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Condensation kinetics for bosonic excitons interacting with a thermal phonon bath
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We develop a theory of the kinetics of the Bose-Einstein condensation of bosonic excitons interacting with
a thermal bath of acoustic phonons. We emphasize several delicate aspects of the condensation kinetics within
the framework of rate equations. We give detailed proofs about the existence and uniqueness of the solution
with a condensate and illustrate details within exactly or almost exactly solvable models. In particular, we
predict an exciton condensation time inQuwhich is shorter than the lifetime of paraexcitons.

[. INTRODUCTION nent. This overshoot is closely related to a “threshold rule,”
which holds under very general conditions.
The Bose-Einstein condensatigBEC) is a fascinating For the interaction of excitons with acoustic phonons

subject enjoying a revival due to the experimental observatreated in Sec. VI there is a supplementary pathology related
tions in atomic trap]SZ and experimenta| evidences for exci- t0o the fact, that the golden rule giVES rise to a transition rate
tons in semiconductors® We focus our attention in this Which is a distribution, not a function. Thus a broadening of
paper on the treatment of the condensation of excitons takeiie energy conservation through life-time effects has to be
as bosons interacting with thermal acoustic phonons. In ordd@ken into account. The broadening has to be introduced
to be able to observe the BEC of excitons, e.g., ig@uhe  Without destroying the detailed balance property. We briefly
condensation time has to be shorter than the recombinatideat the temporal evolution of the phase of the condensate.
lifetime of paraexcitons in this material. Earlier theoretical Extended numerical calculations are performed for an ex-
simulations in the framework of rate equatibfslid not re-  citon BEC by interaction with acoustic phonons for the ex-
sult in a condensation. Here we describe theoretical simuleample of CyO. The reader interested only in the phenom-
tions and calculations of the BEC giving rise to condensatiorgnological aspects may skip Secs. IV and V as well as the
times which are for the example of @D shorter than the Mathematical details given in the Appendixes.
lifetime of the paraexcitons.

In order to develop a kinetic theory, one has to analyze ||. BEC AS AN EQUILIBRIUM PHASE TRANSITION
carefully the general mechanism of BEC in real time within
the framework of rate equations for the average particle oc- Although already textbook matter, for sake of complete-
cupation numbers in order to avoid possible mistakes of€ss and for fixing the terminology and notations, we sketch
deadlocks in the description of this delicate process. wéere the equilibrium theory of the condensation of a free
prove some theorems about the occurrence of condensatigtPSe 9as in the spirit of Bogoliubov's quasiaverages. We
in time by discussing the situation for a finite volume, asconsider the system in a periodic box of volumevithin the
well as the proper thermodynamic limit. These enable us t¢econd guantization. The energy of a boson is
avoid shortcomings of previous numerical simulations. In .
Sec. Il we shortly review the equilibrium phase transition £.2k?
theory of the BEC, particularly the symmetry breaking con- &= om 2.1
cept of Bogoliubov. We show in Sec. lll that a proper treat-
ment has to separate the macroscopical degrees of freedafie wave vectok takes discrete values. The grand-canonical
before any numerical discretization and has to introduce eistatistical sum is
ther finite volume effects in order to preserve spontaneous
transition rates into the condensate, or a small, but finite Z=Tr{e AH-rN)} (2.2
initial condensate population. The necessity of separating the
condensate was realized earlier in Refs. 8,9. We illustrate owwith
statements in Secs. IV and V within exactly solvable models
of increasing complexity. 4

We provge alsop theyphenomenon of “critical slowing H—uN=2) (e~ p)a; ai+ M Wag+aVa .
down” of the relaxation by approaching the critical point k (2.3
from the noncondensation side. It is shown that under con-
densation conditions the condensate density approaches ltere we added to the free-boson Hamiltonian supplementary
asymptotic equilibrium value very slowlynot exponen- terms which break the particle conservation law. After per-
tially), but from above. Thus the condensate population overforming the thermodynamic limit, one takes the limit of van-
shoots at early times and later relaxes afterwards verishing symmetry breaking term.
slowly. This phenomenon allows to observe a condensate at By a shift of the zero mode creation and annihilation op-
times much shorter than those given by the Liapunov expoerators, which conserves the commutation relations
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AV d3k 1 d*k 1
A0=a0—— (24) f = gj
H (2m)% efl&— 1 -1 (2m)3 efek—1
we can enforce again the quadratic form ! F<3) g(?’) m )3/2
s L. PV V2?1 2)70 2] g
H—uN=2 (e—u)a; ag— uAdAg+ . (2.5
k#0 I (u=<0) (2.12
The free energy is then and thus the Bose distribution cannot accommodate the
whole particle density above a critical density. The only dif-
1 i IN|? ference to the previous treatment is, that no nonvanishing
F= BV > Inf1—e A M4 (2.6 order parameter appears. The mathematical clue of the BEC
k » is just the correct treatment of the Riemann limit.
and the average particle density is given by
Ill. RATE EQUATION FOR BOSONS COUPLED
(N) 1 1 INE TO A THERMAL BATH
— =)+t —. 2. . . . I .
VoV eflamm_y 2 @7 We will show in the following that within a simple rate

equation approach most of the abovementioned results are
Now the thermodynamic limit has to be taken carefully. obtained also in the real time evolution. We consider here
As long as one has a symmetry breaking temn¥Q), the  only the average occupation numb(eaéag) for arbitraryk.
chemical potential has to be strictly negatiye<0) in order | ater within a microscopical phonon model, we discuss also
to ensure the finiteness of the extra term. Therefore, eacihe order parametdiay(t)).
term in the sum is well-behaved and the limit of the three-  The Markovian rate equations describing the transitions
dimensional Riemann sum can be taken safely according tgue to the interaction with a thermostat at the inverse tem-

the standard recipe peratureB read

1 f d3k 2 1 + n

- . 2.8 —Haja)=— 2 (Wi (ag a(1+(ag ag )

