based on direcFor closely interacting dislocations, substantial curvature and
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reconfiguration of dislocations occur during the formation of External Forces ( F,)
a junction, dipole, or other configuratioffsHowever, the ﬂ

number of straight segments required to capture these pro-
cesses is very large, because the segment size has to be re-
duced to a few Burgers vectors. Most of these difficulties
arise from the linear segment approximation, diféerential
treatment of the equations of motion, and the accuracy of Heat 80
representing the self-force.

Dislocation loops in DD computer simulations are treated
as dynamical systems, which can be described by the time
dependence of specified coordinates. Obviously, if one at-
tempts to solve the equations of dynamics for each atom
within and surrounding the dislocation core, the number of
equations is prohibitively large. On the other hand, if one
knows that certain modes of motion for groups of atoms are ﬁ
closely linked, many equations can bdiabatically elimi-
nated, as is now conventional in th_e treatme_nt of dynamical FIG. 1. Representation of loop motion in an infinitesimal tran-
systems. Thus, instead of developing equations for the masjion jllustrating thermodynamic variables.
tion of each atom, one can find a much smaller set of geo-
metric generalized coordinatesvhich would adequately de- yariational procedure is pursued to formulate the equations
scribe the dynamical behavior of an entire dislocation 100p ot motion for the degrees of freedom based on the Galerkin
In Lagrangian descriptions, a number c_>f generalized Coordiapproach. Computationptotocols which are used to handle
natesg,, is selected, where the subscripepresents a spe- ¢jose-range interactions are then discussed in Sec. IV. To
cific degree of freedortDOF) for the dynamical system. Ina pe|p jllustrate the computational procedure, a simple ex-
numerical computer almulatlon, h'ovx'/ever, the size of the SySample is also given. Applications of the present method to
tem depends on availabMp . Within the context of DD,  gjsjocation motion under physical constraints, and to several
one would expect thatp is relatively small in loops, which — prohlems of loop-loop interaction and dislocation generation
conform to specific crystallographic or mobility constraints, j, fcc, bee, and diamond cubi@c) Si crystals are given in

while Npr can be somewhat large in situations where stronggec. V. Finally, conclusions and discussions follow in Sec.
interactions, cross-slip, or similar processes take place. Iy

general, it is not of interest to follow every wiggle and bump
on dislocation lines, unless such details develop into full-
fledged instabilities. For specific applications, however, we
intend to reducépr as much as reasonable for the descrip-
tion of the physical situation at hand. Consider a body in thermodynamic equilibrium, volume
Our plan here is to describe the equations of motion for), and its boundarys, containing a dislocation loop in an
generalized coordinates in much the same way as in Lanitial position (1), as shown in Fig. 1. Under the influence of
grangian mechanics. We will develop emegral equation of  external mechanical forces{), and thermodynamic inter-
motion for each curved segment within the loop, regardless | forces £.), the dislocation loop will undergo a transi-
of dislocation loop shape complexity. For concreteness, Weon from the initial state to a new one designated(2s
focus the current approach on dislocation line representatiopyring this transition of states, energy will be exchanged

by parametric dislocation segments, similar to the finite elewith the elastic medium, as given by the first law of thermo-
ment method. Thus, the equations of motion for the transpoigynamics:

of atoms within the dislocation core should be consistent
with the thermodynamics of irreversibility. A challenging dU'+ SE'= 8Q!+ SC'+ 6WL, (2.7
prospect in such a description is the enormous topological
complexity of materials containing dislocations. DislocationwheredU! is the change in internal energ§E' the change
lines assume complex shapes, particularly during heavy dén kinetic energy,sQ' the change in heat energgC' the
formation and at high temperatures, where they execute trulghange in chemical energy by atomic diffusion, aii' the
3D motion as a result of combined glide and climb forces.change in its mechanical energy. The left-hand side of Eq.
These dislocations can be highly curved because of thei2.1) represents the total change in the energy of the body.
strong mutual interactions, externally applied stress fields, aé/e will ignore here changes in kinetic energy, and restrict
well as other thermodynamic forces. It is apparent that whenthe applications of the present model to dislocation speeds
ever large curvature variations are expected, the accuracy t#ss than approximately half of the transverse sound
computing the dynamic shape of dislocation loops becomespeed®48
critical. Now the total internal energy can be written as a volume
The paper is organized as follows. First, irreversible therintegral:dU'= [ ,dUdQ, wheredU is the specifidper unit
modynamics of dislocation motion is presented in Sec. Il, involume change of the internal energy. The mechanical
which we discuss energy components and entropy produgower(commonly known as the rate of Peach-Koehler work
tion during loop motion. This leads to an integral form of theis composed of two partg1l) change in the elastic energy
variation in Gibbs energy in Sec. Ill. Aveakform of a  stored in the medium upon loop motion under the influence

Boundary Q

Il. IRREVERSIBLE THERMODYNAMICS
OF DISLOCATION MOTION
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of its own stress. This is precisely the change in the loop _ Qx 1

self-energy within a time intervabt, (2) the rate of work ﬂk,kz(?) =$Qk(|n T) = Tk Kk (2.6
done on moving the loop as a result of the action of external K

and internal stresses, excluding the stress contribution of thghile the local entropy source is given by

loop itself. ThusSW'= [ o, de d€). The change in the to-

tal chemical energy can be written as a volume integral of _ [ dH (1
the chemical potential;, over the atomic concentraton - |, T  JoT dU+Qk'k_Uikd6ik+§i: padn; A€
changedn;. This is negative by convention for mass trans- (2.7)

port out of the volume. Additionally, if loop motion produces o . .
lattice defectge.g., jogs and vacancieshemical energy is ~ Substituting Eqs(2.6) and(2.7) into Eq.(2.4), we obtain
deposited. Thu$C'= [ o(dPy—2;u;dn;)dQ. Here,dPy is

the specific energy change associated with defect productimf (dU=Td9+Qu(INT) — o de + E widn | dQ
Finally, the net change in heat is composed of two pétis: Q ' i
heat energy {H*) generated by the loop as a result of <0 2.8

atomic damping mechanismg.g., phonon and electron
damping, and (2) heat transported across the boundary toComparing the entropy production inequali®.8 with Eq.
the external reservoir, which is negative by convention.(2.3), we can immediately see that a consequence of irrevers-
Hence, we havesQ'= [ odH*dQ — [sQ-dS. HereQ is the  ibility (i.e., entropy productionis a decreasen Gibbs free
outgoing heat flux at the boundary. Using the divergencesnergy. Following arguments similar to Erring&nye write

theorem for boundary integrals, we obtain the internal energy in terms of entropy variation as
. Ju
f (dU_dH*_de)+ Qk,k+2 ,LLidni_O'ikdEik dQ oG = o g_T 5S+Qk(|nT),k_o-ikdEik
Q i
=0. 2.2
@2 +>, wdn;[dQ <0. (2.9
I

