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Josephson vortices at tricrystal boundaries
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Josephson vortices at tricrystal boundaries with and without ap junction in zero applied field are consid-
ered. It is shown that if the three tricrystal arms are conventional junctions, a one-flux-quantumf0 vortex at
or near the intersection has lower energy than one far from the intersection. If the largest Josephson length
exceeds the sum of the other two, the tricrystal ceases to be a pinning site. If one of the tricrystal arms is ap
junction, af0/2 vortex at the intersection is the ground state of the system, and an even number off0/2
vortices is forbidden, whereas 3f0/2 and 5f0/2 correspond to possible but, in general, metastable states. For
certain combinations of Josephson lengths, the 3f0/2 state has lower energy than the combined energy of the
f0/2 vortex at the tricrystal joint and af0 vortex far from the joint. Conditions are discussed under which the
3f0/2 vortex can be observed.
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I. INTRODUCTION

Progress has recently been made in studying Josep
boundaries between anisotropic superconductors in gen
and for high-Tc materials, in particular. Thed-wave symme-
try of the order parameter in the latter makes the bounda
particularly sensitive to crystalline misorientation. In fa
this sensitivity has been employed in some of the most c
vincing experiments confirming the d-wave symmetry
several optimally doped cuprate superconductors.1–3 These
experiments have been done on ‘‘tricrystal’’ boundar
formed by three YBCO crystals having commonc axis but
misaligned axesa,b.

According to Sigrist and Rice,4 a leading term in the Jo
sephson critical current through a boundary of misalign
d-wave grains isj c5 j 0 cos 2x1 cos 2x2 with x1,2 being the
angles between the grains’a axes and the normal to th
boundary. This implies that the Josephson currents thro
two boundaries with different signs of the produ
cos 2x1 cos 2x2 should flow in opposite directions for th
same phase differences at the boundaries. Therefore, the
tribution of the phase difference at a boundary is descri
either by

lJ
2w95sinw, ~1!

or by

lJ
2w952sinw, ~2!

depending on the sign ofj c . Here, the Josephson length
lJ}u j cu21/2 may vary due to differences in the crystals’ mi
alignment and in the quality of the boundaries. The prim
denote differentiation with respect to the coordinateu in the
boundary plane (u,z), wherez is the magnetic field direc
tion. The minus sign in Eq.~2! is often incorporated as a
extra phase difference ofp ~a convention we will not follow
PRB 610163-1829/2000/61~13!/9122~8!/$15.00
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in this text!.5 Thus, boundaries described by Eq.~2! are
called ‘‘p junctions,’’ while those obeying Eq.~1! are ‘‘0’’
or conventional junctions.

It is worth noting that boundaries with properties ofp
junctions are not necessarily related to unconventional su
conducting symmetries; magnetic impurities in the juncti
plane or thin ferromagnetic interlayers may produce sim
effects.5,6

We provide below static solutions for Josephson vortic
at semi-infinite tricrystal boundaries with and without ap
arm. Although magnetic imaging experiments3 were done on
tricrystal boundaries between thin film grains grown epita
ally on tricrystal substrates of SrTiO3, our model is for bulk
tricrystals infinite in the directionz of the vortex field. In fact
we solve a one-dimensional problem similar to one for
Josephson vortex at an infinite boundary. We show that v
tices at tricrystal boundaries with semi-infinite arms are
fact made of ‘‘pieces’’ of Josephson vortices of a single
finite boundary, i.e., of the well known solitonlike solution
of the sine-Gordon equations~1! and~2!. We calculate ener-
gies for various configurations and show that the tricrys
made of three 0 arms may or may not pin a vortex at
arms’ intersection or near it depending on relative values
the arms’ Josephson lengths. If one of the arms isp, the
tricrystal contains a half-flux-quantum vortex,f0/2, in the
ground state. The only other possible states are 3f0/2 and
5f0/2, which, however, have higher energies.

