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Theory of scanning tunneling spectroscopy of a magnetic adatom on a metallic surface
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A comprehensive theory is presented for the voltage, temperature, and spatial dependence of the tunneling
current between a scanning tunneling microscope~STM! tip and a metallic surface with an individual magnetic
adatom. Modeling the adatom by a nondegenerate Anderson impurity, a general expression is derived for a
weak tunneling current in terms of the dressed impurity Green’s function, the impurity-free surface Green’s
function, and the tunneling matrix elements. This generalizes Fano’s analysis to the interacting case. The
differential-conductance line shapes seen in recent STM experiments with the tip directly over the magnetic
adatom are reproduced within our model, as is the rapid decay,;10 Å, of the low-bias structure as one moves
the tip away from the adatom. With our simple model for the electronic structure of the surface, there is no dip
in the differential conductance at approximately one lattice spacing from the magnetic adatom, but rather we
see a resonant enhancement. The formalism for tunneling into small clusters of magnetic adatoms is developed.
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I. INTRODUCTION

Recently, a scanning tunneling microscope~STM! was
used in two separate experiments1,2 to directly probe the lo-
cal electronic structure of an isolated magnetic adatom o
metallic surface. By measuring the tunneling current fro
the substrate to the STM tip, a narrow resonant feature
seen in the differential conductance when the tip was pla
directly above the magnetic adatom: an antiresonance in
case of a cerium adatom on the~111! surface of silver,1 and
an asymmetric Fano resonance in the case of a cobalt ad
on the ~111! surface of gold.2 These resonant structure
gradually disappeared upon removing the tip from the a
tom. Specifically, the asymmetric line shape for Co
Au~111! first evolved into a more symmetric dip, before di
appearing altogether at a lateral distance of about 12 Å f
the Co adatom.2 Both experiments were interpreted as
manifestation of the Kondo resonance that develops du
the screening of the local moment on the magnetic ada
by the substrate conduction electrons.

While similar observations of the Kondo effect for
single magnetic impurity were recently reported both
quantum dots3,4 and in metallic point contacts,5 STM spec-
troscopy offers the unique ability to spatially resolve t
electronic structure around the magnetic adatom. This p
vides direct information about the screening of the local m
ment, allowing for critical comparison between theory a
experiment. Another interesting aspect of STM spectrosc
in this context is the quantum-mechanical interference
tween direct tunneling into the magnetic adatom and tun
ing into the underlying substrate conduction electrons, as
cussed by Fano6 for the noninteracting case. For a quantu
dot placed in between two metallic leads, the analogous
terference is between Kondo-assisted tunneling through
PRB 610163-1829/2000/61~13!/9036~11!/$15.00
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dot and direct tunneling between the leads, the latter be
extremely small.

Motivated by the recent STM experiments, this paper p
vides a comprehensive theory for the voltage, temperat
and spatial dependence of the tunneling current betwee
STM tip and a metallic surface with an individual magne
adatom. Modeling the adatom by a nondegenerate Ande
impurity, a general expression is derived for a weak tunn
ing current in terms of the fully dressed impurity Green
function and the impurity-free surface Green’s function. T
impurity Green’s function is evaluated in turn using the no
crossing approximation~NCA!, while the surface Green’s
function is obtained within a tight-binding model with fre
boundary condition at the surface. This allows for a cons
tent description of the energy and the spatial dependenc
the tunneling current, as is required in this case. Both ca
of point tunneling and that of a finite spatial extent in t
tunneling matrix element between the tip and the subst
conduction electrons are considered within this model.

As expected of the Kondo effect, a sharp resonant str
ture is found to develop in the low-voltage differential co
ductance as the temperature is lowered down to the Ko
temperatureTK . The width of the resonance is proportion
to TK at low temperatures, growing withT for T.TK . Its
shape is governed by a single interference parameterq, much
in the same way as in the noninteracting case.6 The value of
q and its spatial variation depends quite sensitively on det
of the underlying surface Green’s function and the tunnel
matrix elements, which limits the direct applicability of ou
results to the experimental data. Nevertheless, we are ab
make some qualitative statements regarding the experim
In particular, the indirect interference with the magnetic ad
tom, i.e., that due to the tunneling between the STM tip a
the underlying conduction electrons, is found to have a ch
acteristic range of the order of two lattice spacings, con
9036 ©2000 The American Physical Society
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tent with the limited spatial extent of the Kondo resonance
the experiment. In addition, the spatial dependence of
differential conductance as measured for Co on Au~111!
~Ref. 2! is shown to be nongeneric, indicating a crucial d
pendence on the microscopic details of the~111! surface of
gold. Finally, since the widths of the resonant features
Refs. 1 and 2 are both notably larger than the temperat
we conclude thatT,TK in both experiments.

The remainder of the paper is organized as follows:
Sec. II the basic model is introduced, and a general exp
sion is derived for the differential conductance in the limit
a weak tunneling current. Section III then details our cal
lation scheme for the dressed impurity Green’s function a
the impurity-free surface Green’s function. Simplified e
pressions for the first few nonlocal surface Green’s functi
of our model are provided in Appendix A. Results for th
voltage, temperature, and spatial dependence of the
voltage differential conductance are presented in turn
Secs. IV and V, with Sec. IV dedicated to the case of po
tunneling between the STM tip and the underlying substr
conduction electrons, and Sec. V devoted to the case
spatially extended matrix element for tunneling. The m
results of the paper are finally summarized in Sec. VI, f
lowed by a brief comparison with previous work in Appe
dix B, and a generalization of our approach to the case
multiple magnetic adatoms in Appendix C.

