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Condensation kinetics for bosonic excitons interacting with a thermal phonon bath

L. Bányai, P. Gartner,* O. M. Schmitt, and H. Haug
Institut für Theoretische Physik, J. W. Goethe - Universita¨t Frankfurt am Main, Germany

~Received 20 September 1999!

We develop a theory of the kinetics of the Bose-Einstein condensation of bosonic excitons interacting with
a thermal bath of acoustic phonons. We emphasize several delicate aspects of the condensation kinetics within
the framework of rate equations. We give detailed proofs about the existence and uniqueness of the solution
with a condensate and illustrate details within exactly or almost exactly solvable models. In particular, we
predict an exciton condensation time in Cu2O which is shorter than the lifetime of paraexcitons.
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I. INTRODUCTION

The Bose-Einstein condensation~BEC! is a fascinating
subject enjoying a revival due to the experimental obser
tions in atomic traps1,2 and experimental evidences for exc
tons in semiconductors.3–5 We focus our attention in this
paper on the treatment of the condensation of excitons ta
as bosons interacting with thermal acoustic phonons. In o
to be able to observe the BEC of excitons, e.g., in Cu2O, the
condensation time has to be shorter than the recombina
lifetime of paraexcitons in this material. Earlier theoretic
simulations in the framework of rate equations6,7 did not re-
sult in a condensation. Here we describe theoretical sim
tions and calculations of the BEC giving rise to condensat
times which are for the example of Cu2O shorter than the
lifetime of the paraexcitons.

In order to develop a kinetic theory, one has to analy
carefully the general mechanism of BEC in real time with
the framework of rate equations for the average particle
cupation numbers in order to avoid possible mistakes
deadlocks in the description of this delicate process.
prove some theorems about the occurrence of condens
in time by discussing the situation for a finite volume,
well as the proper thermodynamic limit. These enable us
avoid shortcomings of previous numerical simulations.
Sec. II we shortly review the equilibrium phase transiti
theory of the BEC, particularly the symmetry breaking co
cept of Bogoliubov. We show in Sec. III that a proper tre
ment has to separate the macroscopical degrees of free
before any numerical discretization and has to introduce
ther finite volume effects in order to preserve spontane
transition rates into the condensate, or a small, but fi
initial condensate population. The necessity of separating
condensate was realized earlier in Refs. 8,9. We illustrate
statements in Secs. IV and V within exactly solvable mod
of increasing complexity.

We prove also the phenomenon of ‘‘critical slowin
down’’ of the relaxation by approaching the critical poi
from the noncondensation side. It is shown that under c
densation conditions the condensate density approache
asymptotic equilibrium value very slowly~not exponen-
tially!, but from above. Thus the condensate population ov
shoots at early times and later relaxes afterwards v
slowly. This phenomenon allows to observe a condensat
times much shorter than those given by the Liapunov ex
PRB 610163-1829/2000/61~13!/8823~12!/$15.00
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nent. This overshoot is closely related to a ‘‘threshold rule
which holds under very general conditions.

For the interaction of excitons with acoustic phono
treated in Sec. VI there is a supplementary pathology rela
to the fact, that the golden rule gives rise to a transition r
which is a distribution, not a function. Thus a broadening
the energy conservation through life-time effects has to
taken into account. The broadening has to be introdu
without destroying the detailed balance property. We brie
treat the temporal evolution of the phase of the condens

Extended numerical calculations are performed for an
citon BEC by interaction with acoustic phonons for the e
ample of Cu2O. The reader interested only in the pheno
enological aspects may skip Secs. IV and V as well as
mathematical details given in the Appendixes.

II. BEC AS AN EQUILIBRIUM PHASE TRANSITION

Although already textbook matter, for sake of comple
ness and for fixing the terminology and notations, we ske
here the equilibrium theory of the condensation of a fr
Bose gas in the spirit of Bogoliubov’s quasiaverages. W
consider the system in a periodic box of volumeV within the
second quantization. The energy of a boson is

ekW5
\2kW2

2m
, ~2.1!

the wave vectorkW takes discrete values. The grand-canoni
statistical sum is

Z5Tr$e2b(H2mN)%, ~2.2!

with

H2mN5(
kW

~ekW2m!akW
1

akW1l* AVa01lAVa0
1 .

~2.3!

Here we added to the free-boson Hamiltonian supplemen
terms which break the particle conservation law. After p
forming the thermodynamic limit, one takes the limit of va
ishing symmetry breaking term.

By a shift of the zero mode creation and annihilation o
erators, which conserves the commutation relations
8823 ©2000 The American Physical Society
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A05a02
lAV

m
~2.4!

we can enforce again the quadratic form

H2mN5 (
kWÞ0

~ekW2m!akW
1

akW2mA0
1A01

ulu2V

m
. ~2.5!

The free energy is then

F5
1

bV (
kW

ln$12e2b(ekW2m)%1
ulu2

m
, ~2.6!

and the average particle density is given by

^N&
V

5
1

V (
kW

1

eb(ekW2m)21
1

ulu2

m2
. ~2.7!

Now the thermodynamic limit has to be taken careful
As long as one has a symmetry breaking term (lÞ0), the
chemical potential has to be strictly negative (m,0) in order
to ensure the finiteness of the extra term. Therefore, e
term in the sum is well-behaved and the limit of the thre
dimensional Riemann sum can be taken safely accordin
the standard recipe

1

V (
kW 8

→E d3k

~2p!3
. ~2.8!

For the total density (ntot[ limV→`^N&/V) one gets

ntot5
ulu2

m2
1E d3k

~2p!3

1

eb(ekW2m)21
. ~2.9!

Above the critical density at a given temperature, the che
cal potential will vanish if the symmetry breaking term va
ishes (l→0).

m→ ulu

An0

~ ulu→0!, ~2.10!

where n0 is the condensate density. Importantly, the ord
parameter also survives in this limit

lim
V→`

^a0&

AV
5An0eıf, ~2.11!

where f is the surviving phase of the symmetry breaki
(l5ulueıf).

On the other hand, if one takes first the limitl→0 and
afterwards performs the thermodynamic limit, special c
has to be devoted to the treatment of the sum overkW . The
Riemann limit cannot be performed without separating
term atkW50, which above the critical density goes to a fin
value since the chemical potential behaves asm;
21/n0bV. The rest tends then to the Riemann sum withm
[0. Recall, that the appearance of the condensate is
consequence of the fact, that
.

ch
-
to

i-

r

e

e

he

E d3k

~2p!3

1

eb(ekW2m)21
<E d3k

~2p!3

1

ebekW21

5
1

A2p2
GS 3

2D zS 3

2D S m

b\2D 3/2

~m<0! ~2.12!

and thus the Bose distribution cannot accommodate
whole particle density above a critical density. The only d
ference to the previous treatment is, that no nonvanish
order parameter appears. The mathematical clue of the B
is just the correct treatment of the Riemann limit.

