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Stress concentration near a surface step and shear localization
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In a previous static atomistic simulation, it has been shown unambiguously that a surface step is a privileged
site for dislocation nucleation. Before dislocation nucleation, an elastic shear, localized in the plane in zone
with the step where nucleation will occur, is observed. The real dislocation forms when this localized shear
reaches, at its maximum, the value where the crystal gets mechanically unstable. The part played by the stress
concentration on the shear localization is discussed: although the stress concentration does not involve any
shear in the glide planes in zone with the step, it is shown that it produces a variation of the interplanar
distance, which can make shear easier. A calculation based on the Frenkel model is developed to analyze the
effect of an interplanar distance variation, and the shear distribution that minimizes the strain energy is
calculated. The analytical solution obtained is then compared to the results of an atomistic simulation.

[. INTRODUCTION location is observed to form when the localized shear
reaches, at its maximum, the value where the crystal gets
Plastic deformation in bulk materials proceeds by creatiormechanically unstable. It is thus important to understand the
and multiplication of dislocations by the Frank-Read source?rigin of the shear localization since it is the way by which a
mechanism: under the action of the stress, a segment of prélMPle surface step transforms into a real dislocation.

existing dislocation can multiply and form many loops at aarelttvrcc?){ji?flgfer?tesvgfsrtg{fffjgn%;rggg Igutggit?éngﬂ??ﬁg,srrif
stress level well below the theoretical strength. But in nano- P

structures such as thin films, whiskers, and nanograined mapplled resolved shear stress, but the set chosen for nucle-

terials, the restricted extension offered to free dislocatio%tlon 's always that which leads to a reduction in the step

. hi hanism f ; H nheight, partial or even complete. This may be related to the
motion prevents this mechanism from operating. Howeverg -~ energy gain mentioned above.

these materials, in which the stress can reach several GPa, The applied resolved shear stress, identical in all the

are not exempt from plastic deformation and dislocations cagense planes, cannot by itself induce the shear localization.
be ot_)served as, for instance, misfit dislocations in thin filmszyt the inhomogeneity brought about by the presence of the
In epitaxy. step can play a part in the appearance of the observed strain
In these nanostructures, the dislocations are generally supscalization. Indeed, as for a crack tip, an applied stress in-
posed to come from the free surface of the film or theduces near a surface step a localized stress’ftéfiyhich is
whisker?In this case, the dislocation is submitted to a largenot homogeneous in the step region, and leads to a stress
image force, which attracts it to the surface, so that the actidistribution different in the two sets dfl11} planes. The
vation energy to nucleate the dislocation is large. The modelpart played by the stress concentration in the neighborhood
developed show that surface nucleation requires large stres$ the step is examined here; its possible effect on the shear
concentration or surface roughnés$! If the dislocation is  localization and on the dislocation nucleation is discussed.
nucleated from a surface step, the activation energy, and con- In Sec. I, the results of the simulation of the dislocation
sequently the stress required to nucleate the dislocation, cdicleation mentioned aboteare briefly recalled. In Sec. Ill,
be significantly reduced by two factor) the surface energy the Iocah;ed e!ast|c shear is described an'd its pos&b[e ori-
gain if the step disappears during nucleation diig the  9ins are investigated: althoug_h the stress mhomogene_lty in-
stress concentration in the neighborhood of the step. duced by the step does not directly involve any shear in the
In a static atomistic simulatidA realized with a face- Planes in zone with the step, it is shown that the stress con-
centered-cubic crystaaluminun), it has been shown unam- cer_ltratlon yields to a varlatlon of the interplanar dlstan_ce,
biguously that a surface step is a privileged site for dislocay\’hICh can make shear easler. In Sec. IV, the Eﬁ?C‘ on glide,
tion nucleation: the sample containing a monatomic surfacLQf varying the m_terplanar distance fE11 p'a'.‘es' IS eéxam-
step is submitted to an increasing applied stress, and for 'Qe_d' An analysis baseq on the Fre_nkel Mot develoipe(_:i
sufficient stress level, dislocations form at the step and indé\’hICh a||0V\{S'aI’.l analytical cglculatlon of the shea}r distribu-
on the dense planes. The examination of the strain field ifon that minimizes th_e strain energy \_/vhe_n the interplanar
the sample as the applied stress is raised up to nucleatiofl’Stance is varied. This analytical solution is then compared
reveals that the plane where the glide will occur is favored© the results of an atomistic simulation.
well before nucleation: neighboring atomic planes are dis-
placed in such a way that a shear whose amplitude and ex-
tension increase with the applied stress, is progressively lo-
calized on the future glide plane; the shear direction is that of The atomistic simulation which shows dislocation nucle-
the Burgers vector of the eventual dislocation. The real disation from the surface step with the precursory shear con-

