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Fate of spinons in spontaneously dimerized spin-1
2 ladders
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We study a weakly coupled, frustrated two-leg spin-1/2 Heisenberg ladder. For vanishing coupling between
the chains, elementary excitations are deconfined, gapless spin-1/2 objects calledspinons. We investigate the
fate of spinons for the case of a weak interchain interaction. We show that despite a drastic change in ground
state, which becomes spontaneously dimerized, spinons survive as elementary excitations but acquire a spectral
gap. We furthermore determine theexactdynamical structure factor for several values of momentum transfer.
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I. INTRODUCTION

The role of frustration in quasi-one-dimensional magne
materials has attracted much experimental and theoretica
tention in recent years. On the theoretical side, the simp
example of a frustrated quantum magnet is the spin-
Heisenberg antiferromagnetic chain with nearest-neighb
exchangedJ and next-nearest-neighbor exchangeJ. This
model is equivalent to a two-leg ladder~see Fig. 1!, where
the coupling along~between! the legs of the ladder is equa
to J(dJ).

The zig-zag ladder model is believed to describe
quantum magnet SrCuO2 ~Refs. 1,2! above the magnetic or
dering transition, which takes place at aboutT'2 K. The
exchange constants are estimated to beJ'1800 K, udJ/Ju
'0.120.2.2 A second material with zig-zag structure th
has recently attracted much interest is Cs2CuCl4.3 However,
in Cs2CuCl4 all neighboring chains are coupled by a zig-z
interaction and no pronounced ladder structure exists.

In Refs. 4–6 it was argued that a weak antiferromagn
zig-zag coupling between the chains drives the model t
massive phase, characterized by spontaneous dimeriz
~see, also Ref. 7!. Let us briefly review some important par
of the derivations of Refs. 5,6. The lattice Hamiltonian of t
zig-zag ladder is

H5J (
j 51,2

(
n

Sj ,n•Sj ,n111dJ(
n

~S1,n1S1,n11!•S2,n ,

~1!

where we assume thatd!1. The low-energy effective action
for Eq. ~1! is now obtained as follows. Ford→0 one is
dealing with two decoupled Heisenberg chains, which can
bosonized in terms of two Wess-Zumino-Novikov-Witte
~WZNW! models by using the standard relation between
spin density on chainj and the fields of the WZNW mode
~see, e.g., Ref. 8!

Sj
a~x!

a0
5@Jj

a~x!1 J̄ j
a~x!#1~21!x/a0nj

a~x!. ~2!
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Herea0 is the lattice spacing, and the fieldsJj
a andJ̄ j

a are the
right and left currents of the WZWN model corresponding
chainj. They parametrize the smooth component of the m
netization. Finally,nW j is the staggered component of th
magnetization on chainj. Using Eq.~2!, the zig-zag inter-
chain interaction can be expressed in terms of the WZN
fields. In this way one straightforwardly obtains the curre
current interaction5,6

Hc5l1~J1
a1 J̄1

a!~J2
a1 J̄2

a!2l0~J1
aJ̄1

a1J2
aJ̄2

a!, ~3!

where l1}dJ. A standard renormalization-group~RG!
analysis then shows that the antiferromagnetic interchain
teraction l1 leads to a spontaneously dimerized grou
state.5,6 In Ref. 9 it was shown that, in addition to th
current-current interaction~3!, a ‘‘twist’’ term arises

Ht5r~n1
a]xn2

a2n2
a]xn1

a!. ~4!

In the presence of exchange anisotropies the twist term
duces incommensurabilities in the spin correlations.9 We ex-
pect this to hold true even in the SU~2! symmetric case~no
exchange anisotropies! we are interested in here. In the latt
case it can be shown that the twist term and current-cur
interaction are equally important in the RG sense: they
verge ~i.e., reach strong coupling! simultaneously, with a
fixed ratio.10 As far as the SU~2! symmetric zig-zag ladder is
concerned, it is therefore not possible to separate the eff
of the twist and current-current interactions in a simple w

However, from a purely theoretical point of view
clearly is desirable to develop a thorough understanding
the physics due to isolated current-current and twist inter
tions. Their effects can be disentangled by introducing

FIG. 1. Heisenberg zig-zag ladder.
8871 ©2000 The American Physical Society



e
U
9
a
a
en
ca
t

n

n
ct
de
t
e

w
th
rg

e
th
w
a
d

ca
an
tu
ou

u
-

n
an

es
ather

the

he

lting
dder

-
d in
tors

om-

the
-

8872 PRB 61ALLEN, ESSLER, AND NERSESYAN
exchange anisotropy,9 which makes the twist more and th
current-current interaction less relevant in the RG sense.
ing this trick, a pure twist interaction was studied in Ref.

