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Thermal and elastic properties of solid neon

Dominic Acocella* and George K. Horton
Department of Physics and Astronomy, Rutgers– The State University of New Jersey, 136 Frelinghuysen Road,

Piscataway, New Jersey 08854-8019

E. Roger Cowley
Department of Physics, Camden College of Arts and Sciences, Rutgers– The State University of New Jersey,

Camden, New Jersey 08102-1205
~Received 22 October 1999!

We apply the improved effective potential Monte Carlo~IEP! and the improved self-consistent~ISC! theo-
ries to study the thermal and elastic properties of natural solid Ne. As a first orientation, we use the~12-6!
Lennard-Jones~LJ! potential for first-neighbor forces only. The two parameters in the potential are determined
from the 0 K lattice spacing and the sublimation energy of the crystal. We also create a realistic interatomic
potential for the Ne dimer based on our study of the existing literature. When supplemented by many-body
contributions, this potential is also used with ISC and IEP. The results are then compared with the experimental
data in the literature. We conclude that our realistic potential which we regard as the best currently available
is not significantly superior in accounting for the experimental data to the LJ potential, though both give a
decent account of the experimental data.
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I. INTRODUCTION

In this paper we study selected thermal and elastic pr
erties of natural neon and its isotopes. We make theore
predictions and compare our results with the experime
data. We use both the improved self-consistent theory1 ~ISC!
and the improved effective potential Monte Carlo theo2

~IEP! to obtain our calculated results. Between them th
two theories, ISC at the lowest temperature and IEP at
other temperatures give a reliable account of the lattice
namics of solid neon.3 In an earlier paper, ISC was applied
neon using a~6-12! Mie-Lennard-Jones potential at a tim
when the quality of the ISC results was not yet fu
established.4 That is why the additional use of IEP is a
important part of the present paper. It establishes the relia
ity of our lattice dynamical results.

About 20 years ago, Klein and Koehler published
article5 entitled ‘‘Lattice Dynamics of Rare Gas Solids.’’ I
this article they examined how well the theory available
that time could account for the measured properties of s
neon. They concluded that section of their article with t
comment that ‘‘Much still remains to be done before w
have an adequate description of solid neon at temperat
near melting.’’ This is one of the topics we wish to addre
in order to ascertain how much progress has been made
then and to see whether~and how far! we have progresse
beyond the cautious conclusion of Klein and Koehler.

We note immediately that the lattice dynamics of so
neon is conveniently divided into two distinct parts. With
the Born-Oppenheimer approximation,6 which is clearly re-
liable for an insulator like neon, we need to know the ele
tronic ground-state energy of the solid as a function of
atomic separations. We can then evaluate the partition fu
tion of the solid.

An attractive problem would be to evaluate this groun
state energy, or interatomic potential,ab initio. Unfortu-
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nately this is a very difficult problem because of the erro
inherent in subtracting the huge energies of the separ
atoms from the only slightly different energy of the interac
ing atoms. No such work has been carried out yet. It
therefore, customary to proceed as follows.

One assumes a functional form for the potential energy
an isolated pair of neon atoms. This involves a number
adjustable parameters which are obtained from gas data7 as
well as some Hartree-Fock calculations for short distanc
These results are then supplemented by many-body cont
tions to produce a crystal potential which is semiempiric
We will follow that path. There is a substantial literature o
such potentials for solid Neon. We have found none of t
earlier work to be entirely satisfactory, though we have us
some of the results of Aziz and Slaman8 in order to create
our version of the best Neon dimer potential based on
currently available gas data. That forms the basis of the c
tal potential we have set up. Once the crystal potentia
known, we implemented Feynman’s path integral approa9

to evaluate the partition function. This noncausal techniq
has the great advantage over the older self-consistent ph
theory in that it avoids the process of successive approxi
tions inherent in that theory which certainly fails at hig
temperatures and whose convergence for solid neon n
investigation. Higher-order approximations to the lat
theory are too difficult, and perhaps too unrewarding,
implement numerically.

