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First-principles calculations of magnetic interactions in correlated systems
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We present a method to calculate the effective exchange interaction parameters based on the realistic
electronic structure of correlated magnetic crystals in local approach with the frequency dependent self-energy.
The analog of “local force theorem” in the density-functional theory is proven for highly correlated systems.
The expressions for effective exchange parameters, Dzialoshinskii-Moriya interaction, and magnetic anisot-
ropy are derived. The first-principles calculations of magnetic excitation spectrum for ferromagnetic iron, with
the local correlation effects from the numerically exact QMC scheme, are presented.

. INTRODUCTION the magnetic anisotropy energy, while the variationEgj;
over the relative rotations of spins on two sites gives the
The calculation of thermodynamic properties and excitapparameters of pairwise exchange interactions, etc. This ap-
tion spectra of different magnetic materials is one of theproach was proposed earlier in the the framework of the
most important motivations of the microscopic theory of LSDF schemé.It is sufficient for the calculation of “phe-
magnetism. The main approach for such type of investigalomenological” exchange parameters which are important
tions is the local spin density functiondl.SDF) schemé. ~ for the consideration of domain wall widths and other “mi-
However, this method has some serious shortcomings wheffomagnetic” properties. In the adiabatic approximation

applying to transition metal and rare-earth magnetic materi\—"’h?n the energies of magnetic excitations are small In com-
als. The main defect is the absence of the “Hubbard” typeparlson with typical electronic energies this is also sufficient

. : X for the calculation of the spin-wave spectrum. In the mean-
correlations wh|9h are most important for real magr(e&e_, field approximation these “exchange parameters” can be
e.g., recent reviews.¥) This leads to, generally speaking,

. e ; . used for the estimation of Curie or Neel temperature.
incorrect description of electronic structure for such impor-— | this work we derive general expressions for the param-

tant groups of magnetic materials as rare-earth metals angers of magnetic interactions in LDA+ approach and cal-
their compounds, metal-oxide compourfifcluding “clas-  ¢yjate the exchange parameters for ferromagnetic iron. It is a
sical” Mott insulators such as NiO and MnO as well as high-frst attempt to investigate magnetic interactions, taking into
T, cupratey and even for the iron-group metdt§-® At the  account correlation effects in the electronic structure for real
same time, the experience with the Hubbard model showgaterials.

that the description of electronic structure and magnetic
properties of highly correlated materials are closely con- Il. GENERAL FORMALISM
nected. Recently we propose a rather general scheme
called “LDA ++ approach’) for first-principles calculations
of the electronic structure with the local correlation effects An important trick for the definition of exchange interac-
being included. In this technique the full matrix of on-site tions in the LSDF approach is the use of so-called “local
Coulomb repulsion for the correlated states is taken into acforce theorem.” This reduces the calculation of the total en-
count in the local approximation for the electron self-energy €@y change to the variations of one-particle density of
In such a way, we could provide a rather reasonable descrigitates.® First of all, let us prove the analog of local force
tion of the electronic structure for different correlated sys-theorem in the LDA-+ approach. In contrast with the stan-
tems such as Fe, NiO, and TmSe. It will be very useful todard den_S|ty _funct|onal theo_ry, it deals Wlth the real dynami-
develop this approach for the description of different mag_cal quasiparticles defined via Green functions for. the corre-
netic characteristics. lated electrons rather than with Kohn-Sham *“quasiparticles”
The most rigorous way to consider properties of magnetid’VhiCh are, strictly speaking, iny auxiliary states to ca!culate
excitations is the calculation of frequency-dependent magthe total energy. Therefore, instead of the working with the
netic susceptibilitied. However, for many important cases thermodynamic potentidll as adensityfunctional we have
we can restrict ourselves to more simple problem of the callo start from its general expression in terms of an exact
culation of static response functions. More explicitly, one Green functiof

A. Local force theorem in LDA++ approach

can consider the variations of total energy; (or thermo- 0=0.-0
. . . . sp dc»
dynamic potential}) with respect to magnetic moments ro-
tations. This approach results in the magnetic interactions of Qgp= —Tr{In[E—Ggl]}, (1)
different types: the variation of total energy of a ferromagnet
over the rotation of all spins at the same angle determines Qye=TrG-9o,
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whereG, Gy, and3 are an exact Green function, its bare case of frequency-dependent self-ener@yDA++ ap-
value and self-energy, correspondingfly; is the Luttinger proach it is more convenient to work with the Matsubara
generating functionalsum of the all connected skeleton Green functions.

diagrams without free legs Tr=Tr,; , iS the sum over

Matsubara frequencies Jr..=T2X, ... ,0o=7wT(2n+1), B. Effective spin Hamiltonian
n=0,x1,...,Tis the temperature, and o are site hum-
bers (), orbital quantum numberd. &1,m) and spin projec-
tions o, correspondingly. We have to keep in mind also
Dyson equation

Further considerations are similar to the corresponding
ones in LSDF approach. The most suitable way based on the
sum rule is proposed in Ref. 10.

