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Modulated magnetic structure and spin waves in hexagonal CsCuCl3-type antiferromagnets
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A theory is developed for triangular helicoidal antiferromagnetic structures due to the relativistic-exchange
inhomogeneous Dzyaloshinskii-Moriya interaction in hexagonal crystals. The magnetic structure observed in
the CsCuCl3 system is explained, and the spin-wave spectrum and relaxation of spin waves are analyzed. The
theoretical results are in agreement with experimental antiferromagnetic-resonance data.
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I. INTRODUCTION

There is a steady interest to investigations of phys
systems whose magnetic properties~and not only magnetic
properties! approach those of one-dimensional and tw
dimensional systems, in particular, to magnets with hi
anisotropic magnetic interactions. In quasi-one-dimensio
magnets chain-coupling exchange parameters are sma
comparison with internal chain parameters~or plane-
coupling parameters in quasi-two-dimensional magnetic
ordered systems as compared with internal plane par
eters!, and therefore the behavior of such objects is sign
cantly different from that of three-dimensional magnets.

Among such systems are the well-defined and exten
class of hexagonal magnetic compounds of the formABX3 ,
whereA andB are cations andX is a halogen. The compoun
CsCuCl3 occupies a special place in this class and pres
us with a relatively rare example of a modulated magne
structure due to the relativistic-exchange interaction, i.e
structure resulting from the competition between t
Dzyaloshinskii-Moriya and exchange interactions@as far as
we know, apart from CsCuCl3, this type of modulated mag
netic structure has been reliably established only in M
and FeGe~Refs. 1 and 2! and in TbAsO4 ~Refs. 3 and 4!
whereas in most magnetically ordered crystals, the prese
of a modulated magnetic structure is due to the competi
of exchange interactions#. Although an extensive literature i
now available5–10on the experimental and theoretical stud
of the magnetic properties of CsCuCl3, there are a substantia
number of unresolved problems relating to its magne
structure and the dynamics of this structure. In this paper,
examine some of the details of the magnetic structure
CsCuCl3 that had previously escaped attention, and inve
gate the acoustic branches of its intrinsic linear excitatio

Below Tt5423 K, in its paramagnetic state, the com
pound CsCuCl3 has theP6122 space group~without a center
of symmetry!. Six magnetoactive Cu21 ions ~spin S5 1

2 ) oc-
cupy b positions, i.e., they are shifted in the basal plane
the crystal relative to the hexagonal 61 axis by an amount«.
The Cu21 ions thus form spiral chains oriented along the1
PRB 610163-1829/2000/61~13!/8843~8!/$15.00
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axis ~the separation between neighboring ions in a chain
;c0/6 for lattice parametersc051.8178 nm and a0

57.2157 nm). The important point is that, in this particul
case, the shiftk5«/a0 , is very small,k'0.006!1. The
almost quasi-one-dimensional magnetic behavior of the s
tem is dictated by the smallness ofk and the properties of the
exchange, superexchange, and relativistic-excha
interactions9 ~in particular, the fact that interchain interac
tions are small in comparison with intrachain interactions!.

Neutron diffraction data, obtained in the absence of
external magnetic field, suggest that, belowTN510.7 K, the
magnetically ordered state of CsCuCl3 displays a triangular
antiferromagnetic~AFM! structure in the basal plane of th
crystal and a long-period modulation of this structure alo
the hexagonal 61 axis ~subsequently, the cartesianZ axis!,
i.e., the wave vector of the structureq is parallel to theZ
axis. The structure-period average of the angle between
magnetizations of the Cu21 chain ions in neighboring basa
planes is approximately 5.1°. Consequently, the modula
period is about 12 lattice constants.

II. THE ENERGY OF THE CsCuCl 3 SYSTEM

The triangular AFM structure in the basal plane requi
the tripling of the magnetic unit cell as compared with t
crystal unit cell in this plane. Since the triangular modulat
AFM structure grows out of the ‘‘simple’’~in Dzyaloshin-
skii’s sense11! triangular AFM structure withq50, the the-
oretical description of the magnetic properties of t
CsCuCl3 system requires, in general, eighteen magnetic s
lattices.