V ; (277)3 ( ) at' Tk V K’ k k
For the total densityr{,,=limy_..(N)/V) one gets —(k=k")}. 3.1

) 3 The transition rate$Vy; ., are supposed to be well-defined

_& d°k 1 functions satisfying the detailed balance relation
Niot=— 3 Blem) 1 (2.9
) (2m)° ePts%m —1

Wi =W el ek, (3.2

Above the critical density at a given temperature, the Chemi:I'hese equations conserve automatically the total average
cal potential will vanish if the symmetry breaking term van- | 'o>c €9 y g
ishes f—0). particle number

IN| > (aag)
— (I\[=0), (2.10 K

ILL*)
yn
0 and the positivity of the average occupation numbers. They
wheren, is the condensate density. Importantly, the ordemave as stationary solutidffixed poiny, the Bose distribu-

parameter also survives in this limit tion (with the chemical potentigh <0 for V<)
Iim@:\/n—e"lS (2.1) fi=f%e, u)=———+— (3.3
v V0 ' R T T '

where ¢ is the surviving phase of the symmetry breakingWhich is stable and under certain connectivity conditions for

(N=|\]e'?). Wi+ it is also unique. The proof of these statements is left
On the other hand, if one takes first the limit>0 and  for the Appendix A. _

afterwards performs the thermodynamic limit, special care From the above statements it already follows, that BEC

has to be devoted to the treatment of the sum dueFhe  ©CCursin real time as lign,..lim,_,.., taken in this order, but

Riemann limit cannot be performed without separating theVe are interested in what follows in the more physical in-

~ : . . ° " Verse order of the limits. Let us define the densities of the
term atk= 0, which above the critical density goes to a finite ,oncondensed particles

value since the chemical potential behaves as-

—1/ngBV. The rest tends then to the Riemann sum with (1) =(az(t)  a(t K+0 34
=0. Recall, that the appearance of the condensate is the (D=t "av) - ( ) 34
consequence of the fact, that and the condensate density
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1 . 1 comes a trués in the limitt— . We will illustrate this point
no(t)= v<ao(t) ao(t))= v (b (3.5  with the example of the instant thermalization model in Sec.
V, where explicit proofs can be given. This way a condensate

One has to be careful in separating from the sum in thés formed, if the density and temperature conditions are ap-

rate equation the terms containing the condensgte propriate. If this condensate is treated separately from the
beginning, the rest of the particle distribution function re-
d 1 — mains well behaved.
Fril ity on {Wik fr(1+Fc) = (k=k )} It is obvious that this growth of the condensate out of a
"+

continuous distribution cannot be observed numerically by
the discretization of the integrals in the rate equation. The
: (3.6)  stationary solutions of Eqg3.8),(3.9) obtained without an

1
Not = | —Wor(1+fp)ng

- [Wkofﬁ

Vv
initial condensate, i.e., withy(0)=0, can accommodate all
g 1 1 particles in a discretized spectrum by bringu:agsuffiqiently _
Enozv Z Wi rofc /| ng+ v —Woi (1+fg)ng|. close to the lowest energy level. Therefore, by discretizing
k’'+#0

the k integral the phenomenon is lost, because it is essen-
3.7 tially connected to the continuous nature of the spectrum.
Only after this subtraction, all the andk '-dependent func- Thus the separation of the condensate is an essential ingre-
tions are supposed to be continuous, so that in\theo dient of any numerical simulation. This is also intuitively
limit the sums are legitimately interpreted as Riemann inte<lear, because any grid becomes eventually too coarse for a

grals and we get precursor of & distribution.
Equations(3.8), (3.9 for vanishing temperature coincide
d d3k’ .. with the rate equations of Ref. 8 except for the extra source
S f)=- f T):;{WIZIZ/fE(t)[1+fR/(t)]_(k:k,)} terms included there. The proper separation of the conden-
sate also has been taken into account in the framework of the
—{Wiof g(t) = Woi 1+ Fr(t) Ino(t), (3.9 rate equations with boson-boson collisions in Ref. 9.

In the derivation of Eqs(3.8), (3.9 we used the fact that
i t—fd3k, Wi rof k(1) =W [ 1+ f o (t t 1 1
i No(t) = (277)3{ krofi (1) = Woi [1+ fi /() Tino(t). im v(l+<a3ao>)= lim v<a3ao>5no-

(3.9 Vo Vo

We consider that the transition rates are bounded and colfVe Shall see later that one may conceive a mixed treatment,
in which the summations are already transformed in integrals

tinuous overall, including=0 (Wh'Ch. holds in our mode)_s_ but one still keeps the small \I/correction to the above
We take also bounded and continuous initial conditions

i} ; . relation describing spontaneous transitions into the con-
f(0). Equ§t|ons(3.8), (3.9 obviously conserve the total av- densed state. Then, the most important finite volume effect is
erage particle density

already taken into account and Bose condensation occurs

3 even in the absence of a condensation seed. The situation is
d°k ) s
Nioi=No(t) + | ——= (1) (3.10 analogous to that already known in the kinetic theory of
)3 semiconductor lasef8,where the rate of spontaneous emis-

. L sion into the laser mode which starts the laser action would
the positivity off¢(t) andny(t) and have two attractive fixed o |ost in the infinite volume limit.
points (see Appendix A the “normal” one with fg In Appendix B we show that the asymptotic large-time
=f (e‘z"“())(“<0)' No()=0; and the “condensed” one nLehayior is exponential for subcritical densities and becomes
with fe=1"(eg,0), no() #0, whereno() is determined by  onexponential at criticality critical slowing down”). This
the particle conservation law. _ _ slower nonexponential behavior persists also above the criti-
This is strongly reminiscent of the analysis made in thegg| density. However, this does not imply that condensation
equilibrium theory of the BEC: If the density is subcritical, a yccurs at this pace. On the contrary, we will show in Sec. VI,
negative ch_emical potential can a_dapt the Bose distributioghat an overshooting occurs in an early stage and only the
to the required value. If the density is supercritical, a conyeyym to the stationary value of the condensate is very slow.
densate is needed to make up for the difference. This overshooting is related to the above mentioned “thresh-
However, in the present kinetic approach we encounter 8q rule.” Again this is similar to a phenomenon known
paradox: Because Eq3.9) for no(t) is homogenous, one fom the kinetics of semiconductor as relaxation

cannot reach the equilibrium solution described above fopggijlationd? which are triggered by switching on the laser
Ne(0)=0 andny>n,,, becausey(t) remains zero for any rapidly.

t. On the other hantsee Appendix A theH-theorem analy-
sis seems to leave no other option.

