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Quantum phase interference for quantum tunneling in spin systems
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The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis
is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspon-
dence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable
phase of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise
under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is
significant for quantum phase interference is discovered with the quantum theory of spin systems in addition to
the known phase obtained with the semiclassical treatment of spin. We also show the energy dependence of the
effect and obtain the tunneling splitting at excited states with the help of periodic instantons.
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I. INTRODUCTION

Quantum tunneling in spin systems has attracted con
erable attention both theoretically and experimentally
view of a possible experimental test of the tunneling eff
for mesoscopic single domain particles in which case i
known as macroscopic quantum tunneling.1,2 In particular
the coherent tunneling between two degenerate metas
orientations of magnetization results in the superposition
macroscopically distinguishable~classically degenerate!
states, the understanding of which is a longstanding prob
in quantum mechanics and is called macroscopic quan
coherence~MQC!.3 Until now only magnetic molecular clus
ters have been the most promising candidates to obs
MQC.4 Quenching of MQC for half-integer spin is a beau
ful observation of quantum tunneling in spin particles a
has been investigated in the literature by means of the p
interference of spin coherent state-Feynman-paths w
possess a phase with obvious geometric meaning.2,5–8 The
quenching of MQC has been interpreted physically as Kra
ers’ degeneracy. The geometric phase has also been sho
be equivalent to a Wess-Zumino type interaction in quant
mechanics.9 However the effect of geometric phase interfe
ence is far richer than Kramers’ degeneracy. For exam
the Zeeman energy of an external magnetic field app
along the hard axis for a biaxial spin particle can be int
duced to produce an additional geometric phase.10 The re-
sulting quenching of the tunneling splitting or MQC is in th
PRB 610163-1829/2000/61~13!/8856~7!/$15.00
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case not related to Kramers’ degeneracy since the exte
magnetic field breaks the time reversal symmetry. A m
detailed investigation of quantum phase interference
been given recently.11 An experimental observation of th
magnetic field dependent oscillation of tunneling splitti
has also been reported4 for the octanuclear iron oxo-hydrox
cluster Fe8. The giant spin model we consider here is suita
to describe the Fe8 molecular cluster and therefore has pra
tical interest.

In the traditional theory, the quantum phase induced
the Zeeman term has been investigated with the semicla
cal method in which the spin is treated as a classical vec
With the help of the spin coherent state-path-integral te
nique an effective Hamiltonian and Lagrangian are obtain
The Zeeman term is proportional to the linear velocity a
therefore emerges as a phase of the Feynman kernel in
imaginary time for quantum tunneling. It is, no doubt, inte
esting to explore the underlying physics of the phase rela
to the Zeeman energy of the magnetic field and to presen
analysis of the quantum phase based on a full quantum
chanical theory of the spin system. To this end we us
recently developed method, namely, the potential field
scription of quantum spin systems of Ulyanov and Zaslavs
~UZ! ~Ref. 12! and begin with the Schro¨dinger equation of
the spin particle. In the UZ method the spin-coordinate c
respondence is exact unlike the semiclassical approac
spin where the correspondence is approximate in the la
spin limit ~see Appendix A for details!. A point-particle-like
8856 ©2000 The American Physical Society
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Hamiltonian is obtained and the Zeeman term of the m
netic field along the hard axis of the biaxial spin syste
becomes a gauge potential which does not affect the equa
of motion. However, the nonintegrable phase of the ga
potential leads to the quantum phase interference know
the Aharonov-Bohm~AB! effect. A substantial result derive
from the quantum theory of spin is the additional phase
duced by the Zeeman term which is significant to the qu
tum phase interference and is overlooked in the semiclas
approach. The tunneling splittings for both ground state
excited states are also obtained up to the one loop app
mation. The paper is organized as follows. In Sec. II we fi
give a brief review of the semiclassical treatment of spin
quantum tunneling. An effective Hamiltonian similar to th
of a point particle for a biaxial spin particle is obtained
starting from the Schro¨dinger equation following the poten
tial field description of quantum spin systems. We show h
the Zeeman energy term of the magnetic field along h
axis becomes a gauge potential. The tunneling splitting
its oscillation with respect to the magnetic field are discus
in Sec. III. We obtain in Sec. IV the periodic instantons a
oscillation of tunneling splitting at excited states and dem
strate the energy dependence of the oscillation. Our con
sions and discussions are given in Sec. V.