II. CONVENTIONAL TRICRYSTAL BOUNDARY

Let us turn first to tricrystals with nop junctions. For the
sake of simplicity we consider tricrystals with membe
A,B,C having the same London penetration depthlL . Di-
rections of the boundaries 1,2,3, which meet at the orig
are arbitrary; see a sketch in Fig. 1~a!. Throughout this text,
we consider boundaries with

lJ@lL . ~3!
9122 ©2000 The American Physical Society
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PRB 61 9123JOSEPHSON VORTICES AT TRICRYSTAL BOUNDARIES
To find the field and phase distributions for a vortex at su
a boundary one should solve the sine-Gordon equation~1!
for each arm so as to satisfy boundary conditions at infin
and at the tricrystal intersection.

Thus, for thei th boundary we havel i
2w i95sinwi where

the subscriptJ of Josephson lengths is omitted for brevit
The prime denotes differentiation with respect to the coo
nateui along thei th boundary measured from the interse
tion. One follows the standard procedure: multiply Eq.~1! by
w i8 to get the first integrall i

2w i8
2/25Ci2coswi . The Joseph-

son current and the field at the junction (}w i8) should vanish
asui→`; this yieldsCi51 for w i(`)52p. We then obtain

w i54 tan21~e(ui2ui0)/lJ!12pni , ~4!

where theni are integers. The arbitrary constantsui0 andni
are to be fixed by boundary conditions.

The field at the junction planes:7,8

hz~ui !5
f0

4plL

dw i

dui
5

f0

2plLl i
sech

ui2u0i

l i
~5!

~the thickness of the insulated layer is assumed small rela
to lL). It is worth noting thatdw i /dui is positive every-
where, corresponding to the field having the same direc
everywhere in the junction.

Clearly, one reaches the same value of the field at
origin no matter along which of the boundaries the origin
approached. Equation~5! then gives two equations for th
three unknownu0i ’s:

FIG. 1. Field distributionsh(u1,2,3) at the tricrystal boundaries
1,2,3 are sketched;A,B,C label the three crystals that make up t
tricrystal. ~a! The distribution for three conventional arms with J
sephson lengths satisfying the inequalities:l21l3.l1 and l2

2

1l3
2,l1

2 @region ~a! in Fig. 2#. If one of the arms is ap junction
andl1 is the largest, this type of distribution corresponds to a to
flux of 3f0/2. ~b! The distribution for a 0 tricrystal withl2

21l3
2

.l1
2 @region ~b! in Fig. 2#. If one of the arms is ap junction, this

distribution corresponds to the ground state with a total flux
f0/2.
h

y

i-
-
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n

e

l1 cosh
u01

l1
5l2 cosh

u02

l2
5l3 cosh

u03

l3
. ~6!

Another condition is provided by flux quantization: for
standard vortex sitting near the origin, the gauge invari
phasew changes by 2p if one circles the origin at large
distances where the phase, in fact, changes only at the j
tions: ( iw i(`)52p. Equation ~4! gives w i(`)52p(ni
11), and therefore( ini522. We can choose theni ’s as
(0,21,21). Then the solutions for the three boundaries a

w154 tan21~e(u12u10)/l1!,

w254 tan21~e(u22u20)/l2!22p, ~7!

w354 tan21~e(u32u30)/l3!22p.

The field distribution at the junction does not depend on
choice of integersni .

We now circle the origin along an infinitesimally sma
contour. Since the magnetic flux through such a contou
zero, the total change of the gauge-invariant phase differe
vanishes. Indeed, denoting byuAi the phase at the sideA of
the i th boundary@see Fig. 1~a!# we have

(
i

w i5~uA12uC1!1~uB22uA2!1~uC32uB3!→0,

~8!

becauseuA1→uA2 , uB2→uB3, anduC3→uC1. As the circle
shrinks,uA1 and uA2 belong to merging points of the sam
superconductor; the same is true for the two other pairs
u ’s.

Setting ui50 in Eqs. ~7! at the intersection, we obtain
from Eq. ~8!

( a i5p, a i5tan21~e2u0i /l i !. ~9!

