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First-principles calculations of magnetic interactions in correlated systems
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We present a method to calculate the effective exchange interaction parameters based on the realistic
electronic structure of correlated magnetic crystals in local approach with the frequency dependent self-energy.
The analog of ‘‘local force theorem’’ in the density-functional theory is proven for highly correlated systems.
The expressions for effective exchange parameters, Dzialoshinskii-Moriya interaction, and magnetic anisot-
ropy are derived. The first-principles calculations of magnetic excitation spectrum for ferromagnetic iron, with
the local correlation effects from the numerically exact QMC scheme, are presented.
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I. INTRODUCTION

The calculation of thermodynamic properties and exc
tion spectra of different magnetic materials is one of
most important motivations of the microscopic theory
magnetism. The main approach for such type of investi
tions is the local spin density functional~LSDF! scheme.1

However, this method has some serious shortcomings w
applying to transition metal and rare-earth magnetic mat
als. The main defect is the absence of the ‘‘Hubbard’’ ty
correlations which are most important for real magnets~see,
e.g., recent reviews.2–4! This leads to, generally speakin
incorrect description of electronic structure for such imp
tant groups of magnetic materials as rare-earth metals
their compounds, metal-oxide compounds~including ‘‘clas-
sical’’ Mott insulators such as NiO and MnO as well as hig
Tc cuprates! and even for the iron-group metals.2,4–6 At the
same time, the experience with the Hubbard model sh
that the description of electronic structure and magn
properties of highly correlated materials are closely c
nected. Recently we propose a rather general scheme~so-
called ‘‘LDA11 approach’’! for first-principles calculations
of the electronic structure with the local correlation effe
being included.5 In this technique the full matrix of on-site
Coulomb repulsion for the correlated states is taken into
count in the local approximation for the electron self-ener
In such a way, we could provide a rather reasonable desc
tion of the electronic structure for different correlated sy
tems such as Fe, NiO, and TmSe. It will be very useful
develop this approach for the description of different ma
netic characteristics.

The most rigorous way to consider properties of magn
excitations is the calculation of frequency-dependent m
netic susceptibilities.4 However, for many important case
we can restrict ourselves to more simple problem of the
culation of static response functions. More explicitly, on
can consider the variations of total energyEtot ~or thermo-
dynamic potentialV) with respect to magnetic moments r
tations. This approach results in the magnetic interaction
different types: the variation of total energy of a ferromag
over the rotation of all spins at the same angle determ
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the magnetic anisotropy energy, while the variation ofEtot
over the relative rotations of spins on two sites gives
parameters of pairwise exchange interactions, etc. This
proach was proposed earlier in the the framework of
LSDF scheme.8 It is sufficient for the calculation of ‘‘phe-
nomenological’’ exchange parameters which are import
for the consideration of domain wall widths and other ‘‘m
cromagnetic’’ properties. In the adiabatic approximati
when the energies of magnetic excitations are small in co
parison with typical electronic energies this is also sufficie
for the calculation of the spin-wave spectrum. In the me
field approximation these ‘‘exchange parameters’’ can
used for the estimation of Curie or Neel temperature.

In this work we derive general expressions for the para
eters of magnetic interactions in LDA11 approach and cal-
culate the exchange parameters for ferromagnetic iron. It
first attempt to investigate magnetic interactions, taking i
account correlation effects in the electronic structure for r
materials.

II. GENERAL FORMALISM

A. Local force theorem in LDA¿¿ approach

An important trick for the definition of exchange intera
tions in the LSDF approach is the use of so-called ‘‘loc
force theorem.’’ This reduces the calculation of the total e
ergy change to the variations of one-particle density
states.7,8 First of all, let us prove the analog of local forc
theorem in the LDA11 approach. In contrast with the stan
dard density functional theory, it deals with the real dynam
cal quasiparticles defined via Green functions for the co
lated electrons rather than with Kohn-Sham ‘‘quasiparticle
which are, strictly speaking, only auxiliary states to calcul
the total energy. Therefore, instead of the working with t
thermodynamic potentialV as adensityfunctional we have
to start from its general expression in terms of an ex
Green function9

V5Vsp2Vdc ,

Vsp52Tr$ ln@S2G0
21#%, ~1!