The role of an isolated current-current interaction h
been previously investigated in connection with the zig-z
ladder in Refs. 7,5,6. In particular, the spectrum of elem
tary excitations and the dynamical structure factor were
culated in Ref. 6 using large-N techniques. It is known tha
extrapolation of large-N results to small values ofN can lead
to incorrect results.11 Having this in mind, we carry out an
exact calculation in order to determine the spectrum a
structure factor. We find that the large-N results are indeed
qualitatively incorrect.

As explained above, in the zig-zag ladder both twist a
current-current interactions are present; therefore, stri
speaking, our results cannot be directly applied to this mo
Nevertheless, we believe that many of our findings presen
below remain qualitatively correct when applied to mod
~1!. We discuss this point in more detail in Sec. VII.

In order to connect our results to a microscopic model,
consider a frustrated spin ladder modified in such a way
only current-current interactions emerge in the low-ene
effective action.

The outline of this paper is as follows: in Sec. II w
introduce a frustrated spin-ladder model giving rise to
desired low-energy effective field theory. In Sec. III we sho
that the resulting field theory is essentially equivalent to
O~4! Gross-Neveu model.12 Sections IV and V are concerne
with the description of the ground state~s! and elementary
excitations. In Sec. VI we determine the exact dynami
structure factor for several values of momentum transfer
show that there are no coherent contributions to the struc
factor. We conclude with a summary and discussion of
results.

II. A FRUSTRATED LADDER WITHOUT TWIST

The model we consider is a generalization13 of the stan-
dard two-leg spin ladder which, apart from the on-rung co
pling J' , also includes an interactionJ3 across both diago
nals of the plaquettes. The Hamiltonian reads

H5J (
j 51,2

(
n

Sj ,n•Sj ,n111J'(
n

S1,n•S2,n

1J3(
n

@S1,n•S2,n111S1,n11•S2,n#. ~5!

We assume that

J,J' ,J3.0, J@J' ,J3 . ~6!

The low-energy effective action can be derived by no
Abelian bosonization in the usual way. The Hamiltoni
density is found to be of the form

H~x!5H1~x!1H2~x!1Hint~x!, ~7!

whereH1,2 are critical SU1(2) WZNW models with a mar-
ginally irrelevant current-current perturbation (l0.0):

Hj5
2pvs

3
~ : J̄j• J̄j :1:Jj•Jj : !2l0J̄j•Jj , j 51,2. ~8!
s-
.
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The interaction part is given by

Hint5l1~J11 J̄1!•~J21 J̄2!1l2n1•n2 , ~9!

with the coupling constants

l15~J'12J3!a0 , l25~J'22J3!a0 . ~10!

No marginal perturbation with the twist-term structure aris
because the staggered magnetization operators add r
than subtract due to the geometry of the problem~see Fig. 2!.
The absence of such term can also be deduced from
existence of discrete~reflection! symmetries of the lattice
Hamiltonian ~5!. If J'52J3 only the marginal~current-
current! interaction survives. This is the case we study in t
remainder of this paper.

We note that for generic values ofJ' andJ3 the interac-
tion of staggered magnetizations dominates and the resu
physics is essentially the same as for the standard la
(J350)14 ~see also chapter 21 of Ref. 15!.

III. DUALITY TRANSFORMATION

The low-energy effective action~8! and~9! can be recast
as a theory of four massive, interacting, real~Majorana! fer-
mions, or equivalently, four weakly coupled Ising models6

H5
i

2 (
a50

3

va~ca]xca2c̄a]xc̄a!

1
l12l0

2 (
j . i 51

3

c i c̄ ic j c̄ j2
l11l0

2
c0c̄0(

i 51

3

c i c̄ i .

