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Josephson vortices at tricrystal boundaries with and withomtjanction in zero applied field are consid-
ered. It is shown that if the three tricrystal arms are conventional junctions, a one-flux-quagtuontex at
or near the intersection has lower energy than one far from the intersection. If the largest Josephson length
exceeds the sum of the other two, the tricrystal ceases to be a pinning site. If one of the tricrystal arms is a
junction, a ¢¢/2 vortex at the intersection is the ground state of the system, and an even numhg® of
vortices is forbidden, whereasf3/2 and 5py/2 correspond to possible but, in general, metastable states. For
certain combinations of Josephson lengths, tig/3 state has lower energy than the combined energy of the
¢ol2 vortex at the tricrystal joint and @&, vortex far from the joint. Conditions are discussed under which the
3¢/2 vortex can be observed.

I. INTRODUCTION in this texy.®> Thus, boundaries described by E®) are
called “7 junctions,” while those obeying Ed1) are “0”
Progress has recently been made in studying Josephson conventional junctions.
boundaries between anisotropic superconductors in general It is worth noting that boundaries with properties of
and for highT; materials, in particular. Thé-wave symme- junctions are not necessarily related to unconventional super-
try of the order parameter in the latter makes the boundariesonducting symmetries; magnetic impurities in the junction
particularly sensitive to crystalline misorientation. In fact, plane or thin ferromagnetic interlayers may produce similar
this sensitivity has been employed in some of the most coneffects>®
vincing experiments confirming the d-wave symmetry in  We provide below static solutions for Josephson vortices
several optimally doped cuprate superconductotsThese at semi-infinite tricrystal boundaries with and withoutra
experiments have been done on “tricrystal” boundariesarm. Although magnetic imaging experimehtgere done on
formed by three YBCO crystals having commoraxis but  tricrystal boundaries between thin film grains grown epitaxi-
misaligned axes,b. ally on tricrystal substrates of SrTiQour model is for bulk
According to Sigrist and Ricéa leading term in the Jo- tricrystals infinite in the directiom of the vortex field. In fact
sephson critical current through a boundary of misalignedve solve a one-dimensional problem similar to one for a
d-wave grains isj.=joC0S 2, cos 2, with x;, being the Josephson vortex at an infinite boundary. We show that vor-
angles between the graing axes and the normal to the tices at tricrystal boundaries with semi-infinite arms are in
boundary. This implies that the Josephson currents througtact made of “pieces” of Josephson vortices of a single in-
two boundaries with different signs of the product finite boundary, i.e., of the well known solitonlike solutions
cos 2, cos 2, should flow in opposite directions for the of the sine-Gordon equatiort$) and(2). We calculate ener-
same phase differences at the boundaries. Therefore, the dgies for various configurations and show that the tricrystal
tribution of the phase difference at a boundary is describedhade of three 0 arms may or may not pin a vortex at the
either by arms’ intersection or near it depending on relative values of
the arms’ Josephson lengths. If one of the armsrjsthe

\20"=sing 1) tricrystal contains a half-flux-quantum vorte,/2, in the
J ’ ground state. The only other possible states apg/3 and
or by 5¢/2, which, however, have higher energies.
2 . II. CONVENTIONAL TRICRYSTAL BOUNDARY
Nje"=—sing, 2

Let us turn first to tricrystals with nar junctions. For the
depending on the sign gf,. Here, the Josephson lengths sake of simplicity we consider tricrystals with members
\;%|j | Y2 may vary due to differences in the crystals’ mis- A,B,C having the same London penetration depth Di-
alignment and in the quality of the boundaries. The primegections of the boundaries 1,2,3, which meet at the origin,
denote differentiation with respect to the coordinatiea the  are arbitrary; see a sketch in Figal Throughout this text,
boundary plane |,z), wherez is the magnetic field direc- we consider boundaries with
tion. The minus sign in Eq(2) is often incorporated as an
extra phase difference aof (a convention we will not follow NS>\ 3)
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Uo1 Uo2 Uos

(a) A1 cosh— =\, cosh— = \; cosh—. (6)
Nq Ao A3

Another condition is provided by flux quantization: for a
u standard vortex sitting near the origin, the gauge invariant
phase¢ changes by z if one circles the origin at large
distances where the phase, in fact, changes only at the junc-
u, tions: X,¢;(©)=2m. Equation (4) gives ¢;(«)=27w(n;
+1), and therefor&E;n;=—2. We can choose the;'s as
h (0,—1,—1). Then the solutions for the three boundaries are