We will denote the enthalpy changéd=dH* +dPy, as
the energy dissipated in defect generation and as heat. It fsince the inequality must be valid for all variations&8, its
noted that in the special case where there is no heat or masgefficient must vanisf*° Thus,
transport(i.e., Q; j=dn,=dP4=0), no loop motion(i.e.,

6Wpk=0), and under a hydrostatic stress fidice., oy 5Gt:f QuINT) y— o dey+ >, Midni}dﬂ <0.
:_P5ik), we get Uikdeik:_P5ikd6ik:_PdEii: Q Y i
—PdV, for a unit initial volume. Thus, we recover the fa- (2.10

miliar relationship between enthalpy and internal energy
dU=dH-PdV. For an isothermal process, the Gibbs en-
ergy change is given bg§G=dH—-TdS Thus,

Under conditions where heat generation during disloca-
tion motion is significante.g., high-speed deformatiprad-

ditional equations must be solved for coupled point defect
and heat conduction. Thus, equations for point-defect conser-

5Gt:j (dU-Td9+| Q i+2 Mid”i—ffikdfik> dQ. vation, as well as generalized forms of Fick's and Fourier

Q to 2.3 laws must be added. These are expressed in the following:
CI=G"+J},, (2.1)
The Clausius-Duhem statement of the second law of ther-

modynamics dictates that loop motion must increase the total Q*C

entropy of the body and its surroundintj$° Accordingly, Ji=—DiCi=Dik| 17z | T (2.12

we construct the following entropy production inequality for

the solid: Qu=Q" = xiT~Q*Di,C;, (213

. . _ where G” is the specific defect production rate;, is the

oP'=565-B~— Lﬂ'dSZO, (24 thermal conductivity tensop}, the diffusion tensor of de-
fect v, Q* the heat of transportQ” is the specific heat

where s&'=[,®dQ is the totalentropy productiorduring ~ generation rate from plastic work, a4, the rate of change

St, 6S' the total change in entropyh the local entropy  Of the thermal energy.

sourceper unit volume withB= [ ,bd(), andZE the entropy We treat here the special case where thermal effects are

influx due to heat input across the boundatyUtilizing the ~ smallfi.e., the first term in Eq(2.10 is ignored. We also

divergence theorem again in E@.4), we obtain the follow- ~ consider climb motion to result from point defect absorption

ing inequa"ty per unit volume: [i.e., the third term in Eq(21() is summed over Only vacan-
cies and interstitials In Eq. (2.10), the volume integrals of
®=55—-b—E, =0. (2.5  the elastic term and the chemical tefasmotig can be con-

verted to line integrals over the dislocation loop. The stress
Now, the entropy flux crossing the boundangs-Q/T, and  tensor acting on any point is decomposed into a contribution
the flux divergence is given by resulting from the loop itselfi.e., self-stressvi(f)), and a
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contribution resulting from other dislocations, defects,

Peierls stress, and the applied stress fiedd, external stress j [oiden]PdQ

o(®)). Thus, when the stress tensor in E2,10) is written as ¢

o=+, the elastic energy contributes two terms to ., 8
Gibbs energy, while the chemical energy results in one ad- = fﬁr( E()-[E()+E (t)]ln(;) K

ditional term. We outline in the following how these three
contributions can be converted to line integrals over the loop.

Now consider an infinitesimal variation in the position of _J(L:P)) n-orldg+[oUlcore,  (2.16
a dislocation loop, depicted by the motion of the segments
U(AB,BC,CD, ...) in atime interval 8t. During this mo- wheren is normal to the dislocation line vectbon the glide
tion, the dislocation line length has changed franto L plane, ance =|b/2| is the dislocation core radit§.The first
+AL. The dislocation line vector is denoted Isyt|g, term results from loop stretching during the infinitesimal mo-
wheret is a unit tangent vector. The Change in position fortion, the second and third are thee tensioncontributions,
atoms on the dislocation line is described by the veéror ~ While J(L,P) is a nonlocal contribution to the self-energy.
For the change in the amount of work done on the dislocalhe dominant contributions to the self-energy force are
tion loop during its transition from statel) to state(2) in  dictated by the local curvature, and contain the preloga-
Fig. 1 above, we assume that the stress field is uniformlyithmic energy ternE(t) for a straight dislocation tangent to
acting on every surface elemeh=bx ds. The associated the loop at pointP, and its second angular derivatié'.
element of virtual force isdF=3-dA. During loop motion [6U]core is the contribution of the dislocation core to the
from state(1) to state(2), the variation in this Peach-Koehler Self-energy. Defining the angle between the Burgers vector

work®! obtained by integration along the pdthis given by ~ and the tangent as=cos *(t-b/|b|), Gore” showed that a
convenient form of the self-energy integral for an isotropic

. . o :
f [oide]©dQ = Wpy = % dE. ot elastic medium ofv=3 can be written as
Q r

f [ de ]®0dQ= j; —K[E(a)-f—E"(a)]In(i)
9 ik4€ik T K

fﬁ (bXds %) ér
r

b?|

21+ cos’-a)
T -y P—

64
2 co§a—1)
+;(T n~5r|ds|,
(2.1

(2.19 where the energy prefactors are given bl(«)

_ 2 " : H
Ghoniem and SUR-*showed that the stress tensor of a —L#b*/4m(1=»)](1—vcosa), and E"(a) is its second

loop ensemble can be written as a fast numerical sum giveﬁngular derivative. Accurate numerical calculations of the
by ’ self-energy of any complex-shape loop have been performed

by Ghoniem and Sutf, where the double line integral is

P Nigop Ns  Qmax 1 converted to a fast summation over the loop segments and
TiT 4 21 Zl 21 ana{E R mpel € jmali,ut €imnl’j.u) quadrat_ure points. However, a pgrely_numerlcal method_ for
v AL e evaluation of the self-energy requires intensive computations

