PHYSICAL REVIEW B VOLUME 61, NUMBER 13 1 APRIL 2000-I

Theory of scanning tunneling spectroscopy of a magnetic adatom on a metallic surface
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A comprehensive theory is presented for the voltage, temperature, and spatial dependence of the tunneling
current between a scanning tunneling microso@&EM) tip and a metallic surface with an individual magnetic
adatom. Modeling the adatom by a nondegenerate Anderson impurity, a general expression is derived for a
weak tunneling current in terms of the dressed impurity Green’s function, the impurity-free surface Green'’s
function, and the tunneling matrix elements. This generalizes Fano’s analysis to the interacting case. The
differential-conductance line shapes seen in recent STM experiments with the tip directly over the magnetic
adatom are reproduced within our model, as is the rapid dee&Q,A, of the low-bias structure as one moves
the tip away from the adatom. With our simple model for the electronic structure of the surface, there is no dip
in the differential conductance at approximately one lattice spacing from the magnetic adatom, but rather we
see a resonant enhancement. The formalism for tunneling into small clusters of magnetic adatoms is developed.

[. INTRODUCTION dot and direct tunneling between the leads, the latter being
extremely small.
Recently, a scanning tunneling microscof®TM) was Motivated by the recent STM experiments, this paper pro-

used in two separate experimerftso directly probe the lo- vides a comprehensive theory for the voltage, temperature,
cal electronic structure of an isolated magnetic adatom on and spatial dependence of the tunneling current between an
metallic surface. By measuring the tunneling current fromSTM tip and a metallic surface with an individual magnetic
the substrate to the STM tip, a narrow resonant feature wagdatom. Modeling the adatom by a nondegenerate Anderson
seen in the differential conductance when the tip was placetnpurity, a general expression is derived for a weak tunnel-
directly above the magnetic adatom: an antiresonance in theg current in terms of the fully dressed impurity Green's
case of a cerium adatom on thkl1) surface of silvef,and ~ function and the impurity-free surface Green’s function. The
an asymmetric Fano resonance in the case of a cobalt adatdfPurity Green’s function is evaluated in turn using the non-
on the (111 surface of gold These resonant structures €rossing approximatioiNCA), while the surface Green's

gradually disappeared upon removing the tip from the adafunction is obtained within a tight-binding model with free
tom. Specifically, the asymmetric line shape for Co onPoundary condition at the surface. This allows for a consis-

Au(112) first evolved into a more symmetric dip, before dis- tent description of the energy and the spatial dependence of

appearing altogether at a lateral distance of about 12 A fron[€ tunneling current, as is required in this case. Both cases

the Co adator. Both experiments were interpreted as aOf point tunnel_lng and that of a finite spatlal extent in the
tunneling matrix element between the tip and the substrate

manifestation of the Kondo resonance that develops due t(?onduction electrons are considered within this model.

the screening of the Ioca}l moment on the magnetic adatom As expected of the Kondo effect, a sharp resonant struc-
by the. sub§tr§1te conduchqn electrons. ture is found to develop in the low-voltage differential con-

~ While similar observations of the Kondo effect for a g,ctance as the temperature is lowered down to the Kondo
single magneﬁlc impurity were recently reported both intemperaturer, . The width of the resonance is proportional
quantum dots* and in metallic point contact&sSTM spec- to T at low temperatures, growing with for T>Ty . Its
troscopy offers the unique ability to spatially resolve theghape is governed by a single interference parangetetch
electronic structure around the magnetic adatom. This pron the same way as in the noninteracting ca3ée value of
vides direct information about the screening of the local mo and its spatial variation depends quite sensitively on details
ment, allowing for critical comparison between theory andof the underlying surface Green’s function and the tunneling
experiment. Another interesting aspect of STM spectroscopynatrix elements, which limits the direct applicability of our

in this context is the quantum-mechanical interference beresults to the experimental data. Nevertheless, we are able to
tween direct tunneling into the magnetic adatom and tunnelmake some qualitative statements regarding the experiment.
ing into the underlying substrate conduction electrons, as dign particular, the indirect interference with the magnetic ada-
cussed by Farfofor the noninteracting case. For a quantumtom, i.e., that due to the tunneling between the STM tip and
dot placed in between two metallic leads, the analogous inthe underlying conduction electrons, is found to have a char-
terference is between Kondo-assisted tunneling through thacteristic range of the order of two lattice spacings, consis-
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Setting the substrate chemical potential as our reference
STM energy, the corresponding Hamiltonian takes the fdim

Wtip = Usub + €V .
P tip =Houbt+ Hiip+ Hrun, Where

m// H Howrm D) €CL Ciot €02, did,+UdTd,dld,
te ko g

+Vp 2 {dT g, (R) + wh(R)d,}, 1)

FIG. 1. Schematic description of the physical system. A metallic
eurface vyith an individual magnetic adatom is probed by an STM Htipzz (Eg+ eV)aEUalZm 2
tip. The tip couples separately to the atordielectrons and to the ko
underlying conduction electrons via the tunneling matrix elements
ty and t., respectively. A voltage bias is applied between the R R
sample and the STM tip, causing a weak electrical current to flow Htun=tcz {zﬂ:;( RyA,+ Aj;wg( Rs)}
between the substrate and the tip. 7

tent with the limited spatial extent of the Kondo resonance in +tg> {dIA,+Ald,}. 3
the experiment. In addition, the spatial dependence of the 7
differential conductance as measured for Co on(1Ad)
(Ref. 2 is shown to be nongeneric, indicating a crucial de- R
pendence on the microscopic details of tha1) surface of wave numberk and spin projections, andd] creates an
gold. Finally, since the widths of the resonant features inatomicd electron with spino. The fermion operatorgfa(f))
Refs. 1 and 2 are both notably larger than the temperatureindA,, in Eqs.(1)—(3) are the local conduction electrons at
we conclude thal <Ty in both experiments. pointr on the surface and at the edge of the STM tip, re-
The remalm_jer of the paper is organized as follows: '”spectively. Explicitly,