II. MODEL AND TUNNELING CURRENT
The system under consideration is shown schematicall

Fig. 1. It consists of an individual magnetic adatom, mode
by a d level with energyed and an on-site repulsionU,
deposited on top of a metallic surface. Thed electrons hy-
bridize locally with the underlying conduction electrons v
the matrix elementVh . This setting is probed by an STM ti
which is placed directly above the surface pointRW s , and
which couples separately to thed electrons and to the loca
conduction electrons at siteRW s through the tunneling matrix
elementstd and tc , respectively. The adatom is taken to
positioned atRW i . An applied voltage bias between the su
strate and the tip offsets the two chemical potentials,m t ip
2msub5eV, causing a weak electrical current to flow b
tween the substrate and the tip.

FIG. 1. Schematic description of the physical system. A meta
surface with an individual magnetic adatom is probed by an S
tip. The tip couples separately to the atomicd electrons and to the
underlying conduction electrons via the tunneling matrix eleme
td and tc , respectively. A voltage bias is applied between t
sample and the STM tip, causing a weak electrical current to fl
between the substrate and the tip.
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Setting the substrate chemical potential as our refere
energy, the corresponding Hamiltonian takes the formH
5Hsub1Ht ip1Htun , where

Hsub5(
kWs

ekWckWs
†

ckWs1ed(
s

ds
†ds1Ud↑

†d↑d↓
†d↓

1Vh(
s

$ds
†cs~RW i !1cs

†~RW i !ds%, ~1!

Ht ip5(
kWs

~EkW1eV!akWs
†

akWs , ~2!

Htun5tc(
s

$cs
†~RW s!As1As

†cs~RW s!%

1td(
s

$ds
†As1As

†ds%. ~3!

HereckWs
† (akWs

† ) creates a bulk~tip! conduction electron with

wave numberkW and spin projections, and ds
† creates an

atomicd electron with spins. The fermion operatorscs(rW)
andAs in Eqs.~1!–~3! are the local conduction electrons
point rW on the surface and at the edge of the STM tip,
spectively. Explicitly,

cs~rW !5(
kW

wkW~rW !ckWs , ~4!

As5(
kW

xkWakWs , ~5!

where wkW(rW) and xkW are the corresponding bulk and ti
single-particle wave functions, evaluated at pointrW on the
surface and at the edge of the tip, respectively. The ato
energiesU1ed and 2ed are assumed to be positive an
large, such that a local moment forms on the adatom.

For zero tunneling,tc ,td50, the locald moment under-
goes Kondo screening below a characteristic tempera
TK} exp@21/r0J#, wherer0 is the local surface density o
states at the Fermi level, andJ52Vh

2@1/uedu11/(U1ed)# is
the effective exchange coupling between thed moment and
the underlyingckWs

† conduction electrons. For nonzero tunne
ing and a finite voltage bias, one is dealing in principle w
a nonequilibrium state.7,8 However, for a weak tunneling cur
rent, as is the case in the experiments of Refs. 1 and 2,
differential conductance essentially probes the ze
tunneling ~equilibrium! Kondo resonance. To see this w
note that, for weak tunneling, it is sufficient to evaluate t
tunneling current from the substrate to the STM tip to seco
order in tc and td . Using standard diagrammatic techniqu
one obtains

I ~V!5
2e

p\ (
s

E
2`

`

rAs~e2eV!r f s~e!

3@ f ~e2eV!2 f ~e!#de, ~6!

c

ts

w
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where f (e) is the Fermi-Dirac distribution function, an
rAs(e)52ImGAs(e1 ih) and r f s(e)52ImGf s(e1 ih)
are the zero-tunneling spectral functions corresponding toAs

and

f s5tccs~RW s!1tdds , ~7!

respectively. Here we have introduced the notation by wh
the arguments ofGAs and Gf s ~and thus those ofrAs and
r f s) are measured relative to their respective chemical
tentials, i.e.,m t ip5eV andmsub50.

All information of the Kondo effect in Eq.~6! is con-
tained within the retardedGf s propagator,

Gf s~e1 ih!5tc
2GRW s ,RW s

~e1 ih!1Gs
d~e1 ih!

3@ td1tcVhGRW s ,RW i
~e1 ih!#

3@ td1tcVhGRW i ,RW s
~e1 ih!#, ~8!

which features the fully dressed impurity (d-electron!
Green’s function in the absence of tunneling,Gs

d(e1 ih),
and the impurity-free surface Green’s function,

GrW1 ,rW2
~e1 ih!5(

kW

wkW~rW1!wkW
* ~rW2!

e2ekW1 ih
. ~9!

The differential conductance is given in turn by the deriv
tive of Eq. ~6! with respect toV. AssumingrAs(e)5rA is
essentially energy independent on the scale of the vol
bias and the temperature, one obtains

G~V!52
2e2

p\
rAE

2`

`

(
s

r f s~e1eV!
] f ~e!

]e
de. ~10!

Equations~8!–~10! are a generalization of Fano’s origin
analysis6 to the interacting case. They express the differen
conductance in terms of the fully dressed impurity Gree
function, the impurity-free surface Green’s function, and
microscopic tunneling parameters of the model. The rem
der of the paper is devoted to evaluation and analysis
these equations, starting with the Green’s functionsGs

d(e
1 ih) andGrW1 ,rW2

(e1 ih).