The solution to this conflicting situation relies on aban-
doning the hypothesis that the functions remain continuous A|| the essential features of the BEC are contained also in
for t—co. We will argue that, for supercritical conditions an exactly solvable boson model consisting of a nondegen-
even in the absence of an initial, arbitrarily small condensategrate ground-statéarticle energye,) and an excited state
a precursor of & distribution grows around=0 and be- (particle energy,). The lowest state is taken nondegenerate,

IV. A SOLVABLE BOSON MODEL
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while the higher state is taken to be macroscopically degen-
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erate(i.e., the degeneracy ¥n,, proportional to the vol- . t, V=—V, a= = ,
ume. Here the real time condensation within the rate equa- 2 2(1-¢) V=A 2
tion approach can be studied analytically. b%+ —
The rate equations for a finite volume are v
(4.10
J w pe e
ﬁfl=—v[f1(1+f0)e o—fo(1+fy)e Pe1], (4.1)  one gets
Jd 1 — =1 .
Efoz_nlW[f0(1+fl)efﬁel_fl(l_{_fo)efﬁeo]. 1—}f0(7)—a—tan — 7+tanh o— ]—)fo(O)
4.2 (4.11
They conserve the average particle density with [af<1. _
Because lim_..|a|=1, one gets
d 1
ﬁ( n.f,+ vfo =0. (4.3 i 1f . [O for «<O0, @12
im lim =fo(7)= 4.1
In the infinite volume limit, with a finite initial condensate PR 2 for a>0

fo(0)=Vny(0) one finds the usual BEC with the critical

temperature defined by

ny

—eﬁc(fl—fo) 1 =Nyt - (4.9

for an arbitrary initial conditiorf(0). Thus the BEC occurs
below the critical temperature. The opposite order of the lim-
its yields the same result, however the condensation occurs
only if limy_ (1) fo(0)#0. In this case it results directly
from the conservation of the particle density, that no evolu-

The rate equations are exactly solvable for any set of paion occurs at al[f,(7)=f,(0)].

rameters. For sake of simplicity, we takg=0, w=1 and
denotee Aler—€)=¢<1,

We eliminatef, in favor of f, through the conservation

equation and get a closed equation fgr

J 1-¢, 1
Efo:_Tf +fo ntot(l_g)_nlg_v + Nyt -
(4.9
The discriminant of the polynomial on the right side is
) 1-¢ 1\?
(4.6)
with
1
b=ny(1-§)—né— V& (4.7
With the integral
f q 1 -2 - 2ax+b @8
X = tan .
ax’+bx+c J—-A J—A
we find
1 1 v—A
va(T)Zm b—+—Atan _Tt
2(1-¢)
+tanh ! 4.9

Simplifying the notations by

The critical slowing down has a very simple form in this
model. At the critical densityA —0 and therefore the time
scaling factor diverges.

V. INSTANT THERMALIZATION MODEL

For the classical Boltzmann equation a special model
(called “instant thermalization)’ with the transition rates
given in terms of a scattering time

3

1 _ei . d°k
Wl;,;,EEe k' with ZEJ(Z

- Bey
e
)3

(5.9

is known to be exactly solvable. Though the exact solvability
for the boson rate equation is lost due to the nonlinearity, we
consider this more realistic and more complex model be-
cause here we can still study the solution of the rate equa-
tions without initial condensate. In the thermodynamic limit
we have the rate equations with time unifs

3L’

irm=—f {fRO[1+fg (1) ]e P& — (k=k ")}
PR (277)3 K k'’ —

—{fr()—e PAL+ R Tng (D), (5.2)

d _f d3k’ . g4t
2t Mo(D= —(277)3{ k(t)—e [1+fg (D) ]no(t).
(5.3

For this model we can discuss the properties of the solution
of the rate equation for a supercritical density even without
an initial condensatenp=0), which cannot be tackled by
discretization.

The rate equation in this case reduces to
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We introduce moments of the distributiohgand 1+ f;; by

+(1+f,;)e’3e'2f ( for. (5.4

3k
o= | (sw)sfae“ﬁ‘*k‘, =0, (5
d3k o nger
Mn(t)zj(ZW)s(lJrfk)e k, n=1, (5.6
3 -
Ln(t)=Mn—Kn=f(ZW)ge‘”Bek, n=1. (5.7

ForM,(t), then=0 moment was not considered, because it
existence depends on the existence of an upper energ
cutoff, an assumption which is not necessary here. The

moments are positive and decreasing with
With these notations the rate equation becomes

J -
—fe=— M+ (1+ e PeK,.

pr (5.9
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@ If a>1 [i.e., fy() is finite], the only case in which
the moments Eq5.11) do not grow indefinitely is

d3k 1
Koszm, (5.13
d3k e P&

This situation obviously corresponds to the subcritical con-
dition with a=e™#~.
(b) If a=1[i.e., fo(x)=], Eq.(5.11) becomes
(277)3 eﬁelz_l'

« f d*k 1
0 (277)3 eBeﬁ—l +
(5.15

This describes a Bose distribution with=0 to which aé
Sdistribution is added ak=0 whose strength is equal to the

d3k e "Pek
K,= f

sngerence between the given denskKy and the critical one

econd term on the right-hand sitRHS) of Eq. (5.15)].