The new theory, known as the effective potential Mon
Carlo theory, has been developed by a number of authors
most powerful and complete formulation was recently int
duced by us under the title: improved effective potent
theory~IEP!. This theory is of such high quality that we ar
confident that the lattice dynamical part of calculating t
thermal and elastic properties of solid neon at all tempe
tures and the zero-pressure volume is now in good or
This is assured because ISC theory, to which IEP reduce
8753 ©2000 The American Physical Society
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0 K is known to be reliable for solid neon at low
temperatures.2,10 We do present some ISC results to emph
size this point. Thus, given reliable interatomic forces,
should be possible to make a reliable comparison betw
theory and data from many experiments. That is the aim
this paper.

While the agreement with experiment that we achieve
not bad, we are not completely satisfied with it. Over a c
tury ago Lord Kelvin11 wrote

‘‘Accurate and minute measurements seem to the non
entific imagination a less lofty and dignified work than loo
ing for something new. But nearly all the grandest discov
ies of science have been but the rewards of accu
measurements and patient long continued labor in the mi
sifting of numerical results.’’

We cite one example which started with a letter by Lo
Rayleigh to Nature.12 He wrote:

‘‘I am much puzzled by some recent results as to
density of nitrogen, and shall be obliged if any of yo
chemical readers can offer suggestions as to the cause
cording to two methods of preparation, I obtain quite distin
values. The relative difference, amounting to about 1/10
part, is small in itself, but it lies entirely outside the errors
experiment, and can only be attributed to a variation in
character of the gas . . . .’’

Analysis of this minute discrepancy led to the discove
of argon and all the other rare gases here on earth and
subsequent award of two simultaneous Nobel prizes—on
physics and the other in chemistry. A similar huge eff
went into determining the magnetic moment of the electr
both experimentally and theoretically in the hope of finding
discrepancy. Here, however, agreement to eight signific
figures convincingly confirmed the reliability of quantu
electrodynamics.

About 30 years ago, Simmons and his collaborators i
brilliant investigation measured the lattice parameters
rare-gas solids as a function of temperature to seven dec
places.13 Much effort has since gone into investigatin
whether lattice dynamics can account for these precise d
This paper is a contribution to that effort. Unfortunately, t
best theoretical results are still far from accounting for
experimental data—the disagreements are far outside the
perimental uncertainties. Now this is not like the case
metals where the failure to predict the correct lattice para
eters has been traced to the inadequacy of the functio
density method.14 We do not know the reason for the pers
tent disagreement. We believe that our treatment of lat
dynamics is quite reliable. And we have the very best av
able crystal potential. Until this disagreement is laid to re
the possibility that some new physics is required cannot
excluded. That is what has provided a very potent challe
in this work.

II. IMPROVED EFFECTIVE POTENTIAL MONTE CARLO
THEORY

The basic equations of the theory2 start most conveniently
with the partition function

Z5S m

2pb\2D 3N/2

e2b(DF2DFclass)E d3NRe2bVe f f(R),

~1!
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whose structure accounts for the name given to the the
The integral in Eq.~1! can be evaluated by classical Mon
Carlo methods since quantum effects are included inVe f f .
The expression forVe f f is

Ve f f~R!5K~R!2
Maaf a

2

b2\2
1

1

b (
a

lnS sinhf a

f a
D , ~2!

where

K~R!5
1

2 (
I

(
JÞI

E d3x
e2xWT[DIJ] 21xW

~p3 detDIJ!1/2
f~RW I2RW J1xW !,

~3!

is the potential and the remaining expressions are the pho
terms.

The Gaussian width is given by

~DIJ!ab5~UIa,a2UJa,a!aa~UIb,a2UJb,a!, ~4!

where

aa5
b\2

2m fa
~cothf a21/f a!, ~5!

and

f a5b\va/2. ~6!

The secular equation is

Ua,Ia
T KIa,JbUJb,b5mva

2dab ~7!

with the U ’s representing polarization vectors and the d
namical matrix given by

KIa,Jb5
]2K~R!

]RIa]RJb
. ~8!