However, if we exploit the results reported in Ref. 10, i.
if we use the method of extended translational symmetry,
can go over to the three-sublattice description of the ab
magnet~each spin chain of Cu12 ions is then described in
terms of a single sublattice! and take the abbreviated Hami
tonian of the Cu12 ion chain in the nearest-neighbor approx
mation:
8843 ©2000 The American Physical Society



g
.
-io

i

c-
io

s
-

m

on

us
of

t
on

n

t-

o
y,

a

the
les
m

r-

-
etic
the

ld

is’’
the

f

he
t

8844 PRB 61A. L. SUKSTANSKII et al.
Hch5(
n

$2JSnSn1D1D~Sn
xSn1D

y !1KSn
zSn1D

z 2HSn%,

~1!

whereSn is thenth spin in the chain,X andY are the Car-
tesian coordinates in the basal plane of the system,H is the
external magnetic field, andJ.0, D, K.0 are the intrac-
hain exchange, Dzyaloshinskii-Moriya, and uniaxial ma
netic anisotropy constants, respectively. We note that Eq~1!
does not contain invariants corresponding to the single
magnetic anisotropy energy, since in our caseS5 1

2 .
In this approximation, and since nearest neighbors

neighboring chains form layers of magnetoactive Cu21, we
obtain the following Hamiltonian for the interchain intera
tion if we confine our attention to the exchange interact
within a layer:

H int5 (
n,n8

I nn8SnSn8 , ~2!

wheren is an arbitrary Cu21 ion, n8 are its nearest neighbor
in the basal plane, andI nn8 is the exchange interaction con
stant in the interior of a layer~it is clear that we must have
I .0 if a triangular AFM structure is to be formed!.

The experimental values ofJ and I reported in Ref. 9
suggest thatI /J;0.1, which means that the Cu21 magnetic
system is almost quasi-one-dimensional. Moreover, for te
peratures in the rangeI ,T,J, the triangular AFM structure
breaks up and the magnetic material becomes quasi-
dimensional in the full sense of the phrase.

It is readily shown that the transition to the continuo
limit and inclusion, in its simplest form, of the energy
hexagonal magnetic anisotropy in the basal plane lead to
following expression for the energy of the system under c
sideration in the continuous~weak-gradient! approximation
~we confine our attention to long-period modulations a
drop quantum effects!:

W5*drw~r !,

w~r !5wch~r !1wint~r !

5 (
n51

3 H a

2 S ]mn

]z D 2

1
a'

2 F S ]mn

]x D 2

1S ]mn

]y D 2G
1

b

2
mnz

2 1a1S mnx

]mny

]z
2mny

]mnx

]z D
1

r

12
@~mn

1!62~mn
2!6#2hmnJ

1d~m1m21m1m31m2m3!, ~3!

wheremn5Mn /M0 , Mn is the magnetization of the subla
tices, n51,2,3, uMnu5M05const,mn

65mnx6 imny , a.0,
a'.0 are the inhomogeneous exchange interaction c
stants along chains and in the basal plane, respectiveld
.0 is the homogeneous interchain~interplane! exchange in-
teraction constant (d;I ), a1;(n/c)dc0

21 is the intrachain
relativistic-exchange interaction constant1 whose sign, as
will be seen later, is unimportant for the formation of
modulated AFM structure,n is the Fermi velocity of elec-
-

n

n

n

-

e-

he
-

d

n-

trons,c is the velocity of light,b.0 andr are the crystal
magnetic anisotropy constants,h5H/M0 , andH is the ex-
ternal magnetic field~we shall suppose thath5hez!. We
note thata'!a, d@b, d@uru.

III. MAGNETIC STRUCTURE OF CsCuCl 3 „THEORY …

We now parameterize the magnetization vectors of
sublattices in terms of the polar and azimuthal ang
qn ,wn , ~the polar axis of the spherical coordinate syste
lies along the hexagonal axis!, i.e., we put

mnz5cosqn , mn
65sinqn exp~6 iwn!, ~4!

so that Eq.~3! gives the following expression for the the
modynamic potential density:

w5 (
n51

3 H a

2
~qn8

21wn8
2 sin2 qn!1a1wn8

2 sin2 qn1
b

2
cos2 qn

1
r

6
sin6 qn cos 6wn2h cosqnJ

1d@sinq1 sinq2 cos~w12w2!1sinq1 sinq3 cos~w1

2w3!1sinq2 sinq3 cos~w22w3!1cosq1 cosq2

1cosq1 cosq31cosq2 cosq3#, ~5!

where the primes indicate differentiation with respect toz
@we have omitted from Eq.~5! the invariants that are spa
tially inhomogeneous in the basal plane, since the magn
structure of our system in its ground state varies only in
z direction#.

It is readily verified that the equationsdW/dqn50,
dW/dwn50 have solutions of the form

q15q25q35q,

w15w, w2,35w62p/3, ~6!

where the anglesq, w satisfy the equations

sinq$aw9 sinq12~aw81a1!q8 cosq

1r sin5 q sin 6w%50,

aq91sinq$~3d1b2aw8222a1w8

2r sin4 q cos 6w!cosq2h%50. ~7!

We note that, whatever the external magnetic fie
strength, the solution of Eq.~7! with q5const50 is obvi-
ously of no interest because it describes the ‘‘easy ax
ferromagnetic state that cannot arise in the absence of
external magnetic field ford.0. Let us examine the set o
equations given by Eq.~7! for certain special cases.