II. DISLOCATION NUCLEATION
FROM A SURFACE STEP
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FIG. 1. Crystal structure in the step region before and after relaxation, for an applied elongatioh @dhgf 8.3%. The picture has
been expanded along the surface nord@l0]. The step line lies alonp011].

fined in the glide plane, has been reported in detaiplane is GP2. For other stress orientations such as a uniaxial

elsewheré? The interatomic forces are derived from a semi-compression at 18° from the normal to the step line, the

empirical many-body potential for aluminuth A brief de-  strain concentrates in GP1, the other plane in zone with the

scription of the computational procedure and of the resultstep, in which the first dislocation formed will glide for this

follows but Refs. 12 and 16 should be consulted for moreorientation. This localized elastic shear strain precursor of

details on the geometry and the potential. the dislocation formation is discussed in the following sec-
On the (100 free surface of an aluminum crystal, the tions.

monatomic step is set along a close-packed diredtidr ].

The crystal remains periodic in the step direction, with the

period equal to the nearest-neighbor distance. In the standard!l. DESCRIPTION AND ORIGIN OF THE LOCALIZED

sample, thg100) surface is free and the other three sides of ELASTIC SHEAR

the computational block are kept fixed. Several stress orien-

tations have been studied, all contained in th@0 surface. . ) . .

The strain is progressively increased with a characteristic We consider the crystal state just before dislocation nucle-

step of 1%. ation, that is for an imposed elongatien equal to 8.3%
Consider first the results obtained with the stress axis noralong the normal to the step lirihe[011] direction. Figure

mal to the step lindi.e., parallel t011]): in tension, dislo- 1 shows the atom positions in the step region before and after

cations are nucleated at a straif 8.4% which is definitely ~ relaxation. Figure 1 is intentionally expanded along the sur-

lower than the value calculated for the theoretical strengthface normal, in order to make clear the main feature of the

equal to 15%. The dislocations are Shockley partials of purétrain field, that is the shear in tH@11 plane GP2: atoms

edge character, with Burgers vectog,-= a,/6[211]. They situated on the one s_|de_of GP2 are displaced with respect to

are nucleated in twé111} planes: GP2 in zone with the step, those on th'e other side in a d|rect|on. normal to the step line

and GPA2 just above GP2. A test realized with a smalle@nd essentially parallel to GP2, that is mainly al¢@d1].

computational box shows that the first event is the nucleation If one refers to the polar coordinatesind 8 in the (011)

in GP2. plane (normal to the step line with the origin on the outer
The deformation state of the crystal for applied stressesdge of the step, the strain localized in the plane GP2 is a

below nucleation reveals the localization of a shear strain irshear of typee,,. In this plane, 6~35°, ande,,=(U.

the plane where the first nucleation will occur. For a tensile—u_)/a, wherea is the interplanar distance awnd andu_

stress axis normal to the step line, the case detailed here, thase the displacements of the atoms, respectively, above and

A. Description
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FIG. 2. Relative displacements across GP2 along the edge di
rection, normalized tdgo-, for 0, 4, and 8.3 % elongations along
[011], versus position in the glide plane. The free surface is at
=0 A
below the plane GP2 in the211] direction. Note that the /

reference state for atomic displacements is the crystal sub
mitted to the homogeneous strain.

. The sheate,, is illustrated in Fig. 2 where th? relative FIG. 3. Modelization of the stress field due to the step in a
displacements of atoms across GP2 after relaxation are pIo(l;-rystal submitted to a tensile stress.
ted as a function of the positian for different homogeneous
applied strains. These are the relative displacements parallg

t0 bgo:, to which they are normalizeddgo-=a,/6[211] IS ormation of the localized shear,, and on the important
the Burgers vector of the 90° Shockley partial nucleated fof,-rease of this shear.

a strain of 8.4% the relative displacements along the step e oint force problem in an elastic isotropic continuum

line direction are zero and very small along the normal 10,55 received some solutions: following Boussiriésad Ti-

GP2. In Fig. 2, comparison of the curves corresponding 10 4noshenko and Goodiéf, the stress field due to the tangen-
and 8.3 % elongation shows that the localized shear increasgs forces is. in polar coordinates

dramatically as nucleation is approached.

