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Stress concentration near a surface step and shear localization
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In a previous static atomistic simulation, it has been shown unambiguously that a surface step is a privileged
site for dislocation nucleation. Before dislocation nucleation, an elastic shear, localized in the plane in zone
with the step where nucleation will occur, is observed. The real dislocation forms when this localized shear
reaches, at its maximum, the value where the crystal gets mechanically unstable. The part played by the stress
concentration on the shear localization is discussed: although the stress concentration does not involve any
shear in the glide planes in zone with the step, it is shown that it produces a variation of the interplanar
distance, which can make shear easier. A calculation based on the Frenkel model is developed to analyze the
effect of an interplanar distance variation, and the shear distribution that minimizes the strain energy is
calculated. The analytical solution obtained is then compared to the results of an atomistic simulation.
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I. INTRODUCTION

Plastic deformation in bulk materials proceeds by creat
and multiplication of dislocations by the Frank-Read sou
mechanism: under the action of the stress, a segment of
existing dislocation can multiply and form many loops a
stress level well below the theoretical strength. But in na
structures such as thin films, whiskers, and nanograined
terials, the restricted extension offered to free dislocat
motion prevents this mechanism from operating. Howev
these materials, in which the stress can reach several
are not exempt from plastic deformation and dislocations
be observed as, for instance, misfit dislocations in thin fil
in epitaxy.

In these nanostructures, the dislocations are generally
posed to come from the free surface of the film or t
whisker.1,2 In this case, the dislocation is submitted to a lar
image force, which attracts it to the surface, so that the a
vation energy to nucleate the dislocation is large. The mod
developed show that surface nucleation requires large s
concentration or surface roughness.3–11 If the dislocation is
nucleated from a surface step, the activation energy, and
sequently the stress required to nucleate the dislocation,
be significantly reduced by two factors:~i! the surface energy
gain if the step disappears during nucleation and~ii ! the
stress concentration in the neighborhood of the step.

In a static atomistic simulation12 realized with a face-
centered-cubic crystal~aluminum!, it has been shown unam
biguously that a surface step is a privileged site for dislo
tion nucleation: the sample containing a monatomic surf
step is submitted to an increasing applied stress, and f
sufficient stress level, dislocations form at the step and g
on the dense planes. The examination of the strain field
the sample as the applied stress is raised up to nuclea
reveals that the plane where the glide will occur is favo
well before nucleation: neighboring atomic planes are d
placed in such a way that a shear whose amplitude and
tension increase with the applied stress, is progressively
calized on the future glide plane; the shear direction is tha
the Burgers vector of the eventual dislocation. The real d
PRB 610163-1829/2000/61~13!/8707~7!/$15.00
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location is observed to form when the localized she
reaches, at its maximum, the value where the crystal g
mechanically unstable. It is thus important to understand
origin of the shear localization since it is the way by which
simple surface step transforms into a real dislocation.

It may also be worth noting that in this simulation, the
are two different sets of$111% planes submitted to the sam
applied resolved shear stress, but the set chosen for nu
ation is always that which leads to a reduction in the s
height, partial or even complete. This may be related to
surface energy gain mentioned above.

The applied resolved shear stress, identical in all
dense planes, cannot by itself induce the shear localiza
But the inhomogeneity brought about by the presence of
step can play a part in the appearance of the observed s
localization. Indeed, as for a crack tip, an applied stress
duces near a surface step a localized stress field,13,14which is
not homogeneous in the step region, and leads to a s
distribution different in the two sets of$111% planes. The
part played by the stress concentration in the neighborh
of the step is examined here; its possible effect on the sh
localization and on the dislocation nucleation is discusse

In Sec. II, the results of the simulation of the dislocati
nucleation mentioned above12 are briefly recalled. In Sec. III,
the localized elastic shear is described and its possible
gins are investigated: although the stress inhomogeneity
duced by the step does not directly involve any shear in
planes in zone with the step, it is shown that the stress c
centration yields to a variation of the interplanar distan
which can make shear easier. In Sec. IV, the effect on gl
of varying the interplanar distance of$111% planes, is exam-
ined. An analysis based on the Frenkel model15 is developed
which allows an analytical calculation of the shear distrib
tion that minimizes the strain energy when the interpla
distance is varied. This analytical solution is then compa
to the results of an atomistic simulation.