This completes the system of Eqs.~6! for u0i . To solve this
system, we note that in terms ofa i ,

cosh~u0i /l i !51/sin 2a i , ~10!

and the system~6! and ~9! transforms to

l2 sin 2a15l1 sin 2a2 , ~11!

l3 sin 2a15l1 sin 2a3 , ~12!

a35p2a12a2 . ~13!

If l1 is the largest of the three, it is convenient to introdu
the ratiosg25l2 /l1,1 and g35l3 /l1,1. In terms of
these ratios the solutions read

l

f
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cos 2a15
12g2

22g3
2

2g2g3
,

cos 2a25
g2

22g3
221

2g3
, ~14!

cos 2a35
g3

22g2
221

2g2
.

A straightforward calculation now gives

u015
l1

2
ln

12~g22g3!2

~g21g3!221
, ~15!

u025
l2

2
ln

g22~g321!2

~g311!22g2

, ~16!

u035
l3

2
ln

g3
22~g221!2

~g211!22g3
2

. ~17!

Equation~15! shows that these solutions exist provid
g21g3.1 or

l1,l21l3 . ~18!

This restriction implies that the vortex cannot exist at t
tricrystal intersection if the critical current at one of th
boundaries is too small relative to the two others.

Figure 2 shows the domain of possibleg ’s as the shaded
area in the upper-right half of the square 0,g2,3,1 where
the condition~18! is satisfied. The lineg2

21g3
251 separates

domain ~a! of positive u01 from the domain~b! whereu01
,0. These boundaries are obtained by examining the a
ment of ln in Eq.~15!. Similar analysis of Eqs.~16! and~17!
shows that bothu02 andu03 are negative in the shaded ar
of possibleg ’s. The field distribution at the junction are ob
tained with the help of Eqs.~5! and of now known constant
u0i . Sketches of field distributions at the junction corr
sponding to the domains~a! and ~b! are shown in Figs. 1~a!
and 1~b!. The field maximum is not necessarily at the jun
tion intersection; forg ’s in the domain~a!, the field maxi-
mum is at the arm with largestlJ and moves away from the

FIG. 2. Domains of the planeg25l2 /l1 ,g35l3 /l1 in which
the field distributions~a! and~b! of Fig. 1 are realized for tricrystals
with three 0 arms.
u-

-

-

intersection as theg ’s move from the lineg2
21g3

251 to the
boundary of the allowedg ’s at the square diagonalg21g3
51.

For l15l25l3, one hasa i5p/3 and u0i52lJ ln A3
,0. The field distribution is of the form shown in Fig. 1~b!.
The maximum field value reached at the origin is

h~0!5
f0

2plLlJ
sin 2a5

f0

2plLlJ

A3

2
, ~19!

i.e., it is about 0.87 of the maximum field for a single boun
ary Josephson vortex.

The energy per unit length in thez direction of thei th arm
reads7,8

e i5
f0

2

32p3lLl i
2E0

`

dui S 12cosw i1
1

2
~l iw i8!2D

5
f0

2

16p3lLl i
2E0

`

dui~12cosw i !, ~20!

where the first integral of the sin-Gordon equation has b
used. Using solutions~7! we obtain the total energy of th
tricrystal boundary after straightforward algebra:

e5
f0

2

4p3lL
(
i 51

3
1

l i ~e22u0i /l i11!
. ~21!

With the help of the definitions~9! of the a ’s one can write
the exponentials here in terms of the already known cos 2ai ,
Eq. ~14!. Then we obtain

e

e1
512

~12g22g3!2

4g2g3
. ~22!

Here,e1 is the energy of a Josephson vortex situated far fr
the intersection at the arm with the largestlJ ; see, e.g.,
Refs. 7 and 8:

e15
f0

2

4p3lLl1

. ~23!

Thus, for anyg2,3 in the domain of possibleg ’s, e/e1
<1. In other words, there is a ‘‘potential well’’ for a vorte
at the intersection or nearby for any junction paramet
obeying restriction~18!. The quotation marks are here b
cause, strictly speaking, there are no static solutions ex
for the vortex sitting at or near the intersection or, altern
tively, at distancesu0@lJ far from the intersection at any o
the arms. Still, solutions of the sine-Gordon equation w
time should exist describing vortices moving towards t
intersection.