In the LDA++ scheme, the self-energy is local, i.e., is

G 1= Gal_z ) diagonal in site indices. Let us write the spin-matrix structure
of the self energy and Green function in the following form:
and the variational identity
= Elc'f' EiSO',
Sb=TrX5G. (3
We represent the expressioh) as a difference of “single Gjj :Gicj +Gisj g, ©)

particle” (sp) and “double counted” {c) terms as it is where3 (€9=1(3I+31) 3s=3s . . .
) . . . Y= £, 2°=3%7e, with ¢ being the unit
usua! n t.he densny funcnonal theory.. When neglecting the\/ector i;w thezdirlectioh of Ieffe<|:tive spin-dependent poten-

quasiparticle dampind.)s, will be nothing but the thermo- tial on site i, o=(oy,0y,0,) are Pauli matricesGE
dynamic potential of “free” fermions but with exact quasi- TG ' 4G > _IY ZG W th ’t ”th
particle energies. Suppose we change the external potenti%;re ré(reéjrz fa::ctioniﬁjsE fdog;( nci)jtociéper?d %S}]Slégﬁ dichtioﬁs

for example, by small spin rotations. Then the variation of . : .
the thermodynamic potential can be written as and all the spin-dependent terms including the Hartree-Fock
terms are incorporated in the self-energy. Spin excitations
80 =% Qg+ 81Q6p— 8Qqc, (4) with low energies are connected with the rotations of vectors

where §* is the variation without taking into account the .

change of the “self-consistent potentiali.e. self-energy Se=20p;¥e. (10)
and §; is the variation due to this change Bf To avoid a
possible misunderstanding, note that we consider the vari
tion of Q) in the general “non-equilibrium” case when the
torques acting on spins are nonzero and therefére-0. In
order to study the response of the.system to gen(_eral'spin 50=5*Q0 =V, 5¢;, (11)
rotations one can consider either variations of the spin direc- P

tions at the fixed effective fields or, vice versa, rotations ofwhere the torque is equal to

the effective fields, i.e., variations &f, at the fixed magnetic

moments. We use the second way. Taking into account Eq. Vi=2Tr, [EXG}]. (12

(3) it can be easily showfcf. Ref. 9 that Further we have to use an important sum rule for the Green
_ _ function which is the consequence of Dyson equation. Using
8105p= 8Qg=TrGs3 (5) Eq. (2) one has

ab_\ccording to the “local force theorem'(6) the correspond-
Ing variation of the thermodynamic potential can be written

and hence A
G=G%1+G%o=GG G
80 =6*Qgp=— 6 Trin[2 -Gy '], (6)

which is an analog of the “local force theorem” in the den-
sity functional theory® In the LSDF scheme all the compu- Separating the spin-dependent and the spin-independent
tational results expressed in terms of the retarded Greeparts in Eq.(13) we have the following sum rules f@B°:
function and not in the Matsubara one. The relations of

=G((Gy1—3°%-1-3%¢)(G%-1+G%0). (13

“real” and “complex” Green-function formulas are based G°=G%G, -3 G~ G 35G®
on the identit
ey =G%Gy '~ 2% G~ G°X°G* (14)
1 (= L
Ter(iw)=—;f dzf(z)ImF(z+i0), (77  and similarly forG®

. . . , GS= —(G%3%) G5+ G°Y3GC+iG (25X GY)
wheref(z) =[expzZ/T+1] " is the Fermi functionF(z) is a
function regular in all the complex plane except real axis. =—-G5(2°G%) + G 25G+i(G°X X5 GC. (19

Therefore Eq(6) takes the following form: . .
erefore Eq(6) takes the following form Then for diagonal elements of the Green function one ob-