39 (b-x1)- or|ds
r

= ﬁ(eijkﬂjmbm’fk&iﬂdsl-

1 because of the need to use large quadrature order for good
t1, Ekmn(R,ijm_5in,ppm)rk,u}- (2.15 accu_racy.r’.4 Equation (2.17 is an alternate convenient ap-
proximation, in which the contributions of various terms are
In Eq. (2.15 above, the fast sum is carried over the num-easily computed. Schwérzconducted a numerical study to
ber of loops (\Iloop)a the number of parametric segments determine the effects of various terms on the self-force, and
within each loop Ng), and the number of quadrature points concluded that the major contribution results from the first
on each curved segmenQf,.,). The third-order tensor two terms in Eq.(2.17), which are the usual line tension
R .5, CONtains successive derivatives of the radius veRtor approximation. However, the relative importance of the third
connecting a point on the dislocation loop to a field point,term (which represents contributions from the dislocation
r, are parametric derivatives of the Cartesian component$ore and dislocation line stretchingnd fourth term(which
which describe the 3D dislocation segment as a function ofs an approximation to nonlocal contributions from other
the parameter |).%2"%* The shear modulus ig, w, are Parts of the qup can _be seen by a ;lmp!e argument. The
weight functions at the quadrature point det} on the nonlocal term is obtained by approximating the loop as a
curved segment, and ;; is the permutation tensor. pure shear loop at an average curvaturecofor a reason-
The total self-energy of the dislocation loop is obtainedable size loop of approximate radius in the range 1000
by double integrals along the contodt. Gavazza and —21000Qb], it can be shown that the total contribution of
Barnett® have shown that the first variation in the self- nonlocal, core and stretch terms is on the order of less than
energy of the loop can be written as a single line integral ofLl8%. The contribution of the nonlocal term is about half of
the form: this amount for purely edge components. Hence, a computa-
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tionally efficient and very accurate method is obtained whergeneralized displacementBhe equations of motion can thus
all contributions are combined in EQ.17). be obtained if one defines an appropriate set of generalized
Absorption of point defects by dislocation segments carcoordinates and conjugate generalized thermodynamic
be treated by considering the influence of the chemical ternforces, in such a way as to result in entropy production and a
in Eg. (2.10 on its motion. Incorporation of atomic defects corresponding decrease &G during a virtual infinitesimal
into dislocation cores leads to dislocation climb. The thermo+ransition. Let us assume that atoms within the dislocation
dynamic force associated with this motion is referred to asore are transported in some general drift force field, as a
the osmoticforce. During climb motion of atoms within the consequence of the motion of atomic size deféetg., va-
dislocation core, the number of vacanciesinterstitial per  cancies, interstitials, kinks, and jogsThe drift velocity of

unit lengthdn,, /L, changes by the amount each atom is given by Einstein’s mobility relationshig;
=(1/kT)Df, , whereV, is the drift velocity,D is a diffusion
@: |b|m- &r 2.18 tensor, and, is a generalized thermodynamic force repre-
L Q, ' senting procesxs. Similarly, the flux resulting from a given

. . . : . process can be related to a corresponding thermodynamic

where() , is the vacancy[nterstltlab volume, andn |_saun|t_ orce. We consider here three thermodynamic fordds:

vector_normal to the_ gllde_plan_e. The change in Chern'ca1[0rces of mechanical origifi.e., Peach-Koehler forcgsas a

potential per vacancfinterstitia) is given by result of variations in virtual work on the dislocation loop

and variations in the stored elastic energy in the medium
o= kTIn( &) ) (2.19 when the dislocation changes its shaf® gradients in point
C‘f/q defect concentrations within the surrounding medi(ra.,

. I ) chemical forces and finally(3) temperature gradient forces

.HereC.y. is the nonequilibrium concentrathn of vacandies associated with heat flow.

interstitial9. C, may result from quenching, sudden tem- A generajization of the previous analysis can be accom-

perature variation, iradiation, externally applied stéss; plished if one postulates that near equilibrium, thermody-

dislocation segment annihilation and intersecti@r‘j‘.q isthe  nhamic forces are sufficientlweakthat we might expand the

thermodynamic equilibrium concentration of the atomic de-f,x in a power series ifi, .%9 Let us denotd, {f,} as typek

fect. The corresponding contribution from point defect flowf,x as a result of a generalized thermodynamic fokge

to the variation in Gibbs energy for the entire loop can nowt v Thys, a generalization of Einstein’s phenomenological

be obtained by line integration. Incorporating E¢2.14), transport relationship is given by

(2.17, (2.18, and(2.19 into inequality(2.10, we obtain

AR 1 EENN
SGi=— ﬁ(f5+f0+pr)~6r|ds| <0, (2.20 ‘]k{f)\}:‘]k(o)"'; 7t Ofﬁzz T Ofxfm+"'-

m \ of, of
3.1
where we define the following generalized thermodynamic

forces: fpx= the Peach-Koehler forceper unit length=b In the linear range of irreversible processes, &jl) is
-2 Xt, fs= the self-forceper unit length restricted to only the first two terms in the expansion. More-
over, at thermodynamic equilibrium in the absence of gener-
[—K[E(a)'f'E”(a)]m(i + ub? « 21+C°52“) alized forces, all modes of atom transport vanish, and the

€K 64 first term, J(0), is identically zero. Taking the velocity of

atoms on the dislocation ling.e., representing the cor¢o
]n, be proportional to the atomic flux, and defining generalized
mobilities via the tensorL with components: L;
=(aVildf))o, the phenomenological relationsHigg. (3.1)]
is simplified to

4(2 cofa— 1)
+ K| ———
27

fo= the totalosmotic forcé® for defecty per unit length,
==3,y kT(|bl/€2,) I_n(Cyl_C_:‘fyq) m wherey=(—1) for va-
cancies and-+1) for interstitials.

In compact tensor form, Eq2.20 can be written as V'B{f}\}:; Laaf - (3.2

t_ t <
oG jgrfkarkldsl 0. @29 Measurements of dislocation spéédeveal that the ve-

. . locity is a nonlinear function of the local shear stress, and
where f; is the k component of the total forcd.=fs+fo  that it is limited by the Rayleigh wave speed. At dislocation
+fpk, and ory is the displacement of core atoms in tke speeds close to this limit, one must account for inertial
direction. effects®® In practice, however, most DD simulations have

assumed a nonlinear stress-velocity relationship, with expo-
IIl. VARIATIONAL FORMULATION nents that are adjusted over specified stress raigé€ver
a small range of local forces, a linearization technique can be
invoked to allow for incremental utilization of the relation-
Inequality (2.10 suggests that the components of Gibbsship given by Eq(3.2).
energy can be written asonjugatepairs, representing the As a consequence of the increase in entropy production
inner products ofgeneralized thermodynamic forcemd @, or equivalently the decrease in Gibbs energ,

A. Governing integral equation of motion
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Prigoginé® showed that 4, f4f,=0. This relationship gives Nhow choose a set of generalized coordinaigsat the two

a positive definite quadratic form, which imposes restrictionsggnds of each segmeptThen, the segment can be parametri-
on the matrix of coefficients to be positive. The generalizedcally described as

mobilities L;; are subject to additional temporal symmetries

as a result of the principle of detailed balance, as shown by Nor

Onsagef? L, =L, 4. The mobility matrix relates the influ- ri= 2 Cim(U)Qm, 3.7
ence of an independent thermodynamic force ofathgpe to m-t

the partial flux of thek type. In most applications of DD so whereC,,(u) are shape functions, dependent on the param-

far, the mobility matrixL, ; is assumed to be diagonal and gty (0=u=<1). Equation(3.7) is a general parametric rep-
independent of the type of thermodynamic force. Howeveryesentation of the dislocation line for segméntPossible
we will assume that dislocation mobility is spatially aniso- conyenient parameterization methods are discussed in Refs.
tropic, since the speed of screw segments is usually smalleg, 54 |n Sec. IV we introduce quintic splines as flexible
than edge segments as a consequence of the crystal Structulfy convenient parametric curves for complex dislocation
These simplifications lead to direct proportionality between|Oop geometry, while the applications in Sec. V illustrate the
the velocity and total force along each independent direction,iization of several types of parametric elements on the
Thus, we can denotB,, as a diagonal resistivityinverse  ¢sme loop. It is noted that the indew is assumed to be
mobility) matrix, and substitute in Eq2.21) to obtain the ¢, mmed from 1 tNpe, whereNpr is the number of total
following equivalent form of the Gibbs energy variation:  geperalized coordinates at two ends of the loop segment.
Accordingly, the three components of the displacement vec-