Sec. Il the basic model is introduced, and a general expres-
sion is derived for the differential conductance in the limit of
a weak tunneling current. Section Il then details our calcu- o F):Z (N Ciy (4)
lation scheme for the dressed impurity Green’s function and K
the impurity-free surface Green’s function. Simplified ex-
pressions for the first few nonlocal surface Green'’s functions
of our model are provided in Appendix A. Results for the Ar=2 Xi@i )
voltage, temperature, and spatial dependence of the low- K
voltage differential conductance are presented in turn in oy . . :
Secs. IV and V, with Sec. IV dedicated to the case of point\’\{here "Dk(r_) and xy are t.he corresponding bu?lk and tip
tunneling between the STM tip and the underlying substrat§indle-particle wave functions, evaluated at painén the
conduction electrons, and Sec. V devoted to the case of $Urface and at the edge of the tip, respectively. The atomic
spatially extended matrix element for tunneling. The main€N€rgiesU + €y and —eq are assumed to be positive and
results of the paper are finally summarized in Sec. VI, fol-large, such that a local moment forms on the adatom.
lowed by a brief comparison with previous work in Appen-  FOr zero tunnelingt.,t3=0, the locald moment under-
dix B, and a generalization of our approach to the case 0§°€S Kondo screening bellow a characteristic temperature
multiple magnetic adatoms in Appendix C. T exd —1/ppd], yvherepo is the 2Iocal surface densﬂy of

states at the Fermi level, adeé=2Vi[ 1/ eq| + 1/(U + €4) ] is

the effective exchange coupling between themoment and

Il. MODEL AND TU_NNELI_NG_CURRENT ) .the underlying:E conduction electrons. For nonzero tunnel-
The system under consideration is shown schematically i -

. . L X ng and a finite voltage bias, one is dealing in principle with
Fig. 1. It conS|s§s of an individual magneuc_ adatom, modeleda nonequilibrium staté® However, for a weak tunneling cur-
by a d level with energyey and an on-site repulsiot,

deposited on top of a metallic surface. Thelectrons hy- rent, as is the case in the experiments of Refs. 1 and 2, the

bridize locally with the underlying conduction electrons via differential - conductance essentially probes the ~zero-

: . L2 - tunneling (equilibrium) Kondo resonance. To see this we
the mairix elemeni¥, . This seting is probed by an STM tip note that, for weak tunneling, it is sufficient to evaluate the

which is placed directly above the surface poRY, and  tynneling current from the substrate to the STM tip to second
which couples separately to theelectrons and to the local order int, andt,y. Using standard diagrammatic techniques
conduction electrons at sif® through the tunneling matrix one obtains

elementsy andt., respectively. The adatom is taken to be

positioned aﬂii . An applied voltage bias between the sub- 2e o

strate and the tip offsets the two chemical potentials, (V)= wh ; J_WPAU(G_GV)PW(G)

— usup=€V, causing a weak electrical current to flow be-

tween the substrate and the tip. X[f(e—eV)—f(e)]de, (6)

HerecEU (aEU) creates a bulktip) conduction electron with
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where f(€) is the Fermi-Dirac distribution function, and B. Surface Green’s function

par(€)=— ImGA,,(s_+| 7) and pfg(_e)= - ImeU(e+_l 7) Due to the local nature of the hybridization betweendhe

are the zero-tunneling spectral functions correspondifg,to  gnd conduction electrons in Eql), only the local

and conduction-electron density of states is relevant to the impu-
f ot B4+t R0 rity Green's function,Gfr(e+in). Conventionally, this al-
o= Letfa(Rs) T1ad, lows one to parametrize the band by a single function for the

respectively. Here we have introduced the notation by whictdensity of states, often chosen for convenience to have a
the arguments o6, and G;, (and thus those of,, and  Lorentzian, box, or Gaussian form. In contrast, calculation of

pt,) are measured relative to their respective chemical pothe differential conductance f&s+ R; requires detailed in-

tentials, i.e.,up,=eV and ug,,=0. formation of the band dispersion. In particular, a consistent
All information of the Kondo effect in Eq(6) is con-  theory for the energy and spatial dependences¢Y) re-
tained within the retarde®s,, propagator, quires one to start from a microscopic description of the
) 5 ) d ) underlying conduction band.
Gio(et+in)=t;Gr_ r(etin)+Gy(etin) As a generic model for the substrate conduction band, we

consider a simple-cubic tight-binding Hamiltonian, with
open boundary conditions at the surface. Setting the lattice
spacing as our unit length, the lattice is described by the
integer gridﬂ =(%;,Yi,z) with z>0, such that the firgsur-
which features the fully dressed impurityd-€lectron  face monolayer corresponds m=1. In each of thecandy
Green’s function in the absence of tunneling’(e+i7),  direction we take periodic boundary conditions, g andy;

and the impurity-free surface Green’s function, are equivalent to;+N and y;+N, respectively. In thez
direction we apply open boundary conditions, nameh((,

X[tg+toViGr_ & (e+im)]

X[tg+tcVhGr r(etin)], ®)

S N
G; ;(etin)=> Pi(r) ey (o) © (the conduction-electron annihilation operator at sjjevan-
12 T e—eitin ishes forz;=0 andz=N. The corresponding Hamiltonian

. . L . . reads
The differential conductance is given in turn by the deriva-

tive of Eq. (6) with respect toV. Assumingpa,(€) =pa IS ; R
essentially energy independent on the scale of the voltage Hpand=t E {crjac;jo+ cr-.uc;i,,}, 11
bias and the temperature, one obtains (i !