II. DISLOCATION NUCLEATION
FROM A SURFACE STEP

The atomistic simulation which shows dislocation nuc
ation from the surface step with the precursory shear c
8707 ©2000 The American Physical Society
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FIG. 1. Crystal structure in the step region before and after relaxation, for an applied elongation along@ 011# of 8.3%. The picture has

been expanded along the surface normal@100#. The step line lies along@01̄1#.
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fined in the glide plane, has been reported in de
elsewhere.12 The interatomic forces are derived from a sem
empirical many-body potential for aluminum.16 A brief de-
scription of the computational procedure and of the res
follows but Refs. 12 and 16 should be consulted for m
details on the geometry and the potential.

On the ~100! free surface of an aluminum crystal, th
monatomic step is set along a close-packed direction@01̄1#.
The crystal remains periodic in the step direction, with t
period equal to the nearest-neighbor distance. In the stan
sample, the~100! surface is free and the other three sides
the computational block are kept fixed. Several stress or
tations have been studied, all contained in the~100! surface.
The strain is progressively increased with a characteri
step of 1%.

Consider first the results obtained with the stress axis n
mal to the step line~i.e., parallel to@011#!: in tension, dislo-
cations are nucleated at a strain«̄ of 8.4% which is definitely
lower than the value calculated for the theoretical streng
equal to 15%. The dislocations are Shockley partials of p
edge character, with Burgers vectorb90°5a0/6@211#. They
are nucleated in two$111% planes: GP2 in zone with the ste
and GPA2 just above GP2. A test realized with a sma
computational box shows that the first event is the nuclea
in GP2.

The deformation state of the crystal for applied stres
below nucleation reveals the localization of a shear strain
the plane where the first nucleation will occur. For a tens
stress axis normal to the step line, the case detailed here
il
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plane is GP2. For other stress orientations such as a unia
compression at 18° from the normal to the step line,
strain concentrates in GP1, the other plane in zone with
step, in which the first dislocation formed will glide for thi
orientation. This localized elastic shear strain precursor
the dislocation formation is discussed in the following se
tions.

III. DESCRIPTION AND ORIGIN OF THE LOCALIZED
ELASTIC SHEAR

A. Description

We consider the crystal state just before dislocation nu
ation, that is for an imposed elongation«̄ equal to 8.3%
along the normal to the step line~the @011# direction!. Figure
1 shows the atom positions in the step region before and a
relaxation. Figure 1 is intentionally expanded along the s
face normal, in order to make clear the main feature of
strain field, that is the shear in the$111% plane GP2: atoms
situated on the one side of GP2 are displaced with respe
those on the other side in a direction normal to the step
and essentially parallel to GP2, that is mainly along@211#.

If one refers to the polar coordinatesr andu in the (01̄1)
plane~normal to the step line!, with the origin on the outer
edge of the step, the strain localized in the plane GP2
shear of type« ru . In this plane,u'35°, and « ru5(u1

2u2)/a, wherea is the interplanar distance andu1 andu2

are the displacements of the atoms, respectively, above
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PRB 61 8709STRESS CONCENTRATION NEAR A SURFACE STEP . . .
below the plane GP2 in the@211# direction. Note that the
reference state for atomic displacements is the crystal
mitted to the homogeneous strain.

The shear« ru is illustrated in Fig. 2 where the relativ
displacements of atoms across GP2 after relaxation are
ted as a function of the positionr, for different homogeneous
applied strains. These are the relative displacements par
to b90° , to which they are normalized (b90°5a0/6@211# is
the Burgers vector of the 90° Shockley partial nucleated
a strain of 8.4%!; the relative displacements along the st
line direction are zero and very small along the normal
GP2. In Fig. 2, comparison of the curves corresponding t
and 8.3 % elongation shows that the localized shear incre
dramatically as nucleation is approached.

Finally, in order to follow the crystal behavior as close
possible to the nucleation point, very small strain increme
~0.01%! have been imposed. It is then seen that at 8.3% t
strain, the localized shear reaches at its maximum, that
the near-surface region, a value corresponding to a rela
displacement between atoms equal tob90°/4. This is compa-
rable to the state described by Rice as incipient dislocatio
a crack tip,17 although quantitatively different. This poin
will be further discussed in Sec. IV, in relation with th
stability limit of a crystal submitted to shear.