5Gt=— 3@ B,V 5r |dsl <0. (3.3 loraregien by
r
Npe

The resistivity matrix can have three independent compo- or= mEzl Cim(U) 60, - (3.9
nents(two for glide and one for climly depending on the

crystal structure and temperature. It is expressed as On the other hand, we have for the velocity of any point

on the dislocation line, within segmept

B, O 0
0 B, O Npg
Bukl= 2 . (3.9
Bl 0 0 Bj; Vk:rk,t:ngl Cinln,t - (3.9

And the arc length differential for segmenis given b
Combining Eq.(2.21) with Eq. (3.3), we have d amens g 4

Npe 1/2
— 124 1=
é (fL_ BakVa)5fk|dS|=0- (3_5) |ds|_(rl,url,u) du_(p,szl Qpclp,ucls,uqs) du.
r (3.10

The magnitude of the virtual displacemastt, is not speci-

fied, and hence can be arbitrary. This implies that Bc) An ensemble of dislocation loops is considered a continu-

represents force balance on every atom of the dislocatioRYS dy_namlcal system, Whe_re every point on d|s_lo_cat|on lines
. : IS subject to continuous displacement. The finite element

core, where the acting force compondhtis balanced by ; : o R
process in continuum mechanics is based on approximating

\:\?groutiigI?SSIrF:gtUﬁgégstgaerilcryjéilir\ggléh%éi?ag\ékénl—éoxvée dst e continuous displacement field by a linear combination of
’ y ’ ce-wise known shape functions over specified domains.

ﬁgﬁgﬁ thztlr;?iﬁpse;;?s?ir;tsdﬁ—]ger?;,svsfgfr?ﬁgsgstrb?;q[ﬁz(;ga]%edIci obtain the unknown coefficients in the linear combina-
Y y tion, an integral form of the governing equation is formu-

namics descnb_ed here. To meet this end, we develop a geﬂ:ited, and an element-by-element assembly is extracted. The
eral_method_, with greatly reduced degrees of freedom for th?esult is a system of equations fetandard discrete systems
motion of dislocation core atoms. which can be handled by numerical methods. We will follow
a similar approach here, in which the weight functions in the

B. The Galerkin method integral form are the same as the shape functions of the prob-
lem. Minimization of the weighted residuals results in sym-
metric matrices, which simplifies integration of the equations
of motion. This variational approach is thus coincident with
the Galerkin method as a special case of the method of
Nq weighted residuals. Recently, a number of investigators for-
2 .5ri(fit_ B, V)|ds = 0. (3.6) mulate%lgmrostructure evolution problems in a similar
=1 Jj manner.™

At this point, we may substitute Eq$3.8), (3.9), and

Note that in Eq(3.6), we sum over the number of segments (3.10 into the governing Eq(3.6), and obtain the following
j and follow the standard rules of 3D tensor analysis. Weform:

Assume that the dislocation loop is divided imMig curved
segments. The line integral in E(B.5 can be written as a
sum over each parametric segmegrnite.,
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Ns ., Npr Npr Niot Niot
> | X 5qmcim<u)[f}— Bik Y, Cinln. > 5Qk( F— 2 rklol,t) =0. (318
j=1 J0om=1 n=1 k=1 I=1
NoF 12 Since the virtual displacements in the generalized coordi-
x pszzl ApCip,uCis,uls| du=0. (3.11 nates are totally arbitrary, the previous equation can only be
’ satisfied if
Appropriate collection of terms into more convenient func- N
tions can reduce the apparent complexity of this form of the B ﬁt r
equation of motion. We will define here two such functions: “Tk_lzl WQre- (319
an effective force and an effective resistivity.g&neralized
force f,,, is defined as Equation(3.19 represents a set of time-dependent ordinary

differential equations, which describe the motion of disloca-

1 Npr 12 tion loops as an evolutionary dynamical system. Similar mi-
fm=f f}Cim(u)( Z qu|p'uN,SyuqS) du, (3.12 crostructure evolution equations have been derived by%Suo

0 p.s=1 in connection with grain and void growth phenomena. Fur-
thermore, the above spatially resolved equations can be dis-
cretized in time by the so-calledeneralized trapezoidal
NoE )1/2 family of method® as

du.

1
Ymn= jo Cim(u)Bikan(u)< p52:1 C]pCIp,uCIs,ucls

while aresistivity matrixelement,y,,,, is given by

Niot Niot

(3.13 > T IQM =23, T IQM+AtF*,
=1 =1

It is noted thaf y,,,] is @ symmetric matrix because of the (3.20
structure of the above definition and symmetric mobilities., here At is the time-step and is the time-step index. In

With these two parameters defined above, the variational inaddition,a is a parameter, which determines explicit or im-

tegral form of the Gibbs energy equation is readily rans-yicit time-integration, taken to be in the intendl,1] such
formed to a discrete form, given by

that: «a=0 for forward difference integrationEulen, «
=1/2 for midpoint or trapezoidal integrationy=2/3 for

0. (3.14 Galerkin integration, and:=1 for backward differencéEu-
ler) integration®

Ns [ Npg Npr
2 { 2 5qm(fm_nzl ')’mnqn,t>

j=1|m=1
For the entire dislocation loop, we map all local degrees IV. COMPUTATIONAL GEOMETRY
of freedomqi(’) of each segmerjtonto a set of global coor- OF DISLOCATION LOOPS

dinates, such that the global coordinates are equal to the local

coordinates at each beginning node on the segment: A. Curved spline paramedrization

Recently, simplified parametric representation of 2D dis-

{gM,q,q, ... 0?0 ,qP, ...} location loops has been successfully implemefifeld. the
B - following, however, we develop a more general method for
=1Q1,Q2,Qs, - - QN (3.15 geometric representation of 3D dislocation loops. Each dis-

location loop is described as a composite spline curve, made
up by connecting curved segments together at their common

ment resistivity matrix| y,,] is added into corresponding nodes. Each segment is described as an independent para-

global locations in the global resistivity matrpt’y,], such metric space curve, with the parameterarying m_the range
that 0 to 1. A general vector form of the dislocation line equation

for segmentj) can be expressed as

where N is the total number of degrees of freedom of the
loop. Similar to the finite element procedure, the local seg

Ns Npr Npf Niot Niot "
S ()= S50.T , ) N
]_Zl mE=1 n§=:1 [ meann,t] k§=:1 I=§:l Qx kIQI,t r(])(u):igo Ai(J) ul, (4.1)

(3.16

whereN,;,;=NgNpg is the total number of degrees of free-
dom for the loop. The global resistivity matrt'y,] is also
symmetric and banded or sparse. The compohgnis zero

if the degrees of freedoand| are not connected through a
segment. In addition, the global force vec{df,} can simi-
larly be represented as

wheren is a polynomial order and,; represent the associ-
ated vector coefficients. The value ofdetermines the seg-
ment type. Thus, when=1 the segment is a straight line,
whenn=3 the segment is a cubic polynomial, and when
=5, the segment is a fifth-ordéquintic) polynomial. The
coefficientsA; are determined by boundary conditions im-
posed on beginning and end nodes. These boundary condi-

N Npg Niot tions can be described in terms of specified geometric prop-
S 169l P= 5QFk. (3.17  erties, such as the nodal position, tangent, curvature, and
= T = | torsion.