Jf () where(i,j) denotes nearest-neighbor lattice sites. kgf,
de. (100 =0, the case considered here, the Hamiltonian of &d)
describes a half filled band.

The tight-binding Hamiltonian of Eq11) is diagonalized
Py converting to the single-particle basis

2e? *
G(V)I—ﬁPAﬁ > proleteV) e

Equationg8)—(10) are a generalization of Fano’s original
analysi§ to the interacting case. They express the differentia
conductance in terms of the fully dressed impurity Green'’s
function, the impurity-free surface Green’s function, and the

2 .
. — . A ilkeXi tRyYi) o .
microscopic tunneling parameters of the model. The remain- Cko \/;2, Crip® T sin(kzz,). (12)
der of the paper is devoted to evaluation and analysis of

these equations, starting with the Green’s functi@f{e  Herek takes the values (®,2ny,n,) w/N, with the integers
+in) andGy ; (e+in). 0=<n,,n,<N and I=n,<N. The corresponding single-
particle energies take the form
Il. IMPURITY AND SURFACE GREEN’S FUNCTIONS

A. Impurity Green’s function €= 2tI E cogk). (13
=X,Y¥,Z
We have evaluated the impurity Green’s function in the

limit U—oo, where double occupancy is forbidden on the
nmoigcr;ggginzdafpn;}ogﬁgilgﬁ?ﬁ%xerewﬁiiﬁorgeda uz'gl?_ th?o a discrete set of lattice sites, the Green'’s function of Eq.
consistent perturbation theory about the atomic limit. This®) IS meaningful only in the case where bathandr, are
approach is known to provide a good quantitative descriptioﬁﬁtt'ce bsngs. Taking the thermodynamic limN—c, one

of the temperature range=Ty, and has the advantage of (NUS obtains

being capable of treating systems with realistically small

Kondo temperatures. This is to be contrasted with quantum . 2 (7 m 77 _

Monte Carlo approaches, which cannot go to very low tem- Gr,rp(etim= w30 dk 0 dky 0 dk; cogky(X1=X)]
peratures. As a largs-theory, however, the NCA fails to

recover Fermi-liquid behavior at low temperatufesnd it sin(k,zy)sin(k,z,)
overshoots the unitary limit fof <Ty in the N=2, nonde- X cogky(y1—Y2)] ,
generate case. To avoid these pathologies of the NCA, we
restrict attention in this paper to the range T . (14

Since the tight-binding wave functiors;(r) are confined

e—etiy



PRB 61 THEORY OF SCANNING TUNNELING SPECTROSCOPY ... 9039

06 T 771 06 /T 771 the low-voltage differential conductance for this model, as a
[ — MGt ] i — Im(Ge)t | purely realG,,(0+i%) gives rise to resonant enhancement
O3 . Re(Gt ,»~ <] 03 —- Re(Gy)t . . S o
- e 1 P R of the differential conductance foR;—R;=(l,m,0). By
0.0 4 0.0 N g contrast, an imaginaré,,,(0+i») can result both in an an-
" / N r \\,_ N . . .
~03 P 1 sl i tiresonance or an asymmetric Fano resonance, depending on
e : . T . . details of the tunneling matrix elemertisandty. We shall
08 0 s s %6 3 o0 3 s return to this point in great detail below. Finally, we note that
the imaginary part ofG,,,(0+i#) is nonzero only in the
L A B B o I B B range— 6t< e<6t, and that the van-Hove singularities et
[ — Im(G )t I — IM(G)t ] -+ i
03 “ReG ] 03f - Re(@t == 2t are considerably smoother at the surface than deep
S 1 - 1 inside the bulk.
0.0 - \ A7H 0.0 Rt TN I
- \\/ 4 - -
-03 | 4 03 - IV. RESULTS FOR POINT TUNNELING
-06 '3 . (') . é — 06— '3 . (') : é — We have evaluated the differential conductance according
-7 " -7 " to Eqgs.(8)—(10), within the tight-binding model of Eq(11)
& g

for the underlying conduction bantﬂr(ﬁi) was identified in
FIG. 2. Real and imaginary parts of the tight-binding surfacethis picture with the creation of an electron at the lattice site

Green’s functionG,,(e+i7), for different values of I,m). ﬁzi:(o,o,l). The local density of states used in computing
the impurity Green’s function was taken accordingly to be

from which the surface Green’s function follows by setting p(e) = — (1/7)Im{Ggo(e+i7)}, whereGy, is given by Eq.

7)=7,=1: (17). The corresponding density of states at the Fermi level is
equal topg=p(0)=0.525¢t. Focusing on the case where the

2 (= T T L . . . =
Gim(etin)=— f dk, f dk, f dk, cogk,l)cogk,m) STM tip is positioned directly above the lattice sik
mJo 0 0 =(I,m,1), each of the surface Green’s functioBg_r (€

+in) and G@iﬁs(eJrin) in Eq. (8) was identified with

xsmz—(kz_). (15  Gim(e+in).
e—€;tly
Here and in the remainder of the paper we label the surface A. Tip placed ahove the magnetic adatom
Green’s function by two integerd:=x;—Xx, and m=y, We begin with an STM tip positioned directly above the
—Yy,. We further note thaG,,(e+i»n) andG,,(e+in) are  magnetic adatom. As the temperature is lowered down to
identical by symmetry, and are only dependent upon the dist,, a sharp resonant structure develops in the differential
tanceg || and|m|. conductance at zero bias, in addition to the standard broad
Equation(15) can be further simplified to just a single feature near thel level. This is demonstrated Fig. 3 fdr
integration by exploiting the relation to the local tight- =T, andty=0. The sharp antiresonance seen at zero bias in
binding Green’s function for a two-dimensional, simple-this case directly corresponds to the Abrikosov-Suhl reso-
cubic lattice!® nance in the impurity spectral function, which is plotted for
comparison in the inset of Fig. 3. Here and throughout the
paper, the impurity Green’s function was calculated within
the NCA, using the impurity model parameteeg/t=
—1.67, I'/t=mpoV/t=0.4, andU=.? The correspond-
ing Kondo temperatureT, /t=10 3, was defined as the
temperature at which the “resistivity” integraf,