~11!

Herev15v25v35vsÞv0 are the velocities of the four Ma
jorana fermions. The lattice spin operators are expresse
terms of the Majorana fields and order and disorder opera
of the four Ising models as

S1
z ~x!}2 i ~c1c21c̄1c̄2!2A~21!x/a0m1m2s3s0 ,

S2
z ~x!} i ~c3c01c̄3c̄0!1A~21!x/a0s1s2m3m0 , ~12!

whereS6
z (x)5S1

z(x)6S2
z(x) and A is a nonuniversal con-

stant. Analogous expressions are available for the other c
ponents of the spin operators.6 A standard one-loop RG
analysis shows that the couplingl0 flows to zero, so we will
ignore it in what follows. In order to further simplify the
problem, we also neglect the small difference between
velocitiesvs and v0, and finally perform a duality transfor
mation on the 0-Majorana

c0→c4 , c̄0→2c̄4 , s0→m4 , m0→s4 . ~13!

FIG. 2. The twistless ladder model.
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This yields the Hamiltonian of the O(4) Gross-Nev
model12

H5
ivs

2 (
i 51

4

c i]xc i2c̄ i]xc̄ i1
l1

2 (
j . i 51

4

c i c̄ ic j c̄ j .

~14!

Under Eq.~13! the spin densities transform to

S1
z ~x!}2 i ~c1c21c̄1c̄2!2A~21!x/a0m1m2s3m4 ,

S2
z ~x!} i ~c3c42c̄3c̄4!1A~21!x/a0s1s2m3s4 . ~15!

IV. GROUND STATE

In order to proceed, it is convenient to use the repres
tation of Eq. ~14! in terms of two sine-Gordon models.18

Ignoring terms that only renormalize the velocity we fin
that Eq.~14! is equivalent to

H5 (
i 56

vs

2
@~]xw i !

21~]xu i !
2#

12l1F 1

8p
@~]xw i !

22~]xu i !
2#2

1

~2pa0!2
cosA8pw i G ,

~16!

where u i are the dual fields. The two sine-Gordon mod
~16! occur on the SU~2! invariant strong-coupling separatri
of the Kosterlitz-Thouless phase diagram and are thus in
massive regime.

A. Twistless ladder

The low-energy effective model~16! exhibits a localZ2
symmetry related toindependenttranslations by one lattice
spacing on each chain (w6→w61Ap/2). This symmetry is
spontaneously broken in the ground state and leads to a
vanishing dimerization~see Fig. 3!. Notice that theZ2 sym-
metry appears to be a feature of the low-energy sector o
and follows from the fact that spin currentsJW1,2 are transla-
tionally invariant objects. The transformationS1(n)
→ 1

2 @S1,n111S1,n21#, or a similar one with S1,k→S2,k ,
changes the lattice Hamiltonian but leaves the low-ene
effective field theory invariant and maps the two grou
states onto one another.

In order to characterize the dimerization patterns of
two ground states, we determine the expectation values

FIG. 3. Qualitative picture of the two degenerate dimeriz
ground states: spins connected by the solid~dotted! lines have a
tendency to form singlets~triplets!.
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^SW 1,n•SW 2,n&}^JW1~x!•JW2~x!&1^nW 1~x!•nW 2~x!&,

^SW 1,n•SW 2,n11&}^JW1~x!•JW2~x!&2^nW 1~x!•nW 2~x!&,

^SW 2,n•SW 1,n11&}^JW1~x!•JW2~x!&2^nW 1~x!•nW 2~x!&. ~17!

After performing the duality transformation to the O~4!
Gross-Neveu model and bosonizing, we obtain

^nW 1~x!•nW 2~x!&}^cosA2pw1cosA2pw2&56const m,

^JW1~x!•JW2~x!&}^~cosA2pw1cosA2pw2!2&5constm2,
~18!

where m}exp(2constJ/J') is the ~exponentially small!
soliton mass in the sine-Gordon model. Due to the smalln
of m, the ^nW 1(x)•nW 2(x)& expectation value dominates in Eq
~17!, so that within the exponential accuracy the dimerizat
is proportional to the quantum soliton mass. TheZ2 symme-
try of the low-energy effective Hamiltonian~16!, that mani-
fests itself in the degeneracy of the two ground states co
sponding to different signs in Eq.~18!, is spontaneously
broken, implying the existence of massiveZ2 kinks. It turns
out ~see below! that these kinks are elementary excitations
the model.

