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Modulated magnetic structure and spin waves in hexagonal CsCugiype antiferromagnets
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A theory is developed for triangular helicoidal antiferromagnetic structures due to the relativistic-exchange
inhomogeneous Dzyaloshinskii-Moriya interaction in hexagonal crystals. The magnetic structure observed in
the CsCu(] system is explained, and the spin-wave spectrum and relaxation of spin waves are analyzed. The
theoretical results are in agreement with experimental antiferromagnetic-resonance data.

[. INTRODUCTION axis (the separation between neighboring ions in a chain is
~cCo/6 for lattice parameterscy=1.8178 nm and a,
There is a steady interest to investigations of physicak=7.2157 nm). The important point is that, in this particular
systems whose magnetic properti@nd not only magnetic case, the shifik=s/a,, is very small,k~0.006<1. The
propertieg approach those of one-dimensional and two-almost quasi-one-dimensional magnetic behavior of the sys-
dimensional systems, in particular, to magnets with hightem is dictated by the smallnessfnd the properties of the
anisotropic magnetic interactions. In quasi-one-dimensionatxchange, superexchange, and  relativistic-exchange
magnets chain-coupling exchange parameters are small jfteractiong (in particular, the fact that interchain interac-
comparison with internal chain parametetsr plane- tions are small in comparison with intrachain interactions
coupling parameters in quasi-two-dimensional magnetically - Neytron diffraction data, obtained in the absence of an

ordered systems as compareq with interna_l plar)e Paranky ternal magnetic field, suggest that, beldy=10.7 K, the
eterg, and therefore the behavior of such objects is s'gmf"magnetically ordered state of CsCy@isplays a triangular

cantly different from that of three-d|men5|pnal magnets. . antiferromagneti¢dAFM) structure in the basal plane of the
Among such systems are the well-defined and extensive

class of hexagonal magnetic compounds of the fA@Xs Crystal and a Iong—period modulation of this strgcturg along

whereA andB are cations ani is a halogen. The compound f[he hexagonal § axis (subsequently, t_he cartesiahaxis),

CsCuC} occupies a special place in this class and presentsS- the wave vector of the structucgis parallel to thez

us with a relatively rare example of a modulated magneti@xis- The s.tructure-perloij average of the angle between the

structure due to the relativistic-exchange interaction, i.e., &'a@gnetizations of the Cui chain ions in neighboring basal

structure resulting from the competition between thePlanes is approximately 5.1°. Consequently, the modulation

Dzyaloshinskii-Moriya and exchange interactidias far as ~ Period is about 12 lattice constants.

we know, apart from CsCuglthis type of modulated mag-

netic structure has been reliably established only in MnSi

and FeGeRefs. 1 and 2and in TbAsQ (Refs. 3 and % Il. THE ENERGY OF THE CsCuCl ; SYSTEM

whereas in most magnetically ordered crystals, the presence i ) ,

of a modulated magnetic structure is due to the competition 1€ triangular AFM structure in the basal plane requires

of exchange interactiofisAlthough an extensive literature is the tripling of the magnetic unit cell as compared with the

now availablé1%on the experimental and theoretical studiesCrystal unit cell in this plane. Since the triangular modulated

of the magnetic properties of CsCuClhere are a substantial AFM structure grows out of the “simple’(in Dzyaloshin-

number of unresolved problems relating to its magneticskii's sens&) triangular AFM structure witlg=0, the the-

structure and the dynamics of this structure. In this paper, weretical description of the magnetic properties of the

examine some of the details of the magnetic structure o€sCuC} system requires, in general, eighteen magnetic sub-

CsCuC} that had previously escaped attention, and investifattices.

gate the acoustic branches of its intrinsic linear excitations. However, if we exploit the results reported in Ref. 10, i.e.,
Below T,=423K, in its paramagnetic state, the com- if we use the method of extended translational symmetry, we

pound CsCuGlhas theP6,22 space groupwithout a center can go over to the three-sublattice description of the above

of symmetry. Six magnetoactive Cii ions(spinS=3) oc-  magnet(each spin chain of Cif ions is then described in

cupy b positions, i.e., they are shifted in the basal plane ofterms of a single sublattitend take the abbreviated Hamil-

the crystal relative to the hexagonal éxis by an amoungé.  tonian of the Cii? ion chain in the nearest-neighbor approxi-