Finally,

DF5
2\2

3NM3 (
123

D~qW 11qW 21qW 3!

v1v2v3
uc123u2W123, ~9!

with

W1235
n1n21n2n31n3n11n11n21n311

v11v21v3

1
3~n2n31n3n12n1n21n3!

v11v22v3
~10!

and

c1235(
r

ei (qW 11qW 21qW 3)•Rr/2Sa~1!Sb~2!Sg~3!^cabg~RW r!&,

~11!

where the sum is over lattice vectors and

Sa~1!5sin~qW 1•RW r/2!ea~qW 1 j 1!, etc. ~12!

Here qW is a wave vector in the first Brillouin zone,n
5(eb\v21)21 is the average occupation numbe
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^cabg(RW r)& are the smeared third-order force constants
ea andva are the normal mode vectors and frequencies

We note that

DFclass5
24

3Nm2b2 (
123

D~qW 11qW 21qW 3!

v1
2v2

2v3
2

uc123u2. ~13!

From the structure of Eqs.~1! through~13! it is clear that
at T50 K, IEP reduces to ISC, and we know that ISC
reliable at low temperatures. In the high-temperature lim
never reached by solid neon, these IEP equations are e
classically and actually reproduce the first term in t
Wigner expansion.15

In order to implement the theory, these equations mus
solved iteratively. To make this process manageable,
shall use the low coupling approximation~LCA! in which
the changes ofa, U, and the cubic correction from the
equilibrium values are neglected. One of the virtues of IEP
that, when used with the LCA~which becomes exact at hig
and low temperatures! there is a cancellation of errors lea
ing the extremely reliable results.10 To summarize, IEP and
ISC theory used together can be trusted to predict the t
modynamics of solid neon reliably once the interatom
forces are known.

The IEP expressions for the physical quantities we w
calculate, using Eq.~1!, for comparison with available ex
perimental data are

U5
]

]b
ln Z5~DF2DFclass!1b

]

]b
~DF2DFclass!1

3N

2b

1^Ve f f&1b K ]

]b
Ve f fL , ~14!

P5
1

b

]

]V
ln Z52

]

]V
~DF2DFclass!1

N

bV
2 K ]

]V
Ve f fL ,

~15!

CV5S ]U

]T D
V

52kb2F2
]

]b
~DF2DFclass!1b

]2

]b2

3~DF2DFclass!G1
3Nk

2
2kb2K 2

]Ve f f

]b
1b

]2Ve f f

]b2 L
1kb2H K S Ve f f1b

]Ve f f

]b D 2L 2 K Ve f f1b
]Ve f f

]b L 2J ,

~16!

BT52VS ]P

]VD
T

5V
]2

]V2
~DF2DFclass!1

N

bV

1VK ]2Ve f f

]V2 L 2bVH K S ]Ve f f

]V D 2L 2 K ]Ve f f

]V L 2J .

~17!
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III. INTERATOMIC FORCES IN GASEOUS AND SOLID
NEON

Since noab initio calculations of the ground-state ele
tronic energy of the neon dimer as a function of nucle
separation have been presented,14 we have turned to the ex
tensive literature16 on heuristic potentials to give us a startin
point for evaluation of the partition function of the solid as
function of volume and temperature. We have also relied
the Born-Oppenheimer approximation6 since the band gap in
an insulator like neon is about 25 eV. Many citations
earlier work can be found in the paper by Aziz and Slama8

The neon dimer potential must exhibit van der Waals
tractive dispersion behavior at large separations and the
over to strong short-range repulsion at small separation
addition, it must account for a wide range of diverse prop
ties including second virial coefficients, viscosity, therm
conductivity, diffusion, spectroscopic data, differential, a
high-energy total scattering cross sections and link up w
the small separation calculated united atom perturbation
sults. In addition, when supplemented by many-body forc
it must account for the 0 K binding energy and lattice spac
ing of the solid.

We have found that none of the published potentials s
isfy these requirements. This is our conclusion in spite of
suggestion of the authors of one potential that the17

ESMSV-III potential ‘‘must be very close to the real neo
pair potential.’’ In particular we have studied the HFB-
potential of Aziz and Slaman carefully and found that
could not account for the lattice spacing of solid neon at 0
and suffered from unacceptable discontinuities in its hig
derivatives.

