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Triplet superconductivity in a one-dimensional ferromagnetict-J model
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In this paper we study the ground-state phase diagram of a one-dimersldnhimodel, at half-filling. In
the large-bandwidth limit and for ferromagnetic exchange with easy-plane anisotropy, a phase with gapless
charge and massive spin excitations, characterized by the coexistence of triplet superconducting and spin
density wave instabilities is realized in the ground state. With reduction of the bandwidth, a transition into an
insulating phase showing properties of the S%)ilX—Y model takes place. In the case of weakly anisotropic
antiferromagnetic exchange the system shows a long-range diméReeztls ordering in the ground state.
The complete weak-coupling phase diagram of the model, including effects of the on-site Hubbard interaction,
is obtained.

[. INTRODUCTION percunducting phase in Bechgaard salts still remains the sub-
ject of some controversy, growing experimental evidence has
Soon after the discovery of superconductivity in copper-been collected in the last few years, indicating that the Bech-
oxide systems, a new oxide-superconductosRBO,, was  gaard salts (TMTSECIO, and (TMTSF}PF; under pres-
discovered. Having the same layered perovskite structure agure are triplet superconductdfgs).*® _ _
La,CuQ, the layered ruthenate shows a rather unconven- In this paper we put forward a rather simple extension of

tional superconducting pha&e Shortly after the discovery the Hubbard model by incorporating direct anisotropic ex-

of SKLRUO, it was suggested that a triplet superconductingthange (of either sign between electrons on nearest-
neighbor sites. In one-dimensiofiD) the Hamiltonian

phase is realized in this compoutid.Since then convincing _

experimental evidence has been collected thaRS0D, is reads:

most likely ap-wave superconductdgfor a recent review see

Ref. 8. An important feature of related ruthenate compoundsH = —tz (CE,aCn+1,a+ CLl,aCn,a) + UE CE,TCn,TCLCn,l

is close proximity to magnetic instability (SrRyCand e "

Srb,RUYQ, are ferro- and antiferromagnetic, respectiyely . L Vs

indicating strong correlations in the Ru ions. The NMR stud- T ; {23.(Sy Spe1tH.C)+ 35S o) @

ies clearly show tendency towards ferromagnetism in

SKLRuUO, .9 Moreover, very recent experiments indicate theHerec! ,, (¢, ,) is the creatior(annihilatior) operator for an

easy-plane anisotropy of ferromagnetic spin fluctuations irelectron at siten with spin «, é(n)=%c;a(;zﬁcnﬁ, where

this compound?® The presence of ferromagnetism in SIRUO ¢'(i =x,y,z) are the Pauli matrices.

and the analogy wittfHe made Sigrist and Rice predict the ~ The model(1) was intensively studied in the context of

triplet nature of superconductivity in SRu0Q, .° Close prox-  High-T, superconductivity for strong on-site repulsion and

imity of the ferromagnetic and triplet superconducting insta-for isotropic antiferromagnetic exchantfe?® Below we

bilities in SLRUQ, increase the interest in models providing study the weak-coupling phase diagram of the maddgl

a mechanism for Cooper pairing via ferromagnetic spinfocusing on effects of exchange anisotropy, in particular in

fluctuations>*1® the case of ferromagnetic exchange. We will show that the
Another group of unconventional superconductors showene-dimensional version of thig) model has a ground-state

ing close proximity of magnetic and superconducting order{phase diagram characterized by the close proximityiplet

ing belongs to the (TMTSEX family of quasi-one- superconducting spin density wave ferromagnetic and

dimensional conductor@he Bechgaard salt$? At ambient  Peierls dimerizeghases.

pressure, most of these compounds show a spin-density wave That the TS phase can be realized in 1D correlated elec-