B. Zig-zag ladder

Let us discuss the implications of the emergence of sp
taneous dimerization for the case of the zig-zag ladder if
ignore the twist term. For the zig-zag ladder the appropri
definition for the dimerization is

d5^SW 1~x!•„SW 2~x1a0/2!2SW 2~x2a0/2!…&. ~19!

In the continuum limit we find

d}^cosA2pw1 cosA2pw2&56constm. ~20!

The resulting dimerization patterns are shown in Fig. 4. W
believe that taking into account the twist term will not qua
tatively change this picture.

V. EXCITATIONS

From the exact solution of the sine-Gordon models~16!
we infer that there are only four elementary excitations c
responding to solitons and antisolitons in the6 sectors. We
denote these bys6 and s̄6 . The elementary excitation hav

FIG. 4. Qualitative picture of the spin configuration in th
dimerised ground states: spins along the thick diagonal bonds
a tendency to form singlets.
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8874 PRB 61ALLEN, ESSLER, AND NERSESYAN
a simple interpretation in terms ofdimerization kinks, i.e.,
domain walls separating regions of dimerization with opp
site sign. It can be shown along the lines of Ref. 16 that th
particles carry spin61/2. In terms of the low-energy effec
tive theory of two sine-Gordon models~16!, the total spin
density is given by

S1
z~x!1S2

z~x!5
1

A2p
@]xw1~x!1]xw2~x!#. ~21!

Kinks interpolate between asymptotic values of the fieldsw i

differing by 6Ap/2 as is most easily deduced from the fa
that the classical vacua of Eq.~16! are located at

^w i&class5Ap

2
ni , i 56, ~22!

whereni are arbitrary integers. Integration of Eq.~21! then
yields that a single kink carries spin

Sz56
1

A2p
Ap

2
56

1

2
. ~23!

The results presented below for the dynamical structure
tor are consistent with the interpretation of these kinks
gapped spinons. Altogether there are two spin-1/2 multiplet
corresponding to one multiplet for each leg of the ladd
The emerging physical picture is quite simple and pretty:
two-spinon states observed in the structure factor simply
respond to the kinks related to the spontaneous breakdow
the discreteZ2 symmetry. Simple visualizations of this pic
ture are shown in Fig. 5 for the twistless ladder and in Fig
for the zig-zag ladder.

For the twistless ladder the kinks correspond to verti
domain walls between regions with different signs of dim
ization. There is a spin-1/2 associated with each dom
wall, although this is not immediately obvious from Fig.
In order to get a feeling why a spin-1/2 might be associa
with each kink, let us think of the translationally invarian
‘‘double-zig-zag’’ ground state shown in Fig. 3 as a symm
ric superposition of two dimerized states. Each such s
represents a sequence of plaquettes with ideal singlet b
across the plaquette diagonals~with each spin involved in
one bond only!, has a period 2a0 and is shifted with respec
to the other state by one lattice spacing. If the ‘‘double-z
zag’’ phase occupies a finite domain of the ladder, for
two 2a0-periodic dimerized states to resonate, the numbe
rungs within such a domain should be odd. Then the tw
kink configuration in Fig. 5 can equivalently be viewed
the superposition of states shown in Fig. 6. The intuit

FIG. 5. A two-spinon state in the twistless ladder. Spinons c
respond to kinks between domains with different sign of the dim
ization. Solid lines depict bonds along which there is a tendenc
form singlets.
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picture one obtains from Fig. 6 is then that on average th
is indeed a spin-1/2 associated with each kink.