II. EFFECTIVE POTENTIALS OF THE BIAXIAL SPIN
PARTICLE IN A MAGNETIC FIELD

We consider a giant spin model which is assumed to h
biaxial anisotropy withXOY easy plane and the easyy axis
in the XOY plane. An external magnetic field is applie
along the hardz axis. The Hamilton operator of the mod
can be written as

Ĥ5K1Ŝz
21K2Ŝx

22gmBhŜz , ~1!

whereŜx , Ŝy , and Ŝz are the three components of the sp
operator.K1 andK2 with K1.K2.0 are the anisotropy con
stants andmB is the Bohr magneton.g is the sping factor
which is taken to be 2 here. The last term of the Hamilton
is the Zeeman energy associated with the magnetic fielh.
The Hamiltonian Eq.~1! is believed to describe the Fe8 mo-
lecular cluster and is the same as that in Ref. 4. Before
begin with the investigation with the UZ method we give
brief review of the semiclassical approach for the model
Eq. ~1!. In the semiclassical method the spin is treated a
classical vector

S5s~sinu cosf,sinu sinf, cosu!. ~2!

The spin-coordinate correspondence is given by the de
tion of canonical variables13 f andp5s cosu. As shown in
Appendix A the usual spin commutation relation@Ŝi ,Ŝj #

5 i e i jk Ŝk is only approximately recovered in the large spins
limit. With the spin coherent state path integral techniq
one obtains an effective Hamiltonian8,11,14

Hs5
p2

2m~f!
2ap1V~f! ~3!
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m~f!5
1

2K1~12l sin2f!
, V~f!5K2s2 sin2f,

l5
K2

K1
, a5gmBh, ~4!

and Lagrangian

Ls5
m~f!

2
~ḟ1a!22V~f!. ~5!

The position dependent mass may create an ordering a
guity upon quantization. This is the reason why we use
elliptic integral transformation in the following to obtain
point-particle-like Hamiltonian with a constant mass. In t
above derivation we have shifted the anglef by p/2 for our
convenience. The periodic potentialV(f) has degenerate
vacua. The quantum tunneling from one vacuum (f50) to
the neighboring one (f5p) is dominated by instantons an
evaluated to exponential accuracy by

e2Ssc5e2*Ls
edt, ~6!

where

Ls
e5

m~f!

2 S df

dt D 2

2 iam~f!
df

dt
1V~f!2

m~f!

2
a2 ~7!

is the Euclidean Lagrangian with the imaginary timet5 i t .
The imaginary part~the second term! in Ls

e induced by the
Zeeman term becomes a phase in Eq.~6!

e2Ssc5e2S̃sceius, ~8!

whereS̃sc is the remaining action, and the phase derived w
the semiclassical method is seen to be

us5E
0

p

am~f!df5
ap

2K1A12l
~9!

which leads to the quantum phase interference betw
clockwise and anticlockwise tunnelings. Since we here e
phasize the phase induced by the Zeeman energy term
known phase terms(df/dt) ~responsible for the spin parity
effect! which we omitted in the Euclidean action should
understood. We now turn to the quantum theory of spin.

Following Ref. 12 we start from the Schro¨dinger equation

ĤF~f!5EF~f!. ~10!