(SDW) ordering in the ground state. Under moderate prestron systems is well known from standardg-6logy’

sure, the SDW instability is suppressed and replaced by studies?* The extended{-V) Hubbard model with nearest-

superconducting transition at a critical temperature of theneighbor attraction \(<0) has been intensively studied to

order of 1 K The most interesting exceptions to this explain the competition between SDW and superconducting

scheme are: )1I(TMTSF),ClO,, which is supperconducting instabilities in TMTSF compoundg. However, due to spin

at ambient pressure and 2TMTSF),PF;, which shows a rotational invariance, in the extended Hubbard model the TS

spin-Peierls(SP phase in the ground state at atmosphericphase is realized only in the Luttinger liquid phase ffot

pressure. In this latter case, increasing pressure leads first to—2V,??*2*where both charge and spin excitations are

a transition from the SP phase into a SDW phase, and finallgapless. Singlet superconductit§S and TS correlations

to the suppression of the SDW ground state in favor ofshow identical power-low decay at large distances and the

superconductivity® Triplet superconducting ordering in TS instability dominates only due to weak logarithmic

Bechgaard salts was suggested soon after the discovery ofrrections* On the other hand, in the spin-gapped phase

TMTSF system¥ to explain the strong suppressionifby ~ U<2V, the dynamical generation of a spin gap leads to the

nonmagnetic impurities Although the symmetry of the su- complete suppressiaof the TS and SDW instabilities.
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the case of isotropic exchange the modglis characterized
by the highSU(2)® SU(2) symmetry. Due to this symmetry
the ground state of the ferromagnetic itinerdXX model is
a Luttinger liquid(LL) phase, characterized by an identical
1= 59y power-law decay of all correlations at large distances. In the
case offerromagnetic easy-axianisotropy (;<J, <0) a
LL phase with weakly dominating easy-plane magnetic in-
stabilities is realized. In the case of antiferromagnetic ex-
change, the lind, = — %J” marks the transition into a regime
LRO) A, %0 where a charge gap opens. Therefore in the casmtifer-
romagnetic easy-axiagnisotropy (]H>2|JL|) both the charge
and the spin channels are massive and long-range SDW
<] (Neel) ordering takes place.
Very rich is the phase diagram of the mod#) in the
case ofantiferromagneticexchange. The lind, = %JH>O is
the transition line from the LRO SDWphase into a LRO
dimerized(Peierlg phase. The long-range ordered dimerized
phase is realized in particular in the ground state of the an-
FIG. 1. The weak-coupling phase diagram of the mddglin  tiferromagnetic itineranX XX model J;=J, >0). The line
the case of a half-filled band and@t=0. A, denotes the charge j = m marks the transition into an insulating phase

(spin) gap. Thick lines seperate different phasesbimer (LRO): with gapless spin excitation spectrum and dominating in-
long range ordered dimerizeéeierls phase. 2. SDW(LRO): the plane (XY) magnetic correlations.

lonlg'_range Orde_riddami_fe”pmag”em‘lael) phas_?' 3. SDW” in- We have to stress the weak-coupling nature of the pre-
ISaLi'g;:gg jtaéerty (Lir)r-“nLattltr']r? 2??’93“%222 err%mgg;?;';t.ﬁorreéented phase diagram. Higher order corrections will modify
'ons. 4. : - uthinger iquid p i , Nnaing - ihe shape of borderlines between phases. However, far more
easy-plane antiferromagnetic correlations. 5.+ DW: phase imoortant are strona counling effects. In the case of stron
with gapless charge and gapped spin excitation spectrum character- ph int i 9 th piing dd'i' | oh t it 9
ized by the coexistence of the triplet superconducting and antifersXcnange |r_1 grac lon, .ere are additional pnase transitions
romagnetic instabilities. due to the finite band width. Usually such effects cannot be