For the zig-zag case a much nicer picture emerges. ThZ2
symmetry corresponds to a reflection symmetry on the lat
and kinks look like left over spin-1/2’s as shown in Fig.
The intuitive picture of Fig. 7 fits well to the identification o
a spinon in a spin-1/2 chain as a bare spin insertion into
ground state.17

VI. DYNAMICAL STRUCTURE FACTOR

The long-distance asymptotics of the spin-spin correlat
functions are dominated by the soft modes atq50,p,q'

50,p, whereq andq' denote the wave numbers along a
perpendicular to the two chains, respectively. In what f
lows we will determine the dynamical structure factor f
wave numbers in the vicinity of the above four points inqW
space. Due to the spin-rotational symmetry the dynam
structure factor is given by

S~v,q,q'!}Im i E
2`

`

dxE
0

`

dte2 ivt1 iqx

3^@$S1
z~ t,x!6S2

z~ t,x!%,$S1
z~0,0!6S2

z~0,0!%#&,

~24!

where the positive~negative! sign corresponds toq'50
(q'5p).

A. Summary of large-N results

The dynamical structure factor has been previously ca
lated in the framework of a large-N approach.6 The limit N
→` of Eq. ~14! is equivalent to a theory of free massiv
Majorana fermions

FIG. 7. Physical picture of a two-spinon state. Spinons cor
spond to kinks connecting domains with different sign of the dim
ization.
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FIG. 6. ‘‘Resonating’’ ideal dimer configurations.
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H5
ivs

2 (
i 51

N

c i]xc i2c̄ i]xc̄ i1 imc i c̄ i . ~25!

The presence of the mass term reflects the spontan
breakdown of parity, which in turn implies the existence
two degenerate ground states. The sign of the mass term
well as the expectation values^sa& and^ma&, depend on the
choice of ground state. In the case where^sa&Þ0 ~the mass
of the triplet is positive!, the structure factor forq'50 andq
around 0, p was shown to be6

S~v,q'p,0!}
m

uvu
d~v2Avs

2~q2p!21m2!,

S~v,q'0,0!}
m2q2

s3As224m2
, ~26!

wheres25v22vs
2q2. The explicit expressions for the struc

ture factor around (q,q')5(0,p),(p,p) are complicated,
but reveal the presence of incoherent two- and three-par
continua, respectively. We will now show that the resu
obtained in the large-N limit are qualitatively incorrect. The
reason for this failure of the large-N approach is that it en
tirely neglects the existence of topological kinks interpol
ing between the two degenerate ordered ground states.
trapolation of the large-N results to lower values ofN should
be done with caution because the spectrum of theO(N)
Gross-Neveu model is very sensitive to the value ofN.11

B. Exact results

We now determine the dynamical structure factor us
exact results on form factors in the sine-Gordon model.19–21

We start with the caseq'50, q'0. The smooth componen
of the sum of the two spin densities is expressed in term
the sine-Gordon models as follows:

S1
z~x!1S2

z~x!usmooth}]xw11]xw2 . ~27!

This is nothing but the sum of the temporal components
the current operators in the two sine-Gordon modelsj 1

0

1 j 2
0 ). We are interested in the structure factor, i.e.,

S~v,q'0,0!}Im (
s56

i E
2`

`

dxE
0

`

dt

3ei (v1 i«)t2 ivqx^@ j s
0~x,t !, j s

0~0,0!#&,

~28!

wherevs is the velocity of the excitations. We express E
~28! in the spectral representation using our knowledge o
complete set of states in terms of~anti! soliton scattering
states. Energy and momentum are parametrized in term
the rapidity variableu as

p5m sinhu, e5m coshu, ~29!

wherem is the mass of the four elementary excitations. T
resolution of the identity is given by
us
f
, as

le

-
x-

g

of

f

.
a

of

e

15 (
n50

`

(
a i

E du1•••dun

~2p!nn!

3uun•••u1&an•••a1

a1•••an^u1•••unu, ~30!

wheren is the number of particles anda iP$s6 ,s̄6% speci-
fies their respective ‘‘flavor’’~soliton or antisoliton in1 or
2 sector!. Inserting Eq.~30! in Eq. ~28! and using Poincare´
invariance yields

S~v,q'0,0!}22p Im (
n50

`

(
a i

E du1•••dun

~2p!nn!

