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Path-integral Monte Carlo simulation of helium at negative pressures
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Path-integral Monte Carlo simulations of liquid helium at negative pressure have been carried out for a
temperature range from the critical temperature to below the superfluid transition. We have calculated the
temperature dependence of the spinodal line as well as the pressure dependence of the isothermal sound
velocity in the region of the spinodal. We discuss the slope of the superfluid transition line and the shape of the
dispersion curve at negative pressures.

[. INTRODUCTION ture, a density function&l developed for the liquid-gas in-
terface has been used to successfully examine helium at
Consider a liquid that is quenched from above the liquid-negative pressures. Microscopic finite temperature simula-
gas coexistence line to a point below, which will be in eithertions at negative pressures have not been performed until
the metastable or unstable region, see Fig. 1. As it aprow.
proaches equilibrium, the system will phase separate to a It has been well documented that PIMC can provide ac-
state of positive pressure with coexisting vapor and liquidcurate thermodynamic and some dynamical properties of
phases of densities, and p,, respectively. Below this co- quantum systems in equilibrium, and has been especially
existence line is the spinodal line, which delineates the metasuccessful with liquid helium®*° The basis for the path in-
stable phase from the unstable phase. The spinodal line is tiiegral method is the evaluation of the many particle density
locus of points where the speed of sound vanistigs? matrix p=exp(—BH). The Hamiltonian is assumed to be
=gP/dp, wherem, is the mass of &He particle. At the N
spinodal there is no energy barrier to nucleation and phase _ 2
separation. If the temperature is low enough the pressure at H= )\21 Vi +2 o(rij) @
the liquid spinodal, at a density gf;;, may be negative.
Once the spinodal pressure becomes negative, the low . ; .
pressure the system can attain is the spinodal pressure. used. From the dens!ty matrix, expectation values of observ-
Direct measurement of the spinodal pressure of liquid he@bles can be determined
lium by homogeneous nucleation is experimentally difficult.
In a driven system, such as the pressure oscillation experi- (O)zZ‘lf dRdR p(R,R")(R’|O|R), (2)
ments of Mari$? and Balibar** negative pressures are only
achieved for a finite duration. The presence of objects suchith the partition functionz
as vortices, electrong,” or botH lower the nucleation en-
ergy barrier. Measurements of the cavitation pressure are z:f dRp(R,R), (3
higher than the spinodal pressure because of quantum
tunneling or thermal activatiot? over the barrier, but are
consistent with predictions of the nucleation energy barrier,
attempt frequency and the spinodal pressure. In this paper
microscopic path-integral Monte Carl®IMC) simulations
of liquid helium at negative pressure and finite temperature
will be presented. The calculated temperature and density
dependence of the spinodal line compare favorably with
other calculationd’~” We show that the superfluid transi-
tion can be extended to negative pressures. Finally, the den-
sity dependence of the excitation spectrum shows a decrease
in the maxon peak and an increase of the roton minimum as
the liquid spinodal is approached.

i<j

cWhere an accurate two-body interactiogr) (Ref. 20 is

pressure (arb. units)

Il. METHOD
) ) 6 FIG. 1. Isotherms of pressure versus density for a generic liquid
At zero temperature, density-functiofal® and  are shown for temperatures at or less than the critical temperature.
microscopic-phenomenological’ calculations and quan- The spinodal line and the coexistence line form the lower and upper
tum Monte CarlolQMC) (Refs. 13,14 simulations of liquid  pounds of the shaded metastable region. Locations of the saturated
helium at negative pressure have produced comparable valapor and liquid densitiep, and p,, and the spinodal vapor and
ues of the spinodal pressure and density. At finite temperdaiquid densitiesp,, andpy,, for a given isotherm are indicated.
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and where the matrix elements of the density matrix in po- 20 T T 2.0
sition basis is

p(R,R)=(Rle"#HR"). (4 15} 15
Ris the 3 state of the systenR={rq,r,,..ry}. Using the
product property, the density matrix can be expressed as Siof |.0§

e_BH:(e_TH)M, (5)