Finally, in order to follow the crystal behavior as close as 205h siné
possible to the nucleation point, very small strain increments o =— —— and oy=0,4=0, (&N
(0.0199 have been imposed. It is then seen that at 8.3% total & '
strain, the localized shear reaches at its maximum, that is i§g that the shear, ;= (1/u) o, (n being the shear modulus
the near-surface region, a value corresponding to a relativgf the material is zero, contrary to the localized shear ob-
displacement between atoms equabgg-/4. This is compa-  served in GP2 in the simulatiofffig. 1). Thus, in an isotro-
rable to the state described by Rice as incipient dislocation gic elastic continuum, the stress concentration in the neigh-
a crack tip;” although quantitatively different. This point horhood of the step does not act directly on the appearance
will be further discussed in Sec. IV, in relation with the of the localized shear.
stability limit of a crystal submitted to shear. In the elastic solution of the problem of tangential forces
distributed along a line on the planar surface, it can be noted
that, if the strain component, ;, vanishes, on the contrary the
component , is not zero:

The question here is how does the presence of the step
lead, in the stressed crystal, to the shear confined in one 1 v 20gh sing
dense plane, precursor of the dislocation nucleation? SaIE(Ue— voy)= E = r 2

A first approach to the calculation of the stress field in the
neighborhood of a surface step in a stressed crystal can [t and v being, respectively, the Young's modulus and the
based on the point force model: the step is regarded as Roisson’s ratio of the material. This strain component can
point where the external stress is not appli€ily. 3. To  have an effect on the localized elastic shear. Indeed, for a
check the effect of the local stresses on the formation of thomogeneous traction stresgs, is positive in GP2, produc-
observed localized shear, the following simulation has beeing an increased separation between atoms situated on each
performed: on a plandrl00 surface(exempt of any stepof  side of GP2AFig. 4), and then shear can become easier in this
the fcc aluminum crystal, forces tangential to the surfaceplane, as discussed for instance in the tension-shear coupling
plane are applied along t{@10) dense direction. Within the analysis made by Sun, Beltz, and Ritdor dislocation
point force approach, these forces produce the stress concemicleation at the crack tip. The tests made with other stress
tration due to a step in the material submitted to the homoerientationd? confirm that the first glide event occurs in the
geneous stress,. Their intensity isogh whereh is the step  plane in whiche 4 is positive, i.e., GP2 in traction and GP1 in
height. After relaxation, an elastic shear of the same order aompression.
magnitude as that observed in the sample containing the step, The separation betwedi11} planes, obtained in the ato-
appears in thg¢111} plane GP2. This shows that the elastic mistic simulations of the crystal containing the step, is plot-
sheare,, observed in the sample containing the step is ested in Fig. 5. The strairz, shown in Fig. 5 is calculated
sentially an effect of local stresses induced by the presencaccording to Eq(3):

stress concentration

the step. The stress concentration is determinant in the

B. Origin of the localized shear
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FIG. 6. Stacking of111} planes in the chosen geometry. The
wherel, is the interplanar distance before relaxation in thefyll circles are atoms contained in the sheet plane, and the open
crystal submitted to the homogeneous strain, &nsl the  circles are in the plane parallel to the sheet plane at the height
same quantity after relaxation. Note that the equadily — a,2"%4. a,=a,/3"? anda,=a,3"%2%2
=g, holds in GP2 and GP1, in zone with the step, but is not
quite exact in the other planes. Although the results diffettermination of the local shear as a function of the imposed
from the elasticitfEq. (2)], it is seen from Fig. 5 that,, is  local elongation(variation in the interplanar distangewith
positive and large in GP2, while in the other plargs re-  the help of a variational procedure; second, an atomistic en-
mains small. The assumption of an effect of the interplanaergy minimization performed on the sample constituted of
distance on the shear localization seems then well foundedigid {111} planes, with the aluminum potential, allows the
This point is discussed in detail in the following section.  determination of th§d111} planes relative position, keeping
the imposed separation. The parameters entering in the ana-
IV. {111} PLANE SEPARATION EFFECT lytic cz_iICL_JIations are taken from the aluminum interatomic
potential in order to make the two approaches comparable.
In this section, the effect df111} plane separation on the
shear properties of these planes is investigated, in order to A Frenkel model with constant interplanar separation
evaluate the part played by the straip on the localization
of the elastic sheat,, observed before dislocation nucle-
ation from a surface step. To examine this effect, the fc
crystal is regarded as the stacking {df11} rigid atomic
planes and a modulation of the interplanar distance is im
posed along the plane norm#&lOx) direction]; the sample is