The explicit form of the action of the spin operator on t
function F(f) is seen to be

Ŝx5s cosf2sinf
d

df
, Ŝy5s sinf1cosf

d

df
,

Ŝz52 i
d

df
, ~11!

where the generating functionF(f) is constructed in terms
of the conventional spin functions of theŜz representation
such as
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F~f!5 (
m52s

s cm

A~s2m!! ~s1m!!
eimf ~12!

which obviously obeys the following boundary condition:

F~f12p!5e2p isF~f!. ~13!

Thus we have periodic wave functions for integer spins and
antiperiodic functions for half-integers. The antiperiodic
wave functions naturally give rise to the spin parity effect
we shall see. Substitution of the differential spin operat
Eq. ~11! into Eq. ~10! yields

F2K1~12lsin2f!
d2

df2
2K2S s2

1

2D sin 2f
d

df

1 ia
d

df
1V~f!GF~f!

5EF~f! ~14!

with

V~f!5K2s2cos2f1K2s sin2f. ~15!

In the new variablex defined by

x5E
0

f df8

A12l sin2f
5F~f,k! ~16!

which is the incomplete elliptic integral of the first kind wit
modulusk25l, the trigonometric functions sinf and cosf
become the Jacobian elliptic functions sn(x), cn(x) with the
same modulus respectively. We then make use of the foll
ing transformation:

F@f~x!#5dns~x!ei f (x)c~x!, ~17!

wheredn(x)5A12lsn2(x) is also a Jacobian elliptic func
tion. Substituting Eq.~17! into Eq. ~14! we obtain, after
some tedious but not too complicated algebra, an equiva
Schrödinger equation with the desired Hamiltonian, i.e.,

H K1F2 i
d

dx
1A~x!G2

1U~x!J c~x!5Ec~x!. ~18!

The functionf (x) in the unitary transformation is determine
by the requirement of gauge covariance and the scalar po
tial is required to be real.f (x) is therefore defined by

d f~x!

dx
5

2as

K1dn~x!
. ~19!

A gauge potential induced by the Zeeman energy term
found to be

A~x!52
a~2s11!

2K1dn~x!
. ~20!

The scalar potential

U~x!5jcd2~x!, cd~x!5
cn~x!

dn~x!
~21!
s
s

-

nt

n-

is

is periodic with period 2K(k) and symmetric with respect to
the coordinate originx5o@U(x)5U(2x)#. The quantity
K(k) is the complete elliptic integral of the first kind. Th
minima of the potential, namely, the vacua which have be
shifted to zero by adding a constant, are located at6(2n
11)K(k) with n being an integer. The positions of potenti
peaks are at62nK(k), and barrier height is

j5K2s~s11!1
la2

4~12l!K1
. ~22!

When a50, i.e., the Zeeman term in Eq.~1! vanishes, the
potential becomes exactly the same as that in Ref. 15.
shape of the scalar potential is not changed by the exte
magnetic field along the hard axis. In the new variablex the
wave functionF@f(x)# is also periodic for integers and
antiperiodic for half-integers with a period 4K(k) and the
boundary condition of the wave functionc(x) is, however,
determined by Eqs.~17! and ~19!, i.e.,

c@x14K~k!#5~21!2sei [2asp/K1A12l ]c~x!. ~23!

One should bear in mind from Eq.~16! that x5K(k) corre-
sponds to the original angle variablef5p/2. The boundary
condition Eq.~23! plays an important role in the following
calculation of the tunneling splitting.

III. TUNNELING SPLITTING AT THE GROUND STATE

The tunneling between degenerate vacua~the case we
consider here! results in the level splitting and is dominate
by ~vacuum! instantons which are nontrivial solutions of th
Euclidean equation of motion with finite action. In the co
text of quantum mechanics the instanton may be visuali
as a pseudoparticle moving between degenerate vacua u
the barrier and has nonzero topological charge but zero
ergy. The tunneling splitting can be obtained from the tra
sition amplitude between degenerate vacua which has a
clidean path-integral representation. The first expli
calculation of the tunneling splitting in terms of the instant
method was carried out long ago for the double-w
potential.16

The Hamilton function corresponding to Eq.~18! is

H5
1

2m
@P1A~x!#21U~x!, ~24!

wherem51/2K1 is the mass of the pointlike particle. Th
Lagrangian is

L5
m

2
ẋ22A~x!ẋ2U~x!. ~25!