A similar result has been obtained earlier within a certain
simplifying approximation to the rate equation with a con-
stant coupling to a fermionic thermostatWe have to point
out that this result is an essential property of the continuum
and cannot be seen in any discretization of the spectrum.

In Appendix B it will be shown for this model, that the

Ky is in fact the particle density and is independent of time.longtime behavior is exponential below the critical density
M is a function of time, whose knowledge would allow the and becomes slower than exponential when reaching critical-
complete solution of the problem. Unfortunately, one has naty (“critical slowing down”). Such a behavior has been
closed equation foM, but a hierarchy of equations involv- illustrated recently numericafty within the framework of a

ing higher and higher moments.

d d
__Kn: _KnM1+ KOMFH—l'

EM”_&t (5.9

One may attempt a numerical solution of this set of equa-

boson-boson collision rate equation.

VI. INTERACTION WITH THERMAL ACOUSTIC
PHONONS

The transition rates for the rate equation are usually cal-

tions, but presently we will be concerned only with the sta-culated from an underlying microscopic many-body model
tionary solution. The— limits of the moments obey the with the quantum mechanical “golden rule.” The interaction

recurrence relation

K= aK (5.10

n_l—n+1y

wherea=M,/K,. The solution is

n
L
Ko— > —

p=1 aP

ol Jd3k 1
T RoT Wm

d3k e A
f (277_)3 aeﬁ’elzfl-

— N
Kp=a

(5.1)

By examining the rate equation fé=0, one has

M; 1+fy(»)
a=—=——7-—"2=

Ko fo()

Bearing in mind thaK,, is positive and decreasing with
one is left with only two possibilities.

(5.12

Hamiltonian between bosonic excitons and acoustic phonons
(which is derived from the interaction of conduction and
valence band electrons with acoustic phonons through the
deformation potentialis in the long wave-length limit

H=2 e@; ag+ X ﬁwdbg bg
k q

1
TE dgay, gak(bg+b’ o) (6.2)
k,q
with
2|22 R
&=—>— ©g=clal, gg=CG\hwg (6.2

The coupling constar® is related to the material param-
eters byG2=D?/pc?, whereD is the band gap deformation
potential constany is the crystal density, andlis the sound
velocity. The crystal volume &/ with periodic boundary
conditions, therefore a conservation of the discrete momenta
holds. Strictly speaking transition rates can be defined only
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in the infinite volume limit, where the spectrum is continu- ' ' ' ' '

ous. In this limit the “golden rule” gives rise to the transi- ax16°f :
tion rates containing emission and absorption of thermal X non-condensate i
phonons i

e
lex—ed |[Ng_go(ep—eg +hawg/ _§) N .
<

1 ]

+(1+ N ) S(eg—eg —hog_g )], (6.3 | \ condensate

2 o

276G
WIEIZ = A

0

where the thermal phonon distribution is 3 .

0 1 2 3x10 4
1
Nq_—eﬁﬁw(i_l. (64) t/ to
Using wi_i = wi ¢, the transition rate becomes FIG. 1. Evolution of the condensate and noncondensate densi-

ties for a subcritical total densityn{,=4.1x10 %k3, n.=5.65
><10’3kg) with a collision broadening/=0.1¢,.
2 .
217G |ek_ (Shel |

Wik = e ] Sleg—eg | —hog_g). )
27G lei—eq/| 1
(6.9 Wi = — —
ho |eflekr—ed—q| m
These transition rates of course are positive and satisfy
the detailed balance relation, but nevertheless have patho- v

(6.9

logical properties. Namely, they are not functions, but distri-

butions. They are meaningless if the momenta take discrete

values, i.e., in a finite volume. But even in the thermody-

namic limit these rates lead to the terms in E}8) contain-

ing Wy, which are meaningless. which for any finitey is a well defined function, satisfying
In order to avoid mathematical inconsistencies we shalhll the previously discussed criteria.

consider a regularized version of the above model by explic-  Obviously thek=0 mode can be reached only from the

itly introducing a continuous spectrum for the phonons fromneighborhood of thézo mode withky=2md/%. Then it is
the beginning. This procedure may be interpreted either as Sseful to takek. as the inverse length scale,=72k2/2m as
mathematical regularization of the model, or as a phenom- 0 32 . .0
enological introduction of life-time effects. Formally we as- (€ €nergy unit anty=7/kG* as the time unit.
sume, that the phonon quantum numbers&atmd another We have golved Eq¢3.8) and(3..9) numerically with the
guantum numbes which goes to a continuum even at a finite above desgrlbed .ph-onon scattering rates. For .th-e ,Cfse of
volume V. The phonon energy i8wg = c|q|+es and the Cu;0 the time unit |st0—_5_7.8 bS, thg length unit ik,
corresponding density of statesgses)’. .=4.76 nm the cha_racterlsnc energy ég=0.62 me\/. We
With these modifications we get the smeared out transi'—IIUStrate the evo!qtlon of the condensate popqla‘uon below
tion rates and above the critical density RET=0.21¢, (equivalent to
1.5 K) giving rise ton.=5.65x 10*3k8 equivalent to 5.23
, x 10 cm2 for Cu,0. Using a collision broadening energy
Wes _ 276G ex—ex | J deGles) y=0.1¢, we show in the first two figures the resulting kinet-