3uF j 0~u1•••un!a1•••an
u2

3F dS vsq2m(
j

sinhu j D
v2m(

j
coshu j1 i«

2

dS vsq1m(
j

sinhu j D
v1m(

j
coshu j1 i«

G , ~31!

whereF j 0(u1•••un)a1•••an
is the sine-Gordon current form

factor

F j 0~u1•••un!a1•••an
[^0u j 0~0,0!uun•••u1&an•••a1

.
~32!

We note that ann-particles state only contributes to Eq.~31!
above then-particle threshold, i.e.,s25v22vs

2q2>n2m2.
Thus, at low energiess2<16m2 only two-particle states con
tribute. The corresponding form factor is19

F j 0~u1 ,u2!ss̄522m sinhS u11u2

2 D f ~u12u2!,

f ~u!5 i
sinhu/2

2p

3expS E
0

`

dk

sin2S k

2
~u2p i ! D

k sh~pk! F thS pk

2 D21G D .

~33!

After performing theu integrations we obtain

S~v,q'0,0!}
m2vs

2q2u f „2u~s!…u2

s3As224m2
, ~34!

whereu(s)5arccosh(s/2m) and 4m2,s2,16m2. As we al-
ready mentioned, the result~34! is exact as long ass2

,16m2. For larger energy transfers there are~small! correc-
tions due to four, six, eight, etc., particle states. These ca
calculated in the same way as the two-particle contributi
Approaching the thresholds52m from above, Eq.~34! goes
to zero likeAs22m.
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The result~34! has the same structure as the one obtai
in the large-N approximation. We note that the vanishing
the structure factor forq50@S(v,0,0)50# reflects the fact
that thez component of spin is a conserved quantity.

Next, we consider the structure factor at (q'0,p). The
smooth component of the difference of spin densities is

S1
z~x!2S2

z~x!usmooth}]tw12]tw2 . ~35!

This is precisely the difference of the spatial components
the currents in the two sine-Gordon models (j 1

1 2 j 2
1 ). Using

the exact two-particle form factor we obtain the leading co
tribution to the structure factor

S~v,q'0,p!}
m2v2u f „2u~s!…u2

s3As224m2
, ~36!

where f (u) is given by Eq.~33! and again 4m2,s2,16m2.
Note that the structure factor does not vanish forq→0 as the
magnetization difference between chains is not conser
This is due to the fact that our starting point doesnot have
O~4! symmetry: after the duality transformation we obtain
O~4! symmetric Lagrangian, but correlation functions tran
form nontrivially. This result is of course expected, since
interchain interaction must break the O(4);SU(2)
3SU(2) down to SU~2!.

Finally, we examine the structure factor at (q'p,0) and
(q'p,p). The bosonized forms for the staggered comp
nents of the sum and difference of the spin densities
found to be

S1
z~x!1S2

z~x!ustagg}cosApF cosApQ,

S1
z~x!2S2

z~x!ustagg}sinApF sinApQ, ~37!

whereF5(w11w2)/A2 andQ5(u12u2)/A2. At present
it is not known how to calculate form factors for the oper
tors appearing in Eq.~37! as they involve both the field an
the dual field. However, it is still possible to determine t
qualitative behavior of the structure factor. From Eq.~37! it
is clear that the structure factor involves the calculation
form factors of operators

@cos or sin#SAp

2
w1D @cos or sin#SAp

2
u1D

@cos or sin#SAp

2
w2D @cos or sin#SAp

2
u2D . ~38!

These form factors are obviously products of form factors
the two sine-Gordon models. Let us therefore concentrate
the1 sector for the time being. It was shown in Ref. 22 th
the operators cosAp/2u1 and sinAp/2u1 in the sine-Gordon
model with coupling constantb5A8p have fermionic char-
acter and thus have nontrivial form factors with one-solit
states. On the other hand, we know from Ref. 19 t
cosAp/2w1 and sinAp/2w1 are of bosonic character. We
therefore, conclude that1 part of the operator~38! has fer-
mionic character. This implies that it couples only to sta
with at least one~anti! soliton. An analogous statement hold
true for the2 sector, so that the leading contribution to t
d
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-
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-
re

-

f

n
on
t

t

s

structure factor comes from two-particle states. In oth
words no coherent one-particle excitation exists.