With the Wick rotationt5 i t the Euclidean Lagrangian i
seen to be

Le5
m

2
ẋ21 iA~x!ẋ1U~x!. ~26!

In the above Euclidean Lagrangian and from now onẋ
5dx/dt denotes the imaginary time derivative. The gau
potentialA(x) indeed does not affect the equation of moti
which is
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mẍ5
dU~x!

dx
. ~27!

However, it leads to the phase interference which can
observed as the oscillation of tunneling splitting. This is e
actly an AB effect in a generalized meaning.

The instanton solution of Eq.~27! can be found by direc
integration and the result is

xc~t!5sn21~ tanhvt!, v254K1j, ~28!

which is nothing but a kink configuration. The instanto
starts from the vacuumxi52K(k) at t52` and reaches
the center of the potential barrier (x50) at t50 and then
arrives at the neighboring vacuumxf5K(k) at t5`. The
Euclidean action evaluated along the instanton trajectory

Sc5E
2`

`

Le@xc~t!,ẋc~t!#dt5B2 i ~2s11!us , ~29!

where the first term

B5A j

K2
ln

11Al

12Al
~30!

reduces to the well-known action8,11,14,17–19whena50. The
imaginary part leads to a phase in the Euclidean Feynm
propagator which is 2s11 times the semiclassical phaseus .

To calculate the tunneling splitting, we start from the i
stanton induced transition amplitude

^xf~b!uxi~2b!&5 (
mf ,ni

^xf umf&^mf uP̂Ee2bĤuni&^ni uxi&.

~31!

P̂E is the projector onto the subspace of fixed energy20 and
uni&,umf& are the excitations above two vacua lying on d
ferent sides of the barrier. The left hand side of Eq.~31! has
the path integral representation and is evaluated in the
lowing. We consider the tunneling from initial vacuumxi
52K(k) ~corresponding to the original angle variablef i
52p/2) to the neighboring onexf5K(k) (f f5p/2) for
the fixed energyE0 which is the degenerate ground sta
energy. The small tunneling splitting of the ground state
obtained from Eq.~31! such that

DE0;Ue2bE0

b
FE

2K(k)

K(k)

Dxe2*2b
b LedtU, ~32!

where

F5
1

c0@K~k!#c0* @2K~k!#
5

e2 i (ps12sus)

N
,

N5c0~0 f !c0~0i !. ~33!

The second equality inF comes from the boundary conditio
of our wave function Eq.~23! and 0i ,0f denote the coordi-
nate origins of the local frames associated with each po
tial well. N is then a normalization constant calculated w
the harmonic oscillator approximated wave function of t
ground state. Substitution of the Lagrangian Eq.~26! into the
Feynman kernel in Eq.~32! yields our interesting phase
e
-

s

n

l-

s

n-

E Dxe2*2b
b Ledt5e1 i (2s11)usG~xf ,b;xi ,2b!. ~34!

It is somewhat surprising that the quantum theory gives
to 2s11 times the semiclassical phase angleus instead of
just one. In Appendix B we explain the reason why the s
nificant phase angle 2sus can be missed in the semiclassic
treatment of spin based on the large spins limit. However,
the additional phase, i.e., 2sus , in the Euclidean Feynman
kernel is cancelled by the the phase ofF in Eq. ~33! and does
not affect the tunneling splitting of the ground state. We w
see in the following section that the cancellation would n
be exact for excited states and the additional phase has e
on the tunneling splitting which, however, should be inve
tigated in the framework of the complex time path-integra

We should bear in mind that the above phase is obtai
by an anticlockwise tunneling. The remaining Feynman k
nel

G5E Dxe2*2b
b Le8dt, Le85

m

2
ẋ21U~x! ~35!

is independent of the direction of tunneling. For the cloc
wise tunneling from the same initial position2K(k) to the
final position23K(k) the result is the same except with a
opposite sign of the phase. Adding the contributions
clockwise and anticlockwise tunnelings we finally have t
tunneling splitting expressed as

DE0;
e2bE0

bN
ucos@ps1us#uG~xf ,b;xi ,2b!. ~36!