III. IMPURITY AND SURFACE GREEN’S FUNCTIONS

A. Impurity Green’s function

We have evaluated the impurity Green’s function in t
limit U→`, where double occupancy is forbidden on t
magnetic adatom. Calculations were performed using
noncrossing approximation9 ~NCA!, which is a self-
consistent perturbation theory about the atomic limit. T
approach is known to provide a good quantitative descrip
of the temperature rangeT*TK , and has the advantage o
being capable of treating systems with realistically sm
Kondo temperatures. This is to be contrasted with quan
Monte Carlo approaches, which cannot go to very low te
peratures. As a large-N theory, however, the NCA fails to
recover Fermi-liquid behavior at low temperatures,9 and it
overshoots the unitary limit forT&TK in the N52, nonde-
generate case. To avoid these pathologies of the NCA,
restrict attention in this paper to the rangeT>TK .
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B. Surface Green’s function

Due to the local nature of the hybridization between thd
and conduction electrons in Eq.~1!, only the local
conduction-electron density of states is relevant to the im
rity Green’s function,Gs

d(e1 ih). Conventionally, this al-
lows one to parametrize the band by a single function for
density of states, often chosen for convenience to hav
Lorentzian, box, or Gaussian form. In contrast, calculation
the differential conductance forRW sÞRW i requires detailed in-
formation of the band dispersion. In particular, a consist
theory for the energy and spatial dependence ofG(V) re-
quires one to start from a microscopic description of t
underlying conduction band.

As a generic model for the substrate conduction band,
consider a simple-cubic tight-binding Hamiltonian, wi
open boundary conditions at the surface. Setting the lat
spacing as our unit length, the lattice is described by
integer gridrW i5(xi ,yi ,zi) with zi.0, such that the first~sur-
face! monolayer corresponds tozi51. In each of thex andy
direction we take periodic boundary conditions, i.e.,xi andyi
are equivalent toxi1N and yi1N, respectively. In thez
direction we apply open boundary conditions, namely,crW is

~the conduction-electron annihilation operator at siterW i) van-
ishes forzi50 andzi5N. The corresponding Hamiltonian
reads

Hband5t (
^ i , j &,s

$crW is
†

crW js
1crW js

†
crW is

%, ~11!

where^ i , j & denotes nearest-neighbor lattice sites. Formsub
50, the case considered here, the Hamiltonian of Eq.~11!
describes a half filled band.

The tight-binding Hamiltonian of Eq.~11! is diagonalized
by converting to the single-particle basis

ckWs5A 2

N3(i
crW is

e2 i (kxxi1kyyi ) sin~kzzi !. ~12!

HerekW takes the values (2nx ,2ny ,nz)p/N, with the integers
0<nx ,ny,N and 1<nz,N. The corresponding single
particle energies take the form

ekW52t (
l 5x,y,z

cos~kl !. ~13!

Since the tight-binding wave functionswkW(rW) are confined
to a discrete set of lattice sites, the Green’s function of
~9! is meaningful only in the case where bothrW1 and rW2 are
lattice sites. Taking the thermodynamic limit,N→`, one
thus obtains

GrW1 ,rW2
~e1 ih!5

2

p3E0

p

dkxE
0

p

dkyE
0

p

dkz cos@kx~x12x2!#

3cos@ky~y12y2!#
sin~kzz1!sin~kzz2!

e2ekW1 ih
,

~14!
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from which the surface Green’s function follows by setti
z15z251:

Glm~e1 ih!5
2

p3E0

p

dkxE
0

p

dkyE
0

p

dkz cos~kxl !cos~kym!

3
sin2~kz!

e2ekW1 ih
. ~15!

Here and in the remainder of the paper we label the sur
Green’s function by two integers:l 5x12x2 and m5y1
2y2. We further note thatGlm(e1 ih) andGml(e1 ih) are
identical by symmetry, and are only dependent upon the
tancesu l u and umu.

Equation ~15! can be further simplified to just a singl
integration by exploiting the relation to the local tigh
binding Green’s function for a two-dimensional, simpl
cubic lattice:10

G2D~z!5
2

pz
K@~4t/z!2#. ~16!

HereK(z) is the complete elliptic integral of the first kind
analytically continued to the upper and lower half planes11

Specifically, the local surface Green’s functionG00 is con-
veniently expressed as

G00~e1 ih!5
2

pE0

p

dk sin2~k!G2D@e22t cos~k!1 ih#,

~17!

with analogous expressions for the first few nonlocal Gree
functions~see Appendix A!.

Figure 2 displays the first four surface Green’s functio
Both the real and imaginary parts ofGlm(e1 ih) decay as a
function ofAl 21m2, alternating between even and odd fun
tions of energy. For even~odd! u l u1umu, the real part of
Glm(e1 ih) is odd ~even! in energy, while the imaginary
part is even~odd!. As a result,Glm(01 ih) is purely imagi-
nary whenu l u1umu is even, and purely real whenu l u1umu is
odd. This has a profound effect on the spatial dependenc

FIG. 2. Real and imaginary parts of the tight-binding surfa
Green’s functionGlm(e1 ih), for different values of (l ,m).
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the low-voltage differential conductance for this model, a
purely realGlm(01 ih) gives rise to resonant enhanceme
of the differential conductance forRW s2RW i5( l ,m,0). By
contrast, an imaginaryGlm(01 ih) can result both in an an
tiresonance or an asymmetric Fano resonance, dependin
details of the tunneling matrix elementstc and td . We shall
return to this point in great detail below. Finally, we note th
the imaginary part ofGlm(01 ih) is nonzero only in the
range26t,e,6t, and that the van-Hove singularities ate
562t are considerably smoother at the surface than d
inside the bulk.

IV. RESULTS FOR POINT TUNNELING

We have evaluated the differential conductance accord
to Eqs.~8!–~10!, within the tight-binding model of Eq.~11!

for the underlying conduction band.cs
†(RW i) was identified in

this picture with the creation of an electron at the lattice s
RW i5(0,0,1). The local density of states used in comput
the impurity Green’s function was taken accordingly to
r(e)52(1/p)Im$G00(e1 ih)%, whereG00 is given by Eq.
~17!. The corresponding density of states at the Fermi leve
equal tor05r(0)50.525/t. Focusing on the case where th
STM tip is positioned directly above the lattice siteRW s
5( l ,m,1), each of the surface Green’s functionsGRW s ,RW i

(e

1 ih) and GRW i ,RW s
(e1 ih) in Eq. ~8! was identified with

Glm(e1 ih).