III. RATE EQUATION FOR BOSONS COUPLED
TO A THERMAL BATH

We will show in the following that within a simple rate
equation approach most of the abovementioned results
obtained also in the real time evolution. We consider h
only the average occupation numbers^akW

1
akW& for arbitrarykW .

Later within a microscopical phonon model, we discuss a
the order parameter̂a0(t)&.

The Markovian rate equations describing the transitio
due to the interaction with a thermostat at the inverse te
peratureb read

]

]t
^akW

1
akW&52

1

V (
kW 8

$WkWkW 8^akW
1

akW&~11^akW 8
1

akW 8&!

2~kW
kW 8!%. ~3.1!

The transition ratesWkWkW 8 are supposed to be well-define
functions satisfying the detailed balance relation

WkWkW 85WkW 8kWe
b(ekW2ekW 8). ~3.2!

These equations conserve automatically the total ave
particle number

(
kW

^akW
1

akW&

and the positivity of the average occupation numbers. T
have as stationary solution~fixed point!, the Bose distribu-
tion ~with the chemical potentialm,0 for V,`)

f kW5 f 0~ekW ,m![
1

eb(ekW2m)21
, ~3.3!

which is stable and under certain connectivity conditions
WkWkW 8 it is also unique. The proof of these statements is
for the Appendix A.

From the above statements it already follows, that B
occurs in real time as limV→`limt→` , taken in this order, but
we are interested in what follows in the more physical
verse order of the limits. Let us define the densities of
noncondensed particles

f kW~ t ![^akW~ t !1akW~ t !& ~kWÞ0!, ~3.4!

and the condensate density
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n0~ t ![
1

V
^a0~ t !1a0~ t !&5

1

V
f 0~ t !. ~3.5!

One has to be careful in separating from the sum in
rate equation the terms containing the condensaten0:

]

]t
f kW52

1

V (
kW 8Þ0

$WkWkW 8 f kW~11 f kW 8!2~kW
kW 8!%

2FWkW0f kWS n01
1

VD2W0kW~11 f kW !n0G , ~3.6!

]

]t
n05

1

V (
kW 8Þ0

FWkW 80f kW 8S n01
1

VD2W0kW 8~11 f kW 8!n0G .
~3.7!

Only after this subtraction, all thekW - andkW 8-dependent func-
tions are supposed to be continuous, so that in theV→`
limit the sums are legitimately interpreted as Riemann in
grals and we get

]

]t
f kW~ t !52E d3k8

~2p!3
$WkWkW 8 f kW~ t !@11 f kW 8~ t !#2~kW
kW 8!%

2$WkW0f kW~ t !2W0kW@11 f kW~ t !#%n0~ t !, ~3.8!

]

]t
n0~ t !5E d3k8

~2p!3
$WkW 80f kW 8~ t !2W0kW 8@11 f kW 8~ t !#%n0~ t !.

~3.9!

We consider that the transition rates are bounded and
tinuous overall, includingkW50 ~which holds in our models!.
We take also bounded and continuous initial conditio
f kW(0). Equations~3.8!, ~3.9! obviously conserve the total av
erage particle density

ntot5n0~ t !1E d3k

~2p!3
f kW~ t ! ~3.10!

the positivity of f kW(t) andn0(t) and have two attractive fixed
points ~see Appendix A!: the ‘‘normal’’ one with f kW

5 f 0(ekW ,m)(m,0), n0(`)50; and the ‘‘condensed’’ one
with f kW5 f 0(ekW,0), n0(`)Þ0, wheren0(`) is determined by
the particle conservation law.

This is strongly reminiscent of the analysis made in
equilibrium theory of the BEC: If the density is subcritical,
negative chemical potential can adapt the Bose distribu
to the required value. If the density is supercritical, a co
densate is needed to make up for the difference.

However, in the present kinetic approach we encounte
paradox: Because Eq.~3.9! for n0(t) is homogenous, one
cannot reach the equilibrium solution described above
n0(0)50 andntot.ncr , becausen0(t) remains zero for any
t. On the other hand~see Appendix A!, theH-theorem analy-
sis seems to leave no other option.

The solution to this conflicting situation relies on aba
doning the hypothesis that the functions remain continu
for t→`. We will argue that, for supercritical condition
even in the absence of an initial, arbitrarily small condens
a precursor of ad distribution grows aroundkW50 and be-
e

-

n-

s

e

n
-

a

r

-
s

e,

comes a trued in the limit t→`. We will illustrate this point
with the example of the instant thermalization model in S
V, where explicit proofs can be given. This way a condens
is formed, if the density and temperature conditions are
propriate. If this condensate is treated separately from
beginning, the rest of the particle distribution function r
mains well behaved.

It is obvious that this growth of the condensate out o
continuous distribution cannot be observed numerically
the discretization of the integrals in the rate equation. T
stationary solutions of Eqs.~3.8!,~3.9! obtained without an
initial condensate, i.e., withn0(0)50, can accommodate a
particles in a discretized spectrum by bringingm sufficiently
close to the lowest energy level. Therefore, by discretiz
the kW integral the phenomenon is lost, because it is ess
tially connected to the continuous nature of the spectru
Thus the separation of the condensate is an essential in
dient of any numerical simulation. This is also intuitive
clear, because any grid becomes eventually too coarse
precursor of ad distribution.

Equations~3.8!, ~3.9! for vanishing temperature coincid
with the rate equations of Ref. 8 except for the extra sou
terms included there. The proper separation of the cond
sate also has been taken into account in the framework o
rate equations with boson-boson collisions in Ref. 9.

In the derivation of Eqs.~3.8!, ~3.9! we used the fact tha

lim
V→`

1

V
~11^a0

1a0&!5 lim
V→`

1

V
^a0

1a0&[n0 .

We shall see later that one may conceive a mixed treatm
in which the summations are already transformed in integ
but one still keeps the small 1/V correction to the above
relation describing spontaneous transitions into the c
densed state. Then, the most important finite volume effec
already taken into account and Bose condensation oc
even in the absence of a condensation seed. The situati
analogous to that already known in the kinetic theory
semiconductor lasers,10 where the rate of spontaneous em
sion into the laser mode which starts the laser action wo
be lost in the infinite volume limit.