Vdc5Tr SG2F,
8906 ©2000 The American Physical Society
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whereG, G0 , andS are an exact Green function, its ba
value and self-energy, correspondingly;F is the Luttinger
generating functional~sum of the all connected skeleto
diagrams without free legs!, Tr5Trv iLs is the sum over
Matsubara frequencies Trv . . . 5T (v . . . ,v5pT(2n11),
n50,61, . . . , T is the temperature, andiLs are site num-
bers (i ), orbital quantum numbers (L5 l ,m) and spin projec-
tions s, correspondingly. We have to keep in mind al
Dyson equation

G215G0
212S ~2!

and the variational identity

dF5Tr SdG. ~3!

We represent the expression~1! as a difference of ‘‘single
particle’’ (sp) and ‘‘double counted’’ (dc) terms as it is
usual in the density functional theory. When neglecting
quasiparticle damping,Vsp will be nothing but the thermo-
dynamic potential of ‘‘free’’ fermions but with exact quas
particle energies. Suppose we change the external pote
for example, by small spin rotations. Then the variation
the thermodynamic potential can be written as

dV5d* Vsp1d1Vsp2dVdc , ~4!

where d* is the variation without taking into account th
change of the ‘‘self-consistent potential’’~i.e. self-energy!
andd1 is the variation due to this change ofS. To avoid a
possible misunderstanding, note that we consider the va
tion of V in the general ‘‘non-equilibrium’’ case when th
torques acting on spins are nonzero and thereforedVÞ0. In
order to study the response of the system to general
rotations one can consider either variations of the spin di
tions at the fixed effective fields or, vice versa, rotations
the effective fields, i.e., variations ofS, at the fixed magnetic
moments. We use the second way. Taking into account
~3! it can be easily shown~cf. Ref. 9! that

d1Vsp5dVdc5Tr GdS ~5!

and hence

dV5d* Vsp52d* Tr ln@S2G0
21#, ~6!

which is an analog of the ‘‘local force theorem’’ in the de
sity functional theory.8 In the LSDF scheme all the compu
tational results expressed in terms of the retarded Gr
function and not in the Matsubara one. The relations
‘‘real’’ and ‘‘complex’’ Green-function formulas are base
on the identity

Trv F~ iv!52
1

pE2`

`

dz f~z!Im F~z1 i0!, ~7!

where f (z)5@expz/T11#21 is the Fermi function,F(z) is a
function regular in all the complex plane except real ax
Therefore Eq.~6! takes the following form:

dV5
1

pE2`

`

dz f~z!Im d* TriLs ln G21~z1 i0!, ~8!

which is the starting point for the calculations of magne
interactions in LSDF approach.8 However note, that in the
e
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case of frequency-dependent self-energy~LDA11 ap-
proach! it is more convenient to work with the Matsuba
Green functions.5

B. Effective spin Hamiltonian

Further considerations are similar to the correspond
ones in LSDF approach. The most suitable way based on
sum rule is proposed in Ref. 10.

In the LDA11 scheme, the self-energy is local, i.e.,
diagonal in site indices. Let us write the spin-matrix structu
of the self energy and Green function in the following form

S i5S i
c1S i

ss,

Gi j 5Gi j
c 1Gi j

s s, ~9!

whereS i
(c,s)5 1

2 (S i
↑6S i

↓), Si
s5S i

sei , with ei being the unit
vector in the direction of effective spin-dependent pote
tial on site i , s5(sx ,sy ,sz) are Pauli matrices,Gi j

c

5 1
2 Trs(Gi j ) and Gi j

s 5 1
2 Trs(Gi j s). We assume that the

bare Green functionG0 does not depend on spin direction
and all the spin-dependent terms including the Hartree-F
terms are incorporated in the self-energy. Spin excitati
with low energies are connected with the rotations of vect
ei :

dei5dw i3ei . ~10!

According to the ‘‘local force theorem’’~6! the correspond-
ing variation of the thermodynamic potential can be writt
as

dV5d* Vsp5V idw i , ~11!

where the torque is equal to

V i52 TrvL@Si
s3Gi i

s #. ~12!

Further we have to use an important sum rule for the Gr
function which is the consequence of Dyson equation. Us
Eq. ~2! one has

G5Gc
• Î 1Gs

•s5GG21G

5G„~G0
212Sc!• Î 2Ss

•s…~Gc
• Î 1Gs

•s!. ~13!