1 (= tains
502;[ dzf(z)Im & Tr, ,InG Y(z+i0), (8

G =— G 2)G) —GLY G —iGP (Z°X G ].
which is the starting point for the calculations of magnetic " 2 [(GI2)Gji~ Gij2Cj (2> Gj)]
interactions in LSDF approa¢hHowever note, that in the (16)
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Substituting Eq.(16) into Eq. (12) we have the following 4 4
expression for the torque: wq=r Z Joj(1—cosqRy) = [I(0)—J(aQ)], (24)
Vi=2Tr, [EPXGj] whereM is the magnetic momer{in Bohr magnetonsper
magnetic ion. Corresponding expressions can be easily writ-
=2 Tr, 3% (GIE)GE — 3¢ ten in thek space. Using the short notatiap-=(q,i w) we
~ o j<p/ i i . .
] could write the general expression fdfq)=J(q,0):
X G 2Gl —I1 27X Gf; (25X G})}. 17 1 : l
—_— S S
If we represent the total thermodynamic potential of spin J@ Ny ; TZA0G (2 k+q)G (k+a)],
rotations or the effective Hamiltonian in the form (25)

whereN, is the total number ok points.
Qpin=— 2 Tr, (G5 2)(GHED) — 27GH XG5 It should be noted that the expression for spin stiffness
Y tensorD,,; defined by the relation

—i(IPX GG, 18
(i R DGt _ (18) 0q=Dop0.0p (26)
one can show by direct calculations that (q—0) in terms of exchange parameters has to be exact as
Q spin the consequence of phenomenological Landau-Lifshitz equa-
[5—_p =V;. (19 tions which are definitely correct in the long-wavelength
Pi lo=const limit. Direct calculation basing on variation of the total en-

This means thafle,{e} is the effective spin Hamiltonian. €rgy under spiral spin rotatior{sf. Ref. 8 leads to the fol-
The last term in Eq.(18) is nothing but Dzialoshinskii- 10Wing expression:

Moriya interaction term. It is nonzero only in relativistic case 5

WhereﬁljS andeSi can be, generally speaking, “nonparallel” Dop=— 1 TruL 2 (
andG;; # Gj; for the crystals without inversion center. In the M k
following we will not consider this term.

IGT(k) _ 9GY(k
s ( )ES (k)
Ky kg

+3,

P[Gl(k) -Gk
JITG (k) ()]), 27

C. Exchange interactions ’9ka‘9k/3

In the nonrelativistic case one can rewrite the spin Hamil-Wherek is the quasimomentum and the summation is over
tonian for small spin deviations near collinear magneticthe Brillouin zone. The _mtegral ovdsin the last term could _
structures in the following form: be transformed to the integral over the surface of the Bril-

louin zone and vanishes due to tkeindependence oF.°.
Taking into account Eq(21), the first term can be rewritten
Qspin= _iEj Jijee, (20 in the following form:

where 2
_ apf
D“B__M Ej JoiR('R; (28

Jij=—Tr, (323G} 25Gh) (22)

are the effective exchange parameters. This formula gener
ize the LSDF expressions of Ref. 8 to the case of correlate
systems.

The sum rule[Eq. (16)] for the collinear magnetic con-
figuration takes the following form:

24) are reminiscent of usual RKKY indirect exchange inter-
ctions in thes-d exchange modelwith %° instead of the
s-d exchange integral A similar structure of the spin-wave
spectrum can be obtained in the Hubbard model within the
RPA (cf. Ref. 11. An essential feature of our formulations is
that the “s-d exchange integral” turns out to be energy de-
GL—-G=22 G/35G} . (22 pendent.
J In cubic crystaldD ;=D é,4. For arbitraryq, the expres-
Using Eq.(22) we obtain the following expression for the Sion of magnon spectrum in terms &f is valid only in the
total exchange interaction of a given site with the all mag-adiabatic approximation, i.e., provided that the magnon fre-
netic environment: quencies are small in comparison with characteristic elec-
tronic energies. Otherwise, collective magnetic excitations
which are magnons cannot be separated from noncoherent
particle-hole excitationgStoner continuunt? and magnon
(23 frequencieg24) are not the exact poles of transverse mag-
netic susceptibilitwhich are even not real at largp.