One of the problems that earlier authors ran into was
fact that different sets of data were relevant at differe
nuclear separations and that the interatomic potential ha
different analytical behavior at various separations. This
earlier authors to piece together different sections of the
tential which were joined by requiring the potential and
derivative to be continuous throughout. Thus the so-ca
ESMSV III potential is spliced together out of no less th
five different pieces. At an early stage it was Barker19 who
recognized the failings of this approach for applications
the lattice dynamics of solid neon, a highly anharmon
solid. Higher derivatives of the potential which play an im
portant role are not well represented by the interpolation p
cedure. There is a related problem in subsequent work wh
relied on a single analytical potential but uses a cut
function18 to attenuate the dispersion forces at small sepa
tions. Unfortunately this cutoff also introduces unphysic
potentials derivatives into the formalism although it w
quoted as recently7 as 1996.

A. Tang-Toennis-type neon potential

We have, therefore, preferred to base our potentials
the neon dimer on the work of Tang and Toennis.20 This
gives the following result for solid neon:

f~r !5Ae2ar2 (
n>3

` F12 (
k50

2n
~ar !k

k!
e2ar GC2n

r 2n
, ~18!

where
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C2n145S C2n12

C2n
D 3

C2n22 , ~19!

so thatC6 , C8, andC10 are required and the remainder a
generated by Eq.~19!. The requiredC’s were taken from the
work of Aziz and Slaman.8 Following the work of Tang and
Toennis20 on the argon dimer who found that their form
the potential required an increase in the parameterA com-
pared with other potentials by about 16%, we have mu
plied the Aziz and Slaman value ofA by 1.161 948 5. That
value was chosen to give the correct experimental lat
spacing and a binding energy of21925.614 J/mole, which is
just inside the experimental error. As far as possible, we h
taken the parameter values from Aziz and Slaman, to t
advantage of their careful fitting to a wide range of prop
ties. We used the following parameters:

A5eA* 31.161 948 5,

e542.25 K,

A* 5895 717.95,

a54.726 per angstrom unit,

C656.447 au,

C8596.5 au,

C1051520 au. ~20!

Although this Tang-Toennis-type neon dimer potentia
consistent with all the known experimental and theoreti
information available on neon, both are still subject to refin
ment which leaves room for both small changes in th
parameters and the possible modification of the structur
this potential in the future. This potential, and all its deriv
tives are continuous. In any case the heuristic nature of
potential must always be kept in mind though we do belie
it to be the best available at the present time.

In order to adapt the dimer potential for use with so
neon at atmospheric pressure, we must include many-b
forces. It is commonly assumed that the most significan
these is the triple dipole contribution.19,8 To illustrate the
convergence of the contributions we have summarized th
K results in Table I. The coefficient that leads to the trip
dipole term we quote in that table is 11.95 Hartree-~Bohr! 9.21

TABLE I. Contributions to the binding energy~all in J/mole!.

Static energy 22637
ZPE 648
DDD 63

11213 21926
Experimenta 2193368

DDQb 13
QQDb 2

aReference 25.
bReference 8.
i-

e

e
e
-

l
-
e
of
-
ur
e

dy
f

0

B. The nearest-neighbor Mie-Lennard-Jones potential

In spite of much criticism focused on its many shortco
ings, the nearest-neighbor~6-12! Mie-Lennard-Jones poten
tial continues to be used. It provides continuity as well a
first orientation enabling comparison with a whole range
earlier work. This potential is entirelyad hocand compen-
sates for the lack of many-body forces through the choice
the two potential parameters. To provide a reference,
have done all our calculations using the following potenti

f~r !54eF S s

r D 12

2S s

r D 6G ~21!

with

e572.09310216 ergs, ~22!

and

s52.701231028 cm. ~23!

These parameters correctly reproduce the sublimation en
and the 0 K lattice spacing of the crystal.