In Appendix B we show that the asymptotic large-tim
behavior is exponential for subcritical densities and becom
nonexponential at criticality~‘‘critical slowing down’’!. This
slower nonexponential behavior persists also above the c
cal density. However, this does not imply that condensat
occurs at this pace. On the contrary, we will show in Sec.
that an overshooting occurs in an early stage and only
return to the stationary value of the condensate is very sl
This overshooting is related to the above mentioned ‘‘thre
old rule.’’ Again this is similar to a phenomenon know
from the kinetics of semiconductor as relaxatio
oscillations11 which are triggered by switching on the las
rapidly.

IV. A SOLVABLE BOSON MODEL

All the essential features of the BEC are contained also
an exactly solvable boson model consisting of a nondeg
erate ground-state~particle energye0) and an excited state
~particle energye1). The lowest state is taken nondegenera
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while the higher state is taken to be macroscopically deg
erate ~i.e., the degeneracy isVn1, proportional to the vol-
ume!. Here the real time condensation within the rate eq
tion approach can be studied analytically.

The rate equations for a finite volume are

]

]t
f 152

w

V
@ f 1~11 f 0!e2be02 f 0~11 f 1!e2be1#, ~4.1!

]

]t
f 052n1w@ f 0~11 f 1!e2be12 f 1~11 f 0!e2be0#.

~4.2!

They conserve the average particle density

]

]tS n1f 11
1

V
f 0D50. ~4.3!

In the infinite volume limit, with a finite initial condensat
f 0(0)5Vn0(0) one finds the usual BEC with the critica
temperature defined by

n1

ebc(e12e0)21
5ntot . ~4.4!

The rate equations are exactly solvable for any set of
rameters. For sake of simplicity, we takee050, w51 and
denotee2b(e12e0)[j,1.

We eliminatef 1 in favor of f 0 through the conservation
equation and get a closed equation forf 0:

]

]t
f 052

12j

V
f 0

21 f 0S ntot~12j!2n1j2
1

VD1ntot .

~4.5!

The discriminant of the polynomial on the right side is

D[4ac2b2524
12j

V
2S ntot~12j!2n1j2

1

VD 2

,0,

~4.6!

with

b5ntot~12j!2n1j2
1

V
. ~4.7!

With the integral

E dx
1

ax21bx1c
5

22

A2D
tanh21S 2ax1b

A2D
D ~4.8!

we find

1

V
f 0~t!5

1

2~12j!
H b2A2DtanhF 2

A2D

2
t

1tanh21S b2
2~12j!

V
f 0~0!

A2D
D G J . ~4.9!

Simplifying the notations by
n-

-

a-

t5
A2D

2
t, V[

A2D

2~12j!
V, a[

b

A2D
5

b

Ab21
2

V

,

~4.10!

one gets

1

V f 0~t!5a2tanhF2t1tanh21S a2
1

V f 0~0! D G
~4.11!

with uau,1.
Because limV→`uau51, one gets

lim
V→`

lim
t→`

1

V f 0~t!5H 0 for a,0,

2 for a.0
~4.12!

for an arbitrary initial conditionf 0(0). Thus the BEC occurs
below the critical temperature. The opposite order of the li
its yields the same result, however the condensation oc
only if limV→`(1/V) f 0(0)Þ0. In this case it results directly
from the conservation of the particle density, that no evo
tion occurs at all@ f 1(t)5 f 1(0)#.

The critical slowing down has a very simple form in th
model. At the critical densityD→0 and therefore the time
scaling factor diverges.

V. INSTANT THERMALIZATION MODEL

For the classical Boltzmann equation a special mo
~called ‘‘instant thermalization’’! with the transition rates
given in terms of a scattering timet

WkWkW 8[
1

tZ
e2bekW 8 with Z[E d3k

~2p!3
e2bekW ~5.1!

is known to be exactly solvable. Though the exact solvabi
for the boson rate equation is lost due to the nonlinearity,
consider this more realistic and more complex model
cause here we can still study the solution of the rate eq
tions without initial condensate. In the thermodynamic lim
we have the rate equations with time unitstZ

]

]t
f kW~ t !52E d3k8

~2p!3
$ f kW~ t !@11 f kW 8~ t !#e2bekW 82~kW
kW 8!%

2$ f kW~ t !2e2bekW@11 f kW~ t !#%n0~ t !, ~5.2!

]

]t
n0~ t !5E d3k8

~2p!3
$ f kW 8~ t !2e2bekW 8@11 f kW 8~ t !#%n0~ t !.

~5.3!

For this model we can discuss the properties of the solu
of the rate equation for a supercritical density even with
an initial condensate (n0[0), which cannot be tackled by
discretization.

The rate equation in this case reduces to
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]

]t
f kW52 f kWE d3k8

~2p!3
~11 f kW 8!e

2bekW 8

1~11 f kW !e
2bekWE d3k8

~2p!3
f kW 8 . ~5.4!

We introduce moments of the distributionsf kW and 11 f kW by

Kn~ t !5E d3k

~2p!3
f kWe

2nbekW, n>0, ~5.5!

Mn~ t !5E d3k

~2p!3
~11 f kW !e

2nbekW, n>1, ~5.6!

Ln~ t !5Mn2Kn5E d3k

~2p!3
e2nbekW, n>1. ~5.7!

For Mn(t), then50 moment was not considered, because
existence depends on the existence of an upper ener
cutoff, an assumption which is not necessary here. Th
moments are positive and decreasing withn.

With these notations the rate equation becomes

]

]t
f kW52 f kWM11~11 f kW !e

2bekWK0 . ~5.8!

K0 is in fact the particle density and is independent of tim
M1 is a function of time, whose knowledge would allow th
complete solution of the problem. Unfortunately, one has
closed equation forM1 but a hierarchy of equations involv
ing higher and higher moments.

]

]t
Mn5

]

]t
Kn52KnM11K0Mn11 . ~5.9!

One may attempt a numerical solution of this set of eq
tions, but presently we will be concerned only with the s
tionary solution. Thet→` limits of the moments obey the
recurrence relation

Kn115aKn2Ln11 , ~5.10!

wherea5M1 /K0. The solution is

Kn5anFK02 (
p51

n
Lp

apG
5anFK02E d3k

~2p!3

1

aebekW21G
1E d3k

~2p!3

e2nbekW

aebekW21. ~5.11!

By examining the rate equation forkW50, one has

a5
M1

K0
5

11 f 0~`!

f 0~`!
>1. ~5.12!