(b)

=4 tan (el U0/ ),

=4 tanm H(elU27 U202y — 2 0

p3=4tan Y(elVs~UsdN3) — 27

The field distribution at the junction does not depend on the
FIG. 1. Field distributions(u; , 9 at the tricrystal boundaries choice of integers,; .
1,2,3 are sketched,B,C label the three crystals that make up the  \We now circle the origin along an infinitesimally small
tricrystal. (a) The distribution for three conventional arms with Jo- contour. Since the magnetic flux through such a contour is
sephson lengths satisfying the inequalities:+\s>X\; and A3 zero, the total change of the gauge-invariant phase difference

+X\3<\i [region(a) in Fig. 2. If one of the arms is ar junction  yanishes. Indeed, denoting Iy, the phase at the sid& of
andX, is the largest, this type of distribution corresponds to a total,q i th boundary[see Fig. 1a)] we have

flux of 3¢,/2. (b) The distribution fo a O tricrystal with\5+ A3
>)\§ [region(b) in Fig. 2]. If one of the arms is ar junction, this

distribution corresponds to the ground state with a total flux of
$ol2. i ’ Z ®i=(0p1— 0c1) + (02— 0a2) + (0c3— Os3) —0,

®
To find the field and phase distributions for a vortex at such
a boundary one should solve the sine-Gordon equa(!lﬂ:n_ becaus&da;— Ops, Oga— g3, and fcz— Ocy. As the circle

and at the tricrystal intersection. , . superconductor; the same is true for the two other pairs of
Thus, for theith boundary we hava;¢{'=sing, where gg.

the subscript) of Josephson lengths is omitted for brevity.  Settingu,=0 in Eqgs.(7) at the intersection, we obtain
The prime denotes differentiation with respect to the coordifrom Eq. (8)

nateu; along theith boundary measured from the intersec-

tion. One follows the standard procedure: multiply EQ.by

| to get the first integral 2| 2/2=C; — cos¢; . The Joseph- S oa=m o =tan (e Vo). (9)
son current and the field at the junctiong; ) should vanish

asu;—o; this yieldsC;=1 for ¢;()=27. We then obtain

3

This completes the system of Ed6) for ug; . To solve this
@i=4 tam L(eUi~Ui0Ns) 4 2, (4) system, we note that in terms af,
I 1

where then; are integers. The arbitrary constantg andn; cosug; /\;) = 1/sin 2a; , (10)
are to be fixed by boundary conditions.

The field at the junction plané. and the systen(6) and(9) transforms to

¢o de bo U — Ug . .
hZ(u‘)_4m\L au 27T}\L)\ioec.. x (5 N\, Sin2a1=\qSin 2a,, (11
(the thickness of the insulated layer is assumed small relative \3Sin 2a; =\ SiN 2as3, (12)

to \). It is worth noting thatdg; /du; is positive every-

where, corresponding to the field having the same direction

everywhere in the junction. az=T— ;- as. (13
Clearly, one reaches the same value of the field at the

origin no matter along which of the boundaries the origin islf A is the largest of the three, it is convenient to introduce

approached. Equatiofb) then gives two equations for the the ratiosy,=\,/A;<1 and y3=N3/\;<1. In terms of