A. Neglecting the hexagonal magnetic anisotropy in t
basal plane of the crystal (r50), we can readily show tha
Eq. ~7! assumes the form

aw9 sinq12~aw81a1!q8 cosq50,

aq91sinq@~2d1b2aw8222a1w8!cosq2h#50.
~8!
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This set of equations has as its energetically most fav
able solution theFSstructure~see Ref. 12 for an explanatio
of this notation! with the following parameters:

w~z!5q0z, q05a1 /a,

cosq5const5h/~3d1b2aq0
222a1q0!, ~9!

where in view of the above estimates of the phenomenol
cal constants in Eq.~3!, we have

q0;~n/c!c0
21!c0

21.

Taken in conjunction with Eqs.~4! and ~6!, this solution
describes the equilibrium long-periodFS-type modulation of
the simple triangular AFM structure with the wave vector
the structure having the direction of the hexagonal axis
magnitudeq0 . In other words, we are dealing here with thr
FS structures of the same type, first described in Ref.
which are correlated into a triangular AFM structure in t
basal plane of the system. In the absence of an external m
netic field, the harmonicFS structure transforms into theSS
structure (q5p/2), whereas in the presence of an exter
magnetic fieldh5hc53d1b2a1

2/a22a1q0 , the modu-
lated AFM structure collapses and there is a continu
phase transition to the ferromagnetic state.

B. If we drop the external magnetic field, but retain t
energy of hexagonal magnetic anisotropy in the basal p
(rÞ0), the second equation in Eq.~7! obviously has the
solution

q5const5p/2, ~10!

whereas the first equation assumes the form

aw91r sin 6w50. ~11!

Unfortunately, we are not aware of any experimental data
the hexagonal magnetic anisotropy constant in the b
plane of CsCuCl3. We shall therefore assume henceforth th
r.0, which will have no effect on our qualitative conclu
sions. If we were concerned in this case with spatially h
mogeneous~simple! magnetic states, the energetically favo
able states would be those with

w~m!5
p

6
~2m11!, m50 – 5,

i.e., we would have a sixfold degenerate ground state.
The solution of Eq.~II ! that describes the modulated AFM

structure can be expressed in terms of the elliptic Jac
functions11,12

w5
1

3
amS z2z8

sz0
,sD , for 3w5snS z2z8

sz0
,sD , ~12!

wherez05(a/18r)1/2 is the characteristic length andz8, s
are constants of integration. The first of these constant
determined by the choice of the origin and can be set eq
to zero without loss of generality. The second constant is
modulus of the elliptic functions and can be found by mi
mizing the total energy of the system~3! as a function ofs.
Substituting Eqs.~10! and ~12! in Eq. ~3!, and using Eqs.
~4!–~6!, we obtain after some simple algebra the followi
expression for the equilibrium value of the parameters:
r-

i-

f
d

,

g-

l
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e
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E~s!

s
5

pa1

2~2ar!1/2, ~13!

where E(s) is the complete elliptic integral of the secon
kind. If we take Eq.~13! into account, we find that the equ
librium energy of the modulated AFM structure~per unit
length! can be written in the form

W52rM0
2

22s
*
2

2s
*
2 , ~14!

wheres* is the solution of Eq.~13!.
The spatial periodLp , of the magnetization distribution

i.e., the period of the modulated AFM structure, is given

Lp512sz0K~s!, ~15!

where K(s) is the complete elliptic integral of the secon
kind. For small values of the hexagonal magnetic anisotro
constantr!a1

2/a, the solution of Eq.~13! takes the form

s'
1

a1
~2ar!1/2!1,

and the spatial period of the modulated AFM structure is

Lp5
2p

q0
1O~r1/2!. ~16!

It is readily seen that, forr→0, the spatial distribution of the
magnetization of the AFM sublattices~12! takes the form of
Eq. ~9! for h50.

A different picture arises fors→1 ~the case of high en-
ergy of magnetic anisotropy in the basal plane!. In this case,
the period of the spatial distribution of AFM sublattice ma
netization contains six segments with practically const
phasesw, namely,

w5w~m!5
p

6
~2m11!,

and a sharp change inw at the boundaries between the
segments. The sublattice magnetization vectors in the mo
lated AFM structure form the triangular AFM structure an
are ‘‘held’’ in the energetically most favored directionsw (m)

~this spatial distribution is sometimes referred to as a soli
lattice!. The magnetic lattice of the crystal can then
thought of as being a periodic system of ‘‘domains’’w (m),
i.e., phases forming a coherent structure with a monoto
variation ofw.