traced within the continuum-limitinfinite band approach

In this paper we study the weak-coupling ground-statéJsed in this paper and will require numerical studies. Below
phase diagram of the modél) at half-filing. As we will ~We focus only on the TS part of the phase diagram and
show below, in the case éérromagnetic easy-plane anisot- Present a qualitative analysis of the transition from the TS
ropy (J, <J;<0), the TS and SDW are the only instabilities P"ase into a magnetic insulating phase.
in the system. In some sense, teeromagnetic +J model Let us first consider the itinerarKY model ¢j=U
(1) shows infrared behavior, which is dual to that of the =0)- In the weak-coupling limitJ, |<t, the charge excita-
attractiveU-V Hubbard model. This duality is most easily {i0n spectrum is gapless and the spin excitation spectrum is
seen by comparing the attractive Hubbard modgk(,J, ~ MassIve. However, in the limit of strong ferromagnetic ex-
—J,=0) and theferromagneticitinerant XY model (¢, ~ changgJ,[>t, the model is equivalent to theY spin chain.
<0,U=J;=0). In both models the spin excitation spectrum Therefore, with increasing coupling one has to expect a tran-
is gapped and the charge excitation spectrum is gapless. f{tion from the regime with massive spin and massless
the attractive Hubbard model the dynamical generation ofNarge excitation spectrum into a insulating magnetic phase
the spin gap is associated with the suppresion of SDW an$/ith gqpless spin excitations. Our finite system stud|es. show
TS fluctuations. In the ground state only the charge densityS€€ Fig. 2that this transition takes place dit~—4t and is
wave(CDW) and SS correlations survive. At half-filling, due Of level crossing typé® After the transition the ground-state
to SU(2)-symmetry of the charge channel, the ground stat&nergy of the itinerant model becomes very close to the
is characterized by the coexistence of CDW and SS instabiliground state of the spif-XY chain. In the case of antifer-
ties. Away from half-filling the singlet superconducting in- fomagnetic exchange there is no transition with increasing
stability dominate$® In the (weak-coupling limit of thgfer-  J. >0 and the system continuously approaches its limiting
romagnetic itinerantXY model, however, due to the behaviorat, /t—co. o o
U(1)-spin symmetry, the dynamical generation of a spin gap 1he ngmqncal data pre_s'ented in Fig. 2 clearly indicate the
leads tocomplete suppressioof the SS and CDW fluctua- renormalization of the critical value of the transverse ex-
tions. At half-filling, due to theSU(2)-symmetry of the changel§ by the on-site Hubbard interaction. In the limit of
charge channel, the TS and SDW instabilities coetése  strong Hubbard repulsiod is reduced to values of the or-
Fig. 1). Doping of the system, as in the case of the Hubbardler t?/U. Detailed numerical studies of the strong-coupling
model, splits the degeneracy, in this case in favor of the Thase diagram of the modél) is in progress and will be
ordering. published elsewhere.

The Ising part of the ferromagnetic exchange tends to Figure 3 shows phase diagram of the itinerant-
reduce the TS ordering. The lidg=J, =J<0, correspond- XY-Hubbard model. Below we will focus on the ferromag-
ing to isotropic ferromagnetic exchangearks the transition netic part of the phase diagram. We will see that for moder-
into a regime with gapless spin excitations. At half-filling, in ate values of the Hubbard repulsion the TS and the SDW
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II. CONTINUUM-LIMIT THEORY AND BOSONIZATION

In this section we construct the continuum-limit version
of the model Eq(1) at half-filling. While this procedure has
a long history and is reviewed in many plac&sor clarity
we briefly sketch the most important points.

The field theory treatment of 1D systems of correlated
electrons is based on the weak-coupling approach
|U[,3,,]3|<t. Assuming that the low-energy physics is
controlled by states near the Fermi poitt& (kg = 7/2a,,
where a, is the lattice spacingwe linearize the spectrum
around these points and obtain two spedies each spin
projectiona) of fermions,R,(n) andL ,(n), which describe
excitations with dispersion relations= *vgp. Here,vg

=2ta, is the Fermi velocity and the momentumis mea-
-30 L L sured from the two Fermi points. More explicitly, one de-
-10 -5 3 5 10 composes the momentum expansion for the initial lattice op-
erators into two parts centered aroundkg to obtain the
FIG. 2. The ground-state energy of the half-filled itinerant mapping:
XY-Hubbard chain(6 siteg vs exchange fotJ=0 (diamondsg, U
=4 (starg, andU=8 (triangle3. The dashed line corresponds to Cna—i1"Ry(N)+(—1)"L,(n), 2
the ground-state energy of the spﬁnXY model.

