PHYSICAL REVIEW B VOLUME 61, NUMBER 13 1 APRIL 2000-I

Quantum phase interference for quantum tunneling in spin systems

J.-Q. Liang
Department of Physics, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
and Institute of Theoretical Physics and Department of Physics, Shanxi University,
Taiyuan, Shanxi 030006, People’s Republic of China

H. J. W. Muler-Kirsten'
Department of Physics, University of Kaiserslautern, D-67653 Kaiserslautern, Germany

D. K. Park
Department of Physics, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
and Department of Physics, Kyungnam University, Masan, 631-701, Korea

F.-C. Pu
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences,
Beijing 100080, People’s Republic of China
and Department of Physics, Guangzhou Normal College, Guangzhou 510400, People’s Republic of China
(Received 14 September 1999

The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis

is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspon-
dence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable
phase of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise
under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is
significant for quantum phase interference is discovered with the quantum theory of spin systems in addition to
the known phase obtained with the semiclassical treatment of spin. We also show the energy dependence of the
effect and obtain the tunneling splitting at excited states with the help of periodic instantons.

[. INTRODUCTION case not related to Kramers’ degeneracy since the external
magnetic field breaks the time reversal symmetry. A more
Quantum tunneling in spin systems has attracted considdetailed investigation of quantum phase interference has
erable attention both theoretically and experimentally inbeen given recentl}* An experimental observation of the
view of a possible experimental test of the tunneling effectmagnetic field dependent oscillation of tunneling splitting
for mesoscopic single domain particles in which case it ishas also been reportetbr the octanuclear iron oxo-hydroxo
known as macroscopic quantum tunneltrfgin particular  cluster Fg. The giant spin model we consider here is suitable
the coherent tunneling between two degenerate metastabie describe the Remolecular cluster and therefore has prac-
orientations of magnetization results in the superposition ofical interest.
macroscopically distinguishableclassically degenerate In the traditional theory, the quantum phase induced by
states, the understanding of which is a longstanding problerthe Zeeman term has been investigated with the semiclassi-
in quantum mechanics and is called macroscopic quanturcal method in which the spin is treated as a classical vector.
coherencéMQC).2 Until now only magnetic molecular clus- With the help of the spin coherent state-path-integral tech-
ters have been the most promising candidates to observeque an effective Hamiltonian and Lagrangian are obtained.
MQC.* Quenching of MQC for half-integer spin is a beauti- The Zeeman term is proportional to the linear velocity and
ful observation of quantum tunneling in spin particles andtherefore emerges as a phase of the Feynman kernel in the
has been investigated in the literature by means of the phasmaginary time for quantum tunneling. It is, no doubt, inter-
interference of spin coherent state-Feynman-paths whichsting to explore the underlying physics of the phase related
possess a phase with obvious geometric meamingjThe to the Zeeman energy of the magnetic field and to present an
qguenching of MQC has been interpreted physically as Kramanalysis of the quantum phase based on a full quantum me-
ers’ degeneracy. The geometric phase has also been showndaanical theory of the spin system. To this end we use a
be equivalent to a Wess-Zumino type interaction in quantuntecently developed method, namely, the potential field de-
mechanics. However the effect of geometric phase interfer- scription of quantum spin systems of Ulyanov and Zaslavskii
ence is far richer than Kramers’ degeneracy. For examplgUZ) (Ref. 12 and begin with the Schdinger equation of
the Zeeman energy of an external magnetic field appliedhe spin particle. In the UZ method the spin-coordinate cor-
along the hard axis for a biaxial spin particle can be intro-respondence is exact unlike the semiclassical approach of
duced to produce an additional geometric pHdsehe re-  spin where the correspondence is approximate in the large
sulting quenching of the tunneling splitting or MQC is in this spin limit (see Appendix A for detai)s A point-particle-like
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Hamiltonian is obtained and the Zeeman term of the mag-
netic field along the hard axis of the biaxial spin system m(¢)=