In the following, we restrict ourselves to the more general
Therefore, Eq(3.14 can be expressed as quintic spline representation of loops. Composite linear and
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cubic spline shapes can be easily determined by a SImI'af(lJJ:]-)(O), respective|y’ WherNjE anng'H-) represent mag-
approach. The six coefficients of a quintic spline segment argjt,des associated with the unit vectof8 andnl+2). After
determined by assigning six independent vectors, obtainegypstituting all boundary conditions into E@.1) and rear-

from six boundary conditions. These aré)(0), r')(1),  ranging terms, we obtain
rd(0), r(1), rli(0), andrii(1), wherer)=dr/du | | | - o
andr(),=d?r0)/du?. Geometricallyr(0) andr(1) are r(u)=C,PD+C,PU D T+ ¢, T D0+ D)

the position vectors of nod¢sindj +1, i.e.,P4) andPU+1), () (i ; -
- . ' ’ + D)+ J+1p+1) )

The vectorsr({)(0) andr{)(1) are the tangent vectors of CsNEMT+CeNg ™1 “.3

nodesj andj+1, i.e, TOt0) and TU 9+ respectively, Note that the superscript on the LHS of Hg.3) refers to

whereTd) and TU*Y) are magnitudes of tangent vectors atSsegment, while on the RHS, it is associated with nodes

the end(E) and beginning(B) of each segment, while the andj+1 on the same segment. The coefficiefitdo Cg are

unit vectors) andt(*1) are the dislocation sense vectors atinvariant shape functions, and can be expressed in terms of

nodesj and j+1, respectively. The vectors{)(0) and Parameter (Bu=<1) as

r’(fj)u(l) are linear combinations of the tangent and normal C,=—6uS+15u%—10u3+1
vectors because they lie on the plane spanned by them. Be- '
cause the resultant loop profile is a composite curve, dislo- C,=6u°—150%+10u®,
cation line continuity may not be maintained at each node if

boundary conditions on segments are arbitrarily assigned. In C3=—3u’+8u*—6us+u,
general C°(position and C(tangent continuity can be eas- 5 . 5

ily satisfied if we assign the same position and tangent vec- Cy=—3u”+7u"—4u”,

tors at each node. However, since self-forces on dislocation

— 5 4__ 3 2
segments are proportional to the local curvature 2dl7), Cs=—0.507+1.30" - 150"+ 0.30%,

C< continuity will ensure the continuity of self-forces at seg- Ce=0.515—u*+0.50°,
ment nodes as well. The curvature of a general point on
segmenj can be expressed as We can cast the parametric E@.3) into a convenient

matrix form for a single parametric quintic spline of a seg-
) , ment, if we reorganize the generalized coordinatgsas
kY (u)= . 4.2

3

||r’(3])(u)|| {qm}={q1,qz,Q3, e 1q18}T1 (44)
To maintainC? continuity at each node, we let the curvature ywhere the first nine components are for the beginning node
of the end point of segmentoe equal to the curvature at the of the segment; witfy; — g5 being three components of po-
beginning node of curved segmenj+1: «Y(1)  sition, q,—qq three components of the tangent vector, and
=«U*1(0). Becauser(), is a linear combination of g,—qq three components of the normal vector. Correspond-
T and N, the tangent component of vecto&ﬂ]u does not ingly, g0 to q,g indicate all coordinates at the end of a seg-
influence the line curvature. Therefore, we can just assign thment. The shape functions for the quintic spline can also be
normal vectorsNY'n® and N *Ynl*Y for r{) (1) and  organized in the following matrix form:

@y xr Q)

¢, 0 0 CG O 0 C O 0GC O 0C 0 0C 0 0
0 ¢ 0 0 C O 0 G O 0C 0 0¢C 0 0 C O
0 0C, 0O 0Cg O 0C O OC O 0C 0 0 C

[Cim]= (4.9

With this notation, Eq(4.3) can be cast in the computa- the total DF’'s are required per segment, a\ige=9 for
tional form of EQ.(3.7). The total number of available de- general 3D motion, andp-=6 for motion on a glide plane.
grees of freedom for #@ree quintic spline segment is thus The direction of the Peach-Koehler force imposes additional
equal to the number of components in the Cartesian vectagonstraints. As can be seen from E(514 and(2.17), both
am, i-e., Npe=6X3=18. However, because of geometric external and self-forces on a dislocation node are along the
and physical restrictions on dislocation motidi, - can be ~ normal directionn on the glide plane. Also, becauset
greatly reduced, as we will discuss next. =0, Npf is reduced further from 6 to 4 for 2D glide motion;
that is one for the displacement magnitude, two for the tan-
gent vector, and one for the magnitude of the normal. Fur-
thermore, we introduce here two additional conditions,

It is apparent that general dislocation motion would in-which simplify the loop profile calculations even further. A
volve many degrees of freedoiMpr in the most general smoothnessondition is invoked such that rapid variations of
case. Fortunately, howeveKpr is small in practice. As a curvature are avoided when two segments of vastly different
result of segment connectivity at common nodes, only half ofengths are connected via a composite spline. If the magni-

B. Constrained glide motion and reduced degrees of freedom
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tude of the tangent is not related to nodal positions, undesition is small between time steps. Based on the above con-
able cuspsmay develop on the dislocation line. Thus, we straints, Eq.(3.8) may finally be simplified with a reduced
take the magnitude of the tangent vector to be estimateget of shape functiong as

from the arc length between previous nodal positions on the

segment. This criterion is exact when the parameters, {6%} =[Cim(U) 1{ 80U, (4.10
wheres is the arc length itself. On the other hand, the line

curvature can be independently computed from the dislocawhere

tion configuration and nodal loading in a simple manner. If

the forces at the node are not near equilibri@ira., the act- 6Px)
ing forces are much larger than the self-fgrdee curvature X 06g

is determined from three neighboring nodes on the disloca- {6ri}= Sy [ {oam}=9 spP '
tion line. On the other hand, near equilibriveg., close to vE
strong pinning points the curvature of a node is readily 00k
computed from Eq(2.17), once the local external force is /

known. These approximations can lead to an additional re- 1
duction of two degrees of freedom, and we are left with e B