2
GzD(g):w_gK[(4t/§)2]- (16)

HereK(¢) is the complete elliptic integral of the first kind,
analytically continued to the upper and lower half plahes.
Specifically, the local surface Green’s functi@yg is con-

veniently expressed as 1 ot (e) -1

Jw|m{eﬂ(e+in)} de dej . (19

R(T)=

2 (m
Goo(e+in)=—f dksir?(k)G,p[ e—2t cogk) +i 7],
mJo reduces to 50% of its zero-temperature limit. This definition

17 of Tx agrees to within a factor of order unity with the half-
with analogous expressions for the first few nonlocal Green’svidth of the Abrikosov-Suhl resonance in the impurity spec-
functions(see Appendix A tral function.

Figure 2 displays the first four surface Green’s functions. Focusing hereafter on the low-voltage resonant structure,
Both the real and imaginary parts 6f,(e+i7) decay as a Fig. 4 depicts the resonance’s dependence ap
function of 12+ m?, alternating between even and odd func- =tq/mpgt.Vi,, which plays the role of Fano’s interference pa-
tions of energy. For evefodd) |I|+|m|, the real part of rameterq in this case. Her&,=4€?t2popal# is the zero-
Gm(e+in) is odd (even in energy, while the imaginary temperature conductance in the absence of an impurity. With
part is evenodd). As a resultG,,(0+i7) is purely imagi- increasing |qo|, the low-voltage differential conductance
nary when|l|+|m| is even, and purely real wheH+|m| is  evolves in Fig. 4 from an antiresonance fop|<1, to an
odd. This has a profound effect on the spatial dependence asymmetric Fano resonance for intermediatgl, to a full
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FIG. 3. The differential conductanc&(V), as a function of ]
voltage, for an STM tip placed directly above the magnetic adatom. FIG. 5. Temperature dependence G{V), for an STM tip
Here T=Ty, ty=0, andGy=4€?t2popa/f. The impurity model placeq directly above the magnetic adatom: Hege=0 andqq
parameters arey/t=—1.67, I'/t=0.4, andU =1, corresponding = 0-7 i the Iower a_md upper graphs, respectively. All other model
to a Kondo temperature df /t=10"3. The impurity Green’s func-  Parameters as in Fig. 3.
tion, whose spectral pa#td(e) = — (1/7)Im{GY(e+i7)} is plotted
in the inset, was computed using the NCA. In addition to the stanmain effect of a temperature is to broaden and smear the
dard broad feature near tiddevel, a sharp antiresonance is seen in regonant structure i6(V), whose width grows according to
G(V) at zero bias, corresponding to the Abrikosov-Suhl resonancer for 7> T, . Notice the significant reduction in the overall
in the impurity spectral function. resonance height by the timB/T,~10. This strong tem-
perature dependence of the differential conductance has two

resonance fofdo|>1, much in the same way as in the non- ¢onpripytions: (i) A rapid decrease in the Abrikosov-Suhl

interacting case. The antireionanceq@tto resembles that  regonance in the impurity spectral function with increasing
for a Ce adatom on Ag11),” supporting the interpretation temperature, andii) Further smearing of the impurity
of Li et al. that the observed line shape stems from Kondogeen's function due to the convolution with the derivative
screening of the Ce moment with only weak direct couplingys the Fermi-Dirac function in Eq(10). The fact that the

between the tip and the adatom. Téxe=1 curve is similar  \yg||-developed features in Refs. 1 and 2 have widths that are
in turn to the Fano resonance observed by Madhatal.  otaply larger thaf is thus a clear indication that<Ty in
for a Co adatom on AQ11),” while larger values ofdo  poth experiments.

display too shallow a dip and too high a peak as compared to
the data of Ref. 2.
Figure 5 shows the temperature dependendd(af), for B. Spatial dependence of the differential conductance

the two representative values g5=0 and q,=0.7. The As stated above, the most interesting aspect of STM spec-

troscopy of the Kondo effect is the ability to spatially resolve
the electronic structure around the magnetic adatom. In Fig.
6 we have plotted the low-voltage differential conductance
as a function of ,m), for the idealized case where the STM

tip is placed directly above the lattice s?@z (I,m,1).Here
each set of curves corresponds to a different fixed value of

do=tq/mpotVy, Which no longer corresponds fds# R;
to Fano’s interference parametgr The latter also depends
on the real and imaginary parts Gﬁsyéi(O'i'i 7), as dis-

cussed below. Physically one should recall, though, that

«ty decays to zero with increasing distance from the mag-

netic adatom, henc&(V) always tends to thgy=0 curve

0.00 . ! . ! . ! . as the lateral distance from the adatom is increased.

-0.04 -0.02 0.00 0.02 0.04 Fixing the value ofg, for the time being and increasing
eVit the lateral distance from the magnetic adatom, the low-bias

0 differential conductance approaches the asymptotic curve

2.00 T T T T T T

1.50

0.50

FIG. 4. The low-voltage differential conductance for an STM ti
placed directly above the magnetic adatom. HEreTx and g,
=tq/mpotVh, with all other model parameters as in Fig. 3. With " Jf ()
increasingqo|, G(V) evolves from an antiresonance fop| <1, to G(V)=G, 1+rqgf IMm{G%(e+i7)}
an asymmetric Fano resonance for intermediaggg, to a full reso- —o 7 de
nance for/go/>1 (not shown. (19

e
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to a qualitative difference in the underlying surface Green’s
function for Au111l). Indeed, the(111) surface of gold is
known to have a herringbone reconstruction with regions of
fcc and hep ordering? which differs from the simple-cubic
structure considered here. This may support the interpreta-
tion of a qualitative difference in the underlying surface
Green'’s function.