The presence of a well-defined soliton lattice in the cr
tal is readily seen to explain the experimental results repo
in Ref. 13 on the NMR spectra of Cu21 nuclei in magnetic
fields of different orientation in the basal plane of the syste

Obviously, if the energy of hexagonal magnetic anis
ropy in the basal plane is high enough, long-period modu
tion of sublattice magnetization of the triangular AFM stru
ture becomes impossible, and a spatially homogene
triangular AFM distribution of sublattice magnetization
established~which does not, of course, exclude the presen
in the crystal of true ‘‘domains’’w (m) due to the sixfold
degeneracy of the ground state in the anglew. We note that
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such domain systems are not thermodynamically stable s
of a magnetic material, but are nevertheless observed ex
mentally.

Comparison of the energies of the soliton lattice and
spatially homogeneous sublattice magnetization distribut
given by Eq.~14!, readily shows that the soliton lattice
energetically more favorable for

r,rc5a1
2/2a. ~17!

If r→rc thens* →1 andLp→`. Consequently, the perio
of the structure increases without limit with increasing a
isotropy constant, and forr→rc the system transforms into
system of 60° domain boundaries at an infinite~formally!
distance from one another. In fact, we obtain a spatially
mogeneous magnetization distribution.

C. We now return to the general set of equations~7! for
rÞ0 andhÞ0. A general analytic solution of this syste
does not seem possible. However, when the external fie
low enough (h!hc), we may expect that the angle at whic
the magnetization vectors leave the basal plane is also sm
up/22qu!1. It is readily verified that, as forh50, the first
equation in Eq.~7! reduces to Eq.~11! to first order in the
external magnetic field, i.e., the azimuthal angle distribut
w(z) is again given by Eq.~12!. To first order inh!hc and
q̃5p/22q!1, the second equation in Eq.~7! is a Hill-type
inhomogeneous differential equation with periodic coe
cients

aq̃91q̃ b3d1b2aw8222a1w8c5h, ~18!

wherew5w(z) is given by Eq.~12!.
Analysis of Eq.~18! becomes significantly simpler if we

recall that, within the entire domain of existence of t
modulated AFM structure, excluding a logarithmically na
row band nearrc , the system has only one characteris
length, namely, the structure periodLp . If we also recall that
r!d andLp@(a/d)1/2, the solution of Eq.~18! can be ap-
proximately written in the form

q̃~z!'
h

3d S 12
b

3d D1
hr

9d2 N~z!,

N~z!5
22s2

s2 14sn2S z

sz0
,sD2

2a1

s S 2

ar D 1/2

dnS z

sz0
,sD .

~19!

It is clear from Eq.~19! that, when the external magnet
field and the hexagonal anisotropy in the basal plane
simultaneously taken into account, we obtain a ‘‘nutatio
effect in which the modulated AFM structure includes t
modulation of not only the components of the magneti
tions of the AFM sublattices in the basal plane, but also th
projections along the wave vector of the structure. The ‘‘n
tation’’ amplitude is of the order ofhr/d2 and the corre-
sponding spatial period@i.e., the period of the polar angl
q(z)# is, as expected, smaller than the period of the m
structure by a factor of 6.

If a ‘‘soliton lattice’’ is established in the system, the
there are two characteristic dimensions, namely, the struc
period Lp and the sizeD0 of the transition region betwee
the ‘‘domains’’ w (m) ~see above!, whereD0!Lp . The solu-
tes
ri-

e
n,

-

-

is

ll:

n

-

re
’

-
ir
-

n

re

tion of Eq. ~18! can then no longer be written in the rela
tively simple form of Eq.~19!, but the qualitative picture
remains unaltered. Under these conditions, we havew8'0,
q8'h/3d in the interior of each ‘‘domain’’w (m). On the
other hand, within the region of rapid variation of the pha
w in the ‘‘domain’’ boundaries, the polar angleq changes
abruptly by an amounthr/d2.

The linear dependence~19! of the ‘‘nutation’’ amplitude
on the external magnetic field~for given r! is, of course, no
longer valid when we leave the linear approximationh
!hc). Moreover, the effect vanishes in the opposite lim
(h→hc), since the projections of magnetizationmn on to the
basal plane tend to zero. Consequently, an increase in
field is accompanied by a nonmonotonic dependence of
‘‘nutation’’ amplitude, with a maximum in the interva
(0,hc). The amplitude vanishes ash→0 andh→hc .

IV. SPIN DYNAMICS OF CsCuCl 3

„ACOUSTIC BRANCHES …

We now turn to linear magnetic excitations~spin waves!
superposed on the modulated AFM structure discus
above. As noted in Sec. II, a triangular modulated AF
structure in the CsCuCl3 system can be described by a mod
with three effective magnetic sublattices. The magnetic
namics of the system can then be analyzed with the hel
the usual equations of motion of the sublattice magnetiza
vectorsmn ~Landau-Lifshitz equations!. In our model, these
equations reduce to a relatively cumbersome and incon
nient system of six differential equations for the angle va
ablesqn and wn that parameterize the unit vectorsmn ~cf.
Ref. 4!.