three unknowrug;’s: these ratios the solutions read
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LA intersection as the’s move from the liney3+ y3=1 to the
] boundary of the allowed’s at the square diagonal,+ vy
=1.
b = For A;=A,=\3, one hasa;=m/3 anduy=—X;In+3
a || < 0. The field distribution is of the form shown in Fig(k).
h[[ﬂ — The maximum field value reached at the origin is
|
=
= o . _ bo \/§
= h(0) 2NN, sin 2a= Za N, 2 (19
0 > 72 i.e., itis about 0.87 of the maximum field for a single bound-
1 ary Josephson vortex.
FIG. 2. Domains of the plang,=X,/\;,vs=\3/\; in which Th%energy per unit length in thedirection of theith arm
the field distributionga) and(b) of Fig. 1 are realized for tricrystals read$
with three 0 arms. )
-—Lﬁmdu- 1—cos -+E()\- ')?
1_’)/3_’)/5 6I_32773)\|_)\i2 o Pi 2 i Pi
COS 2w =—F——
2y273 ¢2
O o]
22 =———| du(1—-cosg;), (20
— — 1 3 Zf | |
cos mzz%, (14) 167 N \{Jo
73 where the first integral of the sin-Gordon equation has been
s 2 used. Using solution§7) we obtain the total energy of the
COS 2= 3~ 7271 tricrystal boundary after straightforward algebra:
2,
5 i 1
A straightforward calculation now gives €= . 21)
J g 473\ T1 N (e 20Nt 1) (
A 1=(y2—73)? With the help of the definitiong9) of the a’s one can write
Ug1=— IN————, (15) . ;
2 (yy+y5)2—1 the exponentials here in terms of the already known egs 2
Eqg. (14). Then we obtain
Ao Yo~ (y3—1)? € 1— v,— y3)?
Ugp= I, (16) LNk b £ (22)
(y3t D)=z €1 4273
) 5 Here, e, is the energy of a Josephson vortex situated far from
s . Y3~ (y2—1) 17 the intersection at the arm with the largest; see, e.g.,
Hos= M )= 2 Refs. 7 and 8:
2
Equation(15) shows that these solutions exist provided €= %o 23)
Y2+ ys>1 or 473N Ny
Ni<Ay+A\j. (18 Thus, for anyy, 3 in the domain of possibley’s, /€,

) o _ =<1. In other words, there is a “potential well” for a vortex
This restriction implies that the vortex cannot exist at theg; the intersection or nearby for any junction parameters
tricrystal intersection if the critical current at one of the obeying restriction(18). The quotation marks are here be-
boundaries is too small relative to the two others. cause, strictly speaking, there are no static solutions except

Figure 2 shows the domain of possibks as the shaded fqr the vortex sitting at or near the intersection or, alterna-
area in the upper-right half of the _squzar§§)2'3<1 where ively, at distancesi;> \ ; far from the intersection at any of
the condition(18) is satisfied. The ling/;+ y3=1 separates the arms. Still, solutions of the sine-Gordon equation with

domain (&) of positive ug; from the domain(b) whereuo;  time should exist describing vortices moving towards the
<0. These boundaries are obtained by examining the argyntersection.

ment of In in Eq.(15). Similar analysis of Eq916) and(17)

shows that bottug, anduy; are negative in the shaded area |, oNE OF THE BOUNDARIES IS A 7 JUNCTION

of possibley’s. The field distribution at the junction are ob-

tained with the help of Eqg5) and of now known constants At the 77 arm we have to solve E@2). We consider this
Ug. Sketches of field distributions at the junction corre-arm as the first and write the first integral B$p;2/2=C,
sponding to the domain®) and(b) are shown in Figs. (&) +cose;. The Josephson current and the field should vanish
and Xb). The field maximum is not necessarily at the junc-asu;— o; this yieldsC,;=1 for ¢;() = (or an odd num-
tion intersection; fory's in the domain(a), the field maxi- ber of ='s; the even possibility is excluded becau€g
mum is at the arm with largeat; and moves away from the +cose; must be positive We then obtain
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V(A= 72 (1— v37P) — van?= yam. (34)

¢1(=»)==*, i.e., an isolated vortex at the boundary
carries the fluxg,. For the two 0 arms we have

=4 tan L(elU27Y20"2) — 27,
=4 tan 1(elUs"Us0r3) — 27, (25)

To make solutionsp; , 3 more symmetric we rewrite; uti-
lizing tan™ }(1/x) = w/2—tan™ x:

=4 tan (el U0/ ) — 77, (26)
The flux at each of the arms is given by
¢
®=5_[¢i(=) = ¢i(0)], (27)

see Eq(5) and recall that the junction width is\2 . Since at
the origin;¢;(0)=0, see Eq(8), we obtain the total flux
through the tricrystal

®=o2 i)/ (28)
With the help of Eqs(26) and(25) this yields
2.0 (nz+n3) (29
—==—(ny+ny).
d)O 2 2 3

Thus, the fluxd must be a half-integer ap, (an odd num-

ber of ¢4/2), a nontrivial result because in the tricrystal with

three O junctions any integer number @} is permitted. In

particular, the tricrystal with oner arm cannot be in a state
with =0, the physical situation first discussed in Ref. 5.

We write the total flux as

@z%(ZmﬂLl), m=0,1,2 ..., (30)
wheren,+n;=2—m.