B. Origin of the localized shear

The question here is how does the presence of the
lead, in the stressed crystal, to the shear confined in
dense plane, precursor of the dislocation nucleation?

A first approach to the calculation of the stress field in
neighborhood of a surface step in a stressed crystal ca
based on the point force model: the step is regarded
point where the external stress is not applied~Fig. 3!. To
check the effect of the local stresses on the formation of
observed localized shear, the following simulation has b
performed: on a planar$100% surface~exempt of any step! of
the fcc aluminum crystal, forces tangential to the surfa
plane are applied along the^110& dense direction. Within the
point force approach, these forces produce the stress con
tration due to a step in the material submitted to the hom
geneous stresss0. Their intensity iss0h whereh is the step
height. After relaxation, an elastic shear of the same orde
magnitude as that observed in the sample containing the
appears in the$111% plane GP2. This shows that the elas
shear« ru observed in the sample containing the step is
sentially an effect of local stresses induced by the prese

FIG. 2. Relative displacements across GP2 along the edge
rection, normalized tob90° , for 0, 4, and 8.3 % elongations alon
@011#, versus position in the glide plane. The free surface is ar
50 Å .
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of the step. The stress concentration is determinant in
formation of the localized shear« ru and on the important
increase of this shear.

The point force problem in an elastic isotropic continuu
has received some solutions: following Boussinesq18 and Ti-
moshenko and Goodier,19 the stress field due to the tange
tial forces is, in polar coordinates,

s r52
2s0h

p

sinu

r
and su5s ru50, ~1!

so that the shear« ru5(1/m)s ru (m being the shear modulu
of the material! is zero, contrary to the localized shear o
served in GP2 in the simulation~Fig. 1!. Thus, in an isotro-
pic elastic continuum, the stress concentration in the ne
borhood of the step does not act directly on the appeara
of the localized shear.

In the elastic solution of the problem of tangential forc
distributed along a line on the planar surface, it can be no
that, if the strain component« ru vanishes, on the contrary th
component«u is not zero:

«u5
1

E
~su2ns r !5

n

E

2s0h

p

sinu

r
, ~2!

E and n being, respectively, the Young’s modulus and t
Poisson’s ratio of the material. This strain component c
have an effect on the localized elastic shear. Indeed, fo
homogeneous traction stress,«u is positive in GP2, produc-
ing an increased separation between atoms situated on
side of GP2~Fig. 4!, and then shear can become easier in t
plane, as discussed for instance in the tension-shear cou
analysis made by Sun, Beltz, and Rice20 for dislocation
nucleation at the crack tip. The tests made with other str
orientations12 confirm that the first glide event occurs in th
plane in which«u is positive, i.e., GP2 in traction and GP1
compression.

The separation between$111% planes, obtained in the ato
mistic simulations of the crystal containing the step, is pl
ted in Fig. 5. The strain«u8 shown in Fig. 5 is calculated
according to Eq.~3!:

di-

FIG. 3. Modelization of the stress field due to the step in
crystal submitted to a tensile stress.
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8710 PRB 61S. BROCHARD, P. BEAUCHAMP, AND J. GRILHE´
«u85
l 2 l 0

l 0
, ~3!

where l 0 is the interplanar distance before relaxation in t
crystal submitted to the homogeneous strain, andl is the
same quantity after relaxation. Note that the equality«u8
5«u holds in GP2 and GP1, in zone with the step, but is
quite exact in the other planes. Although the results dif
from the elasticity@Eq. ~2!#, it is seen from Fig. 5 that«u8 is
positive and large in GP2, while in the other planes«u8 re-
mains small. The assumption of an effect of the interpla
distance on the shear localization seems then well foun
This point is discussed in detail in the following section.

IV. ˆ111‰ PLANE SEPARATION EFFECT

In this section, the effect of$111% plane separation on th
shear properties of these planes is investigated, in orde
evaluate the part played by the strain«u on the localization
of the elastic shear« ru observed before dislocation nucle
ation from a surface step. To examine this effect, the
crystal is regarded as the stacking of$111% rigid atomic
planes and a modulation of the interplanar distance is
posed along the plane normal@(Ox) direction#; the sample is
submitted to a shear strain of mean value«̄, and the local
shear«xy(x), which minimizes the crystal energy, is dete
mined. Two approaches to the problem are taken: first,
analytical calculation applied to a continuum allows the d

FIG. 4. Effect of stress concentration on the separation betw
planes.