A. Tip placed above the magnetic adatom

We begin with an STM tip positioned directly above th
magnetic adatom. As the temperature is lowered down
TK , a sharp resonant structure develops in the differen
conductance at zero bias, in addition to the standard br
feature near thed level. This is demonstrated Fig. 3 forT
5TK andtd50. The sharp antiresonance seen at zero bia
this case directly corresponds to the Abrikosov-Suhl re
nance in the impurity spectral function, which is plotted f
comparison in the inset of Fig. 3. Here and throughout
paper, the impurity Green’s function was calculated with
the NCA, using the impurity model parametersed /t5
21.67, G/t[pr0Vh

2/t50.4, andU5`.12 The correspond-
ing Kondo temperature,TK /t51023, was defined as the
temperature at which the ‘‘resistivity’’ integral,13

R~T!5F E
2`

` 1

Im$Gs
d~e1 ih!%

] f ~e!

]e
deG21

, ~18!

reduces to 50% of its zero-temperature limit. This definiti
of TK agrees to within a factor of order unity with the hal
width of the Abrikosov-Suhl resonance in the impurity spe
tral function.

Focusing hereafter on the low-voltage resonant struct
Fig. 4 depicts the resonance’s dependence onq0
5td /pr0tcVh , which plays the role of Fano’s interference p
rameterq in this case. HereG054e2tc

2r0rA /\ is the zero-
temperature conductance in the absence of an impurity. W
increasing uq0u, the low-voltage differential conductanc
evolves in Fig. 4 from an antiresonance foruq0u!1, to an
asymmetric Fano resonance for intermediateuq0u, to a full
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resonance foruq0u@1, much in the same way as in the no
interacting case. The antiresonance forq050 resembles tha
for a Ce adatom on Ag~111!,1 supporting the interpretation
of Li et al. that the observed line shape stems from Kon
screening of the Ce moment with only weak direct coupl
between the tip and the adatom. Theq051 curve is similar
in turn to the Fano resonance observed by Madhavanet al.
for a Co adatom on Au~111!,2 while larger values ofq0
display too shallow a dip and too high a peak as compare
the data of Ref. 2.

Figure 5 shows the temperature dependence ofG(V), for
the two representative values ofq050 and q050.7. The

FIG. 3. The differential conductance,G(V), as a function of
voltage, for an STM tip placed directly above the magnetic adat
Here T5TK , td50, andG054e2tc

2r0rA /\. The impurity model
parameters areed /t521.67, G/t50.4, andU5`, corresponding
to a Kondo temperature ofTK /t51023. The impurity Green’s func-
tion, whose spectral partAs

d(e)52(1/p)Im$Gs
d(e1 ih)% is plotted

in the inset, was computed using the NCA. In addition to the st
dard broad feature near thed level, a sharp antiresonance is seen
G(V) at zero bias, corresponding to the Abrikosov-Suhl resona
in the impurity spectral function.

FIG. 4. The low-voltage differential conductance for an STM
placed directly above the magnetic adatom. HereT5TK and q0

5td /pr0tcVh , with all other model parameters as in Fig. 3. Wi
increasinguq0u, G(V) evolves from an antiresonance foruq0u!1, to
an asymmetric Fano resonance for intermediateuq0u, to a full reso-
nance foruq0u@1 ~not shown!.
o

to

main effect of a temperature is to broaden and smear
resonant structure inG(V), whose width grows according to
T for T.TK . Notice the significant reduction in the overa
resonance height by the timeT/TK;10. This strong tem-
perature dependence of the differential conductance has
contributions: ~i! A rapid decrease in the Abrikosov-Suh
resonance in the impurity spectral function with increas
temperature, and~ii ! Further smearing of the impurity
Green’s function due to the convolution with the derivati
of the Fermi-Dirac function in Eq.~10!. The fact that the
well-developed features in Refs. 1 and 2 have widths that
notably larger thanT is thus a clear indication thatT,TK in
both experiments.

B. Spatial dependence of the differential conductance

As stated above, the most interesting aspect of STM sp
troscopy of the Kondo effect is the ability to spatially resol
the electronic structure around the magnetic adatom. In
6 we have plotted the low-voltage differential conductan
as a function of (l ,m), for the idealized case where the ST
tip is placed directly above the lattice siteRW s5( l ,m,1). Here
each set of curves corresponds to a different fixed value
q05td /pr0tcVh , which no longer corresponds forRW sÞRW i
to Fano’s interference parameterq. The latter also depend
on the real and imaginary parts ofGRW s ,RW i

(01 ih), as dis-

cussed below. Physically one should recall, though, thatq0
}td decays to zero with increasing distance from the m
netic adatom, henceG(V) always tends to theq050 curve
as the lateral distance from the adatom is increased.

Fixing the value ofq0 for the time being and increasin
the lateral distance from the magnetic adatom, the low-b
differential conductance approaches the asymptotic curv

G~V!5G0F11Gq0
2E

2`

`

Im$Gs
d~e1 ih!%

] f ~e!

]e
deG .

~19!

.