V() =K, sirt ¢,

becomes a gauge potential which does not affect the equation 2K (1—\siPg)

of motion. However, the nonintegrable phase of the gauge

potential leads to the quantum phase interference known as N = & _ h )
the Aharonov-BohniAB) effect. A substantial result derived Ky’ @=gmeh

from the quantum theory of spin is the additional phase in- dL .
duced by the Zeeman term which is significant to the quanEin agrangian

tum phase interference and is overlooked in the semiclassical m(é) .

app_roach. The tunneling spl?ttings for both ground state and_ Ls=T(¢+a)2—V(¢). (5)
excited states are also obtained up to the one loop approxi-

mation. The paper is Organized as follows. In Sec. Il we ﬁrSt’rhe position dependent mass may create an Ordering ambi-
give a brief review of the semiclassical treatment of Spin |ngu|ty upon quantization_ This is the reason Why we use the
quantum tunneling. An effective Hamiltonian similar to that g|liptic integral transformation in the following to obtain a
of a point particle for a biaxial spin particle is obtained by point-particle-like Hamiltonian with a constant mass. In the
starting from the Schuinger equation following the poten- apove derivation we have shifted the angidy /2 for our

t|a| f|e|d deSCI’iption Of quantum Spin SyStemS. We ShOW hOV\bonvenience_ The periodic poten“m( ¢) has degenerate
the Zeeman energy term of the magnetic field along hargacya. The guantum tunneling from one vacuug=0) to

axis becomes a gauge potential. The tunneling splitting anghe neighboring oned= =) is dominated by instantons and
its oscillation with respect to the magnetic field are discussegyalyated to exponential accuracy by

in Sec. lll. We obtain in Sec. IV the periodic instantons and

oscillation of tunneling splitting at excited states and demon- e Ssc= g~ /Ldr (6)
strate the energy dependence of the oscillation. Our conclu-
sions and discussions are given in Sec. V. where
m de)\? d m
Il. EFFECTIVE POTENTIALS OF THE BIAXIAL SPIN ng(;@ d—¢ —iam(¢)d—¢+v( b)— (;4’)&2 7
PARTICLE IN A MAGNETIC FIELD 2 T T 2

We consider a giant spin model which is assumed to havjéS the Euclidean Lagrangian with the imaginary timeit.

biaxial anisotropy withXOY easy plane and the eagyaxis | € imaginary partthe second terimin L¢ induced by the
in the XOY plane. An external magnetic field is applied Z6€man term becomes a phase in €.

along the hardz axis. The Hamilton operator of the model Seee =S 6

can be written as e sc=g “scg!’s, (8)

. - - . whereS, is the remaining action, and the phase derived with
H=K,S;+K;S,—gughs,, (D the semiclassical method is seen to be

whereS,, S, and$, are the three components of the spin . wr
operatorK; andK, with K;>K,>0 are the anisotropy con- 0= f am(p)dp= ————
stants andug is the Bohr magnetorg is the sping factor 0 2K V1—A\
which is taken to be 2 here. The last term of the Hamiltonian

is the Zeeman energy associated with the magnetic field \(l:\;?):;?wiga:(:\sn dtoar:'cri]((:eloglgv?/instgr?unpnheallisr\e slnggsgecvceehgfeméﬁ?
The Hamiltonian Eq(1) is believed to describe the feno- gs.

lecular cluster and is the same as that in Ref. 4. Before WEEg\?\;ﬁe ;gi;)?;‘:’s(énd;gc%d(rbeé tgi;ﬁir?;ntheengr?z t(;rrri?, the
begin with the investigation with the UZ method we give a P - P pin party

brief review of the semiclassical approach for the model Ofeffect) which we omitted in the Euclidean action should be