The tunneling kernelG in the one loop approximation
namely, including the preexponential factor, can be cal
lated with the standard procedure. Before we give the fi
result, it is worthwhile to point out that in the evaluation ofG
the contributions from one instanton and one instanton p
the infinite number of instanton-anti-instanton pairs will
taken into account. However, the phase induced by the ga
potential for an instanton-anti-instanton pair vanishes. T
the single instanton phase is factored out of the tunne
kernel. We have

G;2Nbe22bE0Qe2B, Q525/2F j3/2K1
1/2

~12l!pG1/2

, ~37!

whereN51/A2p(j/K1)1/4, andE05v/2 is the usual ground
state energy of the harmonic oscillator. The tunneling sp
ting is thus14

DE05ucos@ps1us#u4D«0 , D«05Qe2B. ~38!

When the external magnetic field vanishes (a50) the tun-
neling splitting reduces exactly to the previous result8,14 ex-
cept thats2 in the splitting amplitude of the semiclassic
treatment is corrected ass(s11) by the quantum theory o
spin. The well known spin parity effect~namely, the tunnel-
ing splitting would be quenched for half-integer spins! is
recovered by the factorucospsu and is surely due to the an
tiperiodicity of the wave function in the quantum theory
spin. The tunneling splitting oscillates with the external fie
h and vanishes when
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sp1us5pFs1
mBgh

2K1A12l
G5S n1

1

2Dp, ~39!

wheren is an integer. The oscillation period of the tunnelin
splitting with respect to the external fieldh is given by

Dh5
2K1A12l

gmB
. ~40!

To verify the validity of the tunneling splitting Eq.~38! we
compare the splitting value of Eq.~38! as a function of the
external magnetic fieldh with the numerical result obtaine
by performing a diagonalization of the Hamilton opera
Eq. ~1!. Adopting the data of the anisotropy constants giv
in Ref. 4 such thatD50.292K, E50.046K and taking into
account the relations between anisotropy constantsK1 ,K2
andD, E, i.e.,K15D1E, K25D2E, the oscillating ampli-
tude of the tunneling splitting calculated from Eq.~38! which
begins from 6.286310210K for s510 and increases with th
magnetic field agrees with the numerical value of diagon
ization perfectly. The period isDh50.26T which is substan-
tially smaller than the experimental value 0.4T4. It has been
pointed out that the discrepancies between experimental
theoretical results can be resolved by including higher or
terms ofŜz andŜx in the Hamilton operator Eq.~1! in addi-
tion to the quadratic terms.4

IV. TUNNELING SPLITTING AND QUANTUM PHASE
INTERFERENCE AT EXCITED STATES

The quantum phase induced by the Zeeman term is m
festly computed from the Euclidean Feynman paths betw
uc
r
n

l-

nd
r

i-
n

two turning points which depend on energy. We now inve
tigate the tunneling and related quantum phase interfere
at excited states. The starting point is again the transi
amplitude of the barrier penetration projected onto the s
space of fixed energy, i.e.,

(
m,n

^En
f uP̂Ee22bĤuEm

i &5E dxfdxicE* ~xf !cE~xi !