We now specify the conditioR; ¢;(0)=0, the derivation

if Aq is not the largest of the three Josephson lengths. Equa-
tion (34) for 5 can also be written as

2y2v3m°+ (1+ 5+ ¥3) n*—=1=0. (35)
The quantity# is related to the field at the origin
¢ _ %o
h(O)—mSIn ZCvl—mL)\1 7. (36)

Given our choice of the field directiom; is positive. Hence,
we are looking for a root of Eq:35) such that 6< »<1.
The cubic polynomiaP(7) on the left-hand sidéLHS)
of Eq. (35 has a minimum aty=0 and a maximum ay
=—(1+ y5+93)/3y,ys. SinceP(0)=—1 andP(1)=(y,
+ v3)2>0, Eq.(35) always has one positive roat<1.
Consider now the case of an odd which changes the
sign of the right-hand sidéRHS) of Eq. (32). The same
treatment as above yields a different equations#or

27,737~ (1+ ¥5+ ¥5) 7+ 1=0. 37)

The cubic polynomiaQ( %) on the LHS of this equation has
the following propertiesQ(0)=1 andQ(1)=— (y,— v3)?
<0. Further,Q(#) has a maximum a=0 and a minimum
at 7= (1+y3+ ¥3)/3y,vs. Again, there is always a root 0
<p<l.

Let us turn now to the question of energies. For the
arm, the energy functional which generates &j.reads

2 o0
b0 f du,

em=—20__
32 )\L)\l 0

1
1+cosg;+ E()\l(pi)z :

(39

The energy so defined is proportional to the junction length
if the phase differenceo;=0 everywhere. Physically, this
means that the zero-current state is not the ground state of a
7 junction® One, of course, could add a constant to the
integrand above to gauge the energy of the zero-current state

of which does not depend on the junction’s type. Using no{0 zero or any other value; we however find the chdi®

tation (9) for the a’s, we obtain

> ai=;(5—2m). 31)

The next step is similar to that made above: we require that
the fields at all arms go to the same limit at the intersection.

This gives fora; the system(11) and(12) and Eq.(31). We
excludeas using Eq.(31)

sin2a3=(—1)"cos A a;+ ay). (32

Further treatment depends on whetheis even or odd.

Formeven, sin Z;=co0s 2@+ a»). Introducing new vari-
ables »=sin2a; and y;=\;/\;, we rewrite Eqs(11) and
(12) in a compact form:

sin 2a;=vy; 7. (33

most convenient!® As with 0 arms, we use the first integral
of Eq. (2) to obtain

¢ [~
elmM= 0 2f du;(1+cose;).
0

— 39
163N\ ] (39

We now employ the solution&6) and(25) to show that
Eq. (21 still holds. One then obtains

1 1 gUoi /\i

€1 i=1 yi(e—zum /’\i+1) - 52

yicoshug;i /\)

(40)

Here, e, is given in Eq.(23) and % is a root of either Eq(35)
or Eq.(37) depending on parity aih. Making the last step in

Equation(32), which completes the system, reads now as this transformation, we used E483).
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To express exponentials in E¢40) in terms of » we
utilize y; n=sin 2o;=1/cosh(y; /\;), which yields a quadratic
equation fore'oi’*i and results in

+J1— 4272
@Uoi /N = 1_1—M; (41)
Yin
vim=sin2¢;<1, so that this expression is real. The minus
sign here corresponds tg; <0, whereas the plus results in
Ugi>0 (substitute 1, 7=coshu to transform the RHS to
e**). The constantsly determine the shape of the field
distribution becausay; is the position of the field maximum
at theith arm; positiveuy; corresponds tt(u;) sketched on
the first arm of Fig. {a), while the negativeu,; means a
monotonic decrease ¢f(u;) along the whole arm, as along ~ FIG. 3. The energy of the @,/2 vortex as a function ofy,
arms 2 and 3 of this figure. Moreover, since the solutions for=X2/\1,73=X3/\; in units of e;= ¢5/4m\ A4, the energy of a
the phase at each of the arms are in fact the truncated soli vortex at ther arm with the Josephson length far away from
tonlike solutions for infinitely long junctions, we conclude the tricrystal intersection. Note a sharp peakyat=y;=1 where
that positive uy correspond to the arm fluxb;> ¢/2, €(1,1)/e,=1.5. The energy of thepy/2 vortex is shown as the
whereas arms withip; <0 contain®; < ¢/2. This conclu- oWer surface for comparison.