The C#" ions thus form spiral chains oriented along the 6 mation:
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trons, ¢ is the velocity of light,3>0 andp are the crystal
Hon=2 {~3S:Sh+ s T D(SiSh. ) +KSiSh. s —HS,}, magnetic anisotropy constants=H/M,, andH is the ex-
" 1) ternal magnetic fieldwe shall suppose thdi=he,). We
note thata, <a, 6> B, 6>|p|.
whereS, is thenth spin in the chainX andY are the Car-
tesian coordinates in the basal plane of the Systerh;, the lIl. MAGNETIC STRUCTURE OF CsCuCl 5 (THEORY)
external magnetic field, and>0,D, K>0 are the intrac-
hain exchange, Dzyaloshinskii-Moriya, and uniaxial mag- We now parameterize the magnetization vectors of the
netic anisotropy constants, respectively. We note tha{Hq. sublattices in terms of the polar and azimuthal angles
does not contain invariants corresponding to the single-iontn,¢,, (the polar axis of the spherical coordinate system

magnetic anisotropy energy, since in our c8ses. lies along the hexagonal axis.e., we put
In this approximation, and since nearest neighbors in L L
neighboring chains form layers of magnetoactive Guve My,=CoS¥,, My =sind,exp(*ien), 4

obtain the following Hamiltonian for the interchain interac- g that Eq.(3) gives the following expression for the ther-
tion if we confine our attention to the exchange interactionyogynamic potential density:
within a layer:

3
o
w= >, E(f},;2+ @l 2SIt 9,) + aq @2 sir? 9, + gcos’- 9,
n=1

Hin= E Inn’SnS;] ) (2
n,n’
wheren is an arbitrary Cti* ion, n’ are its nearest neighbors + BsinG 9, cos 6p,,— h cosd,
in the basal plane, anld,,, is the exchange interaction con- 6

stant in the interior of a layefit is clear that we must have
>0 if a triangular AFM structure is to be formgd

The experimental values of and | reported in Ref. 9 — @3)+sinY, sind; cog g,— @3) +COSTH COST,
suggest that/J~0.1, which means that the €umagnetic
system is almost quasi-one-dimensional. Moreover, for tem-

peratures in the rande<T<J, the triangular AFM structure where the primes indicate differentiation with respectzto

breaks up and the magnetic material becomes quasi-onpwe have omitted from Eq(5) the invariants that are spa-

dimensional in the full sense of the phrase. tially inhomogeneous in the basal plane, since the magnetic
It is readily shown that the transition to the continuousstructure of our system in its ground state varies only in the

limit and inclusion, in its simplest form, of the energy of z direction).

hexagonal magnetic anisotropy in the basal plane lead to the |t is readily verified that the equationsW/&9,=0,

following expression for the energy of the system under consw/ s¢,=0 have solutions of the form

sideration in the continuouGveak-gradient approximation

(we confine our attention to long-period modulations and T1=0,=U03=1,

drop quantum effecjs

+ [ sin¥4 sind, cog @1 — ¢,) +Sind, sind; cod ¢4

+ cos cosdz+ cosd, cosds], (5)

W= fdru(r) P1=¢, @r3=*27/3, (6)
= [drw(r),
where the angle®, ¢ satisfy the equations

W(I)=Wep(1) =+ Wind(r) sin9{ae” sind+2(ae’ +ay) 9’ cosd

3
S a(dmg 2+a_i IMn 2+ omy) 2 +p sir® 9 sin 6o} =0,
n=1 2\ 0z 2 X ay
a®"+sinH(36+B—ap'?>—2a,¢’

B 5 IMpy IMpyy !
5 Mazt aa| Moo= Moy —2 —p sin® 9 cos 6p)cosd—h}=0. )

p s _ s We note that, whatever the external magnetic field
+ 5L (My)°=(my)"]—hm, strength, the solution of Eq7) with 9 =const=0 is obvi-

ously of no interest because it describes the “easy axis”

+ 8(mym,+m;ms+m,ms), (3)  ferromagnetic state that cannot arise in the absence of the

h —M.- /M~ M. is th N £ th bl external magnetic field fo5>0. Let us examine the set of
W erem_n— nf oo, n 'S_t € maggej'za“‘f‘_ of the sublat- equations given by Ed7) for certain special cases.
tices,n=1,2,3,[M|=Mo=const,m; =my,*im,,, a>0, A. Neglecting the hexagonal magnetic anisotropy in the

a,>0 are the inhomogeneous exchange interaction COMsasa| plane of the crystapE0), we can readily show that
stants along chains and in the basal plane, respectively, Eq. (7) assumes the form