whereM .= 8=1/kgT and 7 is the imaginary time step. By 0.5 ¢ eyl | IS 193
expressing the density matrix atas a product of density - 007 gec 7
matrices at a higher temperatureMT, Egs.(2) and(4) can T [ S
be accurately evaluated by Monte Carlo. In our simulation, 0 T T e s o0 1 o 3 40
the canonical ensemble is used, with a fixed number of par- (A KA
ticles N, simulation volume and temperatufe For “He, A .
=6.05961 K A2 and during the simulations=0.0125 K1 FIG. 2. The pair correlation function and the static structure

andN=64. PIMC incorporates Bose statistics, necessary fofunction are shown for three densities at a temperature of 2.0 K:
the modeling of superfluidHe, by allowing the permutation 0006 g/cc, 0.073 glce, and 0.153 glcc.
of particle paths. Superfluidity manifests itself as the
winding?® of the particle paths across the simulation cellcubic polynomial in density was fit to each density-pressure
when periodic boundaries are present. isotherm in the region of the liquid spinodal. As will be
An advantage of a finite system is its ability to explore shown below, the cube of the isothermal speed of sound is
systems at negative pressures. A disadvantage is that finiteeen to vary linearly with pressure and from this it can be
size effects are present, which can be appreciable for a smahown thatP~ P+ a(p—pg)® near the liquid spinoda?
system and can be difficult to correct. The liquid-gas inter-in Table | the liquid spinodal pressure and density for vari-
face limits how large a system can be simulated due to theus temperatures are listed and are plotted in Fig. 3. These
surface energy of a phase separated system. Because {h@ints are indicated by the filled circles. Tlé goodness of
simulation is in equilibrium it will phase separate if it is fit is on the order of 1 for low temperatures and on the order
thermodynamically favorable. Choosing a system size that isf 2 at the highest temperatures. Simulations of the gas phase
on the order of the liquid-gas interface width prevents thewere not done for all temperatures and so information about
system from forming a stable coexistence. From previoushe gas spinodal and the liquid-gas coexistence densities is
PIMC simulationd® it was found that a 64 particle system is not available.
large enough to provide accurate bulk properties. To check For comparison, density-functions!® extrapolated
that this holds true near the spinodal, the pressure near thexperimental? optimized hypernetted chafl, and QMC
spinodal was examined for several systems from 8 to 25@Ref. 14 values are shown in Fig. 3. The extrapolated values
particles at a temperature of 2.0 K. In the range of 32 to 128depend on the assumption that the isothermal speed of sound
the pressure remained negative and varied little with particidéas the following power-law dependence®~P—Py,
number, andS(k)<1 for smallk (see below A system of where Py, is the liquid spinodal pressure. The density-
64 particles was found to be optimal for minimizing finite- functional values are the result of a parametrized density
size effects and keeping the fluid homogeneous at negativienctional that reproduces the experimental bulk properties

pressuré’ but with the Bose condensation addeast hoc While there
To differentiate between liquid and gas phases, the static
structure functionS(k) and the pair distribution function 5
g(r) were examined at three representative densities. Infor- ;
mation about fluctuations into the coexisting liquid-gas * 7
phase, which we wish to avoid, is present in b8ttk) and o X x
g(r). In Fig. 2 the two functions are shown for three densi- g 0 R o Ny i
ties and a temperature of 2.0 K. The high-density liquid < " X v
phase and the low-density gas phase show the typical fea- § - - L. i
tures inS(k) andg(r). The intermediate density, which is 8 - K11 . ale .
lower than the liquid spinodal density at that temperature, BoS| g gl F
begins to show signs of phase separation but no large scale ohet 7 wlL T
featureqd S(k)>1 for smallk] are present. As the density is NP ;f
varied from liquid to gas the functions should go smoothly ~10 s
from one phase to the other, for a finite system. 0.00 0.05 0.10 0.15
p (glcc)
lI. ANALYSIS FIG. 3. Spinodal pressure from PIMC simulations are compared

to other calculations and estimations of the spinodal pressure. In-
creasing temperature runs from bottom to top. Two isotherms from

The PIMC density-pressure isotherms are plotted in FigPIMC simulations are shown as well, with dotted lines to guide the
3. To determine the location of the liquid spinodal line, aeye.