. ho|efec el — ] ics for the condensate and noncondensate concentration for a

X .
(lex—eg /| —fiwg_g )2+ ¥

subcritical and a supercritical density. In Fig. 1 the total den-

X o(|ex—e |~ fiwg g —€) (6.6 ity is subcritical. Starting with excitons only in the stkte
=0 with ng=4.1x 10 3k3<n.=5.65< 10" °k3 one sees that
27G2  |eg—ep | the initial condensate density decreases rapidly and vanishes
= = G(|lex—eg/|—hwi_g). (6.7  completely. Correspondingly the noncondensate density
b Jeftme0 -1 builds up.
It is essential that this broadening of tAeunction does not In Fig. 2 a supercritical densityq=9.4x 10 3k with

destroy the detailed balance property of the transition rates)o(t=0)= 10 *k$ is assumed. Rapidly the condensate popu-
while a broadening directly in Eq46.3) would destroy it. In lation builds up and correspondingly the concentration of

the numerical simulations we choose noncondensed excitons decreases on a timescale of 3
X 10°t, which corresponds to about 180 ns for,Cu
1 v The initial distribution of the normal phase is chosen to be
Gle)= P EzTyz (6.9 isotropic and Gaussian, centered at the energy afy0nith

a width of 0.3,. Figure 2 shows that the condensate density
and recover the original model gs—0. Thus we consider  shoots over its stationary valug,—n.=3.75x 10~ k3, and
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1 4x10°F

non-condensate 1 3 finite

i volume

infinite

volume 1

3
[

n/ k

condensate

0 2 4 6 8 10 12 14x103

t/[o t/to

FIG. 2. Evolution of the condensate and non-condensate densi- FIG. 4. BEC kinetics by acoustic phonon scattering with finite

—107k=3Y i _ ;

ties at ny,;=9.4%X 10’3k8 above the critical densityn.=5.65 vplume effect V=10%, ") W'th nQ(Q)—O cor_npared_ V?".”‘ the BE.C
33 N kinetics in the thermodynamic limit, but with an initial condition

X 10 °ky and y=0.1eq.

Ne(0)=10"k3.
correspondingly the noncondensate density undershoots its
stationary valuen,=5.65x 10" 3k3 given by the horizontal
dashed lines in Fig. 2. Such overshooting is also known fronstemming from boundedness of the collision term, due to the
the switching-on kinetics of the electrons in the conductionyeqyarity of the transition rates arouke-0 and the bound-
and valence bands, respectively, and the photons in the Iasganess of the initial condition. If ligy,ee,f,(0)=0 it will

mode of a semiconductor lasérThe kinetics of this system . SO
has striking analogies with the BEC kinetics treated here?c'tay so according EdB.10 at any finite time. As a conse-

Although the stationary values are approached extremelguence_ one has always a smgll lack of noncondep_sate con-
slowly, probably with a power-law decay on a COmp|ete|ycentratlon as compared to the ideal Bose value as it is seen in

different time scale, the condensation sets in early. This is iffig- 3. Due to total particle conservation, the condensate
agreement with the general analysis and the discussion of tfvershoots. This feature is not related to specific features of
Liapunov exponent given in Appendix B. This overshootingthe acoustical phonon model.

may be important for the experimental observation of an Such long-lasting differences between the calculated dis-
exciton BEC. tribution function and the corresponding equilibrium distri-

In Fig. 3 the resultlng_ d|str_|but|on of the nonconder_lsedbution aroundk=0 have already been found by Ivanov
excitonsg.f(t;) at the final timet; of the calculation is L7 but the signifi for th d ion is diff
shown and compared with the equilibrium distributiqp‘0 ?t al, but the significance or the con en_sa'uon IS dl grent

K in Ref. 7 and in our treatment. In Ref. 7 it has been inter-

with fi="1/(e”%-1) for the same parameters as in Fig. 2. reted as an obstacle to condensation, while in our context it
The equilibrium distribution times energy approacheskor P : -
is related to an overshooting condensation.

—0 the valuekgT which has been assumed to be @g1 X i
The calculated distribution times energy for the rather large AS We have seen, BEC in the framework of rate equations
time t;, however, goes to zero ds—0. This is a simple occurs in the thermodynamic limit as an instability. An arbi-

consequence of the “threshold rule” trarily small initial condensate gets amplified. On the other

hand, as we already emphasized, it occurs also as a sponta-
pre neous condensation, if finite volume effects pertaining to
lim k2—X =0 (6.10 spontaneous scattering events into the condensate state are
io Ot kept. In Fig. 4 we compare the solution of the rate equations
Eq. (3.7) for a rather large volume and no initial condensate
with that of the thermodynamic limit Eq3.8),(3.9 with a
very small initial condensatay(0)=1/N with the sameV.
The two solutions are seen to be close to each other. All
i the above described scenarios of condensation can be
reproduced also within the instant thermalization model of
. Sec. IV.
For a small -but finite- broadening, one gets condensa-
. tion in the phonon model, however, the kinetics will be as-
ymptotically slow. For a large value of, the condensation
06 03 1 e 16 kinetics is again rather inefficient, because the broadened
(k/k )2 o-function extends below the spectrum. The dependence of
0 the condensation time, (defined as the time needed to
FIG. 3. The final distributione,f, compared toeJ1/ef(k achieve% of the f?nal-cond.ens-ate. populat!)oon the broad-
~1)] eningy is shown in Fig. 5, indicating the simple dependence

0.25 T T T T T T T

(kik, )" ,




8830 L. BANYAI, P. GARTNER, O. M. SCHMITT, AND H. HAUG PRB 61

100000 ' ' i 1 1
I R

Y72 k) T 0

which yields y=0.187 ueV (or 0.000%,) with the above
mentioned parameter. The extrapolated maximal condensa-
10000 | il tion time is thenr,=1.9535< 10°t, or 11.2 us, which is
comparable with the recombination time 46 of the paraex-
citons in this material. Because our estimates are underesti-
mating the broadening, we expect a BEC indeed might occur
with acoustic phonon scattering under the conditions of the
experiments of Ref. 3. To the acceleration of the condensa-

T/t

1000 ' . tion would contribute any other source of energy broadening,
0.001 0.01 0.1 1 . f . .. . .
as well as additional exciton-exciton collisions, which we did
Y/ € not discuss here.