solving for only two equations per node. These constraints [Cim(W)]= Y€1 D3 ¥C; Dy
can be relaxed, if one is interested in more complex details of -
dislocation motion. We will show later in Sec. V that dislo- gnd

cation glide motion can be adequately described in most

cases with only two degrees of freedom per node. Dy=—n.C3SinOg— kg nécg,cosaB, (4.11
We derive here constrained discrete equations of motion,

when dislocation lines are confined to their glide plane. In D,=— 7C4Sin O — kg pECCOSHE (4.12

this special case, there is a total of six independent un-

knowns. That .is,A Py,AP, ,ATX ATy, AN, ,ANy, which D= 1, C3C0S05— kg nécssin 0g, (4.13

correspond to incremental displacements, tangents, and nor-

mals in thex andy directions, respectively. Let us first con- Dy = 7eCaCOSO— ke n2CeSiNn O . (4.14

sider the geometric constraints. Because the normal is always

perpendicular to the tangent at the node, we hawé! (It is noted that the subscripBandE refer tobeginningand
+AT)- (N +AN)=0, where the symbols with superscript endnodes of one segment of the dislocation loop.

(i) refer to a previous time-step of known valu@se.,

TU*D=TO 4+ AT). Furthermore, from a geometric point of  C. Adaptive protocols for node and time-step assignments
view, the curvature of the loop at a current time-step is re- Because of the evolving nature of dislocation line geom-
lated to the normal and tangent vectorsas||N||/||T||2. 9 9

Where the curvature is assumed to be determined by Iocatry asa result_of strong interactions, it is highly de_swable to
" ; : evelop adaptive methods that capture essential physics
forces or nodal positions, as discussed earlier. The norm

(magnitude of the current tangent vector is proportional to without exces_,sive c_omputations. Control Of. t_he magnitude of
the previous arc length of a segment. Tha{Td| = 7, where the computational time-step and nodal positions on each seg-

7 is determined by the arc length of the previous time-stepment has a direct influence on the final accuracy of DD simu-

Finally, the displacement vector is perpendicular to the taln[atlons. For node redistribution, we first compute a reference

gent direction of the considered node, curvaturex for the entire loop, which is normally taken as
the average curvature of all nodes. Then, we compare the

AP, T curvaturex; of each node ﬂith?, and classify nodes into

A_PX:_TTyi):% (4.6) high curvature groups«>«) and low curvature groups

(kj<k). Finally, we increase the number of nodes for each
where vy is a constant determined by previous tangent comhigh curvature group and decrease the number of nodes for
ponents. Thus, by introducing an anglewhich is the angle each low curvature group. After adding or removing nodes,
between the tangent vector and thdirection, the six inde- we redistribute the nodes evenly for that group. To prevent
pendent unknowns can be reduced to only tw&, and 6, the number of nodes from increasing or decreasing too fast,

such that all constraints are automatically satisfied: we only add or remove one node at a time. If the number of
nodes for a low curvature group is less than a specified mini-
AP,=AP,, AP,=vAP,, (4.7 mum, we keep the current nodes because a prescribed mini-

. . mum number of nodes is required to maintain the loop ge-
AT,=7ncoso—T\), ATyznsinG—Tg'), (4.89  ometry. After redistributing nodes on each segment, we
calculate the displacement and tangent angle of each new
AN,=—kn?sind—NY, AN, =xn?cosd—N). node based on the current loop geometry. The radius of cur-
(4.9 vature of each new node is determined by a linear interpola-
tion from old nodes for open loops, or by circular arc ap-
Moreover, a linearization technique can be used to approximations for closed loops. The highest curvature occurs
proximate sine and cosine functions in termsAdgf, as long  always at fixed nodes or in the close proximity of other dis-
as the time step is small, and hence the tangent angle varilcations. In regions of high curvature, large self-forces oc-
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cur and the curvature at the segment will be near its equilib- —O%—  3-nodes

rium value. Thus, the curvature in these special locationscan == e ;-"0:95
= -nodes

be determined directly from the equilibrium condition on the

segment. The entire geometry of the loop is finally deter-

mined by using Eq(4.3) at next time step. [ o7 N

Time step selection is determined by dislocation segment A T

velocity and its adjacency to other segments. The time-step el
is selected such that, on average, dislocation-dislocation in- >

0l il ol o

b

1.5tbot/B

teraction is resolved within about 100 steps. If the disloca-
tion density isp, the average distance between segments is T
on the order ofp Y?>~10"6-10"° m. In fcc crystals, the
dislocation resistivity is on the order ob&10 ° Pas, while v4 L4 v4 v4
it is about 8 orders of magnitude higher for screw segments . . —
in bee CI’ySta|56.5 These considerations lead to a time-step of F_IG. 2. Nodal displacements for the first time-step of an initially
~1 ns for fcc crystals and-0.1 s for bec crystals at low Straight segment.

temperatures. When two loop segments approach each other ) , ,

a short-range reaction occurs, and the time step must be réthere the equations of motion can be solved analytically for
duced to determine whether the reaction will lead to annihijust one time step. Our purpose here is to highlight the es-
lation or junction formation. In case of annihilation, two sential features of the present computational method. As-
loops join together and form different new loops as a modesume that we are interested in determining the shape of a
of plastic recovery. On the other hand, junction formationdislocation line, pinned at two ends and under the influence
leads to hardening and stabilization of dislocation patternsof pure shear loading on its glide plane. The glide mobility is
In either case, the minimum distance between segments assumed to be isotropic and constant, and the segments will
the loop itself, or on two adjacent loops is determined bybe taken as linear for illustrative purposes only. The disloca-
calculating all local minimum distances from each node to aion line is pinned at points andR, with only two linear and
curved segment. By scanning all possible nodes on a loogqual segments connected at pdinas shown in Fig. 2. We

we obtain the minimum distanaky;, between two loops or  will compute the shape of the line, advancing it from its
between two segments on the loop itself. If this value is lessitial straight configuration to a curved position. Under
than two times the maximum displacement, i.@l,2, then  these simplifications, the variation in Gibbs free eneid@,

the time step.is adjuste_d to Qd’,ﬁn/_dmax_. This pror_:edL_Jre IS for any one of the two segments is given by
repeated until loop annihilation or junction formation is com-

pleted. After annihilation or junction formation is completed, 1 1

the time step is gradually increased to its maximum assigned 5G=— Bf Vér|ds=— f flor|ds. (5.1

value, as discussed above. During short-range encounters, 0 0

local dislocation segment velocity can approach the sound ) ) o

speed, and inertial effects may have to be accounted for, flow, we expand the virtual displacement and velocity in

one is interested in the exact details of the short-rang@nly two shape functionsC;=u, C,=1—u. Thus, ory

reaction’® =60 C;, andV,=q; (C; . Since we allow the displacement
If new loops are generated during the short-range reado be only in a direction normal to the dislocation ling (

tion, all nodes on the loop are rearranged. For loop junctiorirection), we drop the subscripk as well. For arbitrary

formation, new loops are not generated, and the nodes akariations of 5q;,, the following equation is applicable to

ordered to allow formation of straight junction segments.any of the two segmentd. @,AR),