To investigate the modulated AFM structure in th
CsCuCl3 system, we therefore use the very producti
method of effective Lagrangians developed in Refs. 14–
According to this method, any magnetic structure can
described in the exchange approximation by not more t
three mutually perpendicular unit vectorsls(r ,t), s51,2,3
that do not alter their mutual orientation in different excit
states, i.e., they provide a rigid reference frame. In
method of phenomenological Lagrangians, the dynamics
long-wave excitations can be investigated by including
relativistic interactions, which fixes the orientation of th
magnetic vectorsls relative to the crystal axes,16 assuming
that they are nevertheless much weaker than the exch
interactions. Any excited state specified by the vect
ls(r ,t) can be obtained from an initial homogeneous st
ls
(0) by rotation through an angleF(r ,t):

ls~r ,t !5D̂~F!ls
~0! , ~20!

whereD̂(F) is a three-dimensional orthogonal matrix.
We emphasize that the use of the effective Lagrang

method must be confined to long-wave excitations for wh
the characteristic spatial inhomogeneity scale is much gre
than the crystal lattice constant, and the frequencies are m
smaller than the exchange frequencies. We shall now fo
our attention on these particular~hydrodynamic! excitations
in which the dynamic bending of the crystal sublattices
small. In particular, we shall confine our attention to t
acoustic branches of the spin-wave spectrum. Excha
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branches of intrinsic linear magnetic excitations of the s
tem, for which the concept of the ‘‘rigid reference frame’’
not valid, lies outside the scope of this paper.

A. In the absence of the external magnetic fieldh ~see
Sec. III!, the sublattice magnetization vectorsmn lie in the
basalXY plane and form a triangular AFM structure. Th
mutually perpendicular unit vectorsls can therefore be take
in the form

l1
~0!5

1

3
~2m3

~0!2m1
~0!2m2

~0!!,

l2
~0!5

1

)
~m1

~0!2m3
~0!!,

l3
~0!5@ l1

~0!l2
0#. ~21!

For r50 the orientation of the vectorsl1
(0) andl2

(0) relative to
the Cartesianx,y axes is not fixed, so that without loss o
generality we can putl1

(0)5ex , l2
(0)5ey , whereex,y are the

corresponding unit vectors. We then have

l 1i~r ,t !5Dxi~r ,t !, l 2i~r ,t !5Dyi~r ,t !. ~22!

The effective LagrangianL describing the noncollinea
antiferromagnetic medium takes the form16

L5*dr H x'

2g2 @v1
2~F,] tF!1v2

2~F,] tF!#

1
x i

2g2 v3
2~F,] tF!2U~D̂ !J ~23!

wherev i(F,] tF) are differential Cartan forms related to th
rotation matrixD̃(F) by

v i~F,] tF!5
1

2
« iklDk j] tDl j , ~24!

g is the gyromagnetic ratio.x' andx i are the transverse an
parallel ~relative to the vectorl3

(0)5 b l1(0)l2
(0)c susceptibilities

of the AFM medium,x' ,x i;d21!, « ikl is the fully antisym-
metric tensor of rank three, andU is the ‘‘potential’’ energy
of the magnetic medium, whose form can readily be obtai
from the expression for the density of the thermodynam
potential~3!, taking into account Eqs.~21! and ~22!. In the
parametrization

Dik5d ik12~n ink2n2d ik!22n4« ikln j ~25!

of the rotation matrix, the differential formsv i , take the
form

v152~n4]n12n1]n41n2]n32n3]n2!,

v252~n4]n22n2]n41n3]n12n1]n3!, ~26!

v352~n4]n32n3]n41n1]n22n2]n1!,

where nm5(n,n4) are the components of the unit fou
vector,n21n4

251, andv254(]nm)2.
The next step is to parameterize the unit vectornm with

the help of the three angle variables, namely,
-

d
c

n15cosj, n25sinj cosh, n35sinj sinh sin
z

2
,

n45sinj sinh cos
z

2
. ~27!

We note that it is precisely this parametrization that is p
ticularly convenient in the analysis of spin waves in mod
lated AFM structures. A more standard and widely used
rametrization is

F5n tan
c

2
, n251,

which has a simple physical meaning~rotation of the refer-
ence frame by an anglec around the axis defined by the un
vectorn!, but is found to be inadequate because the vecton
becomes meaningless on a denumerable set of values o
anglec.

If we use the specific form~3! of the thermodynamic po-
tential of the system CsCuCl3 together with Eqs.~25!–~27!,
we can take the effective Lagrangian for the problem in
form

L5M0
2E r H 2x'

~gM0!2 S j̇21ḣ2 sin2 j1
1

4
ż2 sin2 j sin2 h D

1
2~x i2x'!