Eqg. (1). In the semiclassical method the spin is treated as gnderstoqd. We now turn to the quantummﬁeory of Spin.
classical vector Following Ref. 12 we start from the Scluimger equation

9

H®($)=ED (). (10

) ) o ~ The explicit form of the action of the spin operator on the
The spin-coordinate correspondence is given by the definifnciion () is seen to be
tion of canonical variabléd ¢ andp=scosé. As shown in
Appendix A the usual spin commutation relati§s; ,S;]
=i GijkASk is only approximately recovered in the large spin
limit. With the spin coherent state path integral technique

S=s(sinfd cose¢,sind sin¢, cosh). (2

Asxzscosda—sinqb%, éy:ssin¢+cos¢%,

one obtains an effective Hamiltonfah 14 . d
S,=—i—, (19)
p° 40
HS:W_ ap+V(¢) (3)  where the generating functioh(¢) is constructed in terms

of the conventional spin functions of tH&, representation
with such as
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Cm

_m:—s V(s—m)!(s+m)!

which obviously obeys the following boundary condition:

eim</>

12

D(p+2m)=e>"SP (). (13

Thus we have periodic wave functions for integer spand
antiperiodic functions for half-integes. The antiperiodic

wave functions naturally give rise to the spin parity effect as
we shall see. Substitution of the differential spin operator:sWh

Eq. (11) into Eq. (10) yields

2 d? ( 1) _ d
—K{(1—N\si ¢)d762—K2 s—5 S|n2¢£

o d
+|a@+V(¢) d(¢p)
=Ed(¢) (14)
with
V(¢)=K,s?°coSp+K,ssirt¢. (15)
In the new variablex defined by
(¢ d¢’ _
< |y oW 1o

which is the incomplete elliptic integral of the first kind with

modulusk®=\, the trigonometric functions si# and cosp
become the Jacobian elliptic functions sn(cn(x) with the

same modulus respectively. We then make use of the follow

ing transformation:

P[p(x)]=dn*(x)e M y(x), 17
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is periodic with period Z(k) and symmetric with respect to
the coordinate origix=0o[U(x)=U(—x)]. The quantity
K(K) is the complete elliptic integral of the first kind. The
minima of the potential, namely, the vacua which have been
shifted to zero by adding a constant, are located-é2n
+1)K(k) with n being an integer. The positions of potential
peaks are at-2n/C(k), and barrier height is

2

a
E=Kys(s+ 1)+ 4(1——)\)K1

(22)
ena=0, i.e., the Zeeman term in E@l) vanishes, the
potential becomes exactly the same as that in Ref. 15. The
shape of the scalar potential is not changed by the external
magnetic field along the hard axis. In the new variabtbe
wave function®[ ¢(x)] is also periodic for integes and
antiperiodic for half-integes with a period 4C(k) and the
boundary condition of the wave functiop(x) is, however,
determined by Eq917) and(19), i.e.,

YIX+HAK(K)]=(— 12 TN y(x). (23

One should bear in mind from E¢L6) thatx= K (k) corre-
sponds to the original angle variabfe= /2. The boundary
condition Eq.(23) plays an important role in the following
calculation of the tunneling splitting.

IIl. TUNNELING SPLITTING AT THE GROUND STATE

The tunneling between degenerate vadte case we
consider hergeresults in the level splitting and is dominated
by (vacuun) instantons which are nontrivial solutions of the
Euclidean equation of motion with finite action. In the con-
text of quantum mechanics the instanton may be visualized
s a pseudoparticle moving between degenerate vacua under
the barrier and has nonzero topological charge but zero en-
ergy. The tunneling splitting can be obtained from the tran-
sition amplitude between degenerate vacua which has a Eu-

wheredn(x) = y1— Asm?(x) is also a Jacobian elliptic func- clidean path-integral representation. The first explicit

tion. Substituting Eq.(17) into Eg. (14) we obtain, after

calculation of the tunneling splitting in terms of the instanton

some tedious but not too complicated algebra, an equivalempethod was carried out long ago for the double-well