However, five possible cases for generating new loops are

considered during segment annihilation. On the glide plane, 1 1

a full dislocation loop may be totally closed, or may have —f At(fp+fg)Clds = —BJ AQnCrCilds. (5.2

closure on other glide plane via sessile threading arms 0 0

formed by cross slip. Thus, we may have one of the follow- . L .
ing possibilities: (1) annihilation of two segments on the Equation(5.2) can be explicitly integrated over a short time

same open loop to produce one new open loop and one nelterval At. The resistivity matrixelements are defined by:
SLr - — 1

closed loop;(2) annihilation of two segments on the same ¥im= BJoCiCnlds|, and theforce vectorelements byf,

closed loop to produce two new closed loof; annihila-  =J¢Ci(fpx+fs)|ds. With these definitions, we have the

tion of two segments on two different open-loops to producédollowing (2x2) algebraic system for each of the two ele-

two new open loops{4) annihilation of two segments, one ments:

an open loop and the other on a closed one to produce one

new open loop;(5) annihilation of two segments on two AQmYim=fi X At. (5.3

different closed loops to produce one new closed loop. In

each case, the nodes on generated loops are reordered.

For any one linear element, the line equation can be de-

V. APPLICATIONS OF PARAMETRIC DISLOCATION termined by
DYNAMICS
u 0 a1
A. lllustrative example: Initial bow-out of a pinned dislocation [x vy]= 0 1-wllag (5.4)
- 2

To illustrate the computational procedure involved in the
present method, we consider here a very simple examplénd the resistivity matrix can the be simplified as
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2 1
1 2

_B|
[')’mn]_g

Furthermore, as a result of the shear streasd the absence
of self-forces during the first time step only, the distributed
applied force vector reads

=T [1)

Since the dislocation line is divided into two equal segments,
we can now assemble the force vector, resistivity matrix, and
displacement vector in the global coordinates, and arrive at
the following equation for the global nodal displacements

AQi:

2 1 0](AQ 1 F,
Bl blAt
oL oe e AQ, 274 oliat! o
0 1 2||AQs 1 F

FIG. 3. Operation of the Frank-Read source for isotropic dislo-

An important point to note here is that at the two flxedr%:ation mobility on the glide plane.

ends, we know the boundary conditions, but the reactio

forces needed to satisfy overall equilibrium are unknown. . ) .
These reactions act on the fixed obstaclds andR. and are  Where the dislocation segment mobility can be assumed to be

important in determining the overall stability of the configu- iSotropic on the 110 glide plane. In this simulation, we use
ration (e.g., if they exceed a critical value, the obstacle isCOMPOSite quintic spline segments to construct the loop after
destroyed, and the line is releasel AQ; = AQ;=0 at both each time-step computation of the nodal displacement and

fixed ends, we can easily solve for the nodal displacemerf@ngent angle. The loop starts from an edge line segment
AQ,=23/2(rbAt/B) and for the unknown reaction forces at With two fixed ends normal to thel11) direction, for which
the two endsF,;=F3;=— % 7bl. If we divide the dislocation We assign only three nodes at the first time step. The tangent
line into more equal segments, the size of the matrix equavectors at the two end nodes are those of circular arcs con-
tion expands, but nodal displacements and reaction forcesfructed from three adjacent nodes. When the loop expands,
can be calculated similarly. Results of analytical solutionsmore nodes are added around the two fixed end n@iigh

for successively larger number of nodes on the dislocatiogurvature regions while the number of nodes is automati-
segment are shown in Fig. 2. cally reduced in the low curvature region of the loop. After

each time-step, the minimum distance between loop seg-
ments is calculated. If the minimum distance is detected to
_ _ _ _ _ be less than [b|, and cos(t,-t,)=(1=0.05)7, the two
Generation of new dislocation loops is an important PrO-segments are annihilated. Hettg, and t, are the tangent
cess in d.etermining tr_]e rate of hard_ening in materials U”qe\yectors for segments 1 and 2, respectively. The valud f 6
deformation. The basic mechanism involves the propagatiogyr the critical annihilation distance in fcc is taken from ex-
of a dislocation segment from two immobiléxed) ends perimental measurements on (Ref. 66 and Ni (Ref. 67).
under the action of applied stress. If the applied stress eXgeasyits of calculations are shown in Fig. 3, where nodal
ceeds the resistance offered by the self-force, lattice friCtionpositions are indicated on each loop. Details of node rear-
and additional forces from nearby dislocations, the segmenngement before and after an annihilation reaction between
length will increase. In fec metals, the Peieflsfriction) 15 curved segments on the Frank-Read source are shown in
stress is very small, on the order of T, and is thus lower Fig. 4.
than typical applied stresses of Tu. Dislocation mobility The influence of the self-force on dislocation motion is
is isotropic at all relevant temperatures because of the lowgificant, especially during short-range interaction of dislo-
value of Peierls stress in comparison to applied and self5tion segments. In Fig. 5, the angular distribution of the
stresses on dislocation segments. Thu_S. the mfluence_ of th&t-force on the glide dislocation loop, immediately after its
underlying crystal structure on dlslocgtlon g_enerat[on 'S,”O?ormation by annihilation of opposite segments on the origi-
pronounced. On the other hand, high anisotropic Peierlgy| gisiocation line is shown. It is clear that the distribution
stresses in both fcc and diamond cubic materielg., Si of the self-force is negative everywhere on the loop, except
imposes constraints on the shapes of generated dislocatigfy the small range of angles surrounding the newly formed
loops in these systems, as discussed next. dislocation segment. In this region, the self-force is positive,
and thus it will assist the applied stress in expanding this
curved region faster than others on subsequent time-steps.
Figure 3 shows the results of shape computations for th&he action of applied and self-forces tend to even out curva-
Frank-Read source in a bcc crystal at high temperaturagure variations on the entire loop, once the short-range reac-

B. Dislocation loop generation

1. Isotropic mobility of screw and edge segments
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FIG. 6. Double-ended Frank-Read source in bcc metals. The
straight segments are either screw or edge, while the curved corners
are of mixed type.

ponent is extremely higf?. The mobility of screw segments
is controlled by double kink nucleation below ththermal
temperatureT, . Peierls lattice friction stress on screw com-
ponents is very high, and the corresponding mobility is low.
As the temperature increases, the influence of lattice friction

FIG. 4. Details of nodal arrangements before annihilation Ofon screw Component mob|||ty is reduced, and the mob|||ty of

opposite-character segments.

screw and edge dislocations become comparable. It is ex-
pected, therefore, that dislocations become very straight at

tion is completed. The self-force is seen to be higher for thdow temperatures, and that significant curvatures develop at
screw segments a#=90° and 270°, as compared to seg- higher temperatures. To adequately represent this physical

ments with a pure edge character.