~gM0!2 S 1

2
z sin2 j sin2 h1j cosh

2
1

2
ḣ sin 2j sinh D 2

2aF ~¹̃j!21~¹̃h!2 sin2 j

1
1

4
~¹̃z!2 sin2 j sin2 h1S 1

2
~¹̃z!sin2 j sin2 h

1~¹̃z!cosh2
1

2
~¹̃h!sin 2j sinh D 2G

2b sin2 j sin2 h~cos2 j1sin2 j cos2 h!

2a1@~cos2 j1sin2 j cos2 h!~2j8 cosh

2h8 sin 2j sinh!2z8 sin4 j sin4 h#J , ~28!

where

¹̃5ez

]

]z
1

a'

a S ex

]

]x
1ey

]

]yD .

Over dots indicate differentiation with respect to time. W
have omitted from this expression the terms connected w
the external magnetic field and the energy of hexagonal m
netic anisotropy in the basal plane, whose influence on
form of the spin-wave spectrum superposed on the mo
lated AFM structure will be discussed below.

The equations of motion for the angle variablesz, j, h are

dL

dz
5

]Q

]ż
,

dL

dj
5

]Q

]j̇
,

dL

dh
5

]Q

]ḣ
, ~29!
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where Q is the phenomenological dissipative function,
means of which we take into account relaxation of magn
excitations. In one-dimensional magnets under considera
this function contains two different relaxation paramet
and has the form17

Q5r 1H F]v1~F,]zF!

]t G2

1F]v2~F,]zF!

]t G2J
1r 2F]v3~F,]zF!

]t G2

. ~30!

The equations of motion corresponding to the Lagrang
~28! and the dissipative function~30! are rather cumbersom
in their general form, so that we shall not write them out
full here. It is readily verified that these equations have
following static solution:

j05h05p/2, z05qz ~31!

and the corresponding rotation matrix is

D̂5S cosj0 2sinj0 0

sinj0 cosj0 0

0 0 1
D .

This shows that the static solution~31! corresponds to a ro
tation of the basic reference frame through an anglej0
around thez axis ~hexagonal axis of the crystal!, i.e., to the
modulated AFM structure discussed above.

If we use the Lagrangian given by Eq.~28! to construct
the energy functional, we can readily show that its minimu
is reached forq5q052a1 /a. In other words, the distribu
tion given by Eq.~31! describes the same modulated AF
structure that was discussed above in terms of the stan
sublattice approach@Sec. III, Eq.~9! with h50#.

To analyze linear excitations superposed on the mo
lated AFM structure, we put

z5z01 z̃~r ,t !, j5p/21 j̃~r ,t !, h5p/21h̃~r ,t !,

where z̃, j̃, h̃ are small deviations from the equilibrium
distribution of Eq.~31!, i.e., u z̃u, u j̃u, uh̃u!1, and then linear-
ize the equations of motion in these deviations. As a res
we obtain the following set of second-order linear differe
tial equations with constant~this is important! coefficients:

aD̃z̃2
x i

~gM0!2 z̈̃12r 2ż̃950, ~32!

aD̃j̃2
2x'

~gM0!2 j̈̃1aq0h̃81S 5

4
a1q02b D j̃

1r 1~4j̇̃912q0ḣ̃2q0
2j̇̃ !50, ~33!

aD̃h̃2
2x'

~gM0!2 ḧ̃2aq0j̃81S 5

4
a1q02b D h̃

1r 1~4ḣ̃922q0j̇̃82q0
2ḣ̃ !50, ~34!

where
ic
on
s

n

e

rd

u-

lt,
-

D̃5
]2

]z2 1
a'

a S ]2

]x2 1
]2

]y2D .

Equation~32! is not coupled to the other two equations
the system and describes the Goldstone mode of the s
wave spectrum with the gapless dispersion relation

V1~k!5V18~k!1 iV19~k!. ~35a!

SinceV18(k)@V19(k), then

V18~k!5gM0S akz
21a'k'

2

x i
D 1/2

, V19~k!5
r 2~gM0!2kz

2

x i
,

~35b!

whereV is the spin-wave frequency andkz , k' are the com-
ponents of the wave vector along the hexagonal axis an
the basal plane, respectively. Oscillations of the refere
vectorsl1 , l2 ~and also of the sublattice magnetization ve
torsmn!, corresponding to this gapless Goldstone branch
in the basalXY plane, which is typical for easy-plane mag
netic media.

On the other hand, Eqs.~33! and ~34! describe the two
branches of the spin-wave spectrum with the dispersion
lation ~and a gap!