Schralinger equation with the desired Hamiltonian, i.e.,
2
B

4
—|d—X+ (x)

+ U(X)] p(X)=E(x). (18

The functionf(x) in the unitary transformation is determined

potential*®
The Hamilton function corresponding to E{.8) is

1
H=5—[P+AX+U(X), (24)

by the requirement of gauge covariance and the scalar potemhere m=1/2K, is the mass of the pointlike particle. The

tial is required to be real.(x) is therefore defined by

Lagrangian is

m. .
L==x2—A(x)x—U(x).

5 (25

A gauge potential induced by the Zeeman energy term i§Vith the Wick rotationr=it the Euclidean Lagrangian is

df(x) _ —as 19
dx  Kidn(x)
found to be
Alx)= — a(2s+1) 20
()= 2K, dn(x)
The scalar potential
cn(x)
U(x)=é&cd?(x), cd(x)= (22)

dn(x)

seen to be

m. .
Le=§x2+iA(x)x+ U(x). (26)

In the above Euclidean Lagrangian and from now on
=dx/dr denotes the imaginary time derivative. The gauge

potential A(x) indeed does not affect the equation of motion
which is
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dU(x)
dx

However, it leads to the phase interference which can bé is somewhat surprising that the quantum theory gives rise
observed as the oscillation of tunneling splitting. This is ex-to 2s+1 times the semiclassical phase angleinstead of

mx= (27) fDxe‘feﬁ'-e‘“:e“(ZS”)QSG(Xf,,B;Xi,—,8)- (34

actly an AB effect in a generalized meaning. just one. In Appendix B we explain the reason why the sig-
The instanton solution of Eq27) can be found by direct nificant phase angles®, can be missed in the semiclassical
integration and the result is treatment of spin based on the large spilimit. However,
1 ) the additional phase, i.e.,s8s, in the Euclidean Feynman
X(7)=sn “(tanhw7), w=4K.¢, (289 kernel is cancelled by the the phaseFah Eq. (33) and does

which is nothing but a kink configuration. The instanton not affect the tunneling splitting of the ground state. We will
starts from the vacuum;= — K(k) at 7=—c and reaches S€e in the following section that the cancellation would not

the center of the potential barriek€0) at =0 and then be exact for excited states and the additional phase has effect

arrives at the neighboring vacuur=k(k) at 7=w. The ©n the tunneling splitting which, however, should be inves-

Euclidean action evaluated along the instanton trajectory istigated in the framework of the complex time path-integral.
We should bear in mind that the above phase is obtained

* . , by an anticlockwise tunneling. The remaining Feynman ker-
Sc—f Le[X(7),Xo(7)]d7=B—i(2s+1)0s, (29 pel

where the first term

sz Dxe*f[jﬂLédT, Lg:EszrU(x) (35

[€ 1+
B= K_2|” 1- N (30) is independent of the direction of tunneling. For the clock-
wise tunneling from the same initial position/C(k) to the
reduces to the well-known actidht'41"~%hena=0. The  final position—3K (k) the result is the same except with an
imaginary part leads to a phase in the Euclidean Feynmaapposite sign of the phase. Adding the contributions of
propagator which is 2+ 1 times the semiclassical phage clockwise and anticlockwise tunnelings we finally have the
To calculate the tunneling splitting, we start from the in- tunneling splitting expressed as

stanton induced transition amplitude
eZ,BEO

(B Xi(=B))= 2 (xelme)(m|Pee ) mifx;). AN
o (31  The tunneling kernelG in the one loop approximation,