A. Spinodal line
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TABLE I. “He liquid spinodal values. ' —
/
/
T (K) psi (9/co) P (barg 0.15 | \ ______________________ /
e,
0.50 0.107(61) —8.993) . T
1.00 0.107745) -8.933) R R N A
1.54 0.109738) —8.623) % 0.10 - ; [
1.74 0.111061) —8.284) 2 p
2.00 0.112845) ~7.773) y.
2.50 0.113661) —6.2713) 005 1 y
3.00 0.112851) _a521) P
3.64 0.11014) 2686 y
4.00 0.10728) _15%1) O
0.00 A NE—
0 1 9 3 1
T (K)

is agreement with the temperature dependence of the liquid FIG. 5. The t wre d d { the spinodal def@:t
spinodal pressure, the PIMC values of the liquid spinodal - 5. The temperature dependence of the spinodal dei@ty
and transition densityO) are shown with the experimental coex-

density tend to be higher than the density-functional and EXistence curve(dashed ling and superfluid transition curvésolid

trapolated values. Linearly extrapolating the PIMC data t0 Qo) The spinodal density exhibits a cusp-like feature as it inter-
K yields a spinodal density very close to the QMC, densitysects the superfluid transition curve. The transition temperature for

funC“Onal and hypemetted Cha|n Values The eXtrap0|ated @]e hard Sphere Bose gas of Ref. ‘25) and the ideal Bose gas
K PIMC SpinOdal pressure is Sl|ght|y Iarger than the other O(|ong dashed lingare shown for comparison.

K results. A possible reason for this discrepancy, at least

with the QMC value, is the use of different versions of the e extrapolated experimental spinodal pressures of Hall and

. . . 9
Aziz pair potentiaf. _ . Maris*?> were limited to temperatures above 2.2 or at 0 K.
In Fig. 4 the temperature dependence of the liquid spin- ¢ js jjiustrative to plot the liquid spinodal density versus

odal pressure, as calculated by PIMC, is plotted. Forthe e mperature, as is shown in Fig. 5. The liquid spinodal den-
neighborhood of the critical temperatulle, the spinodal ity shows a temperature dependence similar to the experi-
pressure behaves similar to that lof a Van der Waals gas Withental liquid coexistence densitdashed ling a tempera-

the spinodal pressure decreasing monotonically with deg,re independent region at low temperatures with a slight
creasing temperature. In this region we see good agreemegiisp jike behavior near where the experimental transition

of the spinodal pressures. At temperatures near zero, thge (solid line) approaches. The transition line at negative

spinodal pressure is approximately independent of temperayessures as determined from PIMC simulation is discussed
ture, being slightly higher than other values when extrapoygjow.

lated to O K. This flat region may be understood in terms of
the quasiparticle picture of liquid helidfhand will be dis- . N
cussed below. At temperatures n€aK there is a distinct B. Superfluid transition

transition between the two regions. In comparison, the den- |t is not clear what is the temperature dependence of the
sity functional values of Ref. 11 of the spinodal pressuresyperfiuid transition line at negative pressure¥’ Experi-
vary smoothly from the zero temperature value to the classimentally, at positive pressures, as the density is reduced, the
cal gas behavior, having no flat region at low temperaturesyansition temperature increases. Further reducing the den-
sity, the transition line could extend into the negative pres-
sure region. Additionally, along an isotherm, as the density is
reduced to the spinodal density, superfluidity will vanish as
the speed of sound vanish¥sin order to accurately deter-
- mine the superfluid transition temperature we used finite-size
ng scaling of the superfluid fractioff. The direct estimator for
the superfluid fraction uses the winding number, which is a
sl ” | measure of the degree to which the particle exchange cycles
m oA form paths that span the width of the periodic é&lFor a
finite N, the superfluid fraction should scale as

Hell

pressure (bars)