>0 is the homogeneous interchdinterplang exchange in-

teraction constantd~1), a;~(v/c) 5c51 is the intrachain ag”sind+2(ae’+a;)d' cosd=0,
relativistic-exchange interaction constanwhose sign, as

will be seen later, is unimportant for the formation of a  a®”+sind[(26+B— ae'?>—2a,¢’)cosd—h]=0.
modulated AFM structurey is the Fermi velocity of elec- (8)



PRB 61 MODULATED MAGNETIC STRUCTURE AND SPIN WAVES . .. 8845

This set of equations has as its energetically most favor- E(s) may
able solution thé=S structure(see Ref. 12 for an explanation s~ 2(2ap) ™ (13
of this notation with the following parameters:

where E(s) is the complete elliptic integral of the second
®(2)=0doz, o=aila, kind. If we take Eq(13) into account, we find that the equi-
librium energy of the modulated AFM structukger unit
length can be written in the form

where in view of the above estimates of the phenomenologi-
cal constants in Eq.3), we have

cosd=const=h/(36+ B— aq’—2a;qy), 9)

2
,27S

W=—pM2—* (14)
0 2s?

do~(v/c)cy t<cy .
wheres, is the solution of Eq(13).

The spatial period.,, of the magnetization distribution,
i.e., the period of the modulated AFM structure, is given by

Taken in conjunction with Eqs(4) and (6), this solution
describes the equilibrium long-peri¢ts-type modulation of
the simple triangular AFM structure with the wave vector of
the structure having the direction of the hexagonal'axis and Lp=1257,K(s), (15)
magnitudeyy. In other words, we are dealing here with three

FS structures of the same type, first described in Ref. 1whereK(s) is the complete elliptic integral of the second
which are correlated into a triangular AFM structure in thekind. For small values of the hexagonal magnetic anisotropy
basal plane of the system. In the absence of an external magenstantp< ai/ «, the solution of Eq(13) takes the form

netic field, the harmoni€S structure transforms into th&S
structure @ = /2), whereas in the presence of an external
magnetic fieldh=h,=36+ B8—a?/a—2a;1q,, the modu-
lated AFM structure collapses and there is a continuous

1
s~ —(2ap)t?<1,
ay

phase transition to the ferromagnetic state. and the spatial period of the modulated AFM structure is
B. If we drop the external magnetic field, but retain the

energy of hexagonal magnetic anisotropy in the basal plane L =2—7T+O(p1/2) (16)

(p#0), the second equation in E€7) obviously has the P qo '

solution

It is readily seen that, fos— 0, the spatial distribution of the
= const 7/2, (10 magnetization of the AFM sublattic€$2) takes the form of
Eq. (9) for h=0.

A different picture arises fos— 1 (the case of high en-
@@+ p sin6o=0. (11) ergy of_magnetic anis_otropy ?n the basal plaria this_ case,
the period of the spatial distribution of AFM sublattice mag-
Unfortunately, we are not aware of any experimental data ometization contains six segments with practically constant
the hexagonal magnetic anisotropy constant in the basghasesp, namely,
plane of CsCuGl We shall therefore assume henceforth that

whereas the first equation assumes the form

p>0, which will have no effect on our qualitative conclu- m_ T

sions. If we were concerned in this case with spatially ho- p=¢ =g (2m+1),

mogeneoussimple magnetic states, the energetically favor-

able states would be those with and a sharp change ip at the boundaries between these

segments. The sublattice magnetization vectors in the modu-
lated AFM structure form the triangular AFM structure and
are “held” in the energetically most favored directionp§™
(this spatial distribution is sometimes referred to as a soliton
lattice). The magnetic lattice of the crystal can then be
ghought of as being a periodic system of “domaing®t™,
I.e., phases forming a coherent structure with a monotonic
variation of ¢.
1 7—7' 72— 7' The presence of a well-defined soliton lattice in the crys-
o= §an‘<§,s), for 3<p=sr<§,s), (12)  talis readily seen to explain the experimental results reported
in Ref. 13 on the NMR spectra of U nuclei in magnetic
where zo=(a/18p)*? is the characteristic length ardl, s fields of different orientation in the basal plane of the system.
are constants of integration. The first of these constants is Obviously, if the energy of hexagonal magnetic anisot-
determined by the choice of the origin and can be set equabpy in the basal plane is high enough, long-period modula-
to zero without loss of generality. The second constant is théion of sublattice magnetization of the triangular AFM struc-
modulus of the elliptic functions and can be found by mini-ture becomes impossible, and a spatially homogeneous
mizing the total energy of the syste(®) as a function ok.  triangular AFM distribution of sublattice magnetization is
Substituting Egs(10) and (12) in Eq. (3), and using Egs. establishedwhich does not, of course, exclude the presence
(4)—(6), we obtain after some simple algebra the followingin the crystal of true “domains”’¢(™ due to the sixfold
expression for the equilibrium value of the parameter degeneracy of the ground state in the angléVe note that

m_7 —0—
@ 6(2m+1), m=0-5,

i.e., we would have a sixfold degenerate ground state.