-

e

FIG. 5. Temperature dependence ofG(V), for an STM tip
placed directly above the magnetic adatom. Hereq050 and q0

50.7 in the lower and upper graphs, respectively. All other mo
parameters as in Fig. 3.
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This result stems from the decaying nature ofGlm(01 ih),
along with the fact thatG00(e1 ih)52 ipr0 is approxi-
mately constant on the scale of the voltage bias and the
perature. As seen in Fig. 6, Eq.~19! is approached at a latera
distance of about two lattice spacings from the magnetic a
tom. For larger distances the resonance height is basic
proportional to the residual coupling to the magnetic adat
squared. Specifically, there are no visible traces of the Ko
resonance forq050 when the tip and the adatom are tw
lattice spacings apart@the curve (l ,m)5(0,2) in Fig. 6#.
Such a limited spatial extent of the Kondo resonance
G(V) is consistent with the one seen experimentally for
on Au~111!,2 indicating thatq0 is effectively zero in the
experiment above a lateral distance of about 10 Å. Inde
the low-bias resonant structure is also mostly gone by lat
distance of 10 Å for Ce on Ag~111!,1 even though the
Ag~111! surface state at270 meV does not fully set in be
fore a distance of about 40 Å.

The resonant enhancement ofG(V) at a lateral distance o
one lattice spacing, which occurs for any value ofq0, is not
seen in the experiment. This feature of the calculated dif
ential conductance is traced back to the fact thatG01(0
1 ih) is purely real for our tight-binding model, resulting i
a differential conductanceG(V) that is once again given b
Eq. ~19!, but with

q0→q01
1

pr0
Re$G01~01 ih!%5q020.372 ~20!

@see Eqs.~8! and ~10!#. Thus, irrespective of the actualq0
that applies to a lateral distance of one lattice spacing in
experiment of Madhavanet al., our present model fails to
recover the diplike structure seen experimentally at suc
distance for Co on Au~111!.2

ThatG01(01 ih) is purely real is a generic feature of ha
filled nearest-neighbor tight-binding models on bipartite l
tices. It is lost, however, when the system is away from h
filling, or upon inclusion of a next-nearest-neighbor hoppi
term. This suggests that the diplike structure seen experim
tally up to a distance of;10 Å from the Co adatom2 is due

FIG. 6. Spatial dependence of the low-voltage differential c
ductance G(V) for T5TK and different values of q0

5td /pr0tcVh . All impurity model parameters are as in Fig. 3. Th
individual curves are offset by one unit each, according to the
eral distance from the impurity site.
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to a qualitative difference in the underlying surface Gree
function for Au~111!. Indeed, the~111! surface of gold is
known to have a herringbone reconstruction with regions
fcc and hcp ordering,14 which differs from the simple-cubic
structure considered here. This may support the interpr
tion of a qualitative difference in the underlying surfa
Green’s function.

It should be noted, though, that such an interpretation
Au~111! demands that Im$GRW i ,RW s

(01 ih)% is never small

compared topr0q01Re$GRW i ,RW s
(01 ih)% in the relevant

range inRW s2RW i , otherwiseG(V) must have a peak. In par
ticular, this rules out any oscillatory behavior o
Im$GRW i ,RW s

(01 ih)% as a function ofRW s2RW i in this range. A
brief examination of Fig. 2 reveals that this condition is a
tually quite restrictive, at least for the tight-binding model
Eq. ~11!: Only in a narrow window of band fillings is
Im$Glm(01 ih)% consistently negative for allu l u1umu<2.
We thus conclude that the spatial dependence measure
Madhavanet al. is certainly not generic, but depends on d
tails of the underlying band.

V. FINITE SPATIAL EXTENT OF THE TUNNELING
MATRIX ELEMENT

Thus far we have considered an idealized point tunne
between the STM tip and the substrate conduction electr
at point RW s . In practice, however, the tunneling matrix el
ment has a finite spatial extent aboutRW s , which is reflected
in the different line shapes that are observed when the ti
removed from the Co adatom in opposite directions.2 On the
level of the model, a spatially extended tunneling matrix
ement is accounted for by replacingcs(RW s) in the first term
of Eq. ~3! with a weighed sum over the conduction-electr
degrees of freedom aroundRW s :

cs~RW s!→(
rW

wrWcs~RW s1rW !. ~21!

Here we use the convention

(
rW

uwrWu251, ~22!

which fixes the separation of the local tunneling matrix e
ment at eachrW into t rW5tcwrW . For the tight-binding model of
Eq. ~11!, the sum overrW in Eq. ~21! extends over those lattic
sites close to the STM tip.

Upon substituting Eq.~21! into the tunneling Hamiltonian
of Eq. ~3!, the differential conductance remains given
Eqs. ~8!–~10!, but with the following modifications to
Eq. ~8!:

GRW s ,RW s
→(

rW,rW8
wrWwrW8

* GRW s1rW,RW s1rW8 , ~23a!

GRW s ,RW i
→(

rW
wrWGRW s1rW,RW i

, ~23b!

GRW i ,RW s
→(

rW
wrW

* GRW i ,RW s1rW . ~23c!

-
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Accordingly, the zero-temperature conductance in the
sence of an adatom is equal to

G052
4e2tc

2

p\
rAImH(

rW,rW8
wrWwrW8

* GRW s1rW,RW s1rW8~01 ih!J ,

~24!

which properly reduces toG054e2tc
2r0rA /\ in the limit of

point tunneling.
To examine the effect of a finite spatial extent in the tu

neling matrix element, we go back to the tight-binding mod
of Eq. ~11!, and to the case where the tip is placed direc
above the magnetic adatom, i.e.,RW s5(0,0,1). In addition to
tunneling between the tip and the lattice pointRW s , we intro-
duce a nonzero tunneling matrix element to each of the f
surface nearest neighbors ofRW s . Restricting attention to the
isotropic case, one is left with two differentwrW parameters:
w0 for the tunneling matrix element to the lattice pointRW s ,
and w1 for the tunneling matrix element to each of its fo
surface nearest neighbors. The normalization condition,
~22!, then reads

uw1u5
1

2
A12uw0u2. ~25!

Figures 7 and 8 depict the evolution of the low-volta
differential conductanceG(V)/G0 as a function ofw1 /w0,
for the two representative values ofq050 andq050.7. Here
we have focused for simplicity on the case wherew0 andw1
are both real and positive, yet the qualitative picture does
depend on this choice. The dramatic effect that a nonzerow1
has on the differential conductance in this case can be un
stood within Fano’s interference picture. Substituting E