III. ONE OF THE BOUNDARIES IS A p JUNCTION

At the p arm we have to solve Eq.~2!. We consider this
arm as the first and write the first integral asl1

2w18
2/25C1

1cosw1. The Josephson current and the field should van
asu1→`; this yieldsC151 for w i(`)5p ~or an odd num-
ber of p ’s; the even possibility is excluded becauseC1
1cosw1 must be positive!. We then obtain
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w15p24 tan21~e(u102u1)/l1!. ~24!

Note that for a single boundary infinite in both directio
w1(6`)56p, i.e., an isolated vortex at thep boundary
carries the fluxf0. For the two 0 arms we have

w254 tan21~e(u22u20)/l2!22pn2 ,

w354 tan21~e(u32u30)/l3!22pn3 . ~25!

To make solutionsw1,2,3 more symmetric we rewritew1 uti-
lizing tan21(1/x)5p/22tan21x:

w154 tan21~e(u12u10)/l1!2p. ~26!

The flux at each of the arms is given by

F i5
f0

2p
@w i~`!2w i~0!#, ~27!

see Eq.~5! and recall that the junction width is 2lL . Since at
the origin( iw i(0)50, see Eq.~8!, we obtain the total fluxF
through the tricrystal

F5f0(
i

w i~`!/2p. ~28!

With the help of Eqs.~26! and ~25! this yields

F

f0
5

5

2
2~n21n3!. ~29!

Thus, the fluxF must be a half-integer off0 ~an odd num-
ber off0/2), a nontrivial result because in the tricrystal wi
three 0 junctions any integer number off0 is permitted. In
particular, the tricrystal with onep arm cannot be in a stat
with F50, the physical situation first discussed in Ref.
We write the total flux as

F5
f0

2
~2m11!, m50,1,2, . . . , ~30!

wheren21n3522m.
We now specify the condition( iw i(0)50, the derivation

of which does not depend on the junction’s type. Using n
tation ~9! for the a ’s, we obtain

(
i

a i5
p

4
~522m!. ~31!

The next step is similar to that made above: we require
the fields at all arms go to the same limit at the intersecti
This gives fora i the system~11! and~12! and Eq.~31!. We
excludea3 using Eq.~31!

sin 2a35~21!m cos 2~a11a2!. ~32!

Further treatment depends on whetherm is even or odd.
For m even, sin 2a35cos 2(a11a2). Introducing new vari-

ablesh5sin 2a1 and g i5l i /l1, we rewrite Eqs.~11! and
~12! in a compact form:

sin 2a i5g ih. ~33!

Equation~32!, which completes the system, reads now as
.

-

at
.

A~12h2!~12g2
2h2!2g2h25g3h. ~34!

Unlike the preceding section, theg ’s here may exceed unity
if l1 is not the largest of the three Josephson lengths. Eq
tion ~34! for h can also be written as

2g2g3h31~11g2
21g3

2!h22150. ~35!

The quantityh is related to the field at the origin

h~0!5
f0

2plLl1
sin 2a15

f0

2plLl1
h. ~36!

Given our choice of the field direction,h is positive. Hence,
we are looking for a root of Eq.~35! such that 0,h,1.

The cubic polynomialP(h) on the left-hand side~LHS!
of Eq. ~35! has a minimum ath50 and a maximum ath
52(11g2

21g3
2)/3g2g3. SinceP(0)521 and P(1)5(g2

1g3)2.0, Eq. ~35! always has one positive rooth,1.
Consider now the case of an oddm, which changes the

sign of the right-hand side~RHS! of Eq. ~32!. The same
treatment as above yields a different equation forh:

2g2g3h32~11g2
21g3

2!h21150. ~37!