-10

where the field®kR,(n) andL ,(n) describe right-moving and
] _left-moving particles, respectively, and are assumed to be
phases survive. In the case of weak exchange one obtaiRgnooth on the scale of the lattice spacing. This allows us to

that a charge gap opens @t>—J, and a transition into @& jntroduce the continuum fieldg,(x) andL ,(x) by
long-range ordered SDWphase takes place. Therefore, at

U>0 with increasing exchange one has to expect two dif- R,(n)—agR,(X=nay),

ferent transitions: forU<|J, |<t the transition discussed

above will take place, but fod>t,|J, | a “spin-flop” tran- L (n al (x=n 3
sition from the LRO SDW phase into theXY phase has to o) = Vaol.o %). @
occeur. In terms of the continuum fields the free Hamiltonian

The paper is organized as follows: in the next section thggoqs:
weak-coupling continuum-limit version of the modd) is
constructed and the renormalization-group analysis is per-
formed. In the Sec. lll, the weak-coupling phase diagram is Ho=Eo—ive, f dx:Rlo,R,:—:Lia L1, (4
discussed. Finally, Sec. IV is devoted to a discussion and to “

concluding remarks. which is recognized as the Hamiltonian of a free massless
Dirac field and the symbols...: denote normal ordering
U with respect to the ground state of the free system.
/ The advantage of the linearization of the spectrum is two-
! A#0 fold: the initial lattice problem is reformulated in terms of
A#0 N £0 A=0 smooth continuum fields and—using the bosonization
A=0 /.A° 0 $ procedure—is mapped to the theory of two independent
s /At - the weak-coupling limit quantum sine-GordofSG) models
XY - Phase , SDW describing charge and spin degrees of freedom, respectively.
P In terms of the continuum fields the initial lattice opera-
L= A0 3,  tors have the form:

—u-n-,,-“

DIMER "~ .1 )
(LRO) Pra™ 5 =Ao{(JRatIL,0) T (= D(R(X)L,(X)

AEO 2
A#0 +LLOR,())}, ®)

hereJg .=:RI(X)R,(x): andJ, ,=:LI(x)L.(x):,

& I (-1
U=, U=, S(n)=ap-{M(x)+(=1)"L(x)}, (6)
where
FIG. 3. The weak-coupling phase diagram of the mddglat
Jj=0. Solid lines indicate borders between the weak-coupling limit - -
phases. The dashed line mafisialitatively the transition into the Y _pt Yap 4Lt Tap
XY magnetic phase. M) =Ra(x) 2 Rp(0) +La(x) 2 Lp(x) @)
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determines the smooth part of the spin density in the con- 1 1
tinuum limit, and Ke=1+50s, Ms=5-0,, (20
2 2
. ; (}aﬁ ) 5aﬂ vc(s)=UFKE(§) and small dimensionless coupling constants
L(%)=Ra(x) %L a(x)+La(})—~Rg(X) (8 given by:

is the staggered part of the local spin density. o i E
The second step is to use the standard bosonization ex- 9e=u 2t Utdo+ 2‘]H ' 21)
pressions for fermionic bilinears:
1 3
1 0s= ( U+J,— J||) : (22)
=i [RIGR, = Loy =5 (30024 (30D 2mt
! (U J, + 1J) (23
9 =57V =JdiT35J]-
2{((? 0s) +(ax¢s)2}y 9 27t 2

The relation betweeK . (Kg), m. (mg), andg. (9s), 9y
1 (g.) is universal in the weak-coupling limit. In obtaining Eq.
JRatIL 0 (f7x¢c)+a(f9x¢s)] (100 (16), several terms corresponding to scattering processes in
V2 the vicinity of a Fermi point, which lead to a renormalization
of the Fermi velocities in second order @ as well as
strongly irrelevant terms~cos(8 7K ¢;)cosf/8mKsps)
\/— describing umklapp processes with parallel spins, were omit-
ted.
The mapping of the initial lattice Hamiltonian E@.) into
exg—ia /_277((;35_ 091, (12 the continuum theory of two decoupled quantum SG models
Egs. (17)—(18) performed above allows the study of the
ground-state phase diagram of the system based on the infra-
1 , red properties of the SG Hamiltonians. The corresponding
2mag exf +iav2m(¢st 091, (13 1penavior of the SG model is described by pairs of renor-
malization group equations for the effective coupling con-