Separating the spin-dependent and the spin-indepen
parts in Eq.~13! we have the following sum rules forGc:

Gc5Gc~G0
212Sc!Gc2GcSsGs

5Gc~G0
212Sc!Gc2GsSsGc ~14!

and similarly forGs

Gs52~GsSs!Gs1GcSsGc1 iGc~Ss3Gs!

52Gs~SsGs!1GcSsGc1 i ~Gs3Ss!Gc. ~15!

Then for diagonal elements of the Green function one
tains

Gi i
s 52(

j
@~Gi j

s Sj
s!Gj i

s 2Gi j
c Sj

sGji
c 2 iGi j

c ~Sj
s3Gj i

s !#.

~16!
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Substituting Eq.~16! into Eq. ~12! we have the following
expression for the torque:

V i52 TrvL@Si
s3Gi i #

522(
j

TrvL$Si
s3~Gi j

s Sj
s!Gj i

s 2Si
s

3Gji
c Sj

sGi j
c 2 i Si

s3Gji
c ~Sj

s3Gj i
s !%. ~17!

If we represent the total thermodynamic potential of s
rotations or the effective Hamiltonian in the form

Vspin52(
i j

TrvL$~Gi j
s Sj

s!~Gj i
s Si

s!2Si
sGi j

c Sj
sGji

c

2 i ~Si
s3Gi j

c Sj
s!Gj i

s %, ~18!

one can show by direct calculations that

FdVspin

dw i
G

G5const

5V i . ~19!

This means thatVspin$ei% is the effective spin Hamiltonian
The last term in Eq.~18! is nothing but Dzialoshinskii-
Moriya interaction term. It is nonzero only in relativistic ca
whereSj

s andGj i
s can be, generally speaking, ‘‘nonparalle

andGi j ÞGji for the crystals without inversion center. In th
following we will not consider this term.

C. Exchange interactions

In the nonrelativistic case one can rewrite the spin Ham
tonian for small spin deviations near collinear magne
structures in the following form:

Vspin52(
i j

Ji j eiej , ~20!

where

Ji j 52TrvL~S i
sGi j

↑ S j
sGji

↓ ! ~21!

are the effective exchange parameters. This formula gen
ize the LSDF expressions of Ref. 8 to the case of correla
systems.

The sum rule@Eq. ~16!# for the collinear magnetic con
figuration takes the following form:

Gii
↑ 2Gii

↓ 52(
j

Gi j
↑ S j

sGji
↓ . ~22!

Using Eq. ~22! we obtain the following expression for th
total exchange interaction of a given site with the all ma
netic environment:

Ji5 (
j (Þ i )

Ji j 5TrvLFS i
sGii

↑ S i
sGii

↓ 2
1

2
S i

s~Gii
↑ 2Gii

↓ !G .
~23!

Spin wave spectrum in ferromagnets can be conside
both directly from the exchange parameters or by the con
eration of the energy of corresponding spiral structure~cf.
Ref. 8!. In nonrelativistic case when the anisotropy is abs
one has
l-
c

al-
d

-

d
d-

t

vq5
4

M (
j

J0 j~12cosqRj ![
4

M
@J~0!2J~q!#, ~24!

whereM is the magnetic moment~in Bohr magnetons! per
magnetic ion. Corresponding expressions can be easily w
ten in thek space. Using the short notationq5(q,iv) we
could write the general expression forJ(q)[J(q,0):

J~q!52
1

Nk
(

k
TrL@Ss~k!G↑~k!Ss~k1q!G↓~k1q!#,

~25!

whereNk is the total number ofk points.
It should be noted that the expression for spin stiffne

tensorDab defined by the relation

vq5Dabqaqb ~26!

~q→0! in terms of exchange parameters has to be exac
the consequence of phenomenological Landau-Lifshitz eq
tions which are definitely correct in the long-waveleng
limit. Direct calculation basing on variation of the total e
ergy under spiral spin rotations~cf. Ref. 8! leads to the fol-
lowing expression:

Dab52
2

M
TrvL (

k
S Ss

]G↑~k!

]ka
Ss

]G↓~k!