. namely, including the preexponential factor, can be calcu-
Pe is the projector onto the subspace of fixed enétgynd  |ated with the standard procedure. Before we give the final
Ini),Imy) are the excitations above two vacua lying on dif- result, it is worthwhile to point out that in the evaluation®f
ferent sides of the barrier. The left hand side of B1) has  the contributions from one instanton and one instanton plus
the path integral representation and is evaluated in the fokhe infinite number of instanton-anti-instanton pairs will be
lowing. We consider the tunneling from initial vacuu  taken into account. However, the phase induced by the gauge
=—K(Kk) (corresponding to the original angle variahle  potential for an instanton-anti-instanton pair vanishes. Thus
=—7/2) to the neighboring one;=K(k) (¢¢s=m/2) for  the single instanton phase is factored out of the tunneling
the fixed energyE, which is the degenerate ground statekernel. We have
energy. The small tunneling splitting of the ground state is

AEON

|cog ms+ 65]|G(X¢,B;%i,—B).  (36)

obtained from Eq(31) such that £ 3212

G~2Nge %fEoQe B, Q=2%——F—| |, (37
eZBEO K(K) J-BBL § (1_)\)7T
AEy~ F Dxe ) -p-e" 2
N R I ’ (32 hereN=1//Zm(¢/K,) Y andEq= w/2 is the usual ground
state energy of the harmonic oscillator. The tunneling split-
where ting is thus*
o 1 _ e l(merzen) AEy=|cod ms+ 0.]|4Ae,, Aso=QeB. (39
*r_ N !

ol K(K) ol — Kk ] When the external magnetic field vanishes=0) the tun-
N= 0io(0;) (0. (33  neling splitting reduces exactly to the previous réstflex-

cept thats? in the splitting amplitude of the semiclassical
The second equality iR comes from the boundary condition treatment is corrected a§s+1) by the quantum theory of
of our wave function Eq(23) and Q,0s denote the coordi- spin. The well known spin parity effe¢chamely, the tunnel-
nate origins of the local frames associated with each potering splitting would be quenched for half-integer sgnis
tial well. N is then a normalization constant calculated withrecovered by the factdcosas| and is surely due to the an-
the harmonic oscillator approximated wave function of thetiperiodicity of the wave function in the quantum theory of
ground state. Substitution of the Lagrangian &) into the  spin. The tunneling splitting oscillates with the external field
Feynman kernel in Eq.32) yields our interesting phase h and vanishes when
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sgh 1 two turning points which depend on energy. We now inves-
_DeE n+ 5| (390  tigate the tunneling and related quantum phase interference
2KiV1=A at excited states. The starting point is again the transition

wheren is an integer. The oscillation period of the tunneling @MPlitude of the barrier penetration projected onto the sub-
splitting with respect to the external fieldis given by space of fixed energy, i.e.,

. 2K 1—\

A gug 40 > <Erfw||5Eeiz’8ﬁ|Eim>:f dxed X g (X¢) (X))

To verify the validity of the tunneling splitting E438) we
compare the splitting value of E¢38) as a function of the
external magnetic fielth with the numerical result obtained
by performing a diagonalization of the Hamilton operatorfrom which the tunneling splitting is written as
Eq. (1). Adopting the data of the anisotropy constants given

in Ref. 4 such thaD=0.29XK, E=0.04& and taking into e2EB| o B
account the relations between anisotropy const#nts<, AE~— e*'s(”*zas)J' dxedx ye(Xs) e(X) G|,
andD, E, i.e.,K;=D+E, K,=D—E, the oscillating ampli- B 42)
tude of the tunneling splitting calculated from E§8) which

begins from 6.28& 10 1% for s=10 and increases with the B 5

magnetic field agrees with the numerical value of diagonalwhere x;=K(k) +X;, x;=—K(k)+x; denote the coordi-
ization perfectly. The period i&h=0.26T which is substan- nates in the local frames with origins atk’(k) and K(k),
tially smaller than the experimental value T% 1t has been respectively. Thus the phase factor of our wave functign
pointed out that the discrepancies between experimental arfi@n be factorized out. The tunneling at finite enegys
theoretical results can be resolved by including higher ordeflominated by the periodic instanfdri® which satisfies the

terms ofS, andS, in the Hamilton operator Eq1) in addi- following integrated equation of motion:
tion to the quadratic ternfs.