sion is easily verified using; of Eq. (27) and the solutions o ] )
(26) and (25): This is accomplished by choosing the three constats

>0; see Eqs(42). Therefore, in this case we must take the

2¢9 N plus sign in the three Eq$41) as well as in all terms of the
bi=——tan (et (42 energy sum43). This yields
We now obtain for the energy e(5¢0/2) _ §( 1. \ﬁ) 48
2 2/
i:fi eIyt 43) N
€ 2= Vi ' For m=4 the total flux would have been¢g/2. This,

however, is impossible because each arm may contain no
more thangy. Thus,m=0,2 exhaust all even possibilities.
For the same reason, the only oadoermitted is 1, with the
total flux 3¢/2.

The treatment of the latter case is simple for gjls
equal: the root of Eq(37) is =1 and the question of sign
choices in Eq(41) does not arise. We obtaim,; =0 and

Note that the energy E@43) and fluxes(42) do not explic-
itly contain the integem which determines the total flus.
This connection is established implicitly by different choices
of signs in Egs(41) and (43).

Let us begin with the simplest situation when ®jis are
the same; i.e.y;=1. Then, for everm, Eq. (35) yields 7
=1/2, which results in expg/A)=2*+/3. Form=0 and

D= ¢po/2, eachd; < ¢/2 and allug; <O0; therefore, we arrive €(3¢y/2) 3
to the combination of signs<, —,—) in the sum(43) and to B -, (47)
the energy €1 2
e( bol2) 3< \F) the energy level in the middle between the ground state en-
=—{1—\/= (44) ergy e(¢o/2) ande(5¢y/2).
€1 2 2 Less specific combinations af;'s that can still be treated

analytically, are considered in the Appendix. We turn now to
the general situation of different;’s. It is clear in view of
the above discussion of the interrelation between the fluxes

Uo; @, and the constantsly that the ground state witkb
sech)\f (45) = ¢o/2 corresponds to the combination (—,—) in the en-

: ergy (43), in which 0< <1 is a root of the cubic Eq.35).

at the intersection. We will not write down cumbersome for-Doing this numerically, we obtain the ground state energy as
mulas forh;(u;) in terms of material parameters. We note, a function ofy, and y; shown as a lower surface in Fig. 3.
however, that unless ally;=0 (the case of identical; and The case ofb =5¢/2 corresponds to«,+,+) and can
v;=1) the field has a cusp at the intersection as in the sketche treated in a similar manner. However, the situation with
of Fig. 1(b). The cusp is, of course, smeared over distanced =3¢(/2 is more involved. First, one has to use fpithe
of the order\| . As expected, Eq42) yields the fluxesb; root of EQ.(37). Then, the flux®=23¢y/2 can be distributed

The field in the three arms is given by EdS), which
yields

_ ®o
27T)\|_)\i

h(0)

= ¢o/6. among the branches in a number of ways. Each one of them
Form=2 and® =5¢,/2, we can use a similar argument: corresponds to a certain combination of signs wyf’s.
Each arm may contain a maximum flux eéf,; we do not Clearly, the combinations«,—,—) and (+,+,+) are ex-

consider situations with more than one vortex per arm. Thergluded because the first would give the total fldx
each one of the three branches must carry flyx> ¢o/2. <3¢y/2 whereas the second correspondbto 3¢/2.
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73 - =4 0.3
0.1 }\
qi 1 3 — 3 ¥2=Y3
- - -0.1
+ - -
-0.3
> 7
1 2 -0.5
FIG. 4. Domains of parameterg,=\,/\;,y3=\3/\; are FIG. 5. The energy differencé of Eq_. (48) between a 3y/2
shown with sets of signs in the energy s4®) corresponding to  vortex and the combined energy of possible decay prodiygt2, at
the minimum possible energy of thep3/2 vortex. the tricrystal joint andp, far away from the joint at the arm with

largest Josephson length, in unitseafalong the liney,= ;.