]kb

1Ss
]2@G↑~k!2G↓~k!#

]ka]kb
D , ~27!

wherek is the quasimomentum and the summation is o
the Brillouin zone. The integral overk in the last term could
be transformed to the integral over the surface of the B
louin zone and vanishes due to thek independence ofSs.
Taking into account Eq.~21!, the first term can be rewritten
in the following form:

Dab5
2

M (
j

J0 jRj
aRj

b ~28!

in agreement with Eq.~24!. The expressions Eqs.~21! and
~24! are reminiscent of usual RKKY indirect exchange inte
actions in thes-d exchange model~with Ss instead of the
s-d exchange integral!. A similar structure of the spin-wave
spectrum can be obtained in the Hubbard model within
RPA ~cf. Ref. 11!. An essential feature of our formulations
that the ‘‘s-d exchange integral’’ turns out to be energy d
pendent.

In cubic crystalsDab5Ddab . For arbitraryq, the expres-
sion of magnon spectrum in terms ofJi j is valid only in the
adiabatic approximation, i.e., provided that the magnon
quencies are small in comparison with characteristic e
tronic energies. Otherwise, collective magnetic excitatio
which are magnons cannot be separated from noncohe
particle-hole excitations~Stoner continuum!12 and magnon
frequencies~24! are not the exact poles of transverse ma
netic susceptibility~which are even not real at largeq!.

Now we have to consider the accuracy of expressions
Ji j ~21! themselves. Equations~12! and ~17! are exact in
LDA11 approach~i.e., with the only assumption about th
local self-energy!. Hence, if one postulate the existence
effective spin Hamiltonian in the sense of Eq.~19!, Eq. ~21!
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is also exact. However, they do not have rigorous connec
with the static transverse spin susceptibility. The latter
expressed in terms of the matrix

d2V

dw i
adw j

b
5

dVi
a

dw j
b

,

without the restrictionG5const. They differ from our ex-
change parameters by the terms containingdĜ/dw i . From
the diagrammatic point of view in the framework of th
DMFT,4 they are nothing but the vertex corrections. We
not present the corresponding expressions since the ben
of the introducing of exchange parameters beyond adiab
approximation which is equivalent to Eq.~19! is doubtful. In
more rigorous consideration it is convenient to work direc
with the DMFT expressions for static and dynam
susceptibility.4

Thus one can see that, generally speaking, the exch
parameters differ from the exact response characteristics
fined via static susceptibility since the latter contains ver
corrections. At the same time, our derivation of exchan
parameters seems to be rigorous in the adiabatic approx
tion for spin dynamics when spin fluctuation frequency
much smaller than characteristic electron energy. The si
tion is similar to the case of electron-phonon interactio
where according to the Migdal theorem vertex correctio
are small in adiabatic parameter~ratio of characteristic pho
non energy to electron one!.14 The derivation of the ex-
change parameters from the variations of thermodynamic
tential, being approximate, can be useful nevertheless for
fast and accurate calculations of different magnetic syste

Note that in the LDA11 approach, as well as in LDA1U
method15 and in contrast with usual LSDF, one can rota
separately spins of states with given orbital quantum nu
bersL,L8. For example, for the nonrelativistic case one c
obtain

Vspin52 (
iL , jL 8

JiL , jL 8eiLejL 8 ,

where

JiL , jL 852Trv~S iL
s GiL , jL 8

↑ S jL 8
s GjL 8,iL

↓
!

are orbital dependent exchange parameters.

D. Magnetic anisotropy

Let us consider now the change of spin energy at
rotation of all the spins at the same angle. It is definitely z
in nonrelativistic case. In the presence of spin-orbit coupli
it is nothing but the energy of magnetic anisotropy. One c
obtain from Eq.~18!

Vanis5TrvL (
i j

$~Gi j
s 3Sj

s!~Gj i
s 3Si

s!%

5TrvL (
k

$@Gs~k!3Ss#@Gs~2k!3Ss#%, ~29!
n
s

fits
tic

ge
e-
x
e
a-

a-
s
s

o-
he
s.

-
n

e
o
,
n

where the last equality is valid for ferromagnets with o
magnetic atom per unit cell,k is the quasimomentum and th
summation is over Brillouin zone.