Bearing in mind thatKn is positive and decreasing withn,
one is left with only two possibilities.
s
tic

se

.

o

-
-

~a! If a.1 @i.e., f 0(`) is finite#, the only case in which
the moments Eq.~5.11! do not grow indefinitely is

K05E d3k

~2p!3

1

aebekW21
, ~5.13!

Kn5E d3k

~2p!3

e2nbekW

aebekW21
. ~5.14!

This situation obviously corresponds to the subcritical co
dition with a5e2bm.

~b! If a51 @i.e., f 0(`)5`#, Eq. ~5.11! becomes

Kn5FK02E d3k

~2p!3

1

ebekW21G1E d3k

~2p!3

e2nbekW

ebekW21.

~5.15!

This describes a Bose distribution withm50 to which ad
distribution is added atkW50 whose strength is equal to th
difference between the given densityK0 and the critical one
@second term on the right-hand side~RHS! of Eq. ~5.15!#.

A similar result has been obtained earlier within a cert
simplifying approximation to the rate equation with a co
stant coupling to a fermionic thermostat.12 We have to point
out that this result is an essential property of the continu
and cannot be seen in any discretization of the spectrum

In Appendix B it will be shown for this model, that th
longtime behavior is exponential below the critical dens
and becomes slower than exponential when reaching criti
ity ~‘‘critical slowing down’’!. Such a behavior has bee
illustrated recently numerically13 within the framework of a
boson-boson collision rate equation.

VI. INTERACTION WITH THERMAL ACOUSTIC
PHONONS

The transition rates for the rate equation are usually c
culated from an underlying microscopic many-body mod
with the quantum mechanical ‘‘golden rule.’’ The interactio
Hamiltonian between bosonic excitons and acoustic phon
~which is derived from the interaction of conduction an
valence band electrons with acoustic phonons through
deformation potential! is in the long wave-length limit

H5(
kW

ekWakW
1

akW1(
qW

\vqWbqW
1

bqW

1
1

AV
(
kW ,qW

gqWakW1qW
1

akW~bqW1b
2qW
1

! ~6.1!

with

ekW5
\2kW2

2m
, vqW5cuqW u, gqW5GA\vqW . ~6.2!

The coupling constantG is related to the material param
eters byG25D2/rc2, whereD is the band gap deformatio
potential constant,r is the crystal density, andc is the sound
velocity. The crystal volume isV with periodic boundary
conditions, therefore a conservation of the discrete mome
holds. Strictly speaking transition rates can be defined o
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in the infinite volume limit, where the spectrum is contin
ous. In this limit the ‘‘golden rule’’ gives rise to the trans
tion rates containing emission and absorption of therm
phonons

WkWkW 85
2pG2

\
uekW2ekW 8u@NkW 82kWd~ekW2ekW 81\vkW 82kW !

1~11NkW2kW 8!d~ekW2ekW 82\vkW2kW 8!#, ~6.3!

where the thermal phonon distribution is

NqW5
1

eb\vqW21
. ~6.4!

Using vkW2kW 85vkW 82kW , the transition rate becomes

WkWkW 85
2pG2

\

uekW2ekW 8u

ueb(ekW 82ekW)21u
d~ uekW2ekW 8u2\vkW2kW 8!.

~6.5!

These transition rates of course are positive and sa
the detailed balance relation, but nevertheless have pa
logical properties. Namely, they are not functions, but dis
butions. They are meaningless if the momenta take disc
values, i.e., in a finite volume. But even in the thermod
namic limit these rates lead to the terms in Eq.~3.8! contain-
ing WkW0 which are meaningless.

In order to avoid mathematical inconsistencies we sh
consider a regularized version of the above model by exp
itly introducing a continuous spectrum for the phonons fro
the beginning. This procedure may be interpreted either
mathematical regularization of the model, or as a pheno
enological introduction of life-time effects. Formally we a
sume, that the phonon quantum numbers areqW and another
quantum numbers which goes to a continuum even at a fini
volume V. The phonon energy is\vqW ,s5cuqW u1es and the
corresponding density of states isG(es).

With these modifications we get the smeared out tra
tion rates

WkWkW 85
2pG2

\

uekW2ekW 8u

ueb(ekW 82ekW)21u
E desG~es!

3d~ uekW2ekW 8u2\vkW2kW 82es! ~6.6!

5
2pG2

\

uekW2ekW 8u

ueb(ekW 82ekW)21u
G~ uekW2ekW 8u2\vkW2kW 8!. ~6.7!

It is essential that this broadening of thed-function does not
destroy the detailed balance property of the transition ra
while a broadening directly in Eq.~6.3! would destroy it. In
the numerical simulations we choose

G~e!5
1

p

g

e21g2
, ~6.8!

and recover the original model asg→0. Thus we consider
l

fy
o-
-
te
-

ll
-

a
-

i-

s,

WkWkW 85
2pG2

\

uekW2ekW 8u

ueb(ekW 82ekW)21u

1

p

3
g

~ uekW2ekW 8u2\vkW2kW 8!
21g2

, ~6.9!

which for any finiteg is a well defined function, satisfying
all the previously discussed criteria.

Obviously thekW50 mode can be reached only from th

neighborhood of thekW0 mode with k052mc/\. Then it is
useful to takek0 as the inverse length scale,e05\2k0

2/2m as
the energy unit andt05\/k0

3G2 as the time unit.
We have solved Eqs.~3.8! and~3.9! numerically with the

above described phonon scattering rates. For the cas
Cu2O the time unit ist0557.8 ps, the length unit isk0

21

54.76 nm the characteristic energy ise050.62 meV. We
illustrate the evolution of the condensate population bel
and above the critical density atkBT50.21e0 ~equivalent to
1.5 K! giving rise tonc55.6531023k0

3 equivalent to 5.23
31016 cm23 for Cu2O. Using a collision broadening energ
g50.1e0 we show in the first two figures the resulting kine
ics for the condensate and noncondensate concentration
subcritical and a supercritical density. In Fig. 1 the total de
sity is subcritical. Starting with excitons only in the statek
50 with n054.131023k0

3,nc55.6531023k0
3 one sees tha

the initial condensate density decreases rapidly and vani
completely. Correspondingly the noncondensate den
builds up.

In Fig. 2 a supercritical densityntot59.431023k0
3 with

n0(t50)51024k0
3 is assumed. Rapidly the condensate pop

lation builds up and correspondingly the concentration
noncondensed excitons decreases on a timescale o
3103t0 which corresponds to about 180 ns for Cu2O.