3G~xf ,b;xi ,2b! ~41!

from which the tunneling splitting is written as

DE;
e2Eb

b
Ue2 is(p22us)E dx̃fdx̃icE~ x̃f !cE~ x̃i !GU,

~42!

where x̃i5K(k)1xi , x̃f52K(k)1xf denote the coordi-
nates in the local frames with origins at2K(k) and K(k),
respectively. Thus the phase factor of our wave functioncE
can be factorized out. The tunneling at finite energyE is
dominated by the periodic instanton21,22 which satisfies the
following integrated equation of motion:

m

2
ẋ22U~x!52E ~43!

with periodic boundary condition. The periodic instanton
found to be
xc~t!5cd21SA @sin21sn~ṽt,k̃!#2~12h2!2~12lh2!

l@sin21sn~ṽt,k̃!#2~12h2!2~12lh2!
,k̃D , ~44!
-
ti-

e
dd-
ing
where

ṽ52AK1j~12lh2!, h5AE

j
, k̃25

12h2

12lh2
.

~45!

The periodic instanton moves between two turning pointsx6

depending on energy

x656cd21~h,k̃!. ~46!

When the energy tends to zero the periodic instanton red
to the vacuum instanton of Eq.~28!. The Euclidean action
evaluated along the periodic instanton is

Sc5W12Eb2 iuE , ~47!

where
es

W5E
2b

b

mẋc
2dt52h2A j

K1~12lh2!
@P~h82,k̃!2K~ k̃!#

~48!

with h82512h2, whereP denotes the complete elliptic in
tegral of the third kind. The tunneling phase for the an
clockwise tunneling~from x2 to x1) is seen to be

uE5E
x2

x1

A~xc!dxc5
~2s11!a

K1A12l
F tan21

h82h

h81h
1

p

4 G
~49!

which tends to the vacuum instanton phase whenE50 (h
50, h851). The clockwise tunneling gives rise to th
same result except for the phase with an opposite sign. A
ing the two classes of the tunneling kernels the level splitt
is seen to be

DE;
e2Eb

b
ucos~sp1uE22sus!uI , ~50!
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where

I 5E dx̃fdx̃icE~ x̃f !cE~ x̃i !G̃. ~51!

The term 2sus in Eq. ~50! comes from the boundary cond
tion of c Eq. ~23!. The difference, i.e.,uE22sus , is not just
a simple semiclassical phaseus in this case. The phase inde
pendent tunneling kernelG̃ is now evaluated with the help o
the periodic instanton. Following the procedure in Refs.
and 24 we take into account the contributions of the inst
ton and instanton plus the infinite number of pairs and co
pute the end point integrations with the help of WKB wa
functions forcE . A quite general formula for Eq.~51! is

I;2be22EbF 1

4K~ k̂!
Ge2W, k̂25

~12l!h2

12lh2
. ~52!

The level splitting is then given by

DE5ucos~sp1uE22sus!u
1

K~ k̂!
e2W. ~53!

For low lying excited states (h!1, k̂!1, k̃85A12 k̃2

!1) the energyE may be replaced by harmonic oscillat
approximated eigenvaluesE→En5(n11/2)v. Expanding
the complete elliptic integralsP(h82,k̃), K( k̃) in W @Eq.
~48!# as power series ofk̃8 andK( k̂) in Eq. ~52! as power
series ofk̂ we obtain after some tedious algebra the tunnel
splitting of thenth excited state, i.e.,

DEn5ucos~sp1uEn
22sus!u4D«n , ~54!

where

D«n5
23n

n! ~12l!n S j

K1
D n/2

D«0 . ~55!

In Eq. ~54! uEn
denotes the phase angle atnth excited state

which is obtained from Eq.~49! with replacing the energyE
by (n1 1

2 )v. Whena50 the tunneling splittings at excite
states again coincide with the previous results8,15 in terms of
the semiclassical treatment of spin in large spin limit wh
means that the difference betweens2 and s(s11) can be
neglected.