Jr, ——=[(0x0c) + (35051, (11)

RT(X)R_ (X)— !
@ e 23,

LI0OL_ (%) —

. stantsI";*°
Ra(X)L, (X)—> ex;:[+|\/ m(pctads)], (14 X
dr,/dL=—T,T,, d/dL=—T2, (24)
1 _ __ 712
RUOL ()5 exi ~ 27— at)]. (15 dr, /dL=-T, , dly/dL=—T2, (25)
0

whereL =log(a/agy) andI';(0)=g;. Each pair of equations
(24) and (25) describes a Kosterlitz—Thouless transitioim

the charge and spin channels. The flow diagram is given in
d Fig. 4. The flow lines lie on the hyperbola

Here scalar fieldsp, (x) describe the charge and the spin
degrees of freedom and fieldg (x) are their dual counter-
parts:d, 0. s=11.  wherell s is the momentum conjugate
to the field ¢ s. ® ) Fc(s)_Fu(L)_Mc(s)_gc(s)_gu(L)' (26)
Using bosonization formula)—(15), after rescaling of ) ) .
the fields and lengths, the continuum-limit version of thend — depending on the relation between the bare coupling

Hamiltonian(1) acquires the following form, constantges) andgy(,) — exhibit two different regimes:
Forg.=|g,| (gs=|g,|) we are in the weak-coupling re-

H=H.+Hs, (16)  9gime; the effective masM ) scales to 0. The low-energy
(large distancebehavior of the gapless charspin) degrees
where of freedom is described by a free scalar field

1
1 m - 2 2
He=ve| dx[§[<axgoc>2+<axac)z]+—agcos{¢8ch<pc>), e =300 | M)+ o). @0
0

Whereaxﬁc(s) = PC(S)_ . )
(17) The corresponding correlations show a power-law decay

1 m <ei V‘W<p(x)efi\e“mcp(x’)>~|x_x/|7K’ (28)
Hs:vsJ' dxli[(axﬁs)z"'(ax@s)z]"" _ZSCOS( V87TKS(PS)] .
o |x—x'| YK, (29

<ei \e‘me(x)e—iv‘ma(x’»w
(18) and the only parameter controlling the infrared behavior in
Here we have defined the gapless regime is the fixed-point value of the effective
coupling constant& s .
K ~1+ Eg o ig (19 For g.<|g. (gs<1gL|) the system scales to the strong
¢ 29¢ ¢ 277 coupling regime; depending on the sign of the bare mass
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g(g) the spin channel is massiva {(#0), with the vacuum ex-
L u pectation value

(ps) = V7/8Ks. (36)
In all other cases the excitation spectrum in the corre-
sponding channel is gapless. The low-energy behavior of the

\_/ system is controlled by the fixed-point value of the
Luttinger-liquid parameteK? =1+ 3g% .
However, in the particular case of strong antiferromag-
'Y netic easy-plane anisotropyl (>|J)|), the clarification of
J/ J/ “g.(89 details of the phase diagram requires a closer inspection. Let
us first consider thXY limit of the model:U=J;=0. As we
see, the initial values of the coupling constagisandg, ,
/__\ given in (22)—(23), lie exactly on the separatrigs=—g,

and scale to the S@)-symmetric fixed-point valugs=g,
=0. However, due to the low (1)-symmetry of the model,
there is no symmetry reason, which would guarantee that the

bare couplings li@xactlyon the separatrix. As we will show
below, the higher ordeffinite band effects push the scaling
trajectories from the separatrix. For details of the method we

FIG. 4. The renormalization-group flow diagram; the arrowsefer the reader to the pap€rwhere a similar effect in the
denote the direction of flow with increasing length scale. pair-hopping model was considered.