FIG. 7. The differential conductance,G(V)/G0, as a function of
w1 /w0, for T5TK , q050, and an STM tip placed directly abov
the magnetic adatom. Here bothw0 andw1 are assumed to be rea
and positive. Note thatG0 itself varies as a function ofw1 /w0 @see
Eq. ~24!#, taking the valuesG0\/4e2tc

2r0rA51, 0.838, 0.598, and
0.356 for w1 /w050, 0.25, 0.5, and 1, respectively. All impurit
model parameters are as in Fig. 3. As the ratiow1 /w0 is increased
from 0 to 1,G(V) evolves from an antiresonance to a resonan
corresponding to an increase in the effective interference param
q @see Eq.~27! and accompanying text#.
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~23! into Eq. ~8! and takingw0 andw1 to be real, the effec-
tive interference parametera la Fano is given forRW s5RW i by
minus the ratio of the real and imaginary parts of

td1tcVh@w0G00~01 ih!14w1G01~01 ih!#. ~26!

Here Eq.~26! corresponds to the resulting expression in ea
of the square brackets of Eq.~8!. Using G00(01 ih)5
2 ipr0 andG01(01 ih)520.372pr0, as is appropriate for
the model of Eq.~11!, one obtains

q5~q021.49w1!/w0 . ~27!

For q050, Eq. ~27! reduces to21.49(w1 /w0), which
varies fromq50 to q521.49 in going fromw150 to w1
5w0. This strong change inq produces the transition from
an antiresonance to a resonance in the differential cond
tance of Fig. 7. Similarly forq050.7, Eq.~27! varies from
q50.7 toq50.075 in going fromw051 to w05w1, which
causes the transition from an asymmetric Fano resonanc
an antiresonance in Fig. 8.

Repeating the same argumentation for the case wherRW s

and RW i are one lattice spacing apart, i.e.,RW s5(61,0,1) or
RW s5(0,61,1), Eq.~26! is modified to

td1tcVh@w0G011w1G0012w1G111w1G02#, ~28!

with all Green’s functions evaluated at zero frequency. Us
G11(01 ih)50.354ipr0 and G02(01 ih)50.097ipr0 one
obtains

q5~5.1q021.9w0!/w1 , ~29!

which is large in magnitude throughout the range 0,w1
<w0, for bothq050 andq050.7. Given the large value o
uqu, one expects the differential conductance to continue
show a resonance for both values ofq0 and all 0<w1 /w0
<1, which is precisely what is seen in Fig. 9.

,
ter

FIG. 8. Same as Fig. 7, but forq050.7. As the ratiow1 /w0 is
increased from 0 to 1,G(V) evolves from an asymmetric Fan
resonance to an antiresonance, corresponding to a decrease
effective interference parameterq @see Eq.~27! and accompanying
text#.
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Thus while the inclusion of nonlocal tunneling betwe
the STM tip and the underlying substrate conduction el
trons obviously increases the parametric dependence ofq, it
does not necessarily assist in producing a dip in the lo
voltage differential conductance when the tip and the ada
are one lattice spacing apart.

VI. DISCUSSION

We begin our discussion with the case of an STM
placed directly above the magnetic adatom, depicted in F
3 –5 and 7–8. Similar to the noninteracting case, the sh
of the Kondo resonance in the low-temperature, low-volta
differential conductance is governed by a single interfere
parameterq, which depends both on the ratios of the tunn
ing matrix elements and on details of the impurity-free s
face Green’s function. Specifically, in Fig. 4q is equal to
q05td /pr0tcVh , whereas in Figs. 7–8 it is modified ac
cording to Eq.~27!. The effect of a temperature is to rapid
broaden and smear the Kondo resonance inG(V), whose
width grows according toT for T.TK . This behavior stems
both from the standard convolution with the derivative of t
Fermi-Dirac distribution function in Eq.~10!, and from the
rapid decrease in the Abrikosov-Suhl resonance with incre
ing temperature. Indeed, the qualitative difference in
low-temperature, low-voltage differential conductance fo
magnetic adatom as compared to that of a conventional n
interacting resonance is in the strong energy and tempera
dependence of the impurity self-energy, whose real
imaginary parts cannot be regarded a constant.

Experimentally, the antiresonance observed for Ce
Ag~111! ~Ref. 1! is similar to theq050 curve in Fig. 4.
Assuming point tunneling between the tip and the underly

FIG. 9. The differential conductance,G(V)/G0, as a function of
w1 /w0, for an STM tip one lattice spacing removed from the ma

netic adatom@i.e.,RW s5(61,0,1) or (0,61,1)]. As inFig. 7,w0 and
w1 are assumed to be real and positive, with all impurity mo
parameters the same as in Fig. 3. For bothq050 andq050.7, the
differential conductance continues to feature a resonance for a
<w1 /w0<1.
-

-
m

s.
pe
e
e
-
-

s-
e
a
n-
re
d

n

g

conduction electrons, this supports the interpretation of w
direct tunneling between the tip and the Ce adatom,1 which
requires at the same time thatGRW iR

W
i
(01 ih) is mostly imagi-

nary. While plausible, this scenario is certainly not exclusi
as there are various other ways to obtainq'0 without re-
sorting to a negligible coupling to the adatom. For examp
the curvew05w1 in Fig. 8 ~corresponding to a spatially
extended tunneling! is also characterized byuqu!1, although
q050.7 is by no means small. Likewise, while the similari
between theq051 curve in Fig. 4 and the Fano resonan
for Co on Au~111! ~Ref. 2! is suggestive of comparable con
tributions from the tunneling to the adatom and to the und
lying conduction electrons, one cannot rule out other com
nations for whichq0'0. For example, settingq0'0 and
w0 /w1'21.5 in Eq.~27! also results inq'1. On the other
hand, the fact that the well-developed features in Refs. 1
2 have characteristic widths that are considerably larger t
the temperature is a clear indication thatT,TK in both ex-
periments.