Finally, note that we use essentially three properties
LDA11 approach:~i! locality of self-energy,~ii ! spin inde-
pendence of bare Green function~i.e., spin independence o
bare LDA spectrum; all magnetic effects including Hartre
Fock ones are included in self-energy!, and~iii ! approxima-
tions for self-energy have to be conserving, or ‘‘F-
derivable’’ since only in that case analog of ‘‘local forc
theorem’’ ~6! takes place.

III. EXCHANGE INTERACTIONS IN FERROMAGNETIC
IRON

A. Computational technique

As an example we calculate the magnetic properties
ferromagnetic iron using the most accurate method to t
into account local correlations. For this purpose we use
local quantum Monte Carlo approach4 with the generaliza-
tion to the multiband case.16

We start from LDA1U Hamiltonian in the diagonal den
sity approximation:

H5 (
$ ims%

t im,i 8m8
LDA cims

1 ci 8m8s1
1

2 (
imm8s

Umm8
i nimsnim82s

1
1

2 (
imÞm8s

~Umm8
i

2Jmm8
i

!nimsnim8s , ~30!

wherei is the site index andm is the orbital quantum num
bers;s5↑,↓ is the spin projection;c1,c are the Fermi cre-
ation and annihilation operators (n5c1c); tLDA is effective
single-particle Hamiltonian obtained from the nonmagne
LDA with the corrections for double counting of the avera
interactions amongd electrons. In the general case of spi
polarized LSDF Hamiltonian this correction is presented
Refs. 5, 6, and 15. In the nonmagnetic LDA this is just a sh
‘‘back’’ of correlatedd states with respect to s,p-states by t
average Coulomb and exchange potential:Dd5U(nd2 1

2 )
2 1

2 J(nd21), whereU andJ are the average values ofUmm8
and Jmm8 matrices andnd is the average number ofd elec-
trons.

The screened Coulomb and exchange vertex for thd
electrons

Umm85^mm8uVscr
ee ~r2r 8!umm8&,

~31!
Jmm85^mm8uVscr

ee ~r2r 8!um8m&

are expressed via the effective Slater integrals and co
sponds to the averageU52.3 eV andJ50.9 eV.6 We use
the minimal spd basis in the LMTO-TB formalism17 and
numerical orthogonalization fortLDA(k) matrix.5 Local den-
sity approximation18 was used for the self-consistent ele
tronic structure calculation of bcc-iron at experimental latt
constant with 256k points in the irreducible part of Brillouin
zone. The Matsubara frequencies summation in our LDA11
calculations corresponds to the temperature of abouT
5850 K.

Local Green-function matrix has the following form:
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G~ iv!5(
k

$ iv1m2tLDA~k!2S~ iv!%21, ~32!

where (m) is the chemical potential. Note that due to cub
crystal symmetry of ferromagnetic bcc-iron the local Gre
function without spin-orbital interactions is diagonal both
the orbital and the spin indices and the bath Green functio
defined as

G0m
21~ iv!5Gm

21~ iv!1Sm~ iv!. ~33!

The local Green functions for the imaginary time interv
@0,b# with the mesh t l5 lDt, l 50, . . . ,L21, and Dt
5b/L, where b51/T is calculated in the path-integra
formalism:4,16

Gm
ll 85

1

Z (
s
mm8
l

det@O~s!#* Gm
ll 8~s!. ~34!

Here we redefined for simplicitym[$m,s%,Z is the partition
function and the so-called fermion-determinant det@O(s)#
and the Green function for arbitrary set of the auxiliary fie
G(s)5O21(s) are obtained via the Dyson equation19 for

imaginary-time matrix@Gm(s)[Gm
ll 8(s)#:

Gm5@12~Gm
0 21!~eVm21!#21Gm

0 ,

where the effective fluctuation potential from the Ising fiel
smm8

l
561 is

Vm
l 5 (

m8(Þm)

lmm8smm8
l smm8 ,

smm85H 1,m,m8,

21,m.m8,

FIG. 1. Total spin-polarized density of states for ferromagne
iron in the LSDA and LDA1QMC approximations.
n