FIG. 5. Condensation time as a function paf
VII. THE ORDER PARAMETER IN THE PHONON
y —0.8938 MODEL
Te= 139.680( —)
€0

(6.11)

Here we describe within the model of an interacting
exciton-phonon system the evolution of the order parameter
Here we took a finite volume'= 10°k, 3, which for CyO  (a,) and relate it to the kinetics dfag ap) which has been
corresponds to 0.0Lm3. This is an important ingredient, discussed before. We do this within the standard approach of
since the speed of condensation kinetics still depends eithée equation of motion method with decoupling in the second

on the value of the initial condensate or on the volume.  stage.
The simple y-dependence of the condensation time ac- The Heisenberg equation of motion leads to
cording to Eq.(6.11) allows an extrapolation to very small
values of y without excessive requirements on computer P 1 .
tlm\?vand memory. _ _ |hﬁ<a0>= - T 2 g-iagb_g+bg)), (7.0
e want to emphasize that the above results are indepen- A
dent of the initial distribution of the incoherent population.
The differences occur only at a very short time scale. and
To predict the condensation time of excitons, e.g., in

Cu,0, the knowledge of the broadeningis necessary. Of J .
course, there might be several sources of broadening, but we {lﬁﬁ—(eg—hwg) (agby )
can estimate a minimal one, which is given by the inverse
scattering lifetime of the excitons due to acoustic phonons 1
+ + +
themselves = W kz gq([ag ag/—g(bg+ bfa),agblz 1.
q
d3k/ 72
(k) y-o ™ After a factorization in the basic variables and formal inte-
This k-dependent function is shown in Fig. 6. Because thegratlon with vanishing initial condition at=0 we have
broadening is only important for the transitions between the
states in the neighborhood kfk,=1 to k=0, we may es- N gk jt e
. L . ach ). = dt’ e () (ei—fiwp(t=t) 5\ |
timate the minimal broadening as (ag k>t |ﬁ\/v o (ao)t
0.07 S x{(ag ag (b bpyo+ 1)~ ((ag aghy +1)
0.05 X(b, b)o}- (7.3
<
Q 0.03 We replaced already the average phonon occupation number
2 ) with its equilibrium value at the inverse bath temperat@re
0.01 1
0 b bs)=~(b: b)g=—. 7.4
0 02 04 06 08 1 12 14 {bg bg)~(by ba)o eBhog_ 1 7.4

klk
¢ A similar equation holds fofagb ). Inserting these results
FIG. 6. The inverse scattering lifetime as functionkek,. in Eq. (7.1), one gets
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+..
><{e’("’l)(eﬁfﬁ‘“ﬁ)“*t')[(agag)t/((bgb,z)0+1) <akfa|z>t+1 1 <agalz>t
— (& agh + 1)(by biyg]+e~ (/MR ho D) e
X[(a¢ a0 (b2 bg)o— (3¢ 8 + 1) _ (@gagert ] .
e Phok—1

X ({bg bg)o+ 1)1} (7.5 _ ) _
The expressions under tlkesummations actually have to be

cutoff at the Debye wavelength.

Next one considers the variables as slowly varying in time Now we have the complete system of equations. One has

and pulls them outside the time integral. Moreover, by pushto solve only the rate equations and get the phase through a

ing the time integration to infinity one gets the so-calledSimple time integration.

Markov approximation One sees that the derivative of the phast-ate is noth-
ing else but the lowest order equilibriufreal self-energy
correction due to the interaction with the phonons. In com-

9 1 parison with equilibrium theory of the free Bose gas, one
—(aghi=(aohis— > |oi? should ignore this energy correction and therefore the phase
at A e
k#0,= stays constant in this framework.
R In order to treat the stochastic phase diffusion one would
X wﬁ(ekiﬁwg)—mm) have to use the abovementioned Langevin equation tech-
k k

niques. Actually for a rather wide class of nonpathological
. _ interactions with a thermal bath there is a rigorous derivation
X[(a; apV — ((a; g+ 1)NE]J, (7.6)  of the Master equations for both the diagonal and off-
diagonal density matrix elementsin the van Hove limit,
which at least formally is equivalent to our results.

where
VIII. CONCLUSIONS

11 We presente_d a detailed discussior_l of the rate_equatiqns
N=(bibi)g+ = *+=. describing excitons treated as massive bosons interacting
K a 22 with a thermal bath of acoustic phonons with special empha-
sis on the BEC properties. Both the finite volume and the
thermodynamic limit are treated. We proved the relaxation to
Of course thes symbol stays here for the precursor of the equilibrium below and above the critical density. BEC al-
Dirac function at large times. The trugfunction is mean- ways occurs above the critical density under a proper math-
ingful only after the thermodynamic limit, i.e., in the con- ematical treatment. Some fine points regarding the thermo-
tinuous spectrunfor better within the regularized version of dynamic limit of the equation have been treated exactly
the mode). The second function, having positive argument within the instant thermalization model. For a better under-
does not contribute. The equations for the occupation numstanding also an exactly solvable two-level model with con-
bers may be derived along the same lines, but we do not neefknsation has been studied.
to go in these details, since they are well known. The equilibrium situation is reached exponentially only
One sees that the equations fda,)|? and (ajay) are for subcritical densities. The decay time goes to infinity as
identical in the thermodynamic limit. Naturally the order- one approaches the critical density making the large time
parameter Eq(7.6) is a homogeneous equation, so its solu-behavior very slow forn,=n.. Nevertheless, we found
tion will stay zero if the initial value has been zero. Thus thecondensation to occur effectively due to an overshooting of
order parameter equatiaf?.6) allows only a condensation the condensate density at early times.
with a small but finite initial value. Again similar arguments  From our analysis of the mathematics of the problem, the
are known in the theory of lasers. A convenient way out ofnecessary ingredients for a proper numerical simulation of
this dilemma is to introduce stochastic Langevin fluctuationthe condensatiorithrough discretization of the continugm
sources which make the order parameter equation an inhalso follow. Namely (i) separation of the macroscopical de-
mogeneous differential equation. The moments of the flucgrees of freedom in the rate equation diidl a small, but
tuation terms are linked via the dissipation-fluctuation theo-nonvanishing initial condensate population or taking sponta-
rem to the dissipative processes. Here we do not want taeous transition terms into the condensate state of ordfer 1/
follow this approach further, but assume that a finite ampli-into account. Another supplementary problem appears in the
tude exists, which can be calculated with the rate equationsase of the interaction with a thermal bath of acoustic
with a small initial population of the condensate. phonons, because the transition rates are distributions. The
The equation of motion for the phase of (ag) energy-conserving-function has to be broadened without
=|(ap)|e'’ is violating the detailed balance relation. After these require-
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ments are fulfilled, the numerical simulations are easily pervanishing of the components which are one jump apart. In