The solution of Eq(Il) that describes the modulated AFM
structure can be expressed in terms of the elliptic Jaco
functiong112
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such domain systems are not thermodynamically stable statéen of Eq. (18) can then no longer be written in the rela-
of a magnetic material, but are nevertheless observed expetively simple form of Eq.(19), but the qualitative picture
mentally. remains unaltered. Under these conditions, we halxe0,
Comparison of the energies of the soliton lattice and thes’~h/35 in the interior of each “domain”¢(™. On the
spatially homogeneous sublattice magnetization distributionpther hand, within the region of rapid variation of the phase
given by Eq.(14), readily shows that the soliton lattice is ¢ in the “domain” boundaries, the polar angi& changes

energetically more favorable for abruptly by an amourtp/ 2.
5 The linear dependendd9) of the “nutation” amplitude
p<pc=ail2a. 17 on the external magnetic fieldor given p) is, of course, no

If p—p. thens, —1 andL,—. Consequently, the period longer valid when we leave the linear approximatidm (
of the structure increases without limit with increasing an-<Nc). Moreover, the effect vanishes in the opposite limit
isotropy constant, and fgr— p,. the system transforms into a (N—Mc), since the projections of magnetization on to the
system of 60° domain boundaries at an infinitermally) pasa! plane tend _to Zero. Consequentl_y, an increase in the
distance from one another. In fact, we obtain a spatially hofl€ld IS accompanied by a nonmonotonic dependence of the

mogeneous magnetization distribution. ‘nutation” amplitude, with a maximum in the interval

C. We now return to the general set of equati¢isfor ~ (Ohc). The amplitude vanishes &s-0 andh—h,.
p#0 andh#0. A general analytic solution of this system
does not seem possible. However, when the external field is IV. SPIN DYNAMICS OF CsCuCl 4
low enough b<h;), we may expect that the angle at which (ACOUSTIC BRANCHES)
the magnetization vectors leave the basal plane is also small:

| /2= 8| <1. It is readily verified that, as fd1=0, the first superposed on the modulated AFM structure discussed
equation in Eq/7) reduces to Eq(11) to first order in the above. As noted in Sec. Il, a triangular modulated AFM

external magnetic field, i.e., the azimuthal angle distribution ; .
o(2) is again given by Eq(12). To first order inh<h, and structure in the CsCughkystem can be described by a model

~ . . ) with three effective magnetic sublattices. The magnetic dy-
¥=m/2—9<1, the second equation in E() is a Hill-type  amics of the system can then be analyzed with the help of

inhomogeneous differential equation with periodic coeffi-ihe ysyal equations of motion of the sublattice magnetization
cients vectorsm,, (Landau-Lifshitz equationsIn our model, these
= o , equations reduce to a relatively cumbersome and inconve-
ad"+ 936+ B—ap’' —2a1¢'|=h, (18 nient system of six differential equations for the angle vari-
where o= ¢(z) is given by Eq.(12). ables¥,, and ¢, that parameterize the unit vectars, (cf.
Analysis of Eq.(18) becomes significantly simpler if we Ref. 4.
recall that, within the entire domain of existence of the TO investigate the modulated AFM structure in the
modulated AFM structure, excluding a logarithmically nar- CSCuCh system, we therefore use the very productive
row band nearp., the system has only one characteristicmethoo! of effec?ive Lagrangians developed in Refs. 14-16.
length, namely, the structure periag. If we also recall that According to this method, any magnetic structure can be

p<d and Lp>(a/5)1’2, the solution of Eq(18) can be ap- described in the exchange approximation by not more than
proximately written in the form three mutually perpendicular unit vectdigr,t), 0=1,2,3
that do not alter their mutual orientation in different excited