is

l

and the discrete Hubbard-Stratonovich parameters

lmm85arccosh@exp(12DtUmm8)#.
19 The main problem of the

multiband QMC formalism is the large number of the aux
iary fields smm8

l . For each time slicesl it is equal to
M (2M21) where M is the total number of the orbital
which is equal to 45 ford states. We compute the sum ov
this auxiliary fields in Eq.~34! using important sampling
QMC algorithm and performed a dozen of self-consist
iterations over the self-energy Eqs.~32!–~34!. The number
of QMC sweeps was of the order of 105 on the CRAY-T3e.
The final Gm(t) has very little statistical noise. We us
maximum entropy method20 for analytical continuations of
the QMC Green functions to the real axis. Comparison
the total density of states~DOS! with the results of LSDA
calculations ~Fig. 1! shows a reasonable agreement
single-particle properties of not ‘‘highly correlated’’ ferro
magnetic iron. The average magnetic moment is about 1.mB

c

FIG. 2. ~a! The spin-wave spectrum for ferromagnetic iron
the LSDA and LDA1S approximations compared with differen
experiments@circles ~Ref. 21!, squares~Ref. 22!, and diamonds
~Ref. 23!#; ~b! The corresponding spin-wave spectrum from LDA1
S scheme in the~110! plane.
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TABLE I. Parameters of exchange interactions and spin-wave stiffness for ferromagnetic iron calc
with the LSDA and LDA1S methods.

meV J0 J1 J2 J3 J4 J5 J6 D (meV/A2)

LSDA 166.1 16.48 8.07 0.25 21.03 20.31 0.26 320

LDA1S 115.8 13.31 2.5 0.73 20.38 20.83 0.01 260
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which corresponds to a small reduction of the LSDA va
of 2.2mB for such a high temperature. The DOS curves in
LDA1S approach with exact QMC solution of on-site mu
tiorbital problem is similar to that obtained within the simp
perturbative fluctuation-exchange~FLEX! approximation.6

Note that the depolarization of DOS near the Fermi leve
the manifestation of spin-polaron effects connected with
coherent ~nonquasiparticle! contributions to the electron
Green functions~for more details, see Ref. 6!. It was dem-
onstrated that LDA11 approach for ferromagnetic iro
gives a good agreement with experiments for the shap
the Fermi surface and photoelectron spectra.6 There is also
the standard problems for analytical continuation of
Green function from the imaginary time to the real axis20

but the accuracy of the exchange integrals calculation wh
does not involve this procedure is essentially higher than
the density of states.

Using the self-consistent values forSm( iv) we calculate
the exchange interactions@Eq. ~25!# and spin-wave spectrum
@Eq. ~24!# using the four-dimensional fast Fourier transfor
~FFT! method13 for (k,iv) space with the mesh 2033320.
We compare the results for the exchange interactions w
corresponding calculations for the LSDA method.8

B. Computational results

The spin-wave spectrum for ferromagnetic iron is p
sented in Fig. 2 in comparison with the results of LSD
exchange calculations8 and with different experimenta
data.21–23 This room-temperature neutron scattering expe
ments has a sample dependence~Fe-12% Si in Refs. 21 and
23 and Fe-4% Si in Ref. 22! due to problems with the bcc-F
crystal growth. Note that for high-energy spin waves the
perimental data23 has large error bars due to Stoner damp
~we show one experimental point with the uncertainties
the ‘‘q’’ space!. On the other hand, the expression of ma
non frequency in terms of exchange parameters itself
comes problematic in that region due to breakdown of ad
batic approximation, as it is discussed above. Therefore
think that comparison of theoretical results with experime
tal spin-wave spectrum for the large energy needs additio
investigation of Stoner excitation and required calculatio
of dynamical susceptibility in the LDA11 approach.4

Within the LSDA scheme one could use the linear-respo
formalism26 to calculate the spin-wave spectrum with t
Stoner renormalizations, which should give in principle t
same spin-wave stiffness as our LSDA calculations. O
LSDA spin-wave spectrum agree well with the results
frozen magnon calculations.24,25

At the lower energy, where the present adiabatic theor
reliable, the LDA11 spin-waves spectrum agree better w
the experiments than the result of the LSDA calculatio
e

s
-

of

e

h
r

th

-

i-

-
g
n
-
e-
-
e
-
al
s

e

r
f

is

.