ORef. 12

4 <Ref. 14

B [>Ref. 16

e ® ORef. 17
_e---8

éa. OP,

-10
0

T
T Pl i) ©
T (K)

FIG. 4. Temperature dependence of the spinodal pressures af§iere t=(T—T,)/T, is the reduced temperature. For the
the superfluid transition at negative pressures are shown. At lovfitical exponent of the correlation lengthexperiment gives
temperatures the spinodal pressure is insensitive to temperature=0.67. By assuming that the scaling functi@nis linear
while at higher temperatures the behavior is linear. The upper solitvith respect to its argument ned@r=T, , the parameters
lines form usual phase diagram. andT, can be varied to minimize the distance of the data to
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TABLE Il. Superfluid transition values. 30
Y20K [e]
o ®25K
T\ (K) px (g/cg) Py (barg v Q(0)® oK o
A40K
2.202) 0.11463 —7.0149) 0.634) 0.492) 20 |
2.21(2) 0.12669 —6.03411) 0.65(4) 0.552) @
— E
Q(0)=1%p{"Q(0)/mykeT, - =
~ g 10
Q. The universal constar@(0), seeTable I, has been cal- °
culated for the 3DXY modef* as 0.491).
Using systems of 16, 32, and 64 particles at a fixed den-
sity, the superfluid fraction was determined at several tem- 0 ) )
peratures and scaled according to EjJ. Once the transition 8 16
temperature was found, the corresponding pressure was pressure (bars)

found by interpolating théN=64 pressure data. The super-
fluid transition values plotted in Figs. 4 and 5 are listed in
Table Il. The superfluid transition data fall along the experi-

mental superfluid transition line if it extended linearly to
P y Is_pinodal pressure. The straight lines are fits to the PIMC (diitled

negative pressures. It appears that the transition line inte . X
sects the spinodal line at a temperature of 2.2 K. ;ymbols) and are to guide the eye. The experimental data collected

. . n Ref. 12 are indicated by the open symbols and are limited to

For comparison, the transition temperature for a harci) o
. . . ositive pressures.

sphere Bose g&3(a system which does not have a liquid-gas

transition) and an ideal Bose gas are shown in Fig. 5. As was

. B - above discussion is limited =0 K, thec? scaling behav-
explained by Giter™ in a study of superfluidity for a hard ior is observetf for all temperatures up to the critical tem-

sphere Bose gas, at low densities spatial fluctuations are im_erature ofT=5.2 K
portant and clusters are likely to form, which inhibit macro- P In Fia. 6 the isotﬁermal sound velocity from PIMC simu-
scopic exchange cycles. At moderate densities the system Iis 9. Y

more homogeneous, allowing the exchange cycles necessa?g'on is plotted as a function of pressure, being determined

FIG. 6. The isothermal speed of sound from Eq. is plotted
versus pressure for varying temperature. It has been stiBeh
27) that c® should vary linearly with pressure, vanishing at the

for superfluidity to form and the transition temperature be-" merically from from the PIMC pressure data
comes greater than the ideal Bose gas value by 7%. At high Pr=)
densities, exchange is once again inhibited due to an increase m,c2=—. @

in effective mass of the particles lowering the transition tem- P

perature below the ideal Bose gas value. Note that in comAs can be seen in the figure, the PIMC data is in agreement
paring the temperature dependence of the transition densjith the relationc®~ P— Py, although there is some numeri-
ties, the pressures of the ideal and hard sphere Bose gases @& error in taking the derivative. The experimental data ex-
positive while the pressure of tHite transition goes from hibits a smaller slope than the simulation data but the spin-
positive to negative as the density decreases. odal pressurefordinate interceptare in agreement.