Spin wave spectrum in ferromagnets can be considered Now we have to consider the accuracy of expressions for
both directly from the exchange parameters or by the considd;; (21) themselves. Equationdl2) and (17) are exact in
eration of the energy of corresponding spiral structtae ~ LDA ++ approach(i.e., with the only assumption about the
Ref. 8. In nonrelativistic case when the anisotropy is absentocal self-energy. Hence, if one postulate the existence of
one has effective spin Hamiltonian in the sense of E49), Eq. (21)

a§agreement with Eq(24). The expressions Eq$21) and

1
Jin;) Jij=Tr, | 3G/ 2G| — EEiS(GiTi _Gili)}-
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is also exact. However, they do not have rigorous connectiowhere the last equality is valid for ferromagnets with one
with the static transverse spin susceptibility. The latter ismagnetic atom per unit cek is the quasimomentum and the

expressed in terms of the matrix summation is over Brillouin zone.
Finally, note that we use essentially three properties of
2 @ LDA ++ approachf{i) locality of self-energy(ii) spin inde-
5°Q) oV, L N
= pendence of bare Green functi@re., spin independence of
Se{'sel  S¢f bare LDA spectrum; all magnetic effects including Hartree-

Fock ones are included in self-enefggnd iii) approxima-
without the restrictionG=const. They differ from our ex- tions for self-energy have to be conserving, od-
change parameters by the terms containfi@y ¢; . From  derivable” since only in that case analog of “local force
the diagrammatic point of view in the framework of the theorem” (6) takes place.

DMFT,* they are nothing but the vertex corrections. We do

not present the corresponding expressions since the benefii, EXCHANGE INTERACTIONS IN FERROMAGNETIC

of the introducing of exchange parameters beyond adiabatic IRON

approximation which is equivalent to E@.9) is doubtful. In ) )

more rigorous consideration it is convenient to work directly A. Computational technique

with the DMFT expressions for static and dynamic As an example we calculate the magnetic properties of

susceptibility! ferromagnetic iron using the most accurate method to take
Thus one can see that, generally speaking, the exchangeto account local correlations. For this purpose we use the

parameters differ from the exact response characteristics dgycal quantum Monte Carlo approdctith the generaliza-

fined via static susceptibility since the latter contains vertexjon to the multiband casg.

corrections. At the same time, our derivation of exchange We start from LDA+U Hamiltonian in the diagonal den-

parameters seems to be rigorous in the adiabatic approximaity approximation:

tion for spin dynamics when spin fluctuation frequency is

much smaller than characteristic electron energy. The situa- oA . i

tion is similar to the case of electron-phonon interactions H= E tim,irm CimoCirmo ™ 5 2 Uy NimeNim’ - o

where according to the Migdal theorem vertex corrections fima mm-o

are small in adiabatic parametgatio of characteristic pho- 1 i i
non energy to electron oh& The derivation of the ex- ts 2 (YU = Imm ) NimeNim' o (30)
change parameters from the variations of thermodynamic po- im#m o

tential, being approximate, can be useful nevertheless for thgherei is the site index andh is the orbital quantum num-
fast and accurate calculations of different magnetic systemgers; =1, | is the spin projection¢™,c are the Fermi cre-

Note that in the LDA-+ approach, as well as in LDAU  ation and annihilation operatora€c*c); t-°* is effective

method® and in contrast with usual LSDF, one can rotatesingle-particle Hamiltonian obtained from the nonmagnetic
separately spins of states with given orbital quantum numt pA with the corrections for double counting of the average
berS_L,L’. For example, for the nonrelativistic case one Caninteractions among{ electrons. In the genera| case of Spin_
obtain polarized LSDF Hamiltonian this correction is presented in
Refs. 5, 6, and 15. In the nonmagnetic LDA this is just a shift
“back” of correlatedd states with respect to s,p-states by the

Qspin:__LzL, UL TICTRE average Coulomb and exchange potenti®l=U(ng— 3
ik —1J(ng—1), whereU andJ are the average values df, ,y
where ?nd Jmmy Matrices andhy is the average number aof elec-
rons.
3 e Tr - s g ) The screened Coulomb and exchange vertex fordhe
iL,jL’ o\ =L L jL <L il il electrons

are orbital dependent exchange parameters. Upy = (MM [VE (r = /)| mm’)
mm' scr ’

R (31

D. Magnetic anisotropy Jmmy =(mMm' |VEE(r—r")|m'm)
Let us consider now the change of spin energy at the . : .
rotation of all the spins at the same angle. It is definitely zerd™© edxp;estshed via the _e;f%ctnca Slgge_r (;n;eg\r/aélswand corre-
in nonrelativistic case. In the presence of spin-orbit coupling8p0n s to the averadd=2.3 eV andJ=0.9 eV~ We use