We now turn to linear magnetic excitatiofspin waves

~ h B p states, i.e., they provide a rigid reference frame. In the
19(2)*3_5< 1- 35 + WN(Z)' method of phenomenological Lagrangians, the dynamics of
long-wave excitations can be investigated by including the
2_g2 7 2a,( 2 \12 7 relativistic interactions, which fixes the orientation of the
N(z)= — +4sn2(—,s) - ?(a—p) n(a,s). magnetic vectors, relative to the crystal axé$,assuming

(19 that they are nevertheless much weaker than the exchange
interactions. Any excited state specified by the vectors

It is clear from Eq.(19) that, when the external magnetic l,(r,t) can be obtained from an initial homogeneous state
field and the hexagonal anisotropy in the basal plane ark’ by rotation through an angi®(r,t):
simultaneously taken into account, we obtain a “nutation”
effect in which the modulated AFM structure includes the l,(r,t)y=D(®)I|?, (20)
modulation of not only the components of the magnetiza-
tions of the AFM sublattices in the basal plane, but also theivhereD(®) is a three-dimensional orthogonal matrix.
projections along the wave vector of the structure. The “nu- We emphasize that the use of the effective Lagrangian
tation” amplitude is of the order ohp/8? and the corre- method must be confined to long-wave excitations for which
sponding spatial periofi.e., the period of the polar angle the characteristic spatial innomogeneity scale is much greater
¥(z)] is, as expected, smaller than the period of the mairthan the crystal lattice constant, and the frequencies are much
structure by a factor of 6. smaller than the exchange frequencies. We shall now focus
If a “soliton lattice” is established in the system, then our attention on these particulémydrodynami¢ excitations
there are two characteristic dimensions, namely, the structuii@ which the dynamic bending of the crystal sublattices is
periodL, and the sizeA, of the transition region between small. In particular, we shall confine our attention to the
the “domains” ¢(™ (see abovg whereAg<L,. The solu- acoustic branches of the spin-wave spectrum. Exchange
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branches of intrinsic linear magnetic excitations of the sys-

tem, for which the concept of the “rigid reference frame” is
not valid, lies outside the scope of this paper.

A. In the absence of the external magnetic fieldsee
Sec. lll), the sublattice magnetization vectars, lie in the
basal XY plane and form a triangular AFM structure. The
mutually perpendicular unit vectots can therefore be taken
in the form

1
(0= (2m$ - m® - m?),

1
1= (- mi®),

19 =[115]. (29)

For p=0 the orientation of the vectot§’ andI{") relative to
the Cartesiarx,y axes is not fixed, so that without loss of
generality we can put”=e,, 1¥=g,, wheree,, are the
corresponding unit vectors. We then have

Ili(rlt):DXi(rit)! |2i(r1t):Dyi(r1t)'

The effective Lagrangiah. describing the noncollinear
antiferromagnetic medium takes the fdfm

(22)

L=Jdr %%hﬁ«&&¢)+wi¢ﬂﬁw]

X ~
+2—g”2w§(<1>,(9td))—U(D)

(23)
wherew;(P,d,P) are differential Cartan forms related to the
rotation matrixD(®) by
1
wi(q>,<9tq)):§8ik|ijl9tD|j : (24
g is the gyromagnetic ratigg, andy, are the transverse and
parallel (relative to the vectot®)=|I{”I")| susceptibilities

of the AFM medium,y, ,x;~ & 1), £ is the fully antisym-
metric tensor of rank three, andlis the “potential” energy

of the magnetic medium, whose form can readily be obtained
from the expression for the density of the thermodynamic

potential (3), taking into account Eqg21) and (22). In the
parametrization
Dik= Sik+2(viv— 12 Six) — 2v4814 V| (25

of the rotation matrix, the differential forme;, take the
form

W1=2(V40v1— v10Vva+ vodv3— v3dV5),

Wy=2(V4dVy— v9dvs+ v3dv— v1dV3), (26)

w3= 2(V4(9V3_ V3(9V4+ VlaVz_ Vzavl),

where v, =(v,v,) are the components of the unit four-
vector, v2+ vf‘: 1, andw?= 4((3’1/#)2.

The next step is to parameterize the unit veatgrwith
the help of the three angle variables, namely,

v1=C0S8¢, wo=sinécosy, wvz=sinésinysin

Ea

(27)

o {

va=sinésinny cosz.

We note that it is precisely this parametrization that is par-

ticularly convenient in the analysis of spin waves in modu-

lated AFM structures. A more standard and widely used pa-
rametrization is

fI>=ntan£, n’=1,
2

which has a simple physical meanifigtation of the refer-
ence frame by an angl¢around the axis defined by the unit
vectorn), but is found to be inadequate because the veattor
becomes meaningless on a denumerable set of values of the
angle .