The initial distribution of the normal phase is chosen to
isotropic and Gaussian, centered at the energy of 0.7e0 with
a width of 0.3e0. Figure 2 shows that the condensate dens
shoots over its stationary valuentot2nc53.7531023k0

3, and

FIG. 1. Evolution of the condensate and noncondensate de
ties for a subcritical total density (ntot54.131023k0

3 , nc55.65
31023k0

3) with a collision broadeningg50.1e0.
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correspondingly the noncondensate density undershoot
stationary valuenc55.6531023k0

3 given by the horizontal
dashed lines in Fig. 2. Such overshooting is also known fr
the switching-on kinetics of the electrons in the conduct
and valence bands, respectively, and the photons in the
mode of a semiconductor laser.11 The kinetics of this system
has striking analogies with the BEC kinetics treated he
Although the stationary values are approached extrem
slowly, probably with a power-law decay on a complete
different time scale, the condensation sets in early. This i
agreement with the general analysis and the discussion o
Liapunov exponent given in Appendix B. This overshooti
may be important for the experimental observation of
exciton BEC.

In Fig. 3 the resulting distribution of the noncondens
excitonsekf k(t f) at the final timet f of the calculation is
shown and compared with the equilibrium distributionekf k

0

with f k
051/(ebek21) for the same parameters as in Fig.

The equilibrium distribution times energy approaches fok
→0 the valuekBT which has been assumed to be 0.21e0.
The calculated distribution times energy for the rather la
time t f , however, goes to zero ask→0. This is a simple
consequence of the ‘‘threshold rule’’

lim
kW→0

k2
] f kW

]t
50 ~6.10!

FIG. 2. Evolution of the condensate and non-condensate de
ties at ntot59.431023k0

3 above the critical densitync55.65
31023k0

3 andg50.1e0.

FIG. 3. The final distributionekf k compared toek@1/ebe(k
21)#.
its

n
ser

.
ly

in
he

n

.

e

stemming from boundedness of the collision term, due to

regularity of the transition rates aroundkW50 and the bound-
edness of the initial condition. If limk→0ekf k(0)50 it will
stay so according Eq.~6.10! at any finite time. As a conse
quence one has always a small lack of noncondensate
centration as compared to the ideal Bose value as it is see
Fig. 3. Due to total particle conservation, the condens
overshoots. This feature is not related to specific feature
the acoustical phonon model.

Such long-lasting differences between the calculated
tribution function and the corresponding equilibrium dist

bution aroundkW50 have already been found by Ivano
et al.,7 but the significance for the condensation is differe
in Ref. 7 and in our treatment. In Ref. 7 it has been int
preted as an obstacle to condensation, while in our conte
is related to an overshooting condensation.

As we have seen, BEC in the framework of rate equatio
occurs in the thermodynamic limit as an instability. An arb
trarily small initial condensate gets amplified. On the oth
hand, as we already emphasized, it occurs also as a sp
neous condensation, if finite volume effects pertaining
spontaneous scattering events into the condensate stat
kept. In Fig. 4 we compare the solution of the rate equati
Eq. ~3.7! for a rather large volume and no initial condensa
with that of the thermodynamic limit Eq.~3.8!,~3.9! with a
very small initial condensaten0(0)51/V with the sameV.
The two solutions are seen to be close to each other.
the above described scenarios of condensation can
reproduced also within the instant thermalization model
Sec. IV.

For a small -but finite- broadeningg, one gets condensa
tion in the phonon model, however, the kinetics will be a
ymptotically slow. For a large value ofg, the condensation
kinetics is again rather inefficient, because the broade
d-function extends below the spectrum. The dependenc
the condensation timetc ~defined as the time needed
achieve1

2 of the final condensate population! on the broad-
eningg is shown in Fig. 5, indicating the simple dependen

si- FIG. 4. BEC kinetics by acoustic phonon scattering with fin
volume effect (V5107k0

23) with n0(0)50 compared with the BEC
kinetics in the thermodynamic limit, but with an initial conditio
n0(0)51027k0

3.
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tc5139.68t0S g

e0
D 20.8938

. ~6.11!

Here we took a finite volumeV5105k0
23, which for Cu2O

corresponds to 0.01mm3. This is an important ingredient
since the speed of condensation kinetics still depends e
on the value of the initial condensate or on the volume.

The simpleg-dependence of the condensation time
cording to Eq.~6.11! allows an extrapolation to very sma
values of g without excessive requirements on compu
time and memory.

We want to emphasize that the above results are inde
dent of the initial distribution of the incoherent populatio
The differences occur only at a very short time scale.

To predict the condensation time of excitons, e.g.,
Cu2O, the knowledge of the broadeningg is necessary. Of
course, there might be several sources of broadening, bu
can estimate a minimal one, which is given by the inve
scattering lifetime of the excitons due to acoustic phon
themselves

1

t~kW !
5 lim

g→0
E d3k8

~2p!3
WkWkW 8 . ~6.12!

This k-dependent function is shown in Fig. 6. Because
broadening is only important for the transitions between
states in the neighborhood ofk/k051 to k50, we may es-
timate the minimal broadening as

FIG. 5. Condensation time as a function ofg.

FIG. 6. The inverse scattering lifetime as function ofk/k0.
er

-

r

n-

we
e
s

e
e

g5
\

2 S 1

t~k0!
1

1

t~0! D ~6.13!

which yields g50.187 meV ~or 0.0003e0) with the above
mentioned parameter. The extrapolated maximal conde
tion time is thentc51.95353105t0 or 11.2 ms, which is
comparable with the recombination time 10ms of the paraex-
citons in this material. Because our estimates are under
mating the broadening, we expect a BEC indeed might oc
with acoustic phonon scattering under the conditions of
experiments of Ref. 3. To the acceleration of the conden
tion would contribute any other source of energy broadeni
as well as additional exciton-exciton collisions, which we d
not discuss here.

VII. THE ORDER PARAMETER IN THE PHONON
MODEL

Here we describe within the model of an interacti
exciton-phonon system the evolution of the order param
^a0& and relate it to the kinetics of̂a0

1a0& which has been
discussed before. We do this within the standard approac
the equation of motion method with decoupling in the seco
stage.

The Heisenberg equation of motion leads to

ı\
]

]t
^a0&52

1

AV
(

kW
g2kW^akW~b2kW1bkW

1
!&, ~7.1!

and

F ı\
]

]t
2~ekW2\vkW !G^akWbkW

1
&

5
1

AV
(
kW 8,qW

gqW^@akW 8
1

akW 82qW~bqW1b
2qW
1

!,akWbkW
1

#&.