We are left with six possibilities: the three having one
plus (+——-, —+—, ——,+) and another three having
one minus - ++, +—+, ++—);infact, there are only In scanning superconducting quantum interference device
four combinations to compare, because those which diffe(SQUID) microscopy, vortices with fluxes ,/2 or 5¢q/2
only by replacementy,«< y5 are physically equivalent. A have never been recorded. The discussion above gives a clear
straightforward comparison of energi@3) for these possi- reason for this: the corresponding energies are larger than
bilities shows that for each particular setpfs (or of Ay’'s),  that of ¢o/2. However, we have seen also that th¢,R
the lowest energy belongs to the set of signs with one plus byortex can exist as a metastable state because it has a lower
the energy term with largeat; (or largest among,,y3, and  energy than the combined energy &§/2 at the intersection
1). This can be interpreted as follows: since the ground statand ¢, at infinity. Within the static approach here, the decay
corresponds to the flu®y/2 “attached” to the intersection, process of this metastable state cannot be studied; one would
an extragg out of the total 36,/2 “leaks” into one of the have to solve the time-dependent sine-Gordon equation to
arms. The energy cost of this leakage is minimum for thesee how this transition evolves with time.
arm with largesh ;. Figure 4 shows the domains ¢§ ;3 with It must be noted that the model developed here is con-
the sign combinations of the lowest energy. structed for bulk crystals whereas experiments are done on

The energy of the @y/2-vortex vsy, 3 (constructed so thin films for which the stray fields created by vortices in
that in each domain only the lowest possible energy isracuum contribute substantially to the energy balance. The
shown is plotted as the upper surface in Fig. 3. It is inter- problem of stability of various configurations of vortices
esting to note that this energy has a maximum ef/3 for ~ should be addressed separately for a film geometry.
v>=v3=1, which, in fact, is a sharp cusp. Let us consider apy/2 vortex at the thin film tricrystal

It should be noted that(3¢/2)> e(Po/2) for any y, s; joint. The energy of the outside field is approximately
the lower sheet in Fig. 3 is the ground state enes(y,/2) (po/2m)?[ N N5 (the magnetostatic self-energy of a
shown for comparison. Hence, the state with the flu/2  “charge” ¢¢/27m occupying roughly the area, \; of the
can be considered as an excited state of the tricrystal bounditm). This energy would have been smaller if the flux, in-
ary. This state can decay into the ground state with the flustead of extending to infinity, would cross the film and come
¢ol2 by “emitting” a ¢q-vortex along one of the arms. The back to the vortex from under the film. This, however, can-
decay is possible provided the energfy8 $,/2) exceeds the not happen for the fluxpo/2, unless the film contains another
combined energy of the ground statfg,/2), and the en- tricrystal with onew arm through which the flux- ¢4/2 can

IV. DISCUSSION

ergy of a vortex at infinity at the arm with largeat;, cross the film from the upper to lower half-spaces.
€1/ Ymax (Ymax 1S the largest ofy,,y;,1). We, therefore, Clearly, this ban does not hold for a vortex)@2: the
study numerically the quantity part ¢ of this flux can cross the film far from the tricrystal

intersection creating a Josephson vortex-op, at one of
the arms. The antivortex;- ¢, is attracted to the vortex

A= €(340/2) e(¢o/2) 1 (48) 3¢o/2 that may lead to annihilation ef ¢, and reduction of
€ € Ymax 3¢ol2 to ¢o/2. The energy requirement for this process to
occur is

as a function ofy, 3. The result is thal is negative in most
of the planey, , v, except a relatively narrow region near the ~ €(3/2:0d+2(3/2,0)>€(1/2,0/d+&(1/2,0)+ e(1,)d

cusp aty,= y;=1. Besides, we found thaéA|<1. To illus- +e(1m). (49)

trate this behavior, we plot in Fig. 5 the differenaealong

the line y,= v3. Along this line,A>0 only neary=1 (in Here,e is the energy of the stray fields, the first argument is
fact, for 0.94< y<<1.24). One can see thih| is larger for  the flux in units of¢,, and the second labels positiomsis
small y’s than for the large ones. Since this difference charthe film thicknesqthe energies in the main text were calcu-
acterizes the stability of the state withpg/2, we conclude lated per unit length in the field directibnOne can check
that the search for this metastable state should be conductéghat for all A ;'s equal, this inequality is satisfiedt holds

in the domainy, 3<1, i.e., in tricrystals with the Josephson separately for both the Josephson and the stray parts of the
length of therr-arm being larger than those of the 0 arms. energy. However, as we have seen above, the case of equal
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\j's corresponds to the maximum energy of théR vor- £
tex. For a general case the inequalify9) reads €1

de;A>e(1/2) + (1) —&(3/2). (50) 2.5
This translates ta/ X\ \;<w/|A| with \; as an average 1.5