More detailed information about the underlying electron
structure is contained in the spatial variation of the differe
tial conductance, as measured, for example, in Ref. 2 fo
Co adatom on Au~111!. Here, although we have considered
particular tight-binding model for the impurity-free surfac
there are some qualitative statements we can make with
gard to the experiment. Primarily, as seen in Fig. 6, the
direct interference with the magnetic adatom, i.e., that du
the tunneling between the STM tip and the underlying co
duction electrons, is suppressed above a lateral distanc
about two lattice spacings from the adatom. Hence the c
acteristic range for the indirect interference with the adat
is of the order of two lattice spacings. While this range m
certainly depend both on details of the underlying band a
on the presence of nonlocal tunneling between the tip and
substrate conduction electrons, we expect a qualitativ
similar result for other microscopic models. From the limit
spatial extent of the Kondo resonance for Ce on Ag~111!
~Ref. 1! and Co on Au~111! ~Ref. 2! we thus conclude tha
q0 is effectively 0 above a lateral distance of about 10 Å
these experiments.

Our calculations further indicate that the spatial dep
dence of the differential conductance as measured for Co
Au~111! is not generic, but intimately depends on the micr
scopic details of Au~111!. Indeed, while Madhavanet al.ob-
serve a diplike structure that persists up to a lateral dista
of ;10 Å from the adatom,2 we typically find a resonance a
a distance of one lattice spacing. In Fig. 6, where point t
neling is assumed, this resonance occurs for any value oq0,
which is a special feature of the half filled nearest-neigh
tight-binding model used. One may anticipate, though
similar resonance within a range of one lattice spacing
other lattice models at half filling, sinceGRW s ,RW i

(01 ih) is
expected to oscillate on a length scale of one lattice spac
We emphasize, however, that the spatial dependence m
sured by Madhavanet al. remains quite restrictive for the
Hamiltonian of Eq.~11! both away from half filling and in
the case of nonlocal tunneling between the tip and the s
strate conduction electrons.

The particular tight-binding model used in this pap
clearly limits the application of our results to the expe
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ments. To make direct contact with the experimental dat
is necessary to employ realistic Green’s functions for
~111! surfaces of silver and gold, which may be obtained,
example, fromab inito calculations. It would be interestin
to see if the combination ofab inito calculations for the
~111! surface of gold with NCA calculations for the man
body Kondo resonance can reproduce the particular sp
dependence of the differential conductance as seen for C
Au~111!.

Another interesting issue is the magnetic-field depende
of the low-temperature, low-voltage differential condu
tance. With increasing magnetic field, the Abrikosov-Su
resonance is first split for a moderate magnetic field,H
;TK , before a large magnetic field suppresses the Ko
effect altogether. A similar pattern is expected for the Kon
resonance in the differential conductance. Unfortunat
treatment of a finite magnetic field within the NCA is ham
pered by the NCA pathology,9 hence a different approach
required. One possibility might be quantum Monte Ca
simulations in combination with the maximum entrop
method for analytic continuation,16 although such an ap
proach is restricted in treating realistically small Kondo te
peratures.

Finally, in this paper we have focused on the case of
individual magnetic adatom; however, using the STM tip
atomically manipulate individual adatoms into forming sm
clusters, it might be possible to address the subtle interp
between the Kondo effect and magnetic correlations am
the different adatoms. Most notably, the competition b
tween the Kondo effect and antiferromagnetic locking in
case of two close-by adatoms.17 A first study of a Co dimer
on Au~111! along these lines was recently reported in R
18. As detailed in Appendix C, our formulation of the tu
neling current is naturally extended to the case of multi
magnetic adatoms. Specifically, the singled-electron Green’s
function entering Eq.~8! is replaced by a matrix propagato
corresponding to all possible propagations within the ada
cluster. In this manner, one can analyze complica
multiple-adatom configurations in terms of the intrasite a
intersited Green’s functions. It is our hope that the approa
developed in this paper will prove useful in analyzing futu
STM measurements of magnetic adatoms on metallic
faces.
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APPENDIX A: SIMPLIFIED EXPRESSIONS FOR THE
FIRST THREE NONLOCAL SURFACE GREEN’S

FUNCTIONS

In this appendix, we provide simplified expressions
the nonlocal surface Green’s functionsG01, G11, andG02,
involving just a single integration. These expressions
analogous to Eq.~17! for G00.

Denoting for convenience z5e1 ih and zk5z
it
e
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ial
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ce

l
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y,
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n

l
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e
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d
h
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22t cos(k), the nonlocal Green’s functions are expressed

Glm~z!5E
0

p

G2D~zk!Flm~z,k!
dk

p
, ~A1!

with

F01~z,k!5 cos~k!2 cos~2k!
zk

4t
, ~A2!

F11~z,k!5 cos~k!H S 22
z2

6t2D zk

4t
1

z

3tJ 1 cos~2k!
zzk

12t2
,

~A3!

and

F02~z,k!5 cos~k!H S z2

3t2
21D zk

4t
2

2z

3t J
1 cos~2k!H 22

5zzk

12t2J 1 cos~3k!
zk

4t
.

~A4!

Similar expressions, but with modifiedFlm(z,k), apply also
to Glm(z) with larger values ofu l u1umu.