S+

sT+ 0=

XG(Xs,B;%i,—B) (41)

m.
2 —
IV. TUNNELING SPLITTING AND QUANTUM PHASE X -UMX)=-E (43
INTERFERENCE AT EXCITED STATES

The quantum phase induced by the Zeeman term is manwith periodic boundary condition. The periodic instanton is
festly computed from the Euclidean Feynman paths betweefound to be

[sin2sn(w7K) 51— )~ (1-\ ) ~), (44)

-1
x(r)=cd ( A[sin (@ K) 21— 72— (1-A 72

where s \/f
= Xdr=27?\| ————{(7'2 k) — Kk
w Jﬁmxidf PN R -k

2
9=2VKE(1-N7D), 7= \E P . (48)
1=A7 with z'?=1— 52, wherell denotes the complete elliptic in-
(45 tegral of the third kind. The tunneling phase for the anti-
clockwise tunnelingfrom x_ to x,) is seen to be

The periodic instanton moves between two turning points

depending on energy JM (2s+1)a 7= @
0= A(Xy)dX=————|tan +—
o AT ey

X.=*cd (k). (46) (49)

When the energy tends to zero the periodic instanton reducevg,hICh tends fo the vacuum mstantop pha_se WE@HO Y

to the vacuum instanton of E@28). The Euclidean action =0, »'=1). The clockwise tunnglmg gives rise to the

evaluated along the periodic instaﬁton s same result except for the phasg with an opposite S|gn._Add—
ing the two classes of the tunneling kernels the level splitting
is seen to be

S.=W+2EB8—i g, (47 -

where AE~ 7|c0357r+ O—2s6,)|1, (50
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where theory of spin. We present a formula of the tunneling split-
ting, Eqg.(54), as a function of the magnetic field, valid for
N A Ay TR low lying excited states, which for molecular clusters in
I j dxrdx;ihe(xp) (X)) G- (51) which the total spin is only about ten is more accurate than
the semiclassical treatment of spin for describing the quan-

The term 36, in Eq. (50) comes from the boundary condi- -
tum tunneling.

tion of  Eq. (23). The difference, i.e.fg—2s6s, is not just
a simple semiclassical phasgin this case. The phase inde-
pendent tunneling kern@ is now evaluated with the help of

the periodic instanton. Following the procedure in Refs. 23 This work was supported by the National Natural Science
and 24 we take into account the contributions of the instanggundation of China under Grant Nos. 1967701 and

ton and instanton plus the infinite number of pairs and com19775033. J.-Q.L. and D.K.P. also acknowledge support by
pute the end point integrations with the help of WKB wavethe Deutsche Forschungsgemeinschaft.
functions foryz. A quite general formula for Eq51) is
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APPENDIX A: APPROXIMATE SPIN-COORDINATE

_ 2
| ~2pe 2EB |~ W RZZM_ (52) CORRESPONDENCE IN THE SEMICLASSICAL
41C(k) 1—\7? TREATMENT OF SPIN
The level splitting is then given by In the conventional application of the spin coherent state
technique, two canonical variableg, and p=scosf are
adopted with the usual quantization
AE=|cogsm+ 0E—2503)|%efw. (53 P d

[é,p]=1. (A1)
. . < T > T! — /1 -T2
For low lying excited states <1, k<1, k -V1 .k We show in the following that the spin-coordinate corre-
<1) the energyE may be replaced by harmonic oscillator : :
spondence is only approximate up to order B)s

approximated el'ge'nvfallueE—>En= (2n~+ 1/2)‘3' !Expandlng From the relation between the spin operators and the polar
the complete elliptic integral$l(»'<,k), IC(k) in W [EQ.  ¢qordinate angles