The cubic polynomialQ(h) on the LHS of this equation ha
the following properties:Q(0)51 andQ(1)52(g22g3)2

<0. Further,Q(h) has a maximum ath50 and a minimum
at h5(11g2

21g3
2)/3g2g3. Again, there is always a root 0

,h,1.
Let us turn now to the question of energies. For thep

arm, the energy functional which generates Eq.~2! reads

e (p)5
f0

2

32p3lLl1
2E0

`

du1S 11cosw11
1

2
~l1w18!2D .

~38!

The energy so defined is proportional to the junction len
if the phase differencew1[0 everywhere. Physically, this
means that the zero-current state is not the ground state
p junction.5 One, of course, could add a constant to t
integrand above to gauge the energy of the zero-current s
to zero or any other value; we however find the choice~38!
most convenient.9,10 As with 0 arms, we use the first integra
of Eq. ~2! to obtain

e (p)5
f0

2

16p3lLl1
2E0

`

du1~11cosw1!. ~39!

We now employ the solutions~26! and ~25! to show that
Eq. ~21! still holds. One then obtains

e

e1
5(

i 51

3
1

g i~e22u0i /l i11!
5

1

2(
eu0i /l i

g icosh~u0i /l i !

5
1

2 (
sin 2a i

g i
eu0i /l i5

h

2 ( eu0i /l i. ~40!

Here,e1 is given in Eq.~23! andh is a root of either Eq.~35!
or Eq.~37! depending on parity ofm. Making the last step in
this transformation, we used Eqs.~33!.
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To express exponentials in Eq.~40! in terms of h we
utilize g ih5sin 2ai51/cosh(u0i /li), which yields a quadratic
equation foreu0i /l i and results in

eu0i /l i5
16A12g i

2h2

g ih
; ~41!

g ih5sin 2ai,1, so that this expression is real. The min
sign here corresponds tou0i,0, whereas the plus results i
u0i.0 ~substitute 1/g ih5coshm to transform the RHS to
e6m). The constantsu0i determine the shape of the fie
distribution becauseu0i is the position of the field maximum
at thei th arm; positiveu0i corresponds toh(ui) sketched on
the first arm of Fig. 1~a!, while the negativeu0i means a
monotonic decrease ofh(ui) along the whole arm, as alon
arms 2 and 3 of this figure. Moreover, since the solutions
the phase at each of the arms are in fact the truncated
tonlike solutions for infinitely long junctions, we conclud
that positive u0i correspond to the arm fluxF i.f0/2,
whereas arms withu0i,0 containF i,f0/2. This conclu-
sion is easily verified usingF i of Eq. ~27! and the solutions
~26! and ~25!:

F i5
2f0

p
tan21~eui0 /l i !. ~42!

We now obtain for the energy

e

e1
5

1

2 (
i 51

3 16A12g i
2h2

g i
. ~43!

Note that the energy Eq.~43! and fluxes~42! do not explic-
itly contain the integerm which determines the total fluxF.
This connection is established implicitly by different choic
of signs in Eqs.~41! and ~43!.

Let us begin with the simplest situation when alllJ’s are
the same; i.e.,g i51. Then, for evenm, Eq. ~35! yields h
51/2, which results in exp(u0i /li)526A3. For m50 and
F5f0/2, eachF i,f0/2 and allu0i,0; therefore, we arrive
to the combination of signs (2,2,2) in the sum~43! and to
the energy

e~f0/2!

e1
5

3

2S 12A3

2D . ~44!

The field in the three arms is given by Eqs.~5!, which
yields

h~0!5
f0

2plLl i
sech

u0i

l i
~45!

at the intersection. We will not write down cumbersome fo
mulas forhi(ui) in terms of material parameters. We no
however, that unless allu0i50 ~the case of identicall i and
g i51) the field has a cusp at the intersection as in the sk
of Fig. 1~b!. The cusp is, of course, smeared over distan
of the orderlL . As expected, Eq.~42! yields the fluxesF i
5f0/6.