IV. CALCULATIONAL METHODS AND EXPERIMENTAL
DATA

We have divided our IEP simulations into three parts. T
first part, the static calculation, involves calculating the sta
contribution to each thermodynamic quantity, namely the

FIG. 1. The lattice spacinga0. Hollow circles are IEP results for
the Lennard-Jones potential, full circles are ISC results for
Lennard-Jones potential, hollow squares are IEP results for the
potential, and full squares are ISC results for the TT potential. T
line is the experimental curve. Error bars are smaller than the th
ness of the line. The lattice spacing of solid neon at 0 K is
(4.463 6860.000 008) Å.
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PRB 61 8757THERMAL AND ELASTIC PROPERTIES OF SOLID NEON
ergy, pressure, and specific heat at constant volume and
bulk modulus. Since this is the least costly of all three c
culations, we included 112 nearest shells in the calcula
corresponding to 7010 atoms.

The second part, the phonon part, involves sums over
mal modes. For this part we used 1331 atoms, giving us 3
normal modes which was sufficient for accurate evaluat
of the harmonic phonon contribution. Finally, the third pa
was the Monte Carlo simulation itself. Here, we used 1
atoms with periodic boundary conditions. We ascertain
that finite-size effects were negligible. Of course, we s
tracted out the static equilibrium portion of the averag
quantities. Using IEP, at each of the 12 temperatures,
calculated the quantities given by Eqs.~14!–~17! at the zero
pressure experimental volume. As expected, the calcul
pressure is not zero as our potential is not perfect. So
obtained the zero-pressure theoretical lattice spacing by
ing the bulk modulus to make the required corrections.
the ISC calculation which are inherently faster, the quanti
in Eqs. ~14!–~17! were calculated directly. All the variou
sums involved were done to a high degree of accuracy o
PC.

The experimental data we quote come from seve
sources. The lattice spacings were measured by Batche
et al.22 The bulk modulus was measured by Batcheld
et al.22 using x-ray diffraction as well as by Anderson an
Swenson23 by extrapolation from high pressureP-V data.
There is an almost 30% difference between these two se
results at 20 K which is unresolved. The internal energyU
was taken from Somoza and Fenichel24 who integrated their
smoothedCp values~which may be too high at high tem
peratures thus overestimatingU). The specific heats wer
taken from the compilation of data due to Korpiun a
Lüscher.25 We note that these are smoothed data, wher

FIG. 2. The internal energy. The meaning of the symbols
same as in Fig. 1.
the
l-
n

r-
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s FIG. 3. The heat capacityCv . The meaning of the symbols i
same as in Fig. 1. An estimated error bar is shown on the exp
mental line at highT.

FIG. 4. The bulk modulusBT . The meaning of the symbols i
same as in Fig. 1. The solid line shows the experimental result
Batchelderet al., the dashed line is the experimental results
Andersonet al.
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8758 PRB 61ACOCELLA, HORTON, AND COWLEY
our calculated values have not been smoothed. The isob
specific heatCp was measured and the isochoric specific h
Cv was calculated from

Cp2Cv5BTVTb2, ~24!

whereBT is the isothermal bulk modulus,V is the volume,T
is the temperature, andb is the thermal-expansion coeffi
cient. Since we have already noted the substantial un
tainty in BT at high temperatures, it follows from Eq.~24!
that Cv may also be uncertain by as much as 1 J/mole K

V. CONCLUSION

We are again astonished how well the heuristic near
neighbor Mie-Lennard-Jones potential, Eq.~21!, accounts for
the experimental data we have chosen to focus on in F
1–4. It is also clear that our TT-type potential for neon wh
reasonably satisfactory, is far from the last word on the s
ject. No doubt it may give a better overall fit of the expe
-

ric
t

r-

t-

s.

-

mental data if a wider range of experiments is conside
especially if volume dependences are more fully explo
The assumption that many-body forces are adequately re
sented by the triple-dipole term should also be re-exami
We also note that the ISC theory for Ne is quite satisfact
except near melting and is clearly superior, as expecte
the very lowest temperatures where the Monte Carlo me
leads to significant scatter, including some negativeCv’s, to
IEP theory. The two theories clearly complement each ot

We expect that IEP theory will lead to significantly d
ferent results from those of ISC for solid argon which me
close to its debye temperature. We will show that in a s
sequent paper.
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