Since in first order the couplings lie on the separatrix, we

M) the effective masd/ ) scales to+, which signals must work toO(J?). We find, that in the S(2)-symmetric
the crossover to the strong coupling regime and indicates thease ¢, =Jj=J) gs— |g,|=0 up toO(J?), but forJ, #J
dynamical generation of a commensurability gap in thethere is anO((Jl—JH)Z) correction to this quantity. This
charge(spin excitation spectrum. The fieldg, (¢s) get correction occurs due to the nonlocal character of the inter-

ordered with the vacuum expectation valttes action and to deviations from the linear dispersion relations
JATBKe (Myq>0) for eIectrqns on the Iat_tice. . _
(Pee)= s c(s) _ (30) In part|cglar, upon mtegn_’:\tlng out all modes W_lth mo-
0 (mgg<0) menta outside the small region around each Fermi gaint

—pPe|<A=2/a, whereA is small compared t@g, we ob-

Using the initial values of the coupling constants, given in__. . X . a
(21)—(23), we see that flow trajectories in the charge sectoFaln the effective theory described by equatiqg)—(18),

[due to the SIR)-charge symmetryare along the separatrix with the following coupling constants:
0.=9,. Therefore, at 1 1,
+——3.J—=J

1 1
9e=0u= 5| d1F35d

1
2
there is a gap in the charge excitation spectrip#0) and - J, +EJH In(a/ay), (37)
the charge fieldp, is ordered with the vacuum expectation (2mt) 2
value
11 1 5 1,
(@c)=0, (32 9 =5 5|3979 " 2m)? Ji=2d0 9+ 79
while atU+J, + %JH<O the charge sector is gapless and the
fixed-point value of the paramet&t; is 1. 1 3 1
The U(1) symmetry of the spin channel ensures more - (2mt)?2 J=59]{ 5971 [In(@lap) (38)
alternatives. Depending on the relation between the bare-
coupling constants there ateo different strong-coupling 1 3 1 1
i i _ _ - 2 _ _ 72
sectors in the spin channefor gs_ﬁ(‘h 23) + (27rt)2<2\h 3.9 23|>
1
U<§‘]H<JL_U (33 1 2

_W(JL—E\M In(a/ao). (39)

Thus we see, while the bare couplinggandg, always
(¢s)=0, (34) lie on the SW2) separatrixgs equals/g, | only in the SU2)-
symmetric casd, =Jj=J:

the spin channel is massivé\ {(+0) and the fieldpg gets
ordered with the vacuum expectation value

while for
J2

_ 1 P A _
Jl<m|n[U+§J|;J|] (35 0s=0,. = 4t 4(2771:)2['”(3/30 3]. (40
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In the case of theXY model the corresponding parametersthe site-locatedspin density,
are:
L L AZSDW=(—1)”§ ac! Cna
g =—5d+ ——=Jln(a/ag)-1] (4]
(2mt) ~ 092K po)sin( V27K s5), (49)
— 1 1 2 x n +
0= 2t~ gy L LIN(@/20) 2], (42) Sow= (1" 4O 0

~cod V27K o) cog V(27K ) ), (50)

Thus we see that the values of the coupling constgntsnd

gs move off the separatrix into the region of the flow dia-
gram that flows to non zerg,. This movement occurs be- , T
cause now ) A’éDW=|(—1)“§ aCp oCn o

~cog V27K pc)sin((2m/Ky) 6), (52

To actually find the end-point value of the paramditgr we  and the short wavelength fluctuations of thend-located
need the second-order renormalization group equations fartharge density,
the effective coupling constants. These equations®fead

w=g2—g?=(J,27t)3+0(J, It)*>0. (43)

1 3
dr, /dL=—T{, —5T?,

2 1 2
dre/dL=—T%-3T?r,. (44)

Adimer=(— 1)n2 (Cﬁyacn+1a+ H.c)

~cog V27K p)cod V2 mKsp). (52

In addition we use two superconducting order parameters
corresponding to singletAs9 and triplet A+g) supercon-

ductivity:
Combining equation$44)—(43) one obtains : : : ;
AsdX)=R(X)L[(x) =R{(X)L{(X)