It should be noted, though, that such an interpretation for
Au(11l) demands that IfGg g (0+in)} is never small

compared tompgQo+ Re{G,ii,,is(OJrin)} in the relevant

(0,0)

0.1)

(1.1)

range inﬁs— Iii , otherwiseG(V) must have a peak. In par-
— L L ticular, this rules out any oscillatory behavior of
-0.05 0.00 0.05 -0.05 0.00 0.05 -0.05 0.00 0.05 lm{GF‘Q R (O+| 77)} as a function oﬁs_ ﬁi in this range. A
evit evi evit brief elx’a?nination of Fig. 2 I i ition i -
g. 2 reveals that this condition is ac
FIG. 6. Spatial dependence of the low-voltage differential con-tually quite restrictive, at least for the tight-binding model of
ductance G(V) for T=Tx and different values ofq, EQ. (11): Only in a narrow window of band fillings is
=ty/mpoteVy . Allimpurity model parameters are as in Fig. 3. The Im{G,(0+i7)} consistently negative for alll|+|m|<2.
individual curves are offset by one unit each, according to the latWe thus conclude that the spatial dependence measured by
eral distance from the impurity site. Madhavaret al. is certainly not generic, but depends on de-
tails of the underlying band.

(0.2)

This result stems from the decaying natureGyf,(0+i %),

along with the fact thatGgy(e+in)=—impg IS approxi- V. FINITE SPATIAL EXTENT OF THE TUNNELING

mately constant on the scale of the voltage bias and the tem- MATRIX ELEMENT

perature. As seen in Fig. 6, EQ.9) is approached at a lateral . . . . .

distance of about two lattice spacings from the magnetic ada- Thus far we have considered an idealized point tunneling

tom. For larger distances the resonance height is basicalaﬁ)/etwéenathe STM t'P and the substrate con(.juctlon (—:jlectrons

proportional to the residual coupling to the magnetic adaton®t POINtR;. In practice, however, the tunneling matrix ele-

squared. Specifically, there are no visible traces of the Kondment has a finite spatial extent abdry, which is reflected

resonance fog,=0 when the tip and the adatom are two in the different line shapes that are observed when the tip is

lattice spacings apafithe curve (,m)=(0,2) in Fig. §.  removed from the Co adatom in opposite directié@n the

Such a limited spatial extent of the Kondo resonance irlevel of the model, a spatially extended tunneling matrix el-

G(V) is consistent with the one seen experimentally for Coement is accounted for by replacigg(Rs) in the first term

on Alf(lll),z indicating thatq is effectively zero in the of Eq. (3) with a weighed sum over the conduction-electron

experlmept above a lateral dlstance of about 10 A. 'ndee%legrees of freedom arourtjtg:

the low-bias resonant structure is also mostly gone by lateral

distance of 10 A for Ce on Ad11),! even though the - .

Ag(111) surface state at 70 meV does not fully set in be- Yo(R)— 2 Witho(RetT). (21)

fore a distance of about 40 A. r_
The resonant enhancement®(V) at a lateral distance of Here we use the convention

one lattice spacing, which occurs for any valueggf is not

seen in the experiment. This feature of the calculated differ- > wy

ential conductance is traced back to the fact t@ag(0 r

+i7) is purely real for our tight-binding model, resulting in \yhich fixes the separation of the local tunneling matrix ele-

a differential conductanc&(V) that is once again given by ment at each into t-=t.w:. For the tight-binding model of

Eqg. (19), but with o )
Eqg.(11), the sum over in Eq.(21) extends over those lattice
1 sites close to the STM tip.
Jo— 0o+ —ReEGy(0+in)}=09—0.372 (20 Upon substituting Eg(21) into the tunneling Hamiltonian
TPo of Eqg. (3), the differential conductance remains given by
Egs. (8)—(10), but with the following modifications to

2=1, (22)

[see Eqs(8) and (10)]. Thus, irrespective of the actugl, -
that applies to a lateral distance of one lattice spacing in thgq' (8):
experiment of Madhavaet al, our present model fails to
recover the diplike structure seen experimentally at such a Gp‘as,p‘gs—>2 WF\N?,Gﬁs+(,F‘zs+r'/, (239
distance for Co on A{111).2 rr'

ThatGy(0+i ) is purely real is a generic feature of half
filled nearest-neighbor tight-binding models on bipartite lat- Ga a— 2> W;Ga 47 R, (23b
tices. It is lost, however, when the system is away from half Sy s
filling, or upon inclusion of a next-nearest-neighbor hopping
term. This suggests that the diplike structure seen experimen- Ga p— 2 WEGRH @47 (230
tally up to a distance of-10 A from the Co adatofnis due e Sp s
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FIG. 7. The differential conductanc&(V)/G,, as a function of FIG. 8. Same as Fig. 7, but fop=0.7. As the ration, /wg is

wy /wg, for T=Ty, qo=0, and an STM tip placed directly above increased from 0 to 1G(V) evolves from an asymmetric Fano

the magnetic adatom. Here bath andw,; are assumed to be real resonance to an antiresonance, corresponding to a decrease in the
and positive. Note thab,, itself varies as a function ofr, /w, [see  effective interference parametgisee Eq(27) and accompanying

Eq. (24)], taking the vaIuerh/4e2t§popA: 1, 0.838, 0.598, and texi].