FIG. 5. Strain«u8 calculated using Eq.~3! in GP1, GP2, and
GPA2, for a 4% elongation along@011#, versus position in the glide
planes.
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termination of the local shear as a function of the impos
local elongation~variation in the interplanar distance!, with
the help of a variational procedure; second, an atomistic
ergy minimization performed on the sample constituted
rigid $111% planes, with the aluminum potential, allows th
determination of the$111% planes relative position, keepin
the imposed separation. The parameters entering in the
lytic calculations are taken from the aluminum interatom
potential in order to make the two approaches comparab

A. Frenkel model with constant interplanar separation

The first step in the calculation is to ensure the cons
tency between the continuum and the atomistic approac
that is to use in the continuum approach, constitutive la
deduced from the atomistic simulation. The crystal is co
structed as a$111% plane stacking normal to the (Ox) direc-
tion, and first the interplanar distance is kept constant, eq
to ax ~cf. geometry in Fig. 6!. The $111% planes are sheare
along the (Oy) direction~a ^112&-type direction!, according
to the homogeneous strain:«xȳ5 «̄5 1

2 (uy /ax), so as to dis-
place a$111% plane byuy with respect to the next one. Th
crystal energy variation per unit areaW is calculated as a
function of the applied shear«xȳ, using the aluminum poten
tial. This quantity is displayed in Fig. 7, where the asymm
try between the twinning and antitwinning senses of sh
appears clearly. If one restricts to shears such that the r
tive displacement between neighboring planes is smaller t
bt in the twinning sense, withbt5b90°5

2
3 ay ~respectively,

bat52bt in the antitwinning sense!, it is seen in Fig. 7 thatW
is very close to a sine function and can be written

W52
A

2
F12cosS 4p«xȳax

b
D G , ~4!

en

FIG. 6. Stacking of$111% planes in the chosen geometry. Th
full circles are atoms contained in the sheet plane, and the o
circles are in the plane parallel to the sheet plane at the he
a021/2/4. ax5a0/31/2 anday5a031/2/23/2.
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PRB 61 8711STRESS CONCENTRATION NEAR A SURFACE STEP . . .
where b is set equal tobt or bat depending on the shea
direction. The maximumA of the energy also depends on th
shear direction. It must be remarked here that, although
cutoff distance in the aluminum potential is situated betwe
the 10th and 11th neighbors, the interaction between$111%
dense planes is essentially due to the nearest-neig
planes, as ascertained for instance by the small differe
between the intrinsic and extrinsic stacking fault energ
respectively, 156 and 144 mJ/m2. Then, the crystal energ
variation per unit areaW obeys well the Frenkel form15 and
the maximumA can be assimilated togus , the energy of the
unstable fault as defined by Rice.17 By considering thatW
varies linearly with the shear strain for small strains, one
show thatgus5mb2/2p2ax .

B. Modulated interplanar separation

The interplanar distancea is now set to vary withx:

a~x!5ax1e cos
2px

l
5ax1e cos~kx!, ~5!

ax being the mean value of the separation,e being the mag-
nitude of the modulation,l is its wavelength, andk is its
wave vector~Fig. 8!. The $111% planes are submitted to th
mean shear«̄ along the (Oy) direction; in this case, the
displacementuy is allowed to be no more homogeneous
the entire material, but depends onx, and locally the shear is
«xy(x)5 1

2 (]uy /]x). The displacementuy and the shear«xy
are taken periodic, with periodl. The energy variation in a
sample of thicknessl is now

FIG. 7. Energy variation per unit area in$111% planes submitted
to an homogeneous shear computed using the aluminum pote
and comparison with the Frenkel model.

FIG. 8. Modulated separation between the$111% planes~the
direction are the same as in Fig. 6!.
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W52E
0

lgus~x!

2 F12cosS 4p«xyax

b D Gdx

52E
0

lgus~x!

2 F12cosS 2pax

b

]uy

]x D Gdx. ~6!