(48)] as power series d’ and K(k) in Eq. (52) as power
series ok we obtain after some tedious algebra the tunneling Sx=ssinfcos¢, S, =ssinfsing, S,=scosf (A2)

splitting of thenth excited state, i.e., . . .
the usual commutation relation of spin operators reads

AE,=|cogsm+ 0 —2s6,)|4A¢,, (54)
! [Sc.Sy]=s?[singcosg, sindsing]
where 5 . .
=s“sin#[ cos¢, sind]sing
_e £ e +s?sind[sin 6, sin¢]cosde. (A3)
En= €p- (55)
nt(1—-n)"\ Ky

Using Eq.(Al), one can prove the following relations:
In Eq. (54) Oe, denotes the phase anglerdlh excited state

which is obtained from Eq49) with replacing the energi [sin®, cosp]=A, cos¢+iA_sing,
by (n+3)w. Whena=0 the tunneling splittings at excited
states again coincide with the previous re$uftsn terms of [sind, sing]=A, singp—iA_ cos¢ (A4)

the semiclassical treatment of spin in large spin limit which
means that the difference betwesh and s(s+1) can be Wit
neglected.

1
A, ==[V1—(cosb+ y)>+\1—(cosb—y)?],
V. CONCLUSION 2

On the basis of the UZ method for quantum spin systems 1
we found that the Zeeman term of the external magnetic field A_==[J1—(cosh+ y)>—\1—(cos6— y)?],
along the hard axis for a biaxial spin particle indeed turns out 2
to be a gauge potential in the point-particle-like Hamilton
operator. The gauge potential does not affect the equation
motion but leads to quantum phase interference as an AB
type effect in the spin tunneling. An additional phase angle
2s0 of the Euclidean action obtained by means of the quan; e |
tum mechanical treatment of spin does not affect the tunnel-
ing splitting of the ground state, however the effect on the [S..Sy]=iS,+ 0(s™3) (AB)
tunneling splitting of excited states has to be investigated
with inclusion of real time paths in the potential well. In which implies that the usual commutation relation holds only
addition the splitting amplitude is modified by the quantumin the large spin limit.

(\)/¥herey= 1/s. Substituting Eqs(A4) into Eq.(A3), one has

[Sk.Sy]=—is?sinOA_=iys?cosf+0(y*), (A5)
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APPENDIX B: RECOVERING THE SEMICLASSICAL
PHASE IN THE LARGE sLIMIT

To understand the reason why the phase angle, 2

missed in the semiclassical treatment of spin we consider thg.
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A(x)= (B3)

o
2K dn(x)

leads exactly to the semiclassical phase amiglewhile the
alar potential which contains an imaginary part is ill de-

following Schradinger equation obtained without the unitary finad. 1n the larges limit one might neglect the imaginary

transformatione'™ in the transformation Eq(17) for our
spin system:

ST LI L L L LI
ldX2 dn(X) dx Sa dnz(x) s( ) ‘//( )
=E¢(x),

Us(X)=Kps(s+1)cd?(x). (B1)
The Hamilton operator can be written as
~ s I 1
Hs=K; —|&—A(x) —i s+§
sn(x)cn(x) ~
——+ Uq(X). B2
a0 (X) (B2)

The gauge potential

part in comparison with the terrd (x) and then has the
Hamilton operator given by

2
HS=K1[—id—X—A<x> + 040,
~ 2 CYZ
U.(X)=K,s(s+1)cd“(X) — ———. B4
s(X) =Kzs( )cd<(x) 2K, (x) (B4)
The final Hamiltonian

~ 1 -~ ~

= [p— 2 -
Ae=gm (P AP+ 000, m=g-  (B9)

is the counterpart of the effective Hamiltonigh of Eqg. (3).
The corresponding Euclidean Lagrangian is

~ m. ~ .~
L§=§x2+iA(x)x+ U(x). (B6)
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