formed and they indeed are in perfect agreement with thé¢his situation the second derivative is

exact properties of the integral equations of the thermody-

namic limit, as we have proven. 92 1
All these investigations enabled us to perform successful —f=

numerical simulations of BEC of excitons in &b, a timely

subject because of several interesting experimentak yhe second derivative is vanishing, the components two
observation$™® related to a possible exciton BEC, but still jumps away are vanishing too. The argument goes on recur-
under controversial discussion. We calculate that the Conde%'wely, until a strictly positive (‘lomponent is reachlis is
sation time of paraexcitons in @0 is indeed shorter than p,und to happen due to the connectivity propertf this

the recombination time and therefore, condensation can 0Gcurs aftem steps, the firsh— 1 derivatives are zero and
cur with exciton-phonon scattering.

=72 > Wik Wionfe PEcte)=0. (A3)
k!k!/

the nth is strictly positive. This concludes the proof of our
statement. Note that we have shown in fact a stronger result,

ACKNOWLEDGMENTS namely, that fot>0, one hag(t)>0 for anyk.

(b) Convergence to equilibrium. In order to show that the
rate equation describes the irreversible relaxation to the equi-
librium Bose Einstein distribution, one makes use of the fa-
mousH theorem. TheH function is defined as
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Halbleitern and interesting discussions with A. L. lvanov.

APPENDIX A

1
H=- 1+ f)In(1+fg)—filn fi— Bepfel, (Ad
For the following discussion, it is useful to define the \Y zk: a Qin( O~ Tdn o= pectid, (A4)

symmetrized transition rates

and makes sense even if sorfe=0, because one may de-

Wi P8 =W iePf= Wi = Wi x=0. (A1) fine by continuityx Inx=0 for x=0.
The time derivative of théd-function is given by

Properties of the rate equation in a finite voluniée prop-
erties of the rate equation stem from the special “gain-loss” 9 1 9 1
structure of the equation, from the positivity of the transition ~ —-H={; > [In(1+f)—Inf— Bed— Tk
rates and from another property of the rates known as con- k 2V
nectivity. In order to explain the latter, we can regard the set

of the stategk} as split into connectivity classes defined as XE Wi AIn[fR(1+fg e Pe]

follows: k andk ' belong to the same class if one can reach . i i

the statek ' from the statek by a finite number of allowed —In[f (1+fRe  Prnli[f(1+fg e P
transitions. This means there is a sequekgds, . . . K, —fe(1+fp)e Pe. (A5)
so thatWii, . Wk k,» - - - Wk i+ are all non-vanishing. It is

clear that states belonging to different classes evolve sepd? the derivation the symmetry obyi -has been used. Since
rately, without influencing each othéseparate fluids In the logarithmic function is increasing, the difference between

what follows, we will assume the following connectivity the two logarithms has the same sign as the difference be-

property of the transition ratethe stategK} form one con- tween their arguments. Therefore one has the following
. ’ statement, known as thé theorem

nectivity classin other words, any state can be reached start-
ing from any state. We are now in a position to formulate the P

abovementioned properties. EH =0, (AB)

(a) Positivity. If the initial condition is positivef((0)=0,

thenf stays positive for any later time. For the proof con- 4, g \hich says that is an increasing function of time. Next

_sider th_e situation in which s_om‘qg components are va_nisr_]- we show thaH is bounded from above and therefore it has a
ing, while _the_ others are strictly positive. Fo_r the_denvatlveﬁnite limit at t—oc. First note that there exist,b>0, so that
of the vanishing components the rate equation gives

P 1 h(x)=(x+1)In(x+1)—xInx<ax+b forany x=0.
fey > Wik f.e Pe=0, (A2) (A7)
K Indeed, for largex one has the result
If the derivative is strictly positive, the corresponding com-
ponent is strictly increasing and becomes strictly positive.
Therefore we are left with discussing the case when the de-
rivative is zero too, and the result depends on the sign of
higher derivatives. On the other hand, the above equationplying thath(x) grows slower than any linear function, so
shows that §/4t) f;=0, if and only if f; =0 for anyk’ for ~ we can choose ang>0 so thath(x) —ax is bounded from

which Wy, #0. In other words, for a vanishinf; compo-  above by some positive constamt
nent, the vanishing of its first derivative is equivalent to the Using this inequality one may write

. h(x)
lim——=

X—0

0, (A8)



PRB 61 CONDENSATION KINETICS FOR BOSONIC EXCITOSN . .. 8833

b of a cutoff spectrum. At—« one reaches a stationary state,
> [afg+b—Berfil<ang+ v\ (A9)  for which a/atH=0. It is known that positive continuous
K functions can have vanishing integrals only if they are iden-

where N is the total number of the stafés. We assume this tically zero. This leads, as in the discrete case, to
number to be finite, i.e., we impose an upper cutoff in en- o per
ergy, in order to simplify the proof. We see now that the (1+fe 7 —a (A16)
function is smaller than a time-independent quantity. fr

The conclusion is that in the limit—« a stationary state . . . .
is reached, for which the inequality in thé theorem be- with the additional feature that if in the final staig+ 0 then
comes a strict equality. This entails the vanishing of all the® =1 (#=0). _ . .
terms in the sum giving/dtH and thus In order to classify the possmlg scenarios, we remark that

for any u<0 one has the inequality

H=<

<~

fr(l+fg e Por=f (1+fe P, if W #0.