~7.2!

After a factorization in the basic variables and formal in
gration with vanishing initial condition att50 we have

^akWbkW
1

& t5
g2kW

ı\AV
E

0

t

dt8e2(ı/\)(ekW2\vkW)(t2t8)^a0& t8

3$^akW
1

akW& t8~^bkW
1

bkW&011!2~^akW
1

akW& t811!

3^bkW
1

bkW&0%. ~7.3!

We replaced already the average phonon occupation num
with its equilibrium value at the inverse bath temperatureb

^bqW
1

bqW& t'^bqW
1

bqW&05
1

eb\vqW21
. ~7.4!

A similar equation holds for̂akWb2kW& t . Inserting these results
in Eq. ~7.1!, one gets
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]

]t
^a0& t5

1

\2V
(
kWÞ0

ugkWu2E
0

t

dt8^a0& t8

3$e2(ı/\)(ekW2\vkW)(t2t8)@^akW
1

akW& t8~^bkW
1

bkW&011!

2~^akW
1

akW& t811!^bkW
1

bkW&0#1e2(ı/\)(ekW1\v2kW)(t2t8)

3@^akW
1

akW& t8^bqW
1

bqW&02~^akW
1

akW& t811!

3~^bqW
1

bqW&011!#%. ~7.5!

Next one considers the variables as slowly varying in ti
and pulls them outside the time integral. Moreover, by pu
ing the time integration to infinity one gets the so-call
Markov approximation

]

]t
^a0& t5^a0& t

1

\V (
kWÞ0,6

ugkWu2

3H S pd~ekW7\vkW !2ıP
1

ekW7\vkW
D

3@^akW
1

akW& tN kW
6

2~^akW
1

akW& t11!N kW
7

#J , ~7.6!

where

N kW
6

[^bqW
1

bqW&01
1

2
6

1

2
.

Of course thed symbol stays here for the precursor of t
Dirac function at large times. The trued function is mean-
ingful only after the thermodynamic limit, i.e., in the con
tinuous spectrum~or better within the regularized version o
the model!. The secondd function, having positive argumen
does not contribute. The equations for the occupation n
bers may be derived along the same lines, but we do not n
to go in these details, since they are well known.

One sees that the equations foru^a0&u2 and ^a0
1a0& are

identical in the thermodynamic limit. Naturally the orde
parameter Eq.~7.6! is a homogeneous equation, so its so
tion will stay zero if the initial value has been zero. Thus t
order parameter equation~7.6! allows only a condensation
with a small but finite initial value. Again similar argumen
are known in the theory of lasers. A convenient way out
this dilemma is to introduce stochastic Langevin fluctuat
sources which make the order parameter equation an i
mogeneous differential equation. The moments of the fl
tuation terms are linked via the dissipation-fluctuation th
rem to the dissipative processes. Here we do not wan
follow this approach further, but assume that a finite am
tude exists, which can be calculated with the rate equat
with a small initial population of the condensate.

The equation of motion for the phasef of ^a0&
5u^a0&ueıf is
e
-

-
ed

-

f
n
o-
-
-
to
i-
ns

]

]t
f~ t !52

1

\V (
kWÞ0

ugkWu2H P
1

ekW2\vkW
F ^akW

1
akW& t

e2b\vkW21

2
^akW

1
akW& t11

eb\vkW21
G1P

1

ekW1\v2kW
F ^akW

1
akW& t

eb\v2kW21

2
^akW

1
akW& t11

e2b\v2kW21
G J . ~7.7!

The expressions under thekW summations actually have to b
cutoff at the Debye wavelength.

Now we have the complete system of equations. One
to solve only the rate equations and get the phase throu
simple time integration.

One sees that the derivative of the phase att→` is noth-
ing else but the lowest order equilibrium~real! self-energy
correction due to the interaction with the phonons. In co
parison with equilibrium theory of the free Bose gas, o
should ignore this energy correction and therefore the ph
stays constant in this framework.

In order to treat the stochastic phase diffusion one wo
have to use the abovementioned Langevin equation te
niques. Actually for a rather wide class of nonpathologic
interactions with a thermal bath there is a rigorous derivat
of the Master equations for both the diagonal and o
diagonal density matrix elements14 in the van Hove limit,
which at least formally is equivalent to our results.

VIII. CONCLUSIONS

We presented a detailed discussion of the rate equat
describing excitons treated as massive bosons interac
with a thermal bath of acoustic phonons with special emp
sis on the BEC properties. Both the finite volume and
thermodynamic limit are treated. We proved the relaxation
equilibrium below and above the critical density. BEC a
ways occurs above the critical density under a proper m
ematical treatment. Some fine points regarding the ther
dynamic limit of the equation have been treated exac
within the instant thermalization model. For a better und
standing also an exactly solvable two-level model with co
densation has been studied.

The equilibrium situation is reached exponentially on
for subcritical densities. The decay time goes to infinity
one approaches the critical density making the large t
behavior very slow forntot>nc . Nevertheless, we found
condensation to occur effectively due to an overshooting
the condensate density at early times.

From our analysis of the mathematics of the problem,
necessary ingredients for a proper numerical simulation
the condensation~through discretization of the continuum!
also follow. Namely,~i! separation of the macroscopical d
grees of freedom in the rate equation and~ii ! a small, but
nonvanishing initial condensate population or taking spon
neous transition terms into the condensate state of orderV
into account. Another supplementary problem appears in
case of the interaction with a thermal bath of acous
phonons, because the transition rates are distributions.
energy-conservingd-function has to be broadened witho
violating the detailed balance relation. After these requi
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ments are fulfilled, the numerical simulations are easily p
formed and they indeed are in perfect agreement with
exact properties of the integral equations of the thermo
namic limit, as we have proven.

All these investigations enabled us to perform succes
numerical simulations of BEC of excitons in Cu2O, a timely
subject because of several interesting experime
observations3–5 related to a possible exciton BEC, but st
under controversial discussion. We calculate that the cond
sation time of paraexcitons in Cu2O is indeed shorter than
the recombination time and therefore, condensation can
cur with exciton-phonon scattering.
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APPENDIX A

For the following discussion, it is useful to define th
symmetrized transition rates

WkWkW 8e
bekW 85WkW 8kWe

bekW5WkWkW 85WkW 8kW>0. ~A1!