For m52 andF55f0/2, we can use a similar argumen
Each arm may contain a maximum flux off0; we do not
consider situations with more than one vortex per arm. Th
each one of the three branches must carry fluxF i.f0/2.
r
li-

-
,

ch
s

n,

This is accomplished by choosing the three constantsu0i
.0; see Eqs.~42!. Therefore, in this case we must take t
plus sign in the three Eqs.~41! as well as in all terms of the
energy sum~43!. This yields

e~5f0/2!

e1
5

3

2S 11A3

2D . ~46!

For m54 the total flux would have been 9f0/2. This,
however, is impossible because each arm may contain
more thanf0. Thus,m50,2 exhaust all even possibilities
For the same reason, the only oddm permitted is 1, with the
total flux 3f0/2.

The treatment of the latter case is simple for alll i ’s
equal: the root of Eq.~37! is h51 and the question of sign
choices in Eq.~41! does not arise. We obtainu0i50 and

e~3f0/2!

e1
5

3

2
, ~47!

the energy level in the middle between the ground state
ergy e(f0/2) ande(5f0/2).

Less specific combinations oflJ’s that can still be treated
analytically, are considered in the Appendix. We turn now
the general situation of differentlJ’s. It is clear in view of
the above discussion of the interrelation between the flu
F i and the constantsu0i that the ground state withF
5f0/2 corresponds to the combination (2,2,2) in the en-
ergy ~43!, in which 0,h,1 is a root of the cubic Eq.~35!.
Doing this numerically, we obtain the ground state energy
a function ofg2 andg3 shown as a lower surface in Fig. 3

The case ofF55f0/2 corresponds to (1,1,1) and can
be treated in a similar manner. However, the situation w
F53f0/2 is more involved. First, one has to use forh the
root of Eq.~37!. Then, the fluxF53f0/2 can be distributed
among the branches in a number of ways. Each one of th
corresponds to a certain combination of signs ofu0i ’s.
Clearly, the combinations (2,2,2) and (1,1,1) are ex-
cluded because the first would give the total fluxF
,3f0/2 whereas the second corresponds toF.3f0/2.

FIG. 3. The energy of the 3f0/2 vortex as a function ofg2

5l2 /l1 ,g35l3 /l1 in units of e15f0
2/4p3lLl1, the energy of a

f0 vortex at thep arm with the Josephson lengthl1 far away from
the tricrystal intersection. Note a sharp peak atg25g351 where
e(1,1)/e151.5. The energy of thef0/2 vortex is shown as the
lower surface for comparison.
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PRB 61 9127JOSEPHSON VORTICES AT TRICRYSTAL BOUNDARIES
We are left with six possibilities: the three having o
plus (122, 212, 22,1) and another three havin
one minus (211, 121, 112); in fact, there are only
four combinations to compare, because those which di
only by replacementg2↔g3 are physically equivalent. A
straightforward comparison of energies~43! for these possi-
bilities shows that for each particular set ofg2,3 ~or of lJ’s!,
the lowest energy belongs to the set of signs with one plus
the energy term with largestlJ ~or largest amongg2 ,g3, and
1!. This can be interpreted as follows: since the ground s
corresponds to the fluxf0/2 ‘‘attached’’ to the intersection
an extraf0 out of the total 3f0/2 ‘‘leaks’’ into one of the
arms. The energy cost of this leakage is minimum for
arm with largestlJ . Figure 4 shows the domains ofg2,3 with
the sign combinations of the lowest energy.

The energy of the 3f0/2-vortex vsg2,3 ~constructed so
that in each domain only the lowest possible energy
shown! is plotted as the upper surface in Fig. 3. It is inte
esting to note that this energy has a maximum of 3e1/2 for
g25g351, which, in fact, is a sharp cusp.