L ; : : he minimal spd basis in the LMTO-TB formalisf{ and
gk;?a?r? &?g:ﬁ E:t(tlhsi energy of magnetic anisotropy. One Ca&numerical orthogonalization fatPA (k) matrix® Local den-

sity approximatio® was used for the self-consistent elec-
tronic structure calculation of bcc-iron at experimental lattice
Q.. =Tr GS X 35)(GS X 38 constant with 25& points in the.|rredu0|ble part of Brillouin
anis wLiEj UG >G> 2} zone. The Matsubara frequencies summation in our DA
calculations corresponds to the temperature of abbut

=Tr, G(K)XZ[GA—k)x3°]}, (29 850K
L; frexo G (=k) I (29 Local Green-function matrix has the following form:
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FIG. 1. Total spin-polarized density of states for ferromagnetic
iron in the LSDA and LDA-QMC approximations.

Gliw)=2 {io+tu—tPAK) -S(w)}™ L (32
K
where (u) is the chemical potential. Note that due to cubic
crystal symmetry of ferromagnetic bcc-iron the local Green
function without spin-orbital interactions is diagonal both in
the orbital and the spin indices and the bath Green function is
defined as
Gon(iw)=G, Hiw)+3m(io). (33

The local Green functions for the imaginary time interval
[0,8] with the meshr=IAr, 1=0,...L—1, and A~
=pB/L, where B=1/T is calculated in the path-integral

formalism*®1©

GLL’:% > defO(s)]* Gy (s). (34

|
S
mm

Here we redefined for simplicisn={m, o'}, Z is the partition
function and the so-called fermion-determinant| @¥s) ]
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(b) r

FIG. 2. (a8 The spin-wave spectrum for ferromagnetic iron in
the LSDA and LDA+3, approximations compared with different
experiments[circles (Ref. 21, squares(Ref. 22, and diamonds
(Ref. 23]; (b) The corresponding spin-wave spectrum from LDA
3 scheme in thé110 plane.

and the discrete Hubbard-Stratonovich parameters are
Amny = arccoshexpGA7U,,)].X° The main problem of the

and the Green function for arbitrary set of the auxiliary fieldsmultiband QMC formalism is the large number of the auxil-

G(s)=0"%(s) are obtained via the Dyson equattdrfor
imaginary-time matri>{Gm(s)EG'n'1'(s)]:

Gm=[1-(Gp— 1 (en—1)] "Gy,

iary fields s'mm,. For each time sliced it is equal to
M(2M—1) whereM is the total number of the orbitals
which is equal to 45 fod states. We compute the sum over
this auxiliary fields in Eqg.(34) using important sampling
QMC algorithm and performed a dozen of self-consistent

where the effective fluctuation potential from the Ising fieldsiterations over the self-energy Eq82)—(34). The number

| i .
Sayw==11s

I _ [
Vin= Z A mny Sy Omn

m’ (#m)

Im<m’,

ag ;=
mml —1m>m’,

of QMC sweeps was of the order of 10n the CRAY-T3e.
The final G,(7) has very little statistical noise. We use
maximum entropy methdt for analytical continuations of
the QMC Green functions to the real axis. Comparison of
the total density of statedOS) with the results of LSDA
calculations (Fig. 1) shows a reasonable agreement for
single-particle properties of not “highly correlated” ferro-
magnetic iron. The average magnetic moment is aboutgl.9
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TABLE I. Parameters of exchange interactions and spin-wave stiffness for ferromagnetic iron calculated
with the LSDA and LDA+3, methods.

meV Jo J; J, Js Js Js N D (meV/A?)
LSDA 166.1 16.48 8.07 025 -103 -031 0.26 320
LDA+3 115.8 13.31 25 073 -0.38 -0.83 0.01 260

which corresponds to a small reduction of the LSDA valueCorresponding exchange parameters and spin-waves stiff-
of 2.2ug for such a high temperature. The DOS curves in thenesg Eq. (26)] are presented in Table I. The general trend in
LDA +3, approach with exact QMC solution of on-site mul- the distance dependence of exchange interactions in ferro-
tiorbital problem is similar to that obtained within the simple magnetic iron is similar in both schemes, but relative
perturbative fluctuation-exchangéLEX) approximatiorf.  strength of various interactions is quite different. Experimen-
Note that the depolarization of DOS near the Fermi level igtal value of the spin-wave stiffne§= 280 meV/A?2 agrees

the manifestation of spin-polaron effects connected with inwell with the theoretical LDA-+ estimations.