As already seen, the unstable stacking fault energy is pro
tional to the shear modulusm, which accounts for the$111%
planes shear resistance. Now, the shear modulus depen
the $111% planes separation: the larger the plane separat
the smallerm and the easier the shear; inversely, the m
the planes are close, the morem is important. According to
theoretical approaches of the cohesive energy
materials,20–22 it can be reasonably assumed that the sh
modulus varies exponentially with the plane separation:

m5m0 expS 2
a~x!2ax

ac
D , ~7!

wherem0 is the value of the shear modulus for the equili
rium distanceax (m0528.4 GPa) andac is a characteristic
length, equal to 0.3 Å with the potential used. According
Eq. ~5!: @a(x)2ax#/ac5(e/ac)cos(2px/l)5a cos(2px/l),
so that the energy 6 becomes

W52BE
0

l

exp@2a cos~kx!#F12cosS 4p«xyax

b D Gdx,

~8!

B being a positive constant.

C. Determination of the local shear

In order to determine the local shear«xy(x) which mini-
mizes the energy, we apply a variational method: let«0(x)
be the shear that minimizes the energy. In Eq.~8!, «xy(x) is
replaced by«0(x)1d«xy(x), whered«xy(x) is a perturbation
of the solution, which corresponds to a displacementduy(x).
d«xy(x) andduy(x) are necessarily periodic with periodl.
At first order ind«xy(x), Eq. ~8! becomes

W~«xy!5W~«01d«xy!'W~«0!1dW

5W~«0!2BE
0

l

exp@2a cos~kx!#
4pax

b

3sinS 4p«xyax

b D d«xydx. ~9!

Sinceduy(x) is periodic with periodl, one has to solve

dW50

and

E
0

l

d«xy~x!dx5E
0

l1

2
d

]uy

]x
dx

5
1

2
@duy~l!2duy~0!#50. ~10!

These equations can be solved using the Lagrange mult
ers method (dW2const*0

ld«xy dx50 for every d«xy), so
that one obtains

tial
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exp@2a cos~kx!#
4pax

b
sinS 4p«xyax

b D5const. ~11!

The solution of Eq.~11! is

«xy~x!5
b

4pax
arcsin@exp„a cos~kx!1C…#. ~12!

C is a constant of integration which can be obtained num
cally from the mean shear«̄, using

E
0

l

«xy~x!dx5l«̄. ~13!

According to Eq.~12!, the constantC must be negative
smaller than2a in order for«xy(x) to be defined for anyx
.

D. Analysis of the local shear

In Fig. 9, the local shear«xy(x), defined by Eq.~12!, is
plotted for different mean strains«̄ in the twinning direction.
As expected,«xy(x) is maximum when the separation b
tween planes is maximum, i.e., forx50, and minimum when
the separation is minimum, i.e., forx56l/2. For small
mean strains«̄ , the local shear«xy(x) varies almost linearly
with separation. As a matter of fact, for small«̄, «xy(x) is
small and ifa5e/ac is assumed to be small, one obtains

«xy~x!
4pax

b
'sinS «xy~x!

4pax

b D
5exp~C21!exp„a cos~kx!11…

'exp~C21!@a cos~kx!11#. ~14!

Using Eq.~13! to determineC, we have then

«xy~x!'«̄@a cos~kx!11#. ~15!

When«̄ is increased, nonlinear effects appear: in Fig. 9, i
seen that the shear becomes to localize in a nonuniform w
and for «̄5« c̄53.5%, an angular point appears at the ma
mum of shear. Above this value,C becomes larger than
2a and the local shear«xy(x) is no more defined for anyx.
For this critical value«̄, the limit of elasticity in the twinning
direction is reached locally forx50, since «xy(0)1 «̄
55.25%13.5%58.75%5 1

2 (bt/4)/ax . In the antitwinning
direction, the same features can be noted.

FIG. 9. Local shear versusx for different homogeneous applie

shears«̄. l5100ax ande50.1ax .
i-

s
y,
-

E. Atomistic calculation and comparison to
the analytical model

We have performed a simulation with the potential p
sented in Sec. II for aluminum. The structure studied is t
presented in Fig. 6, with$111% planes parallel to (Oyz). The
crystal sample analyzed is representative of the bulk: in
(Ox) direction, two margins sufficiently large are chose
while in the (Oy) and (Oz) directions, periodic boundary
conditions are imposed. The interplanar separation of$111%
planes is modulated according to Eq.~5!, with a wavelength
equal to 100ax and a magnitudee equal to 0.1ax . The crystal
is then submitted to a homogeneous strain«xȳ5 «̄ and the
atoms are allowed to move along the (Oy) direction so as to
minimize the system internal energy. The displacementuy of
each plane indexedi with respect to its initial position~crys-
tal submitted to the homogeneous strain! is thus calculated
and the local shear is then determined:«xy( i )2 «̄5 1

2 @uy( i )
2uy( i 21)#/ax . The values of«xy2 «̄ obtained in the simu-
lation are plotted in Fig. 10, together with the analytical s
lution given by Eq.~12!.