APPENDIX B: COMPARISON WITH PREVIOUS WORK

It is instructive to compare the present theory of po
tunneling between the STM tip and the substrate conduc
electrons, Eqs.~8!–~10!, with the analyses of Refs. 1 and 2
which focused on the case whereRW i5RW s . In Ref. 1, Liet al.
considered the case of zero direct tunneling between the
and adatom, corresponding toq50 in Fano’s notation. The
antiresonance that develops inG(V) in this case was ap
proximated by the inverted NCA line shape of the impur
spectral function, computed within a degenerate Ander
model that accounts for the full 4f degeneracy in Ce. The
depth of the antiresonance was left as a fitting paramete

As evident from Eqs.~8!–~10! with RW i5RW s , the above
relation between the impurity contribution to the different
conductance and the impurity spectral function is exact in
limit T→0, provided G00(e1 ih)52 ipr0 is essentially
constant forueu on the scale ofTK . This relation loses accu
racy, though, forT.TK , when the convolution with the de
rivative of the Fermi-Dirac function in Eq.~10! increasingly
smears the line shape of the impurity spectral function.

Contrary to Li et al., who restricted attention toq50,
Madhavanet al. considered the full range inq. To this end,
Fano’s expression for the differential conductance was g
eralized according to2

G~V!5G0

~q1eV8!2

11~eV8!2
, ~B1!

eV85
eV2ed2Re$Ss

d~eV1 ih!%

Im$Ss
d~eV1 ih!%

, ~B2!

whereSs
d(e1 ih) is the fulld-electron self-energy, including

both the on-site repulsionU and the hybridization to the
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conduction band,Vh . Thed self-energy was approximated i
turn by a form corresponding to a Lorentzian Abrikoso
Suhl resonance, with a half-widthTK and a peak position
that was left as a fitting parameter.

Comparison with Eqs.~8!–~10! for RW i5RW s reveals that
Eqs. ~B1!–~B2! are correct in the limitT→0, provided
Im$Ss

d(e1 ih)%52G. The latter equality is exact forT50
and e50,15 and is a reasonable approximation forT,TK
and ueu&TK . This approach, however, breaks down forT
.TK , both due to the inapplicability of the assumed form
Ss

d(e1 ih), and because of the convolution with the deriv
tive of the Fermi-Dirac function in Eq.~10! which smears the
underlying structure ofGf s(e1 ih). Hence, similar to the
analysis of Liet al., this approach is restricted to the low
temperature regime. By contrast, Eqs.~8!–~10! are valid for
any temperatureT and anyRW sÞRW i , and are easily amendab
@using Eqs.~23!# to the case of nonlocal tunneling betwe
the STM tip and the substrate conduction electrons.

APPENDIX C: SEVERAL MAGNETIC ADATOMS

In this appendix, we generalize our formulation of t
tunneling current to the case of several magnetic adat
deposited on top of the metallic surface. Specifically,
consider a cluster ofm close-by adatoms positioned at poin
RW j ( j 51, . . . ,m), each with its own hybridization matrix
elementVh j , and its own tunneling matrix element,t j . The
different adatoms need not be identical, and can gener
have differentd-level energies and different on-site Coulom
repulsions~denoted bye j andU j , respectively!. The Hamil-
tonian of the system has the formH5Hsub1Ht ip1Htun ,
whereHt ip is described by Eq.~2!, andHsub andHtun are
given by

Hsub5(
kWs

ekWckWs
†

ckWs1(
j

H e j(
s

nj s
d 1U jnj↑

d nj↓
d J

1(
j ,s

Vh j$dj s
† cs~RW j !1cs

†~RW j !dj s%, ~C1!

Htun5tc(
s

$cs
†~RW s!As1As

†cs~RW s!%

1(
j

t j(
s

$dj s
† As1As

†dj s%. ~C2!
ett

. S

h-

en
f
-

s
e

lly

Heredj s
† creates an atomicd electron with spins on the j th

adatom, andnj s
d 5dj s

† dj s is the corresponding number op
erator. All other notations are the same as in Eqs.~1!–~3!.

Evaluating the tunneling current from the substrate to
tip to second order intc and t j , one obtains an expressio
identical to that of Eq.~6!, with the sole modification tha
r f s(e)52ImGf s(e1 ih) represents now the zero-tunnelin
spectral function corresponding to

f s5tccs~RW s!1(
j

t jdj s . ~C3!

Introducing them3m matrix d Green’s function

Gi j s
d ~e1 ih!5E

2`

`

Gi j s
d ~ t,t8!ei e(t2t8)dt, ~C4!

Gi j s
d ~ t,t8!52 iu~ t2t8!^$dis~ t !,dj s

† ~ t8!%&, ~C5!

together with the two ‘‘vector’’ quantities

v j~e1 ih!5t j1tcVh jGRW s ,RW j
~e1 ih!, ~C6!

uj~e1 ih!5t j1tcVh jGRW j ,RW s
~e1 ih!, ~C7!

the retardedf Green’s function is conveniently expressed

Gf s~e1 ih!5tc
2GRW s ,RW s

~e1 ih!

1(
i , j

v i~e1 ih!Gi j s
d ~e1 ih!uj~e1 ih!,

~C8!

which has the compact matrix representation:

Gf s~e1 ih!5tc
2GRW s ,RW s

~e1 ih!1@v tGs
du#~e1 ih!.

~C9!

All information of the adatom cluster and its many-bod
physics is contained within theGf s Green’s function of Eq.
~C8!, which replaces that of Eq.~8! in the final expression
for the differential conductance, Eq.~10!. In particular, Eq.
~8! is properly recovered in the case of just a single magn
adatom. This permits the analysis of complicated multip
adatom configurations in terms of the matrixd Green’s func-
tion of Eq. ~C4!.
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