V. CONCLUSION

On the basis of the UZ method for quantum spin syste
we found that the Zeeman term of the external magnetic fi
along the hard axis for a biaxial spin particle indeed turns
to be a gauge potential in the point-particle-like Hamilt
operator. The gauge potential does not affect the equatio
motion but leads to quantum phase interference as an
type effect in the spin tunneling. An additional phase an
2sus of the Euclidean action obtained by means of the qu
tum mechanical treatment of spin does not affect the tun
ing splitting of the ground state, however the effect on
tunneling splitting of excited states has to be investiga
with inclusion of real time paths in the potential well. I
addition the splitting amplitude is modified by the quantu
3
-
-

g

s
ld
t

of
B
e
-
l-

e
d

theory of spin. We present a formula of the tunneling sp
ting, Eq. ~54!, as a function of the magnetic field, valid fo
low lying excited states, which for molecular clusters
which the total spin is only about ten is more accurate th
the semiclassical treatment of spin for describing the qu
tum tunneling.
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APPENDIX A: APPROXIMATE SPIN-COORDINATE
CORRESPONDENCE IN THE SEMICLASSICAL

TREATMENT OF SPIN

In the conventional application of the spin coherent st
technique, two canonical variables,f and p5s cosu are
adopted with the usual quantization

@f,p#5 i . ~A1!

We show in the following that the spin-coordinate corr
spondence is only approximate up to order 0(s23).

From the relation between the spin operators and the p
coordinate angles

Sx5s sinu cosf, Sy5s sinu sinf, Sz5s cosu ~A2!

the usual commutation relation of spin operators reads

@Sx ,Sy#5s2@sinu cosf, sinu sinf#

5s2 sinu@cosf, sinu#sinf

1s2 sinu@sinu, sinf#cosf. ~A3!

Using Eq.~A1!, one can prove the following relations:

@sinu, cosf#5A1 cosf1 iA2 sinf,

@sinu, sinf#5A1 sinf2 iA2 cosf ~A4!

with

A15
1

2
@A12~cosu1g!21A12~cosu2g!2#,

A25
1

2
@A12~cosu1g!22A12~cosu2g!2#,

whereg51/s. Substituting Eqs.~A4! into Eq. ~A3!, one has

@Sx ,Sy#52 is2 sinuA25 igs2 cosu10~g3!, ~A5!

i.e.,

@Sx ,Sy#5 iSz10~s23! ~A6!

which implies that the usual commutation relation holds o
in the large spin limit.
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APPENDIX B: RECOVERING THE SEMICLASSICAL
PHASE IN THE LARGE s LIMIT

To understand the reason why the phase angle 2sus is
missed in the semiclassical treatment of spin we consider
following Schrödinger equation obtained without the unita
transformationei f (x) in the transformation Eq.~17! for our
spin system:

F2K1

d2

dx2
1 i

a

dn~x!

d

dx
2 isal

sn~x!cn~x!

dn2~x!
1Us~x!Gc~x!

5Ec~x!,

Us~x!5K2s~s11!cd2~x!. ~B1!

The Hamilton operator can be written as

Ĥs5K1F2 i
d

dx
2Ã~x!G2

2 i S s1
1

2D
3la

sn~x!cn~x!

dn2~x!
1Ũs~x!. ~B2!

The gauge potential
A

r

:

.

he

Ã~x!5
a

2K1dn~x!
~B3!

leads exactly to the semiclassical phase angleus , while the
scalar potential which contains an imaginary part is ill d
fined. In the larges limit one might neglect the imaginary
part in comparison with the termUs(x) and then has the
Hamilton operator given by

Ĥs5K1F2 i
d

dx
2Ã~x!G2

1Ũs~x!,

Ũs~x!5K2s~s11!cd2~x!2
a2

4K1dn2~x!
. ~B4!

The final Hamiltonian

H̃s5
1

2m
@p2Ã~x!#21Ũs~x!, m5

1

2K1
~B5!

is the counterpart of the effective HamiltonianHs of Eq. ~3!.
The corresponding Euclidean Lagrangian is

L̃s
e5

m

2
ẋ21 iÃ~x!ẋ1Ũs~x!. ~B6!
a-

.
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