Properties of the rate equation in a finite volume. The prop-
erties of the rate equation stem from the special ‘‘gain-los
structure of the equation, from the positivity of the transiti
rates and from another property of the rates known as c
nectivity. In order to explain the latter, we can regard the
of the states$kW% as split into connectivity classes defined
follows: kW andkW 8 belong to the same class if one can rea
the statekW 8 from the statekW by a finite number of allowed
transitions. This means there is a sequencekW1 ,kW2 , . . . ,kWn ,
so thatWkWkW1

,WkW1kW2
, . . . ,WkWnkW 8 are all non-vanishing. It is

clear that states belonging to different classes evolve s
rately, without influencing each other~separate fluids!. In
what follows, we will assume the following connectivit
property of the transition rates:the states$kW% form one con-
nectivity class. In other words, any state can be reached st
ing from any state. We are now in a position to formulate
abovementioned properties.

~a! Positivity. If the initial condition is positivef kW(0)>0,
then f kW stays positive for any later time. For the proof co
sider the situation in which somef kW components are vanish
ing, while the others are strictly positive. For the derivati
of the vanishing components the rate equation gives

]

]t
f kW5

1

V (
kW 8

WkWkW 8 f kW 8e
2bekW>0. ~A2!

If the derivative is strictly positive, the corresponding com
ponent is strictly increasing and becomes strictly positi
Therefore we are left with discussing the case when the
rivative is zero too, and the result depends on the sign
higher derivatives. On the other hand, the above equa
shows that (]/]t) f kW50, if and only if f kW 850 for anykW 8 for
which WkWkW 8Þ0. In other words, for a vanishingf kW compo-
nent, the vanishing of its first derivative is equivalent to t
r-
e
-

ul

al

n-

c-

k

’’

n-
t

h

a-

t-
e

-
.
e-
of
n

vanishing of the components which are one jump apart
this situation the second derivative is

]2

]t2
f kW5

1

V2 (
kW 8kW9

WkWkW 8WkW 8kW9 f kW9e
2b(ekW1ekW 8)>0. ~A3!

If the second derivative is vanishing, the components t
jumps away are vanishing too. The argument goes on re
sively, until a strictly positive component is reached~this is
bound to happen due to the connectivity property!. If this
occurs aftern steps, the firstn21 derivatives are zero an
the nth is strictly positive. This concludes the proof of ou
statement. Note that we have shown in fact a stronger re
namely, that fort.0, one hasf kW(t).0 for anykW .

~b! Convergence to equilibrium. In order to show that t
rate equation describes the irreversible relaxation to the e
librium Bose Einstein distribution, one makes use of the
mousH theorem. TheH function is defined as

H5
1

V (
kW

@~11 f kW !ln~11 f kW !2 f kW ln f kW2bekW f kW#, ~A4!

and makes sense even if somef kW50, because one may de
fine by continuityx ln x50 for x50.

The time derivative of theH-function is given by

]

]t
H5

1

V (
kW

@ ln~11 f kW !2 ln f kW2bekW#
]

]t
f kW

1

2V2

3(
kWkW 8

WkWkW 8$ ln@ f kW~11 f kW 8!e
2bekW 8#

2 ln@ f kW 8~11 f kW !e
2bekWn#%@ f kW~11 f kW 8!e

2bekW 8

2 f kW~11 f kW 8!e
2bekW#. ~A5!

In the derivation the symmetry ofWkWkW 8has been used. Sinc
the logarithmic function is increasing, the difference betwe
the two logarithms has the same sign as the difference
tween their arguments. Therefore one has the follow
statement, known as theH theorem

]

]t
H>0, ~A6!

and which says thatH is an increasing function of time. Nex
we show thatH is bounded from above and therefore it has
finite limit at t→`. First note that there exista,b.0, so that

h~x!5~x11!ln~x11!2x ln x,ax1b for any x>0.

~A7!

Indeed, for largex one has the result

lim
x→`

h~x!

x
50, ~A8!

implying thath(x) grows slower than any linear function, s
we can choose anya.0 so thath(x)2ax is bounded from
above by some positive constantb.

Using this inequality one may write
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H<
1

V (
kW

@a fkW1b2bekW f kW#<antot1
b

V
N, ~A9!

where N is the total number of the states$kW%. We assume this
number to be finite, i.e., we impose an upper cutoff in e
ergy, in order to simplify the proof. We see now that theH
function is smaller than a time-independent quantity.

The conclusion is that in the limitt→` a stationary state
is reached, for which the inequality in theH theorem be-
comes a strict equality. This entails the vanishing of all
terms in the sum giving]/]tH and thus

f kW~11 f kW 8!e
2bekW 85 f kW 8~11 f kW !e

2bekW, if WkWkW 8Þ0.
~A10!

In other words the quantity

~11 f kW !e
2bekW

f kW
5a ~A11!

is constant, by the connectivity property, for all the states
the system. This is equivalent to

f kW5
1

eb(ekW2m)21
5 f 0~ekW ,m!, ~A12!

where f 0 is the Bose function andm is defined by a
5e2bm.

Properties of the rate equation in an infinite volume. The
same properties hold in this case too.

~a! Positivity is shown by a similar argument. A new fe
ture is the fact, obvious by the examination of the rate eq
tion ~3.9!, that if n0(0)50 thenn0(t)50 for any t.0.

~b! Convergence to equilibrium. This is proven along t
same lines. The infinite volume version of theH function is

H5E d3k

~2p!3
@~11 f kW !ln~11 f kW !2 f kW ln f kW2bekW f kW#,

~A13!

with no contribution from the condensate. This stems fr
the fact that

1

V
h~ f 0!5

f 0

V

h~ f 0!

f 0
~A14!

goes to zero in the limitf 0→`, V→`, f 0 /V5n0.
In order to establish theH theorem, we use the rate equ

tion to calculate]/]tH and obtain

]

]t
H5

1

2E d3k

~2p!3

d3k8

~2p!3
WkWkW 8„ln$ f kW@11 f ~kW 8!#e2bekW 8%

2 ln@ f ~kW 8!~11 f kW !e
2bekW#…$ f kW@11 f ~kW 8!#e2bekW 8

2 f ~kW 8!~11 f kW !e
2bekW%1n0E d3k

~2p!3
WkW0

3$ ln f kW2 ln@~11 f kW !e
2bekW#%@ f kW2~11 f kW !e

2bekW#,

~A15!

which is positive, by the same argument. The upper bo
for H is established in the same way, under the assump
-

e

f

a-

d
n

of a cutoff spectrum. Att→` one reaches a stationary stat
for which ]/]tH50. It is known that positive continuou
functions can have vanishing integrals only if they are ide
tically zero. This leads, as in the discrete case, to

~11 f kW !e
2bekW

f kW
5a ~A16!

with the additional feature that if in the final staten0Þ0 then
a51 (m50).