If we use the specific forni3) of the thermodynamic po-
tential of the system CsCugtogether with Eqs(25)—(27),
we can take the effective Lagrangian for the problem in the
form

2x,

_ 2
L‘MOJrLngZ

2(x1—x1)
(9M0)2

E+ p?sint e+ %'42 sir? £sir? 5

(%gsinz £sir? p+ £cosy

5 (V&2+(Vy)?sin ¢

2
7 Sin 2€ sin 77) —a

+ %(vg)Zsinz £sir? p+ %(vg)sinz £sirt g

2
+(V¢)cosy— %(? 7)sin 2£ sin 7;) }

— Bsir? £ sir? 5(cog &+ sir? £ cos 7))
— a4[(cog ¢+sir? £cos 7)(2¢€' cosy

— ' sin2¢siny)— ¢ sint ¢ sint 77]], (28)
where
< n d a)
V_ezE+7 ex&nLey&— .

Over dots indicate differentiation with respect to time. We
have omitted from this expression the terms connected with
the external magnetic field and the energy of hexagonal mag-
netic anisotropy in the basal plane, whose influence on the
form of the spin-wave spectrum superposed on the modu-
lated AFM structure will be discussed below.

The equations of motion for the angle variableg, » are

sL aQ

sL_aQ
8 ar

sLaQ
8¢ g¢

—= , 29
oy dny @9
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where Q is the phenomenological dissipative function, by - P a9

means of which we take into account relaxation of magnetic A= 972 + 7(&7 + W) .

excitations. In one-dimensional magnets under consideration

this function contains two different relaxation parameters Equation(32) is not coupled to the other two equations in
and has the for{ the system and describes the Goldstone mode of the spin-
wave spectrum with the gapless dispersion relation

[0y (®,0,P) 2+ dwy(®,5,D)]?
Q=r1 ot at Q,(K)=Q5(K)+i1Q1(K). (359
dwz(P,0,P)]? SinceQ;(k)>Q7(k), then
My —————| . (30
o , akZ+a k2\Y2 r(gMg)K2
. . . QK =gMg| ———| , Qi(K)=—,
The equations of motion corresponding to the Lagrangian Xi X

(28) and the dissipative functiof80) are rather cumbersome (35b)

in their general form, so that we shall not write them out inynere() is the spin-wave frequency awg, k, are the com-

full here. It is readily verified that these equations have thg,onents of the wave vector along the hexagonal axis and in

following static solution: the basal plane, respectively. Oscillations of the reference
vectorsl,, |, (and also of the sublattice magnetization vec-

o= mo=m2, {o=0z GD  tors m,), corresponding to this gapless Goldstone branch, lie
and the corresponding rotation matrix is in the basalXY plane, which is typical for easy-plane mag-
netic media.
cosé, —sing O On the other hand, Eq$33) and (34) describe the two

branches of the spin-wave spectrum with the dispersion re-

D=| sing cosé O lation (and a gap

0 0 1
. . . Q. (k)=Q%L (k) +iQ%(k), (363
This shows that the static solutid81) corresponds to a ro-
tation of the basic reference frame through an angje gM,

around thez axis (hexagonal axis of the crysjai.e., to the QL(K)=——1
modulated AFM structure discussed above. (2x1)

If we use the Lagrangian given by E(28) to construct 5
the energy functional, we can readily show that its minimum Q" (k)= r1(gMo)
is reached folg=(o= — @, /@. In other words, the distribu- - X1

tion given by Eq.(31) describes the same modulated AFM T(jwese branches have corresponding oscillations of the refer-
structure that was discussed above in terms of the standar

X . - ence frame in which the vectors, |, leave thexy plane(the
sublattice appro_ac[Sec. ”.I’ Eq'(g) with h=0]. oscillations take place around mutually perpendicular direc-
To analyze linear excitations superposed on the mod

Yions in the basal plane
lated AFM structure, we put It is interesting to note that a spin-wave spectrum analo-

gous to (363 is generated by the simpler two-sublattice
AFM model whose thermodynamic potential density con-
tains an invariant of the form/y= a4 (L,L,—L,L;) and has

an easy-axis symmetiyather than the easy-plane symmetry

2 211/2
ag do
ﬂ—l—;-l—aiki-l—a(kzi?) } ,

2 3 2
%) 30

(=Lt Uy, é=ml2+Er,), p=ml2+7(r ),
where?, &€, % are small deviations from the equilibrium

distribution of Eq.(3D), i.e.,|], [¢], [7]<1, and then linear- of our casg¢ The equilibrium state of this type of AFM me-