0.356 forw, /wy=0, 0.25, 0.5, and 1, respectively. All impurity

model parameters are as in Fig. 3. As the ratidw, is increased  (23) into Eq. (8) and takingw, andw; to be real, the effec-

from 0 to 1,G(V) evolves from an antiresonance to a resonancetjye interference parameterla Fano is given folRg=R: by

corresponding to an increase in the effective interference parameter: . .« the ratio of the real and imaginary parts of
g [see Eq(27) and accompanying tekt

. . ty+t V[ WoGog(0+i7) +4w, G (0+in)]. 26
Accordingly, the zero-temperature conductance in the ab- 0t teVn[ WoGod O+ i77) 1Coi0Fim)]. (26
sence of an adatom is equal to Here Eq.(26) corresponds to the resulting expression in each

of the square brackets of Ed8). Using Ggo(0+in)=

4e2t(2: * —im i = i i
_ X~ L. , po and Ggy(0+in)=—0.372mp,, as is appropriate for
Go an PAIM rzr: WeWe GRoer Rerr (0+ 1) the model of Eq(11), one obtains
(24)
, - _ . a=(go—1.491)/wo. (27)
which properly reduces tGy=4e“t popa/t in the limit of
point tunneling. For go=0, Eq. (27) reduces to—1.49(w,/wg), which

To examine the effect of a finite spatial extent in the tun-varies fromg=0 to g=—1.49 in going fromw;=0 to w;
neling matrix element, we go back to the tight-binding model=w,. This strong change iq produces the transition from
of Eq. (11), and to the case where the tip is placed directlyan antiresonance to a resonance in the differential conduc-
above the magnetic adatom, i.B,=(0,0,1). In addition to  tance of Fig. 7. Similarly fore=0.7, Eq.(27) varies from
tunneling between the tip and the lattice pdiyt, we intro-  9=0.7 t0q=0.075 in going fromwo=1 to wp=w,, which
duce a nonzero tunneling matrix element to each of the foufauses the transition from an asymmetric Fano resonance to

. N - . an antiresonance in Fig. 8.
surface nearest neighbors Rf. Restricting attention to the . . o
isotropic case, one is left with two different: parameters: Repeating the same arggmentanon.f(zr the case wiRere
w, for the tunneling matrix element to the lattice pofy, ~ @nd R are one lattice spacing apart, i.&=(+1,0,1) or
andw; for the tunneling matrix element to each of its four Rs=(0,=1,1), Eq.(26) is modified to
surface nearest neighbors. The normalization condition, Eq.

(22), then reads tg+HtcVa[WoGo1t W1 Goot 2W;G11+ W Gpp,  (28)
1 with all Green'’s functions evaluated at zero frequency. Using
lw,|= EW' (25) Sétléic:gi 7)=0.3547p, and Gyx0+i7)=0.0977p, one
Figures 7 and 8 depict the evolution of the low-voltage
differential conductanc&(V)/G, as a function ofw, /wy, q=(5.1q0— 1.9wp) /W , (29)

for the two representative valuesqf=0 andq,=0.7. Here

we have focused for simplicity on the case whexgandw,;  which is large in magnitude throughout the range\o;

are both real and positive, yet the qualitative picture does no&wg, for bothqy=0 andqy=0.7. Given the large value of
depend on this choice. The dramatic effect that a nomagro |q|, one expects the differential conductance to continue to
has on the differential conductance in this case can be undeshow a resonance for both valuesaqf and all 0w, /wj
stood within Fano’s interference picture. Substituting Eqs.<1, which is precisely what is seen in Fig. 9.
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conduction electrons, this supports the interpretation of weak
direct tunneling between the tip and the Ce adatomhich
requires at the same time thag g (0+i») is mostly imagi-
nary. While plausible, this scenario is certainly not exclusive,
as there are various other ways to obtgis0 without re-
sorting to a negligible coupling to the adatom. For example,
the curvewy=w; in Fig. 8 (corresponding to a spatially
extended tunnelings also characterized dg|<1, although
0o=0.7 is by no means small. Likewise, while the similarity
between thegp=1 curve in Fig. 4 and the Fano resonance
for Co on Au111) (Ref. 2 is suggestive of comparable con-
tributions from the tunneling to the adatom and to the under-
lying conduction electrons, one cannot rule out other combi-
nations for whichqy~0. For example, settingl,~0 and
wo/wy~—1.5in EQ.(27) also results ig~1. On the other
hand, the fact that the well-developed features in Refs. 1 and

20.05 0.00 0.05 2 have characteristic widths that are considerably larger than
eV/t the temperature is a clear indication tiat Ty in both ex-
periments.

FIG. 9. The differential conductanc&(V)/G,, as a function of

) - ? More detailed information about the underlying electronic
w, /wg, for an STM tip one lattice spacing removed from the mag-