It should be noted thate(3f0/2).e(f0/2) for anyg2,3;
the lower sheet in Fig. 3 is the ground state energye(f0/2)
shown for comparison. Hence, the state with the flux 3f0/2
can be considered as an excited state of the tricrystal bo
ary. This state can decay into the ground state with the
f0/2 by ‘‘emitting’’ a f0-vortex along one of the arms. Th
decay is possible provided the energye(3f0/2) exceeds the
combined energy of the ground state,e(f0/2), and the en-
ergy of a vortex at infinity at the arm with largestlJ ,
e1 /gmax (gmax is the largest ofg2 ,g3,1). We, therefore,
study numerically the quantity

D5
e~3f0/2!

e1
2

e~f0/2!

e1
2

1

gmax
~48!

as a function ofg2,3. The result is thatD is negative in most
of the planeg2 ,g3 except a relatively narrow region near th
cusp atg25g351. Besides, we found thatuDu,1. To illus-
trate this behavior, we plot in Fig. 5 the differenceD along
the line g25g3. Along this line,D.0 only nearg51 ~in
fact, for 0.94,g,1.24). One can see thatuDu is larger for
small g ’s than for the large ones. Since this difference ch
acterizes the stability of the state with 3f0/2, we conclude
that the search for this metastable state should be condu
in the domaing2,3,1, i.e., in tricrystals with the Josephso
length of thep-arm being larger than those of the 0 arms

FIG. 4. Domains of parametersg25l2 /l1 ,g35l3 /l1 are
shown with sets of signs in the energy sum~43! corresponding to
the minimum possible energy of the 3f0/2 vortex.
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IV. DISCUSSION

In scanning superconducting quantum interference de
~SQUID! microscopy, vortices with fluxes 3f0/2 or 5f0/2
have never been recorded. The discussion above gives a
reason for this: the corresponding energies are larger
that of f0/2. However, we have seen also that the 3f0/2
vortex can exist as a metastable state because it has a l
energy than the combined energy off0/2 at the intersection
andf0 at infinity. Within the static approach here, the dec
process of this metastable state cannot be studied; one w
have to solve the time-dependent sine-Gordon equatio
see how this transition evolves with time.

It must be noted that the model developed here is c
structed for bulk crystals whereas experiments are done
thin films for which the stray fields created by vortices
vacuum contribute substantially to the energy balance.
problem of stability of various configurations of vortice
should be addressed separately for a film geometry.

Let us consider af0/2 vortex at the thin film tricrystal
joint. The energy of the outside field is approximate
(f0/2p)2/AlLlJ ~the magnetostatic self-energy of
‘‘charge’’ f0/2p occupying roughly the arealLlJ of the
film!. This energy would have been smaller if the flux, i
stead of extending to infinity, would cross the film and com
back to the vortex from under the film. This, however, ca
not happen for the fluxf0/2, unless the film contains anothe
tricrystal with onep arm through which the flux2f0/2 can
cross the film from the upper to lower half-spaces.

Clearly, this ban does not hold for a vortex 3f0/2: the
part f0 of this flux can cross the film far from the tricrysta
intersection creating a Josephson vortex of2f0 at one of
the arms. The antivortex,2f0, is attracted to the vortex
3f0/2 that may lead to annihilation of2f0 and reduction of
3f0/2 to f0/2. The energy requirement for this process
occur is

e~3/2,0!d1«~3/2,0!.e~1/2,0!d1«~1/2,0!1e~1,̀ !d

1«~1,̀ !. ~49!

Here,« is the energy of the stray fields, the first argumen
the flux in units off0, and the second labels positions;d is
the film thickness~the energies in the main text were calc
lated per unit length in the field direction!. One can check
that for all lJ’s equal, this inequality is satisfied~it holds
separately for both the Josephson and the stray parts o
energy!. However, as we have seen above, the case of e

FIG. 5. The energy differenceD of Eq. ~48! between a 3f0/2
vortex and the combined energy of possible decay products,f0/2 at
the tricrystal joint andf0 far away from the joint at the arm with
largest Josephson length, in units ofe1 along the lineg25g3.
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lJ’s corresponds to the maximum energy of the 3f0/2 vor-
tex. For a general case the inequality~49! reads

de1D.«~1/2!1«~1!2«~3/2!. ~50!

This translates tod/AlLlJ,p/uDu with lJ as an average
Josephson length. SinceuDu,1 ~see Fig. 5!, this condition is
satisfied for thin enough films. Therefore, we do not exp
the 3f0/2 vortex to be observable if

d,AlLlJ. ~51!