V6~k!5V68 ~k!1 iV69 ~k!, ~36a!

V69 ~k!5
gM0

~2x'!1/2Fb1
a1

2

a
1a'k'

2 1aS kz6
q0

2 D 2G1/2

,

V69 ~k!5
r 1~gM0!2

x'
F S kz6

q0

4 D 2

1
3q0

2

16 G . ~36b!

These branches have corresponding oscillations of the re
ence frame in which the vectorsI1 , I2 leave thexy plane~the
oscillations take place around mutually perpendicular dir
tions in the basal plane!.

It is interesting to note that a spin-wave spectrum ana
gous to ~36a! is generated by the simpler two-sublattic
AFM model whose thermodynamic potential density co
tains an invariant of the formwd5a1(LxLy82LyLx8) and has
an easy-axis symmetry~rather than the easy-plane symmet
of our case!. The equilibrium state of this type of AFM me
dium is, of course, spatially homogeneous, and the invar
wd manifests itself only in the excitation spectrum.

On the other hand, in an easy-plane two-sublattice AF
medium with an invariantwd and a modulated magneti
structure as the equilibrium state, there is, apart from
Goldstone branch of the spin-wave spectrum, only o
branch similar to Eq.~36a!. This branch typically exhibits
the nonreciprocity propertyV(2kz)ÞV(kz) due to the
modulated magnetic structure that originates from the inv
ants in the thermodynamic potential that are linear in the fi
space derivatives. In our case of modulated AFM structu
on the other hand, we again have nonreciprocity of each
the two branches of the spectrum with the gap, but the p
ence of two such branches restores the symmetryV2(2kz)
5V3(kz).

B. We now turn to the effect of an external magnetic fie
hiez on the spin-wave spectrum, particularly the antiferr
magnetic resonance frequencies. According to Ref. 16, if
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external magnetic field strength is weak enough in comp
son with the field associated with the exchange interac
between the sublattices (h!d), then it can be taken into
account by the effective Lagrangian method when we a
lyze the dynamics of the magnetic medium. The new eff
tive Lagrangian can be obtained from Eq.~23! by introduc-
ing the replacementv i→v i1gM0hi . It is then readily
verified that, in our case, this signifies the appearance in
effective Lagrangı´an density~28! of the additional term

x ihM0

g
v35

x ihM0

g
~2j̇ cosh2 ż sin2 j sin2 h

2ḣ sin 2z sinh!. ~37!

Equation ~32!, which describes the gapless Goldsto
mode of the spin-wave spectrum, then remains valid as
fore, and Eqs.~33! and~34! have to be modified as follows

aD̃j̃2
2x'

~gM0!2 j̈̃1aq0h̃81S 5

4
a1q02b D j̃1r 1~4j̇̃9

12q0ḣ̃82q0
2j̇̃ !24r 2gM0hh̃81

2x ih

gM0
ḣ̃50, ~38!

aD̃h̃2
2x'

~gM0!2 ḧ̃2aq0j̃81S 5

4
a1q02b D h̃1r 1~4ḣ̃9

22q0j̇̃2q0
2ḣ̃ !14r 2gM0hh̃82

2x ih

gM0
j̇̃50. ~39!

These equations describe spin waves with dispersion r
tions of the form

V6~k;h!5V68 ~k;h!1 iV69 ~k;h!, ~40a!

V68 ~k;h!56Vh1@V68
2~k;0!1Vh

2#1/2,

V69 ~k;h!5V69 ~k;0!H 16
Vh

@V68
2~k;0!1Vh

2#1/2J ,

~40b!

where Vh5x igM0h/2x' , V68 (k;0), and V69 (k;0) are
given by Eqs.~36a! and ~36b!, respectively.

It is clear from Eq.~40! that an external magnetic fiel
parallel to the wave vector of the modulated AFM structu
lifts the degeneracy of the AFM frequenciesV6 that is
present forh50:

V6
~h!5V6~0;h!56Vh1$V0

21Vh
2%1/2, ~41!

where

V05
gM0

~2x'!1/2 S b1
5a1

2

4a D 1/2

is the AFM resonant frequency forh50. One of the AFM
resonant frequencies then increases with increasing exte
magnetic field and the other decreases.@We note that the
above analogy between the spectrum of spin waves in
two-sublattice easy-axis antiferromagnetic medium,18 on the
one hand, and Eq.~36!, on the other, is also found to occu
for the dependence of the spin-wave frequencies on the
i-
n

a-
-

e

e-

la-

nal

e

x-

ternal magnetic field.# For small values of the external mag
netic field (gM0h!V0), the corresponding functions ar
linear, in agreement with experiment.19

C. When the hexagonal anisotropy in the basal plane
the system is taken into account, the magnetization distr
tion of the modulated AFM structure in the absence of
magnetic field is described by Eq.~12!. The corresponding
term in the effective LagrangianL, which we shall denote by
Lp , is exceedingly cumbersome when it is written in its ge
eral form in terms of the angle variablesj, h, z. We therefore
reproduce only the quadratic terms in the expansion ofLp in
terms of the small deviationsj̃, h̃, z̃ that describe the spin
wave spectrum

Lp5M0
2*dr$9rj̃2 cos 6z013r b~ h̃22 j̃2!