Corresponding exchange parameters and spin-waves
ness@Eq. ~26!# are presented in Table I. The general trend
the distance dependence of exchange interactions in fe
magnetic iron is similar in both schemes, but relati
strength of various interactions is quite different. Experime
tal value of the spin-wave stiffnessD5280 meV/A222 agrees
well with the theoretical LDA11 estimations.

IV. CONCLUSIONS

In conclusion, we present a general method for the
vestigation of magnetic interactions in the correlated elect
systems. This scheme is not based on the perturbation th
in ‘‘ U ’’ and could be applied for rare-earth systems whe
both the effect of the band structure and the multiplet effe
are crucial for a rich magnetic phase diagram. Our gen
expressions are valid in relativistic case and can be u
for the calculation of both exchange and Dzialoshinsk
Moriya interactions, and magnetic anisotropy. An illustrati
example of ferromagnetic iron shows that the correlat
effects in exchange interactions may be noticeable e
in such moderately correlated systems. For rare-earth me
and their compounds, colossal magnetoresistance mate
or high-Tc systems, this effect may be much more importa
For example, the careful investigations of exchange in
actions in MnO within the LSDA, LDA1U and optimized
potential methods for MnO~Ref. 27! show the disagreemen
with experimental spin-wave spectrum~even for smallq!,
and indicate a possible role of correlation effects.

As for the formalism itself, this work demonstrates a
essential difference between spin density functional
proach and LDA11 method. The latter deals with the the
modynamic potential as a functional of Green function rat
than electron density. Nevertheless, there is a deep for
correspondence between two techniques~self-energy corre-
sponds to the exchange-correlation potential, etc!. In particu-
lar, an analog of local force theorem can be proved
LDA11 approach. It may be useful not only for the calc
lation of magnetic interactions but also for elastic stresses
particular, pressure, and other physical properties.

ACKNOWLEDGMENTS

The authors are grateful to Max-Planck Society and F
schungszentrum Ju¨lich and benefited greatly from discus
sions with G. Kotliar. The calculations were performed
Cray T3E computers in the Forschungszentrum Ju¨lich with
grants of CPU time from the Forschungszentrum and J
von Neumann Institute for Computing~NIC!. This work was
partially supported by the Russian Basic Research Foun
tion, Grant No. 98-02-16279.



t.

d

tte

,

ys

.

ica

s.:

s-

ys.

8912 PRB 61M. I. KATSNELSON AND A. I. LICHTENSTEIN
1R.O. Jones and O. Gunnarsson, Rev. Mod. Phys.61, 689 ~1989!.
2P.W. Anderson, inFrontiers and Borderlines in Many Particle

Physics, edited by J.R. Schrieffer and R.A. Broglia~North-
Holland, Amsterdam, 1988!.

3S.V. Vonsovsky, M.I. Katsnelson, and A.V. Trefilov, Phys. Me
Metallogr.76, 247 ~1993!; 76, 343 ~1993!.

4A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev. Mo
Phys.68, 13 ~1996!.

5A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B57, 6884
~1998!.

6M.I. Katsnelson and A.I. Lichtenstein, J. Phys.: Condens. Ma
11, 1037~1999!.

7A.R. Mackintosh and O.K. Andersen, inElectron at the Fermi
Surface, edited by M. Springford~Cambridge University Press
Cambridge, England, 1980!, p. 145.

8A.I. Liechtenstein, M.I. Katsnelson, and V.A. Gubanov, J. Ph
F 14, L125 ~1984!; Solid State Commun.54, 327 ~1985!; A.I.
Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A
Gubanov, J. Magn. Magn. Mater.67, 65 ~1987!.

9J.M. Luttinger and J.C. Ward, Phys. Rev.118, 1417~1960!; see
also, G.M. Carneiro and C.J. Pethick, Phys. Rev. B11, 1106
~1975!.

10V.P. Antropov, M.I. Katsnelson, and A.I. Liechtenstein, Phys
B 237-238, 336 ~1997!; V.P. Antropov, M.I. Katsnelson, A.I.
Liechtenstein, M. van Schilfgaarde, and B.N. Harmon~unpub-
lished!.

11V. Yu. Irkhin and M.I. Katsnelson, J. Phys.: Condens. Matter2,
7151 ~1990!.
.

r

.

12T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism
~Springer-Verlag, Berlin, 1985!.

13S. Goedecker, Comput. Phys. Commun.76, 294 ~1993!.
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