Josephson length. Sing&| <1 (see Fig. 5, this condition is '
satisfied for thin enough films. Therefore, we do not expect 0.5
the 3¢,/2 vortex to be observable if
0.5 1 1.5

d<VALA,. (51 FIG. 6. Energies of the states carrying fluxésm the bottom
In experiments of Ref. 3d~0.12u, N\ ~0.15u, and\;  up) ¢o/2, 3¢o/2, and Gpy/2 in units of e; for y,=y;=1.
~4 u, so that the decay condition for thepg/2 vortex is
well satisfied. In thicker films, however, this condition might
be violated and the @,/2 state may become stable as is the |f the two 0-arms are the same,=y;=17, the cubic
case in the bulk. Note, however, that it may be difficult to equation(35) has a root
grow cuprate films on SrTiQsubstrates epitaxially as thick

Y

APPENDIX

as 0.5um, which would be required to test these ideas in V1+8y?—1
tricrystal experiments. 77:4—72<1. (A1)

A similar analysis of the state carrying/g/2 shows that
for arbitrary X ;’'s the Josephson energy of this state obeysNVe substitute this in Eq43) with the set of signs €, —,
€(5/2,0>€(3/2,0)+ (1) and the same inequality holds —) to obtain the energy(¢y/2); the combination ¢, +,
for magnetic fields in vacuums(5/2)>¢(3/2)+e(1). In  +) gives e(5¢¢/2). These energiegersusy are plotted in
other words, both Josephson and stray field energies favdtig. 6 as the bottom and top curves.

the 3¢y/2 vortex at the tricrystal intersection anddg far For & =3¢/2, the cubic equatioi37) has two positive
away from the joint to a By/2 vortex at the joint. roots:
We conclude noting that the static properties of the tric- 5
rystal Josephson boundaries discussed here do not exhaust m=1, 7 _\/1+87 +1 (A2)
1=+ 27— '

the rich physics of these systems. We have shown that for the
three conventional tricrystal arms, the restricti@8) should

be satisfied for ab, vortex to be in equilibrium at or near the One can see that foy<1, the second root exceeds 1, and
intersection. If the largest Josephson length exceeds the suiferefore,»,; =1 is the only root acceptable. According to
of the other two, the tricrystal ceases to be a potential wellFig. 4 we choose the signs-(—, —) in the energy43) and
Tricrystal substrates with all O-junctions have been fabri-obtain
cated and studied in symmetry tests using ring

geometries!!2 Some of the predictions made in this paper €82 _1 +21_ N1y ) y<1. (A3)

can be tested by growing epitaxial unpatterned films of the €1 2 Y

cuprate superconductors on these substrates. If y>1, one can see thaj,<1. Using this root and either
If one of the tricrystal arms is & junction, a¢y/2 vortex (—,+,—) or (—,—,+) as the sign combination, we obtain

at the intersection exists in the ground state, wheress23 Y Y ’

and 5¢,/2 correspond to possible but, in general, metastable €32 1 2

states. For certain combinations of Josephson lengths, the o 2 1+;_V1—772 »or>1 (A4)

3¢o/2 state has lower energy than the combined energy of )

the ¢o/2 vortex at the tricrystal joint and @ vortex far ~ Wheny—1, the energiesA3) and(A4) tend to 3/2 as they
from the intersection. Conditions are discussed under whicfhould; see Eq47). Formally, however;y=1is a singular
the 3¢,/2 vortex can be observed. A very interesting quesPOINt: the derivativesie/dy are divergent at both sides of

tion of dynamic behavior of tricrystal Josephson boundariedlis Point. Physically, this means that the state with equal
is still to be addressed. fluxes on the armsd;= ¢y/2 correspond toy=1) is un-

stable with respect to small deviations from equgl The
energy €(3/2) is plotted in Fig. 6 along withe(1/2) and
€(5/2) versusy.

We use this opportunity to thank K. Moler for many illu- If the A ; of one of the 0 arms is the same as iheof the
minating discussions. Ames Laboratory is operated for ther arm (e.g.,y,=1), one of the+ 1/v5 is a root of the cubic
U. S. Department of Energy by lowa State University underEgs.(35) and(37), and the rest of the roots are readily found.
Contract No. W-7405-Eng-82. The work at Ames was supWe will not go into details of this case since physically it
ported by the Office of Basic Energy Sciences. brings nothing new.
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