C. Isothermal sound velocity D. Excitation spectrum

The scaling of experimental isothermal sound velocity The isothermal speed of sound is seen to vanish on the
data to pressure is controversial. Early thermodynamic arguspinodal line. According to Mari& in the quasiparticle pic-
ments put forth by Marf® indicated that aT =0 K the speed  ture of liquid helium, a transformation of the phonon branch
of sound should scale with pressurecds- P— P whereP to a free particlelike dispersion is expected to occur as the
is the liquid spinodal pressure. Maris’s later anal/st&in- liquid spinodal line is neared. Additionally, at negative pres-
dicated that this was not correct in the pressure range accesdres, a reduction of the maxon peak may occur in the exci-
sible to experiment. A renormalization-group analysis of thetation spectrum. The effect of lowering the maxon peak is a
problem by Mari§’ yielded a scaling relation ot®>~P  spinodal pressure which has a temperature dependence simi-
— Py, for pressures ned?g,, which proved to be very rep- lar to that in Fig. 4.
resentative of the data of boftle and®He. There is some At a temperature of 1.0 K the excitation spectrum at two
disagreement with this interpretatibh'® Accordingly, the  densities has been calculated using a maximum entropy
c¢* scaling should occur only within a short distance frey  analysis® on the PIMC intermediate scattering function data
while the c® scaling would be recovered at experimentally and is shown in Fig. 7. In this method there is a systematic
observed values of pressure. However, this seems counter éoror caused by the assumed entropic prior. The peaks in the
the renormalization approach where it would be expectedalculated dynamic structure function reproduce the experi-
that the exponent should be four away from the critical presmental spectrum but the calculated widths of the dynamic
sure and three some small distance fréy). At issue is  structure function are too large in the superfluid phisehe
whether or not the second derivative of pressure with respedtindamental difficulty is that the path-integral simulation
to density is identically zero at the spinodal density. Recenmust be in imaginary time to be numerically feasible for
microscopic calculations by Campbeli all” show a differ- many-particle systems while the excitation spectrum is in
ent power law when very near the spinodal point. While thereal time. Because of the uncontrolled approximation, esti-
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FIG. 7. The excitation spectra from PIMC simulations at a tem-

perature of 1.0 K and densities of 0.114 g/cc and 0.145 g/cc are FIG. 8. The maxon peak and the roton minimum are shown as a
compared to the experimental cur¢Ref. 29 (solid line). At a function of density. The solid and dashed lines are fits to neutron-
density of 0.114 g/cc, the system is nearly at the spinodal pressursecattering datéRef. 31 and the hollow symbols are the PIMC data.
Tangents ak=0 are shown(dashed lines where the velocity is The trend is for the maxon peak and the roton minimum to become
determined by Eq(7). The lowest value ok for the simulations is  indistinguishable at the spinodal densiindicated by dot-dashed
determined by the size of the computational cell. line).

(p(een investigated using PIMC. The spinodal line at low tem-
peratures shows substantial agreement with the density-
functional calculations of Ref. 11 as well as at temperatures
§bove the superfluid transition. The calculated temperature
independence at low temperatures and the sudden increase in
Rressure as the superfluid transition is neared is consistent
with the conjectures of Ref. 12. At higher temperatures there
i%general good agreement of the spinodal pressure with all
calculations in the normal fluid phase. The superfluid transi-
the liquid spinodal densily there is a large decrease in the tion is found to be consistent W_ith the e_xperimental trangition
depth of the roton minimum with respect to the maxon peakvalues ?nq approaches the_spmodal line near 2.2 K. Finally,
We predict that the roton minimum will have disappeared althe exutapon speptrum exhibits changes in the_maxon-ro';on
the spinodal point within the accuracy of our calculation 2r€@ consistent with the low-temperature behavior of the lig-

(roughly 0.5 K. The phonon part of the spectrum is at mo- uid spinodal line.
menta less then the lowest wave vector present in the system

mates for the uncertainties of the excitation energies cann
be reliably obtained. The neutron scattering dataTat
<0.35K and density 0.145 g/cc, compiled by Donnéflys
shown for comparison. The PIMC data at a density of 0.14
g/cc and pressure —0.603 bar agrees with the neutron data.
The density dependence of the maxon peak and roto
minimum is shown in in Fig. 8. For comparison, fitgo
neutron data taken at nonnegative pressure are shown. At
density of 0.112 g/cc and pressure-7.72 bar(very nearly
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