From the above results for the dynamical structure fac
we deduce that the low-lying excitations are described
terms of a gapped two-particle scattering continuum. As
have mentioned above, the elementary excitations carry s
1/2. This leads us to identify them asmassive spinons.

VII. SUMMARY

We have studied the effects of pure current-current in
actions in a frustrated two-leg spin ladder. We have sho
that spinons, which are gapless topological excitation
propagating along decoupled Heisenberg chains, surviv
elementary excitations in the frustrated ladder, but acqui
finite mass gap. We have given an interpretation of th
massive spinons as quantum dimerization kinks. The ki
are deconfined and, in all physical states, appear only
pairs. As a result their contribution to the dynamical stru
ture factor is entirely incoherent. Our findings bear a stro
resemblance to those of~Ref. 23!.

We believe that our results not only apply to the ladd
~5!, but with some modifications also to the zig-zag ladd
~1!. As discussed above, in the zig-zag case there is a t
term in addition to the current-current interaction. We co
jecture that the effect of the twist term is merely to shift t
minimum of the two-spinon continua at (q5p,0) and (q
5p,p) to incommensurate wave numbers, i.e., to (q5p
1d,0) and (q5p1d,p), where udu!1. Such a picture is
consistent with what is known from numerical studies5,24–26

and also fits well to what one would expect on the basis of
~uncontrolled! extrapolation of the results ford5O(1)
~Refs. 27,28! to udu!1.

Coming back to the twistless chain~5!, it should be
pointed out that its ground state and excitations have b
previously studied for the special caseJ35J ~Refs. 29,30!
~‘‘Bose-Gayen model’’!. In this case, the Hamiltonian~5!
exhibits an enlarged~local! symmetry, related to the inter
changeS1(n)↔S2(n) at arbitrary rung n, and decouples
into two commuting parts describing either an array of e
tirely decoupled on-rung singlets or an effectiveS51
chain.30 In both cases, the ground state belongs to the u
versality class of the~undimerized! Haldane spin liquids
with the spin-1 massive magnons being coherent elemen
excitations.14,23 This is in marked contrast with our finding
for J35 1

2 J'!J and implies the existence of a crossov
between the two regimes at some intermediate coupling.

It should be understood that the region where the marg
ally perturbed ladder (l250) and the Bose-Gayen mode
start overlapping, i.e., the vicinity of the pointJ'52J3

52J, is not accessible within our continuum approac
based on the assumption thatJ' ,J3!J. Staying on the line
J'52J3 and increasingJ3 would enforce the amplitude o
the current-current perturbation (l1) to increase, in which
case no reliable conclusions are available. On the other h
one can start approaching the Bose-Gayen regime by k
ing J' fixed and increasingJ3 . In this case one inevitably
deviates from the lineJ'52J3 , and that gives rise to the
appearance of the strongly relevant perturbationl2n1•n2.
The latter introduces an extra potential



a
to
te

th

el
as

iv

del.
her

ne-
ion

l-
re

ort
der
s

PRB 61 8877FATE OF SPINONS IN SPONTANEOUSLY DIMERIZED . . .
U;l2@2 cosA2p~w12w2!2cosA2p~w11w2!

3cosA2p~u12u2!#, ~39!

that couples the two sine-Gordon models~16!, removes the
Z2 degeneracy between the two dimerized ground states,
thus leads to soliton confinement. The soliton-antisoli
pairs start forming triplet and singlet massive bound sta
and transform to coherent single-particle excitations. If
deviation from the lineJ'52J3 is large enough, thel2
perturbation takes over, and the effective low-energy fi
theory becomes that of four Majorana fermions, with a m
term

} il2S (
a51

3

cac̄a23c0c̄0D
as it is the case for the standard~nonfrustrated! ladder.14 It is,
therefore, tempting to speculate that the two mass
d
.
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r-
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ev
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nd
n
s

e

d
s

e

Haldane phases on the both sides of the lineJ'52J3 can be
smoothly connected with those of the Bose-Gayen mo
This, however, does not exclude the existence of ot
phases in the three-parameter space of the model~5!.

As discussed in Refs. 31 and 28, a similar soliton confi
ment scenario is realized if one adds an explicit dimerizat
to the zig-zag Hamiltonian~1!.
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