3cos 5z022j̃ h̃ sin 5z0c%, ~42!

wherez05z0(z) is given by Eq.~31!.
It is clear from the structure of Eq.~42! that, as before, the

equation of motion forz̃(r ,t) splits off from the other two
equations in the set:

aD̃z̃2
x i

~gM0!2 z̈̃118rz̃ cos 6z050 ~43!

~in the case under consideration we shall analyze the
wave spectrum without relaxation; accounting the latter
straightforward!. Assuming that

z̃~r ,t !5 z̃~z!exp~ ik'r'2 iVt !,

we readily find that Eq.~43! takes the form of the well-
known Lame equation

z0
2z̃9~z!1s2z̃~z!F11

1

18r S V2x i

~gM0!22a'k'
2 D

22sn2S z

z0
,sD G50, ~44!

where the characteristic sizez0 and the modulus of the ellip
tic functions are given by Eqs.~12! and~13!. @An analogous
equation arose in the study of the spin-wave spectrum su
posed on modulated magnetic structures in easy-plane
sublattice antiferromagnetic medium with rhombic magne
anisotropy, or when the external magnetic field was tak
into account in the basal plane~see Ref. 20!.#

The solution of Eq.~44! is well-known~see, for example,
Ref. 21!. The corresponding spectrum consists of tw
branches. The wave function corresponding to the first
them is

z̃n
~1!~z!5

H~z/z01 in1K;s!

Q~z/z0 ;s!
exp@ iq1~n!z#,

q1~n!5
1

z0
H pn

2KK8
1Z~n;s8!2s82cd~n;s8!sn~n;s8!J ,

~45!
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wherecd(n;s8)5cn(n;s8)/dn(n;s8), Q and Z are the Ja-
cobi functions,K85K8(s8), n is the dimensionless param
eter, and 0<v<K8. The dispersion relation for this branc
is

V11
2 ~n!5

~gM0!2

x i
H a'k'

2 118rS s8

s D 2

cd2~n;s8!J . ~46!

The minimum value ofV11
2 (n) is reached forn5K8 and

is zero. We then haveq1(n5K8)5p/2Kz0 . On the other
hand, the maximum valueV11

2 (n) ~for k'50! is reached for
n50 and is given by

V11 max
2 5V11

2 ~n50!5
18r~gM0!2s82

x is2 . ~47!

We then haveq1(n50)50.
The second solution~second branch! of Eq. ~44! is

z̃n
~2!~z!5

H~z/z01 in;s!

Q~z/z0 ;s!
exp@ iq2~n!z#,

q2~n!5
1

z0
H dc~n;s8!sn~n;s8!2

pn

2KK8
2Z~n;s8!J .

~48!

The corresponding dispersion relation is

V12
2 ~n!5

~gM0!2

x i
H a'k'

2 118r
dc2~n;s8!

s2 J , ~49!

wheredc(n;s8)5dn(n;s8)/cn(n;s8).
The minimum value ofV12

2 (n) is reached forv50 and is
given by ~for k'50!
p

.

V12 min
2 5V12

2 ~n50!5
18r~gM0!2

x is2 . ~50!

If, on the other hand,n→K8, we have V12→`, q2
→`. Comparison of Eqs.~47! and~50! shows that there is a
gap between the above branches of the spin-wave spect
The gap is given by

V12 min
2 2V11 max

2 18r~gM0!2

x i
. ~51!

We thus find that, when the hexagonal magnetic anis
ropy in the basal plane of the system is taken into acco
the spectrum of the Goldstone mode acquires a forbid
band of magnon energy values, and the size of this ga
proportional tor1/2. As r→0 both the forbidden-gap width
and the widthV11

2 of the lower branch are found to vanish. I
this situation, we again obtain the plane-wave solution w
the acoustic dispersion relation~35!.

If we consider the effect of the hexagonal magnetic a
isotropy in the basal plane of the system on the two ot
spin-wave modes described by the angle variablesj̃ and h̃,
we find that the presence of the variable functions cosz0
and sin 5z0 in front of these variables in the expression forLp
ensures that an analytic solution of the corresponding se
equations is practically impossible. The determination of
spectrum of the corresponding modes would require re
tively cumbersome numerical calculations, which are outs
the scope of the present paper. Here we merely mention
the spectrum is again of the band type.12
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