(A10) d*k d*k
, f f (GQ,M)SJ fo(ex.00=n¢. (AL7)
In other words the quantity (2m)° (2m)3
(1+fe P Therefore, initial conditions with a density,; smaller than
fe - (A1D)  the critical densityn., can be accommodated only if the final

) o condensate is zero. The corresponding equilibrium situation
is constant, by the connectivity property, for all the states ofg

the system. This is equivalent to
. No(e°)=0, (A18)

_ —£0/ -
i~ (), (A12)

fi()=1%eg, 1), (A19)

Wherg f% is the Bose function ange is defined bya  with u given by the average particle density
=e P,
Properties of the rate equation in an infinite volunide d3k
same properties hold in this case too. Niot= J —— g, ). (A20)
(a) Positivity is shown by a similar argument. A new fea- (2m)
ture is the fact, obvious by the examination of the rate equay N> N the final state should be
tion (3.9), that if ng(0)=0 thenngy(t)=0 for anyt>0.
(b) Convergence to equilibrium. This is proven along the fe(0)=1%eg,0), (A21)
same lines. The infinite volume version of thRefunction is

dS
d3k = Nior— f 0(e;,0 A22
H:f oy (LTI 1) =i fi B, Mo() =M || o 5T (ek0). (A22)
(A13)
with no contribution from the condensate. This stems from APPENDIX B
the fact that We describe the long-time asymptotic behavior of the so-
1 foh(f lution of Eq.(3.8) by linearizing it around the fixed point and
—h(fg) = 0 (fo) (A14) analyzing the spectral properties of the linear operator ob-
\% vV fo tained in this way. To be specific, we take
goes to zero in the limitg—oe, V—oo, fo/V=n,. e €Or - i
In order to establish thel theorem, we use the rate equa- fl) =17 ek, ) + STk(1), (B1)
tion to calculated/9tH and obtain
No(t) =nNg(%0) + dno(t) (B2
d 1 d%k d3k’ . . ; : o
T _f Wi (n{f 1+ f(K ) ]eFe ) and keep only linear terms in the departures from equilib-
gt 2) (2mB (2m)® rium. One gets
—In[f(K")(1+fpe PR f1+f(k")Je A’ J
“ the = (1) = — (ASF)(t). (B3)
. &K at
—f(k’)(1+f|z)e’ﬁeﬁ}+nof —3Wko . .
(2m)3 Now let A be an eigenvalue of the operatgr defined
_ ger e above
x{Infe—In[(1+f)e P} f—(1+fp)e Ao,
(A15) (ASF)g=N\61, (B4)

which is positive, by the same argument. The upper bounadr explicitly, by using the symmetrized transition rates Eq.
for H is established in the same way, under the assumptiofAl)
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f d3k W S0 o . UoSf = 1(€c,0) 7 (B7)
— Kk 11 Uk " <! y - K y Uy / K !
(277)3 polat k,uOlk (€kr,p) (€k,m)ui wOlk } and get
+Ug 0T kWkono() =N ofk, (B5) ok i
where f (277)3f (e O Wik - (e 1,00 (77— 7k )
Ug, =€ Fl—e fe (B6) + 7f°€,0) WioNo( )
We prove now the following statements. _ N =\ (e, 0)[ 1+ FO(€1,0)] 75 - (B8)
(& For anyng(«)#0, the spectrum ofd is positive and
starts from the origin. Note that in this cage=0 andug, Variationally, the lowest spectral point is obtained as the

=[1+%e;,0)] L. We use a variational procedure after infimum over test functions of the ratio between the qua-
transforming the problem to a self-adjoint form. To this enddratic forms defined by the operators in the right-hand side
we definern; by (RHS and LHS respectively, which can be written as

3

10 d% [ d% K
. EJ (Zw)sf (Zw)sfo(eg,O)lel;,fo(elz,,())(m;— wr)2+f (Zw)37]Ef0(eg,0)W|gono(oo)
inf,, - . (B9)

d2k
J (277)3f°<eg,0>[1+f°<eg.0>]né

It is obvious from Eq(B9) above, that the spectrum is positive. On the other hand, the fa@O)[ 1+ f°(e;,0)] in the

denominator has a nonintegrable singularitﬁato, so that by taking suitable sequences of test functignghe denominator
can be made arbitrarily large. Since the Bose functions appearing in the numerator have integrable singularities, in this process
the numerator stays bounded, if the transition rates do not introduce supplementary singularities around zero energy. The
considered models have no such singularities.

(b) Forng(e°) =0, the spectrum consists of an isolated zero eigenvalue and a positive part separated from zero. We are able

to prove this statement only for the instant thermalization model of Sec. IV. In this case, the eigenvalue probleriBb6f Eq.
reads

d3k’
(Adf)=ug, of inig— O ei ,,u)j (ZT)sul; 1 Of g =NofL. (B10)

The operatotA consists of a multiplicative pati, N, =f0(6|;,,u,)/ugﬂ. This describes an infinitesimal changegn
whose spectrum is continuous, positive and starts fronwhich is, however, forbidden by the total particle number
UouNior=(e7P#—1)ny,, and a one-dimensional projection conservation. The rest of the spectrum describes an exponen-
perturbation. It is known, that such perturbations cannotial decay to equilibrium with a time scale given by
change the continuous spectrum, except for splitting off al[ (e #*—1)n,,]. The resulting Liapunov exponent goes to
single nondegenerate eigenvalue. In our case, this is easiiero asu appproaches zer@.e., one obtains a critical slow-
identified as\=0, corresponding to the eigenvectéf;  ing down.
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