a structure is contained in the spatial variation of the differen-
netic adatonti.e.,Rs=(+1,0,1) or (0 1,1)]. AsinFig. 7,woand  tjg| conductance, as measured, for example, in Ref. 2 for a
w, are assumed to be re_al gnd positive, with all impurity modelcq adatom on A(L11). Here, although we have considered a
parameters the same as in Fig. 3. For bggh-0 andqo=0.7, the haticylar tight-binding model for the impurity-free surface,
ﬂffer;entlillconductance continues to feature a resonance for all Yoo are some qualitative statements we can make with re-
SWpiWos 1. gard to the experiment. Primarily, as seen in Fig. 6, the in-
direct interference with the magnetic adatom, i.e., that due to
Thus while the inclusion of nonlocal tunneling betweenthe tunneling between the STM tip and the underlying con-
the STM tip and the underlying substrate conduction elecduction electrons, is suppressed above a lateral distance of
trons obviously increases the parametric dependencgiof  about two lattice spacings from the adatom. Hence the char-
does not necessarily assist in producing a dip in the lowgcteristic range for the indirect interference with the adatom
voltage diffe_rential c_onductance when the tip and the adators of the order of two lattice spacings. While this range may
are one lattice spacing apart. certainly depend both on details of the underlying band and
on the presence of nonlocal tunneling between the tip and the
substrate conduction electrons, we expect a qualitatively
similar result for other microscopic models. From the limited
We begin our discussion with the case of an STM tipspatial extent of the Kondo resonance for Ce on(1Ag)
placed directly above the magnetic adatom, depicted in Fig§Ref. ) and Co on A@11l) (Ref. 2 we thus conclude that
3 -5 and 7-8. Similar to the noninteracting case, the shap@o is effectively 0 above a lateral distance of about 10 Ain
of the Kondo resonance in the low-temperature, low-voltagdhese experiments.
differential conductance is governed by a single interference Our calculations further indicate that the spatial depen-
parameten, which depends both on the ratios of the tunnel-dence of the differential conductance as measured for Co on
ing matrix elements and on details of the impurity-free sur-Au(111) is not generic, but intimately depends on the micro-
face Green’s function. Specifically, in Fig. gtis equal to ~ scopic details of A(L11). Indeed, while Madhavaet al. ob-
Qo=tq/mpotVy, Whereas in Figs. 7-8 it is modified ac- serve a diplike structure that persists up to a lateral distance
cording to Eq.(27). The effect of a temperature is to rapidly of ~10 A from the adatord,we typically find a resonance at
broaden and smear the Kondo resonancé&{V), whose a distance of one lattice spacing. In Fig. 6, where point tun-
width grows according td@ for T>Ty . This behavior stems heling is assumed, this resonance occurs for any valig,of
both from the standard convolution with the derivative of thewhich is a special feature of the half filled nearest-neighbor
Fermi-Dirac distribution function in Eq10), and from the tight-binding model used. One may anticipate, though, a
rapid decrease in the Abrikosov-Suhl resonance with increagimilar resonance within a range of one lattice spacing for
ing temperature. Indeed, the qualitative difference in theother lattice models at half filling, sinc@g_g (0+i7) is
low-temperature, low-voltage differential conductance for aexpected to oscillate on a length scale of one lattice spacing.
magnetic adatom as compared to that of a conventional notWe emphasize, however, that the spatial dependence mea-
interacting resonance is in the strong energy and temperatuggired by Madhavarmt al. remains quite restrictive for the
dependence of the impurity self-energy, whose real andHamiltonian of Eq.(11) both away from half filling and in

VI. DISCUSSION

imaginary parts cannot be regarded a constant. the case of nonlocal tunneling between the tip and the sub-
Experimentally, the antiresonance observed for Ce omtrate conduction electrons.
Ag(111) (Ref. 1 is similar to theqy=0 curve in Fig. 4. The particular tight-binding model used in this paper

Assuming point tunneling between the tip and the underlying:learly limits the application of our results to the experi-
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ments. To make direct contact with the experimental data it-2t cosk), the nonlocal Green'’s functions are expressed as
is necessary to employ realistic Green’s functions for the
(117) surfaces of silver and gold, which may be obtained, for
example, fromab inito calculations. It would be interesting
to see if the combination oéb inito calculations for the

(A1)

’
o

™ dk
Gim(2)= fo Gop(LWFim(z,k) —

(111 surface of gold with NCA calculations for the many-

body Kondo resonance can reproduce the particular spatial
dependence of the differential conductance as seen for Co on

Au(11D.

with

Lk

Fo1(z,k) = cogk)— cos(2k)a, (A2)

Another interesting issue is the magnetic-field dependence

of the low-temperature, low-voltage differential conduc-
tance. With increasing magnetic field, the Abrikosov-Suhl
resonance is first split for a moderate magnetic fied,

2 z
6t2

bk, 2
4t 3t

24
122’
(A3)

Fi(z,k)= cos(k)[ ( } + cog2K)

~Tyx, before a large magnetic field suppresses the Kondo
effect altogether. A similar pattern is expected for the Kondcand
resonance in the differential conductance. Unfortunately,
treatment of a finite magnetic field within the NCA is ham-
pered by the NCA pathologyhence a different approach is
required. One possibility might be quantum Monte Carlo
simulations in combination with the maximum entropy
method for analytic continuatiol, although such an ap-
proach is restricted in treating realistically small Kondo tem-
peratures. (A4)
Finally, in this paper we have focused on the case of an.. . . . o
individual magnetic adatom; however, using the STM tip torélmllar expressions, but with modifigl,(z,k), apply also
. . R ) . to G,(2) with larger values ofl|+|m|.
atomically manipulate individual adatoms into forming small
clusters, it might be possible to address the subtle interplay
between the Kondo effect and magnetic correlations among

the different adatoms. Most notably, the competition be- |t js instructive to compare the present theory of point
tween the Kondo effect and antiferromagnetic locking in theynneling between the STM tip and the substrate conduction

z2 L 2z

4t 3t

3t?

Foxz,k)= cos{k)[ ( 1)
5z{y

2

Z_F

|

+ cos(2k)| + coiSk)H.