2. bcc metals at low temperature

In bcc metals, the primary slip system{i$10(111), al-
though slip on secondarf112 and {123 planes are
possible®® Slip trace analysis at low temperatfft€° indi-
cates that the main slip planes drELG, and that disloca-

picture, we use composite cubic spline curves joined with
linear segments when necessary, and still main@fircon-
tinuity at all nodes. In this case, the tangent directions of
each curved segment are predetermined by crystallography
(i.e., (111) directions for screw componentsand only the
magnitude of the tangent vector needs to be calculated from
the condition of continuity. Additionally, nodes on expand-
ing loops in this case are not redistributed, but are selected to

tions are either of the screw or edge type. At temperaturesnsure construction of polygonal loop shapes, as is experi-
below T,~0.15T,,, dislocations in bcc metals tend to move mentally observed at low temperatiifeThe construction
as straight lines, indicating that the mobility of the edge com{rocedure of polygonal loop geometry is described as fol-
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FIG. 5. Angular variation of the self forc@units of o/una) in

lows.

First, straight linear segments are assigned parallel to spe-
cific crystallographic direction§.e., (111)) for screw com-
ponents. The displacement is computed for the entire linear
segment in the normal edge direction. Then, two adjacent
nodes at each corner of a the resulting rectangle are assigned,
such that the distance of each node from the corner is pro-
portional to the magnitude of the displacement, which is de-
termined by the anisotropic mobility. Finally, after nodes are
generated, the tangent direction of each node is aligned with
the side of the polygon or is assigned a prescribed angle with
the polygonal direction as an additional degree of freedom.
For example, if the temperature is increased in bcc crystals,
slight curvatures can be expected, and the tangent magni-
tudes can be solved for by applying the condition Gf
continuity. It is noted that at very low temperatures in bcc
metals, the mobility of edge componentsnks) is much
higher than that of screw segments, and thus dislocation lines
will be predominantly of the screw type. These features of
adaptive shape computations are illustrated in Fig. 6 for low
temperature and Fig. 7 for higher temperatures.

3. Dislocation sources in Si

copper for the Frank-Read source after segment annihilation. The

angle 6 is defined in the insert. All distances on the figure are in

units of the lattice constant.

Motion of dislocations on the glide plane of dc crystals,
such as Si, occurs by breaking and reconstruction of strong
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|

=

FIG. 8. Dislocation generation in covalently bonded silicon. The
directions of the hexagon sides are alofidl1) orientations for
screw segments, antl60° for mixed ones.

FIG. 7. Dislocation loop generation by the Frank-Read mecha- . o . . .
nism for anisotropic mobility of screw and edge components. lation criterion is applied, leading to the loop profiles shown
in Fig. 9. The applied stress is higher than the maximum

value of the self energy after the two loops join one another,
%ecause the nodal curvatures are much smaller than corre-
sponding values near the fixed ends of the each loop. Hence,
Yturther nodal displacements are not influenced as much with
o . nodal curvatures, once the two loops join together as a single
three(110 close-packed directions on a1l family of loop. Another illustration of loop-loop interaction is shown

shp plane, and a sma_ller one in d|rect|o_r_1$69 to _those in Fig. 10, where two glide loops on differefit11} planes
primary ones. Dislocation segment mobility in Si is rather. df e . he i ion b
low, which leads to a time step on the order of 0.01 s similar'meract and form a sSessile Junct.|on at the intersection be-

C T T ' ’ tween the two glide planes. In this case, the Burgers vector
to the situation in bcc metalS.

When general cubic spline segments are used, we muo{ the resulting junction does not lie on any of the two slip

solve for tangent vectors at each node, in addition to nod anes.

displacements in order to generate the dislocation loop ge-

ometry at successive time steps. However, for special po- VI. SUMMARY AND CONCLUSIONS
lygonal loop geometries, additional constraints are needed to . & d ional
maintain accurate loop profiles. For this purpose, we use two In a previous papef, we presente_ a cc_;mputa’qona
types of segments: linear ones for the sides and curved Se%lethod for accurate calculation of the isotropic elastic field

covalent bonds. Thus, the resistance of the lattice to disloc
tion motion is significant up to very high temperatufesy.,
1200 K in Sj. The dislocation must overcome a large energ
barrier in the direction of maximum bond strendite., the

ments for polygonal corners. The curvature of all nodes i f arbitrary-shape dislocation loops. The main motivation

thus constrained to be zero, which guarantees the alignme {ah|_ndfth|s workdv_valls tc;. enable caI(t:ngtlc(;n? of .thermotdy.—
of polygonal sides to crystallographic directions, as can b amic forces on dislocation segments in deforming materi-

seen in Fig. 8. The procedure outlined above produces he)ggls. This task has been addressed in the present work, where

agonal loops with rounded corners, in agreement with thd'® _developed a_variational _method, V.VhiCh can be l.Jt”ized. to
experimental observations on dislocation sources in Si b erlve_the equations of motion of arbitrary-shape dls[oqat|on
Dash’! oops in complex 3D geometry. The present method is in the

C. Dislocation loop interactions

In Fig. 9, two initial screw segments of equal length are
assumed to be collinear, and of the same initial length on the
[110Q]-slip plane of a bcc crystal at high temperature, and a
high shear stress is applied on the slip plane. Bowing of the
two segments is tracked with nodal displacements and tan
gent vector direction, and the loops are reconstructed by
quintic spline segments after each time-step. The process i
repeated until any two curved segments on the same loop, or
on the two different loops, approach each other. The annihi- FIG. 9. Coplanar dislocation loop interaction.
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diated materialé>"3 1t is concluded that the present method
offers a number of potential advantages.

(1) The method provides a general and natural description
of dislocation loop geometry that is not determined by an
underlying computational mesh, and which easily conforms
to physical constraints imposed by the crystal structure.

(2) Numerical force divergence problems for very short
straight segments are totally avoided. Force computations are
also accurate for long segments as well. The moments of the
total force distribution function are determined by sampling
from positions on the entire segment.

(3) The method is accurate in rather complex situations
involving high curvature regions, strongly interacting dislo-
cations, cross slip, strong pinning, etc.

(4) Various segment types can be easily mixed within the
same computation, thus leading to a reduction in the overall
computational burden.

(5) Since the final equation is of a matrix form for the
DOF’s, the method is automatically compatible with the
standard finite element technique. It is thus natural to directly
couple the present formulation with the computational meth-
ods of continuum mechanics.

(6) The computational speed of stress, force, and energy
calculations per segment is comparable to purely analytical
solutions of straight segmentsOne of the main advantages
of the present method is the possibility of reducing the num-
ber of necessary segments by two orders of magnitndec

simulations, for examp)e and hence the number of interac-
FIG. 10. Formation of a dislocation junction in bec metals.  tions by four orders of magnitude.

spirit of the finite element method in structural mechanics,

where the d|slocat|_on I|_ne is segmentegl ar_1d described by ACKNOWLEDGMENTS
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