~expiV(27/K,) 0.)cod V2mKsps), (53

du/dL=—T2pu. (45)
Substituting the first-order solution fdi, and solving(45)

we obtain Ars(x)=RIX)LT)+R](x)LT(x)
3 " . .
M(W)E(g§)2=(;—;t) exp(—J, /2mt). (46) expiV(2m/Ke) Oc)sin(yV2mKsps).  (54)

At small J, >0 theXY model scales to a point on the fixed- B. Phases

point line ', =0, which approaches the $2) end-point at With the results of the previous section for the excitation
J, —0 and moves along the critical line with increasing pa-spectrum and the behavior of the corresponding fields Egs.
rameterJ, . (28)—(30) we now analyze the ground-state phase diagram of
Using (39) and(38) and applying a similar analysis in the the model(1) (see Fig. 5 and Fig.)6 _
caseJ;#0, one easily obtains that a gapless regime in the Letus first consider the sector of the phase diagram cor-
spin channel exists for responding tdJ +J, + %J”>0, characterized by gap in the
charge excitation spectrunin this case we obtain the fol-
J, =\2mtJ,. (47) lowing regimes of behavior:
A Ac#0, A0, (@c)=(ps=0;
Let us now consider the weak-coupling ground-state This regime cor'respond's to the appearance of a long-
. range orderedimerized (Peierlsphase
phase diagram of the model Ed).

Ill. THE WEAK-COUPLING PHASE DIAGRAM

<Adimer(X)Adimer(X,)>"'ConStant (55)

. . in the ground state of the model. This phase is realized in the
To clarify the symmetry properties of the ground states ofcase ofdominating antiferromagnetic exchange particular
the system in different sectors of the phase diagram we usgy isotropic exchangd=J, =J>2U.

the following set of order parameters describing the short
wavelength fluctuations of th&te—locatedcharge density,

A. Order parameters

B. Ac#0, A#0, (¢.)=0, (¢ps= /8K

This regime corresponds to the appearance of a long-
Acow=(—1)"> ¢l ¢ . 07
CcDW ~ “n,a-na range orderedntiferromagnetic (Nel) phase

~sin(y27K @) cog\2mKsps), (48)

(A&pW(X)A&pw(X'))~constant (56)
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2
% C1. JHZJLZJ, —§U<J<2U;

! l
= - + ——
J 2t (J" 2U) +2U

K% =1 and thePeierlsand SDW (i=x,y,z) correlations
showidentical power-law decagt large distances:

<Adimer(X)Adimer(X’)>:<ASDMX)ASDMX,)>
~[x=x"|"L. (57)

In the general case df(1)-spin symmetryK3>1 and
the “in-plane” SDW*Y correlations dominate in the ground
state,

(ASpWX)ASpW(X" ) =(AEpWX) AL pu(X'))

~|x—x'|7Ks, (58)

while the Peierlsand SDW correlations decay faster,

FIG. 5. The weak-coupling phase diagram of mod#&l at (AgimelX) Agimed X)) =(Agpw(X) Aspw(X'))
u>o0.

~|x—x"| K5, (59

extended by incorporating an easy-axis spin exchange inte _h|§ case cor.responds toan exten_5|on of the Hpbbard 'model
y incorporating an easy-plane spin exchange interaction.

Let us now consider the sector+J, + %J”<0 in which
the charge excitation spectrum is gapless. The following dif-
C. Ac#0, (@)=0, A=0; ferent regimes are realized in this sector:

in the ground state. In this regime the Hubbard model isﬂ;

action.