In order to classify the possible scenarios, we remark t
for any m<0 one has the inequality

E d3k

~2p!3
f 0~ekW ,m!<E d3k

~2p!3
f 0~ekW,0!5ncr . ~A17!

Therefore, initial conditions with a densityntot smaller than
the critical densityncr can be accommodated only if the fin
condensate is zero. The corresponding equilibrium situa
is

n0~`!50, ~A18!

f kW~`!5 f 0~ekW ,m!, ~A19!

with m given by the average particle density

ntot5E d3k

~2p!3
f 0~ekW ,m!. ~A20!

If ntot.ncr the final state should be

f kW~`!5 f 0~ekW,0!, ~A21!

n0~`!5ntot2E d3k

~2p!3
f 0~ekW,0!. ~A22!

APPENDIX B

We describe the long-time asymptotic behavior of the
lution of Eq.~3.8! by linearizing it around the fixed point an
analyzing the spectral properties of the linear operator
tained in this way. To be specific, we take

f kW~ t !5 f 0~ekW ,m!1d f kW~ t !, ~B1!

n0~ t !5n0~`!1dn0~ t ! ~B2!

and keep only linear terms in the departures from equi
rium. One gets

]

]t
d f kW~ t !52~Ad f !kW~ t !. ~B3!

Now let l be an eigenvalue of the operatorA defined
above

~Ad f !kW5ld f kW , ~B4!

or explicitly, by using the symmetrized transition rates E
~A1!
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E d3k

~2p!3
WkWkW 8$ukW ,md f kW f 0~ekW 8 ,m!2 f 0~ekW ,m!ukW 8,md f kW 8%

1ukW ,md f kWWkW0n0~`!5ld f kW , ~B5!

where

ukW ,m5e2bm2e2bekW. ~B6!

We prove now the following statements.
~a! For anyn0(`)Þ0, the spectrum ofA is positive and

starts from the origin. Note that in this casem50 andukW0
5@11 f 0(ekW,0)#21. We use a variational procedure aft
transforming the problem to a self-adjoint form. To this e
we definehkW by
o
n
o

f
s

l

n

.

B

ukW0d f kW5 f 0~ekW,0!hkW ~B7!

and get

E d3k

~2p!3
f 0~ekW,0!WkWkW 8 f 0~ekW 8,0!~hkW2hkW 8!

1hkW f 0~ekW,0!WkW0n0~`!

5l f 0~ekW,0!@11 f 0~ekW,0!#hkW . ~B8!

Variationally, the lowest spectral point is obtained as t
infimum over test functions of the ratio between the qu
dratic forms defined by the operators in the right-hand s
~RHS! and LHS respectively, which can be written as
s process
rgy. The

are able
q.
infh5
1

2E d3k

~2p!3E d3k8

~2p!3
f 0~ekW,0!WkWkW 8 f 0~ekW 8,0!~hkW2hkW 8!

21E d3k

~2p!3
hkW

2
f 0~ekW,0!WkW0n0~`!

E d3k

~2p!3
f 0~ekW,0!@11 f 0~ekW,0!#hkW

2 6 . ~B9!

It is obvious from Eq.~B9! above, that the spectrum is positive. On the other hand, the factorf (ekW,0)@11 f 0(ekW,0)# in the
denominator has a nonintegrable singularity atkW50, so that by taking suitable sequences of test functionshkW , the denominator
can be made arbitrarily large. Since the Bose functions appearing in the numerator have integrable singularities, in thi
the numerator stays bounded, if the transition rates do not introduce supplementary singularities around zero ene
considered models have no such singularities.

~b! For n0(`)50, the spectrum consists of an isolated zero eigenvalue and a positive part separated from zero. We
to prove this statement only for the instant thermalization model of Sec. IV. In this case, the eigenvalue problem of E~B5!
reads

~Ad f !kW[ukWmd f kWntot2 f 0~ekW ,m!E d3k8

~2p!3
ukW 8md f kW 85ld f kW . ~B10!
er
nen-
y
o

The operatorA consists of a multiplicative partukWmntot ,
whose spectrum is continuous, positive and starts fr
u0mntot5(e2bm21)ntot and a one-dimensional projectio
perturbation. It is known, that such perturbations cann
change the continuous spectrum, except for splitting of
single nondegenerate eigenvalue. In our case, this is ea
identified asl50, corresponding to the eigenvectord f kW
m

t
a
ily

5f0(ekW ,m)/ukWm . This describes an infinitesimal change inm,
which is, however, forbidden by the total particle numb
conservation. The rest of the spectrum describes an expo
tial decay to equilibrium with a time scale given b
1/@(e2bm21)ntot#. The resulting Liapunov exponent goes t
zero asm appproaches zero~i.e., one obtains a critical slow-
ing down!.
*Permanent address: National Institute for Physics of Materia
Bucharest, Romania.

1M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman
and E. A. Cornell, Science269, 198 ~1995!.

2K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D
S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett.75,
3969 ~1995!.

3A. Mysyrowicz, E. Benson, and E. Fortin, Phys. Rev. Lett.77,
896 ~1996!.

4J. L. Lin and J. P. Wolfe, Phys. Rev. Lett.71, 1222~1993!.
5T. Goto, M. Y. Shen, S. Koyama, and T. Yokuchi, Phys. Rev.

55, 7609~1997!.
s,

,

6D. W. Smoke and J. Wolfe, Phys. Rev. B39, 4030~1989!.
7A. L. Ivanov, C. Ell, and H. Haug, Phys. Rev. E55, 6363~1997!.
8S. G. Tikhodeev, Zh. E´ksp. Teor. Fiz.97, 681~1990! @Sov. Phys.

JETP70, 380 ~1990!#.
9D. V. Semikoz and I. I. Tkachev, Phys. Rev. Lett.74, 3093

~1995!.
10H. Haug, Phys. Rev.184, 338 ~1969!.
11S. Schuster and H. Haug, J. Opt. Soc. Am. B13, 1605~1996!.
12E. Levich and V. Yakhot, Phys. Rev. B15, 243 ~1977!.
13T. Lopez-Arias and A. Smerzi, Phys. Rev. A58, 526 ~1998!.
14E. B. Davies,Quantum Theory of Open Systems~Academic, New

York, 1976!.