In Fig. 10, one can see that the atomistic simulation
sults are in good agreement with the analytical analy
When the homogeneous strain becomes larger than« c̄
55% ~respectively, 11%! in the twinning~respectively, an-
titwinning! direction, for the$111% planes close tox50 Å
~i.e., the planes for which the interplanar distance is ma
mum!, the local shear strain reaches 30%~respectively,
80%!, which corresponds to a displacementuy of the order
of bt ~respectively,bat): neighboring planes have undergon
relative displacements equal to those produced by the
sage of dislocations.

FIG. 10. Local shear versusx for different homogeneous applie

shears«̄ in the twinning direction~a!, and the antitwinning direction
~b!. On the first four figures, the solid line curves are determin
from Eq. ~12!. The points result from the atomistic calculation.
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V. CONCLUSION

The aim of this paper was to analyze the possible orig
of the localized shear observed before dislocation nuclea
at a surface step. Indeed, in a previous computer simula
of dislocation nucleation from a surface step in a stres
solid,12 it has been shown that the transformation of the s
face step into a real dislocation proceeds through the fo
tion of a shear of increasing amplitude and extension, c
fined into a single dense plane in zone with the surface s
i.e., the plane where the nucleation will be activated fo
sufficient applied stress. The maximum value attained by
localized shear, just before dislocation nucleation, co
sponds to a displacement equal tob90°/4, which in the Fren-
kel model represents the point where the crystal beco
unstable, i.e., the elastic limit.

This shear localization has been related to the local s
field in the step region. Using the point force model as a
approach, we show that although the stress concentr
does not involve any shear in the plane in zone with the s
it can influence indirectly the appearance of the locali
shear by increasing the interplanar distance around the p
where this shear is observed. The interplanar distance
crease can make shear easier in this plane. It is worth n
that the intensity of the point force, and consequently
change in interplanar separation, increases linearly with
step heighth. If the step height is increased, one can th
expect a decrease in the critical stress for dislocation e
sion. This point will be investigated in detail in compleme
tary studies.

An analytical calculation based on the Frenkel mo
shows that the wider the planes are separated, the large
local shear. For small strains, the localized shear determ
from the analytical model varies almost linearly with t
interplanar separation. But when the mean strain is
creased, the local shear no longer varies linearly with
at
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interplanar distance, and concentrates rapidly. Once ag
the limit of stability is found to correspond to a displaceme
equal tob90°/4.

A variation in the interplanar distance, as produced h
by the stress concentration in the vicinity of the step, w
affect not only the dislocation nucleation from a surface st
but is also likely to take a part in many other problems, su
as dislocation motion and Peierls stress, interaction betw
dislocations themselves, and with other defects, etc. Us
simulations are envisaged on these points.

The calculation presented here gives information on
barrier that a straight dislocation has to overcome to en
into the crystal: what is determined is the applied stress
which the system constituted of an infinite straight step o
surface becomes unstable and transforms into an infi
straight dislocation having sheared the crystal. In reality,
process of dislocation nucleation from a surface step is th
mally activated: when the crystal is submitted to an exter
stress, there exists a minimum distance from the surface
yond which a dislocation formed from the step has a low
energy than the surface step. The energy barrier between
two states can be overcome by thermal activation and
saddle-point configuration is something like a dislocati
half-loop emanating locally from the surface step. The de
mination of the energy of this half-loop requires a thre
dimensional simulation able to determine out-of-equilibriu
states such as saddle points. Of course the stress lev
which thermally activated nucleation becomes possible
much lower than the stress level determined here in our t
dimensional~2D! calculation which corresponds to the com
plete disappearance of the energy barrier. The nuclea
stress found here in the two-dimensional simulation is th
an upper bound. Full 3D calculations would then be able
give information on the saddle energy and configuration
accessible to the present 2D study.
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