coherent (nonquasiparticle contributions to the electron

Green functiongfor more details, see Ref.).6lt was dem-

onstrated that LDA + approach for ferromagnetic iron IV. CONCLUSIONS
gives a good agreement with experiments for the shape of _ _
the Fermi surface and photoelectron spettfdere is also In conclusion, we present a general method for the in-

the standard problems for analytical continuation of thevestigation of magnetic interactions in the correlated electron
Green function from the imaginary time to the real &is, Systems. This scheme is not based on the perturbation theory
but the accuracy of the exchange integrals calculation whickn “U” and could be applied for rare-earth systems where
does not involve this procedure is essentially higher than foboth the effect of the band structure and the multiplet effects
the density of states. are crucial for a rich magnetic phase diagram. Our general
Using the self-consistent values f&r,(iw) we calculate ~€xpressions are valid in relativistic case and can be used
the exchange interactiofi§q. (25)] and spin-wave spectrum for the calculation of both exchange and Dzialoshinskii-
[Eq. (24)] using the four-dimensional fast Fourier transform Moriya interactions, and magnetic anisotropy. An illustrative
(FFT) method® for (k,iw) space with the mesh 3&320. example of ferromagnetic iron shows that the correlation
We compare the results for the exchange interactions witgffects in exchange interactions may be noticeable even
corresponding calculations for the LSDA mettbd. in such moderately correlated systems. For rare-earth metals
and their compounds, colossal magnetoresistance materials
or high-T. systems, this effect may be much more important.
For example, the careful investigations of exchange inter-
actions in MnO within the LSDA, LDA-U and optimized
The spin-wave spectrum for ferromagnetic iron is pre-potential methods for Mn@Ref. 27 show the disagreement
sented in Fig. 2 in comparison with the results of LSDA- with experimental spin-wave spectrufaven for smallg),
exchange calculatioRsand with different experimental and indicate a possible role of correlation effects.
data®~* This room-temperature neutron scattering experi- As for the formalism itself, this work demonstrates an
ments has a sample dependefiée-12% Si in Refs. 21 and essential difference between spin density functional ap-
23 and Fe-4% Si in Ref. 22lue to problems with the bcc-Fe proach and LDA-+ method. The latter deals with the ther-
crystal growth. Note that for high-energy spin waves the exmodynamic potential as a functional of Green function rather
perimental dat& has large error bars due to Stoner dampingthan electron density. Nevertheless, there is a deep formal
(we show one experimental point with the uncertainties incorrespondence between two techniq(esif-energy corre-
the “g” space. On the other hand, the expression of mag-sponds to the exchange-correlation potential,. étcparticu-
non frequency in terms of exchange parameters itself belar, an analog of local force theorem can be proved for
comes problematic in that region due to breakdown of adiat DA +-+ approach. It may be useful not only for the calcu-
batic approximation, as it is discussed above. Therefore wiation of magnetic interactions but also for elastic stresses, in
think that comparison of theoretical results with experimen-particular, pressure, and other physical properties.
tal spin-wave spectrum for the large energy needs additional
investigation of Stoner excitation and required calculﬁtions
of dynamical susceptibility in the LDA+ approach:.
Within the LSDA scheme one could use the linear-response ACKNOWLEDGMENTS
formalisnf® to calculate the spin-wave spectrum with the The authors are grateful to Max-Planck Society and For-
Stoner renormalizations, which should give in principle theschungszentrum “lluh and benefited greatly from discus-
same spin-wave stiffness as our LSDA calculations. Ousions with G. Kotliar. The calculations were performed on
LSDA spin-wave spectrum agree well with the results ofCray T3E computers in the Forschungszentruiicduwith
frozen magnon calculatiorf§:* grants of CPU time from the Forschungszentrum and John
At the lower energy, where the present adiabatic theory izson Neumann Institute for Computin§!IC). This work was
reliable, the LDA++ spin-waves spectrum agree better with partially supported by the Russian Basic Research Founda-
the experiments than the result of the LSDA calculationstion, Grant No. 98-02-16279.

B. Computational results
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