In experiments of Ref. 3,d'0.12m, lL'0.15m, and lJ
'4 m, so that the decay condition for the 3f0/2 vortex is
well satisfied. In thicker films, however, this condition mig
be violated and the 3f0/2 state may become stable as is t
case in the bulk. Note, however, that it may be difficult
grow cuprate films on SrTiO3 substrates epitaxially as thic
as 0.5mm, which would be required to test these ideas
tricrystal experiments.

A similar analysis of the state carrying 5f0/2 shows that
for arbitrary lJ’s the Josephson energy of this state obe
e(5/2,0).e(3/2,0)1e(1,̀ ) and the same inequality hold
for magnetic fields in vacuum:«(5/2).«(3/2)1«(1). In
other words, both Josephson and stray field energies f
the 3f0/2 vortex at the tricrystal intersection and af0 far
away from the joint to a 5f0/2 vortex at the joint.

We conclude noting that the static properties of the tr
rystal Josephson boundaries discussed here do not ex
the rich physics of these systems. We have shown that fo
three conventional tricrystal arms, the restriction~18! should
be satisfied for af0 vortex to be in equilibrium at or near th
intersection. If the largest Josephson length exceeds the
of the other two, the tricrystal ceases to be a potential w
Tricrystal substrates with all 0-junctions have been fab
cated and studied in symmetry tests using r
geometries.11,12 Some of the predictions made in this pap
can be tested by growing epitaxial unpatterned films of
cuprate superconductors on these substrates.

If one of the tricrystal arms is ap junction, af0/2 vortex
at the intersection exists in the ground state, whereas 3f0/2
and 5f0/2 correspond to possible but, in general, metasta
states. For certain combinations of Josephson lengths,
3f0/2 state has lower energy than the combined energ
the f0/2 vortex at the tricrystal joint and af0 vortex far
from the intersection. Conditions are discussed under wh
the 3f0/2 vortex can be observed. A very interesting qu
tion of dynamic behavior of tricrystal Josephson bounda
is still to be addressed.
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APPENDIX

If the two 0-arms are the same,g25g35g, the cubic
equation~35! has a root

h5
A118g221

4g2
,1. ~A1!

We substitute this in Eq.~43! with the set of signs (2,2,
2) to obtain the energye(f0/2); the combination (1,1,
1) gives e(5f0/2). These energiesversusg are plotted in
Fig. 6 as the bottom and top curves.

For F53f0/2, the cubic equation~37! has two positive
roots:

h151, h25
A118g211

4g2
. ~A2!

One can see that forg,1, the second root exceeds 1, a
therefore,h151 is the only root acceptable. According t
Fig. 4 we choose the signs (1,2,2) in the energy~43! and
obtain

e~3/2!

e1
5

1

2 S 112
12A12g2

g D , g,1. ~A3!

If g.1, one can see thath2,1. Using this root and eithe
(2,1,2) or (2,2,1) as the sign combination, we obtai

e~3/2!

e1
5

1

2 S 11
2

g
2A12h2

2D , g.1. ~A4!

Wheng→1, the energies~A3! and~A4! tend to 3/2 as they
should; see Eq.~47!. Formally, however,g51 is a singular
point: the derivativesde/dg are divergent at both sides o
this point. Physically, this means that the state with eq
fluxes on the arms (F i5f0/2 correspond tog51) is un-
stable with respect to small deviations from equallJ . The
energy e(3/2) is plotted in Fig. 6 along withe(1/2) and
e(5/2) versusg.

If the lJ of one of the 0 arms is the same as thelJ of the
p arm ~e.g.,g251), one of the61/g3 is a root of the cubic
Eqs.~35! and~37!, and the rest of the roots are readily foun
We will not go into details of this case since physically
brings nothing new.

FIG. 6. Energies of the states carrying fluxes~from the bottom
up! f0/2, 3f0/2, and 5f0/2 in units ofe1 for g25g35g.
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