D. Ac=0, A#0, (¢g=0;
The charge excitation spectrum is gapped. Ordering of the . o o _
field ¢, with vacuum expectation valugp,)=0 leads to a This phase is realized in the casedaiminating attractive
Suppression of the CDW armuperconducting:orre|ati0ns_ Hubbard interaction in particular for iSOtrOpiC EXChangq
The SDW andPeierlscorrelations show a power-low decay =J, =J at 2U<J<-32U.
at large distances. The low-energy properties of the gapless There is a gap in the spin excitation spectrum. The spin
spin degrees of freedom are controlled by the fixed-poinfield is ordered{¢s)=0. Ordering of the field ¢s) leads to

value of the Luttinger liquid parametét” . a suppressiom]‘ the SDW and TS fluctuations. The low-
In the SU2)-spin symmetric case energy properties of the gapless charge degrees of freedom
are controlled by the fixed-point value of the Luttinger liquid
; parameteiKy .
L In the case of a half-filled band, which we are considering
C . here, the charge degrees of freedom are governed by the
SOW™ F— Jf\/21|:t(JI|-2U)+ZIIJ// SU(2)-charge symmetry. The fixed-point vz_alue*of the param-
IMER .~ eterK, (due to the Sl(JZ)-char_ge symme_tr)yls _KC =1. The
LRO) CDW, SS, andPeierlscorrelations show identical power-law
. 3= 05J4U decay at large distances,

(Acpw(X)Acpw(X'))=(AsdX)AsdX"))

<Adimer(X)Adimer(X,)>~|X_X,|7l- (60)

E. ACZO, ASZO,

In this case the Luttinger liquidLL) phase is realized.
The charge and the spin channel are gapless. The low-energy
behavior of the system is controlled by the Luttinger liquid
parameterK? andKj} .

In the case of S(2)-invariant spin exchange

FIG. 6. The weak-coupling phase diagram of mod#l at E1 J|=Jl=\]<min{ _ EU 2U]
U<o. ' 377



9026 G. I. JAPARIDZE AND E. MULLER-HARTMANN PRB 61

K¥=KZ*=1 and all correlations shojx—x'| ~2 decay at perconductingand SDW instabilities are the dominating in-
large distances. stabilities in the system. These instabilities remain dominat-

In the case of dJ(1)-symmetric spin channel, the LL ing instabilities in the ground state also for moderate values
phase is realized for easy-axis ferromagnetic anisotropy. 18f the on-site Hubbard interaction. We stress that, in 1D this
this caseK* =1, K*>1 and in the weak-coupling limit the Phase can be realized only in the cas&J¢t)-spin symme-

in-plane antiferromagnetic correlations dominate try. This result is in agreement with recent experimental re-
sults showing strong easy-plane anisotropy of ferromagnetic
ALY (X)AXYL (X))~ | x— x| "1 1Ks, 61)  spin fluctuations in the triplet superconductor,BnQ, .°
sowX)Aspw(X") p p perc
We want to stress, that although in this paper we presented
F. Ac=0, Ag#0(qpg)= 7/8K; results considering the half-filled band case only, it is obvi-

ous that doping will split the degeneracy between the TS and
This sector of the phase diagram is dual to the seDtor SDW phases and will favor the superconducting instability

As common in the half-filled band case, the gapless charg@ the system.
excitation spectrum opens a possibility for the realization of We also demonstrated a strong enhancement of tenden-
asuperconductingnstability in the system. Moreover, due to cies towards Peierls ordering in the electron system caused
the U(1)-symmetry of the system, ordering of tkg with by an isotropidor weakly anisotropicantiferromagnetic ex-
vacuum expectation valugps) = /7/8K leads to a suppres- change. We have shown that the half-filed model shows
sion of the CDW and SS correlations. In this case the SDWa long-range dimerizetPeierls ordering in the ground state
and TS fluctuations show identical power-law decay at largén the case of antiferromagnetic exchange.

distances, We also demonstrated the importance of the finite-band
effects in this model and presented a qualitative description
(Aspw(X)Aspw(X')) = (ATs(X)ATg(X")) of the transition from the band-dominated ¥SDW phase
~|x=x'|"1, (62) into the insulating spin-1/2 magneticY phase. Detailed nu-

merical studies of the phase diagram for strong exchange
and are thelominating instabilitiesn the system. This phase coupling and for arbitrary filling are in progress and will be
is realized only for anisotropic spin exchange in the case opublished elsewhere.
strongferromagnetic easy-plananisotropy.
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