APPENDIX B: COMPARISON WITH PREVIOUS WORK

case of two close-by adatorSA first study of a Co dimer
on Au(111) along these lines was recently reported in Ref
18. As detailed in Appendix C, our formulation of the tun-
neling current is naturally extended to the case of multipl
magnetic adatoms. Specifically, the sindlelectron Green’s

function entering Eq(8) is replaced by a matrix propagator,
corresponding to all possible propagations within the adato
cluster. In this manner, one can analyze complicate
multiple-adatom configurations in terms of the intrasite an

intersited Green'’s functions. It is our hope that the approach

developed in this paper will prove useful in analyzing future

€

electrons, Eqs(8)—(10), with the analyses of Refs. 1 and 2,

‘which focused on the case whd®e=R;. In Ref. 1, Liet al.

considered the case of zero direct tunneling between the tip
and adatom, corresponding ¢e=0 in Fano’s notation. The
antiresonance that develops @(V) in this case was ap-

pectral function, computed within a degenerate Anderson
odel that accounts for the fullf4degeneracy in Ce. The
depth of the antiresonance was left as a fitting parameter.

As evident from Eqgs(8)—(10) with Iii:ﬁs, the above

goximated by the inverted NCA line shape of the impurity

STM measurements of magnetic adatoms on metallic suf€lation between the impurity contribution to the differential

faces.
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APPENDIX A: SIMPLIFIED EXPRESSIONS FOR THE
FIRST THREE NONLOCAL SURFACE GREEN'S
FUNCTIONS

In this appendix, we provide simplified expressions for
the nonlocal surface Green’s functio@g;, G;1, andGy;,

conductance and the impurity spectral function is exact in the
limit T—O0, provided Goo(e+in)=—impy is essentially
constant forle| on the scale ok . This relation loses accu-
racy, though, folT>Ty, when the convolution with the de-
rivative of the Fermi-Dirac function in Eq10) increasingly
smears the line shape of the impurity spectral function.
Contrary to Lietal, who restricted attention tq=0,
adhavanet al. considered the full range iq. To this end,
Fano’s expression for the differential conductance was gen-
eralized according fo

G(V)=G M (B1)
%4 (ev)?’
,_ev- eq—Re(Z4(eV+in)} ©2)

Im{=9d(eV+in)}

involving just a single integration. These expressions are

analogous to Eq(17) for Ggg.
Denoting for convenience z=e+in and (=2

whereEi(eJri 7n) is the full d-electron self-energy, including
both the on-site repulsiot and the hybridization to the
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conduction bandy,. Thed self-energy was approximated in HeredjT(, creates an atomid electron with spino- on thejth

turn by a form corresponding to a Lorentzian Abrikosov-adatom, andﬂ,:df(,dj,, is the corresponding number op-

Suhl resonance, with a half-width, and a peak position erator. All other notations are the same as in Efjs=(3).

that was left as a fitting parameter. Evaluating the tunneling current from the substrate to the
Comparison with Eqs(8)—(10) for R, =R reveals that P to second order in. andt;, one obtains an expression

Egs. (B1)—(B2) are correct in the limitT—0, provided Identical to that of Eq(6), with the sole modification that

Im{3%(e+i7)}=—T. The latter equality is exact fof=0  Pro(€) = —~ImGy,(e+i7) represents now the zero-tunneling

and =015 and is a reasonable approximation fox T,  SPectral function corresponding to

and |e|<Ty . This approach, however, breaks down for

>Ty, both due to the inapplicability of the assumed form of f,=teho(Re) + >, t,d;,. (C3)
39(e+i7), and because of the convolution with the deriva- j

tive of the Fermi-Dirac function in Eq10) which smears the

. , o2 Introducing themXxX m matrix d Green’s function
underlying structure ofG¢,(e+i7). Hence, similar to the

analysis of Liet al, this approach is restricted to the low- s _ = , )
temperature regime. By contrast, E¢R.—(10) are valid for Gjj (eti 7])=f Gij(,(t,t’)e'f(H )dt, (CH
any temperaturé and anyﬁsa& F§i , and are easily amendable

[using Egs.(23)] to the case of nonlocal tunneling between d N gttt _ o

the STM tip and the substrate conduction electrons. Gijo(L1) Ho(t—t )<{d"’(t)’dl"(t W (€5

together with the two “vector” quantities
APPENDIX C: SEVERAL MAGNETIC ADATOMS

vile+in)=t;+t.V,Gs r(e+in), C6

In this appendix, we generalize our formulation of the (€T =+ VG, & (et 1) (8
tunneling current to the case of several magnetic adatoms oo o .

deposited on top of the metallic surface. Specifically, we Uj(e+in) =t +1cVhGr reFin), (C7)

consider a cluster ah close-by adatoms positioned at points the retarded Green’s function is conveniently expressed as

ﬁj (j=1,...m), each with its own hybridization matrix
elementVy,;, and its own tunneling matrix elemer,. The Gy (e+i 7I)=t§GrE R(et+in)
different adatoms need not be identical, and can generally =
have differentd-level energies and different on-site Coulomb _ p _ .
repulsions(denoted bye; andU;, respectively. The Hamil- +i2j vi(e+in)Gij,(etin)uj(etin),
tonian of the system has the fortd=Hgyp+ Hiip+ Hiuns '
whereHy;, is described by Eq(2), and Mgy, and Hy,, are (CY
given by which has the compact matrix representation:
Heur= 2 €Cr,Ciot X | €2 NS +U;n%nd Gio(e+in)=tiGg_p(et+in) +[v'Giul(e+in).
ko ! v (C9Y
+JE th{d,t,t//g(ﬁj)ﬂL wl( ﬁj)dja}a (CD All information of the adatom cluster and its many-body

physics is contained within th&;, Green’s function of Eq.
(C8), which replaces that of Ed8) in the final expression
—t tBIA +AT v (B for the differential conductance, E(LO). In particular, Eq.
Huan Cg {Wo(RIAHAGYo(Ro)} (8) is properly recovered in the case of just a single magnetic
adatom. This permits the analysis of complicated multiple-
+3 ¢ df A +ATd 1 c2 adatom configurations in terms of the mattixsreen’s func-
; ’; {djAr Ao} €2 tion of Eq. (C4).
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