1z€ tht?t gq%gtlofn?l of_mot|0|;1 '? these (;jev:jatlolljs. Asdgﬁresultdium is, of course, spatially homogeneous, and the invariant
we obtain the Tollowing Set of second-order inear di eren—Wd manifests itself only in the excitation spectrum.

tial equations with constargthis is importank coefficients: On the other hand, in an easy-plane two-sublattice AFM

X medium with an invariantvy and a modulated magnetic

aAl— 25+ Zr;g'/zo, (32 structure as the equilibrium state, there is, apart from the
(gMo) Goldstone branch of the spin-wave spectrum, only one

) 5 branch similar to Eq(363a. This branch typically exhibits

e S ~ 2 ol the nonreciprocity property)(—k,) #Q(k,) due to the
ahé (g M0)2§+ @Co7" + 40[1qo B>§ modulated magnetic structure that originates from the invari-

- , . ants in the thermodynamic potential that are linear in the first
+ r1(4§”+2q0”ﬁ—qgé)=0, (33 space derivatives. In our case of modulated AFM structure,
on the other hand, we again have nonreciprocity of each of

- 2X1 . ~, (5 _ the two branches of the spectrum with the gap, but the pres-
aA— ————n—aqoé +| T @100~ B |7 ence of two such branches restores the symm@tfy—k,)
(gMo) 4 )
T RE3\Rz)-
+11(47" — 200¢" — d57) =0, (34) B. We now turn to the effect of an external magnetic field

hlle, on the spin-wave spectrum, particularly the antiferro-
where magnetic resonance frequencies. According to Ref. 16, if the
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external magnetic field strength is weak enough in compariternal magnetic field.For small values of the external mag-
son with the field associated with the exchange interactiometic field @Myh<(),), the corresponding functions are
between the sublatticesh{ ), then it can be taken into linear, in agreement with experimeft.
account by the effective Lagrangian method when we ana- C. When the hexagonal anisotropy in the basal plane of
lyze the dynamics of the magnetic medium. The new effecthe system is taken into account, the magnetization distribu-
tive Lagrangian can be obtained from E83) by introduc- tion of the modulated AFM structure in the absence of the
ing the replacementw;— w;+gMgh;. It is then readily magnetic field is described by E¢L2). The corresponding
verified that, in our case, this signifies the appearance in theerm in the effective Lagrangidn which we shall denote by
effective Lagrangn density(28) of the additional term Ly, is exceedingly cumbersome when it is written in its gen-
eral form in terms of the angle variablésy, {. We therefore

hM hMy . . : . T

XiNMo w3=XH 0 (2£ cosy— L Sir £sir 7 reproduce only the qua-ldr-atli: tgrrrls in the exp-an5|ohp(]h.
g g terms of the small deviationg, 7, { that describe the spin-

_ psin2esing). 37) wave spectrum
Equation (32), which describes the gapless Goldstone L,=M3[dr{9p& cos o+ 3p| (7>~ &%)
mode of the spin-wave spectrum, then remains valid as be- _
fore, and Eqs(33) and(34) have to be modified as follows: X cos &o—2§7 sin 5o}, (42
—— 2X| = ~, [5 ~ <, where{y={o(2) is given by Eq.(31).

alé— (gMo)? §tagen’ | zendo= B |&+Tr(4¢ Itis clear from the structure of E@42) that, as before, the

equation of motion forZ(r,t) splits off from the other two
2xh. equations in the set:
7=0, (38
gMo

+2007" —q5€) — 4r,gMoh%’ +

X 1857 cos §y=0 43

. K7-
P47 AR TgM,)?

5
Zal%_ﬁ

<~ 2XL ~ ~
alA7— GMo2 7™ aqoé’ +
2y h (in the case under consideration we shall analyze the spin
—2q02—q§%)+4rngoh%’— Xi Z’=O. (39)  wave spectrum without relaxation; accounting the latter is
0

gM straightforwarg. Assuming that
These equations describe spin waves with dispersion rela- _ _
tions of the form L(rity=¢(z)explik, r, —iQt),
Q. (k=0 (k;h)+iQ" (k;h), (408  we readily find that Eq(43) takes the form of the well-

known Lame equation
Q% (k;h)=*+Q,+[Q/%(k;0)+ Q2]
Qp 750" (2)+%(2)

[Q2(k;0)+ Q71"

Q
P v (N kz)
Q% (k;h)= Q"% (k;0){ 1+ 18P<(9M0)2 et

(40D) 55)
where Q,=y,gMoh/2y, , Q. (k;0), and Q".(k;0) are %o

given by Eqs(363 and (36b), respectively. . where the characteristic sizg and the modulus of the ellip-

It is clear from Eq.(40) that an external magnetic field . functions are given by Eqs(12) and(13). [An analogous
parallel to the wave vector of the modulateq AFM Stru,Ctureequation arose in the study of the spin-wave spectrum super-
lifts the degeneracy of the AFM frequenciéb.. that is  5sed on modulated magnetic structures in easy-plane two-
present forh=0: sublattice antiferromagnetic medium with rhombic magnetic
anisotropy, or when the external magnetic field was taken

—2sr?

=0, (44)

(h_ h) — 2, 02112
Q2"=0.(0h) =2 Qp+{Qo+ Q)™ (42) into account in the basal plarisee Ref. 2D]
where The solution of Eq(44) is well-known(see, for example,
Ref. 21). The corresponding spectrum consists of two
gM, 5a3\ 12 branches. The wave function corresponding to the first of
wa B+ them is
is the AFM resonant frequency fdr=0. One of the AFM ~1) H(z/zg+iv+K;s) _
resonant frequencies then increases with increasing external £,(2)= ®(2zy'5) exdiqa(v)z],

magnetic field and the other decreasgd/e note that the

above analogy between the spectrum of spin waves in the

two-sublattice easy-axis antiferromagnetic medi§ran the _ i v
one hand, and Edq36), on the other, is also found to occur Aa(v)= Zy | 2KK'
for the dependence of the spin-wave frequencies on the ex- (45)

+Z(v;s’)—s’zcd(v;s’)sn(v;s’)],
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wherecd(v;s")=cn(v;s’)/dn(v;s'), ® and Z are the Ja-
cobi functions,K’ =

is

2

!

M 2
(gMo) {alkf—i-lSp —

Qil( v)=

cdz(v;s’)]. (46)

The minimum value of23,(v) is reached for=K' and
is zero. We then have,(v=K")=m/2Kz,. On the other
hand, the maximum valuﬁil( v) (for k, =0) is reached for
v=0 and is given by

18p(gMo) 3’2

02
v=0)=
03 e

(47)

Q11 max_

We then havey,;(v=0)=0.
The second solutiofsecond branchof Eq. (44) is

H(z/zy+iv;s)

@(Z/ZO;S) eXF[iqz(V)Z],

2P(2)=

1
Qo(v)= Z—O[dc(v;s’)sn(v;s’)— KK

—Z(v;s )]
(48)

The corresponding dispersion relation is

(gMg)?
Xi
wheredc(v;s")=dn(v;s")/cn(v;s’).
The minimum value of22,(v) is reached for =0 and is
given by (for k, =0)

Q%)=

5 dc?(v;s')
aiki+18p? , (49
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K’(s'), v is the dimensionless param-
eter, and Bsv<K'. The dispersion relation for this branch

PRB 61
18p(gMo)?
O = QR v=0)=— "5~ (50

If, on the other handy—K’, we have Q,,—>, Q,
—o0, Comparison of Eq947) and(50) shows that there is a
gap between the above branches of the spin-wave spectrum.
The gap is given by

_ 02 18p(gMo)?
llmaxX—H'

0? (51

12 min~

We thus find that, when the hexagonal magnetic anisot-
ropy in the basal plane of the system is taken into account,
the spectrum of the Goldstone mode acquires a forbidden
band of magnon energy values, and the size of this gap is
proportional top'?. As p—0 both the forbidden-gap width
and the width)22, of the lower branch are found to vanish. In
this situation, we again obtain the plane-wave solution with
the acoustic dispersion relatig@5).

If we consider the effect of the hexagonal magnetic an-
isotropy in the basal plane of the system on the two other

spin-wave modes described by the angle variablesd7,

we find that the presence of the variable functions ¢gs5
and sin ; in front of these variables in the expression ffgr
ensures that an analytic solution of the corresponding set of
equations is practically impossible. The determination of the
spectrum of the corresponding modes would require rela-
tively cumbersome numerical calculations, which are outside
the scope of the present paper. Here we merely mention that
the spectrum is again of the band tyje.
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