The first step in the calculation is to ensure the consis-
dency between the continuum and the atomistic approaches,
that is to use in the continuum approach, constitutive laws
deduced from the atomistic simulation. The crystal is con-
structed as 4111} plane stacking normal to théd(x) direc-

. . — tion, and first the interplanar distance is kept constant, equal
submitted to a shear strain of mean vakjeand the local a, (cf. geometry in Fig. & The{111 planes are sheared

sheare,y(X), which minimizes the crystal energy, is deter- | th directi 119t directi di
mined. Two approaches to the problem are taken: first, ar611 ong the Oy) direc |0n(a<_2)_ype irection, according

i —o— L is-
analytical calculation applied to a continuum allows the de-© the homogeneous straig, =& =3 (U /a,), SO as to dis

place a{111} plane byu, with respect to the next one. The

0.07 crystal energy variation per unit ar&@ is calculated as a
0.06? - function of the applied sheax,,, using the aluminum poten-
8'82 3 \\ —_Gm tial. This quantity is displayed in Fig. 7, where the asymme-
e 003E \ L GPA2 try between the twinning and antitwinning senses of shear
0.02E N appears clearly. If one restricts to shears such that the rela-
0-0(1) L N e 3 tive displacement between neighboring planes is smaller than
Y b in the twinning sense, witl, = bgo-= 5a, (respectively,
4 8 12 16 20 24 28 b,:= 2b, in the antitwinning sengeit is seen in Fig. 7 thaiV
rA) is very close to a sine function and can be written
FIG. 5. Straing, calculated using Eq3) in GP1, GP2, and
GPAZ2, for a 4% elongation alorf@11], versus position in the glide W= — é 1- cos( Ameyyay @)
planes. 2 b '
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0.8 energy (€V/a a) — Ny, (X) e, A
07 E — — - Frenkel (twinning) W= —f u‘; 1-co —bxy X
N EEEE Frenkel (anti-twinning) 0
06 [
=" 0.5 M yus(X) 2may duy
ny =— 1-co — | |dx. 6
2 04 J 0o 2 ﬁ( b ox ©)
& o3 : )
g As already seen, the unstable stacking fault energy is propor-
S 02 . X
) tional to the shear modulys, which accounts for th¢111}
0. planes shear resistance. Now, the shear modulus depends on
0

the {111} planes separation: the larger the plane separation,
the smallerw and the easier the shear; inversely, the more

FIG. 7. Energy variation per unit area{tll} planes submitted the pla_nes are close, the mqueis |mportant._Accord|ng to .
theoretical approaches of the cohesive energy in

to an homogeneous shear computed using the aluminum potential 20-22 :
and comparison with the Frenkel model, materials? it can be reasonably assumed that the shear

modulus varies exponentially with the plane separation:

a(x)—ay
M= Mo a.

homogeneous shear : £

whereb is set equal tab; or b, depending on the shear
direction. The maximunA of the energy also depends on the
shear direction. It must be remarked here that, although the
cutoff distance in the aluminum potential is situated betweenVhere u, is the value of the shear modulus for the equilib-
the 10th and 11th neighbors, the interaction betwgitt}  fium distancea, (uo=28.4 GPa) and is a characteristic
dense planes is essentially due to the nearest-neighbtength, equal to 0.3 A with the potential used. According to
planes, as ascertained for instance by the small differendgg. (5): [a(x)—ay]/a.=(e/a;)cos(2mx/\)=a cos(2mx/\),
between the intrinsic and extrinsic stacking fault energiesso that the energy 6 becomes

respectively, 156 and 144 mJniThen, the crystal iLﬁenergy N 4 a
variation per unit are&V obeys well the Frenkel form and _ _ _ TExydx
the maximumA can be assimilated tg,s, the energy of the w= Bjo ex — acogkx] 1 COS( b
unstable fault as defined by RiteBy considering thatV (8)
varies linearly with the shear strain for small strains, one ca

: )

'5 being a positive constant.

show thaty,= ub?/27?a, .

B. Modulated interplanar separation

The interplanar distanca is now set to vary withx:

27X
a(x)zax+ecosT=aX+ecos(kx), (5)

a, being the mean value of the separatiefeing the mag-
nitude of the modulation) is its wavelength, and is its

wave vector(Fig. 8. The{111} planes are submitted to the
mean sheak along the Qy) direction; in this case, the
displacement, is allowed to be no more homogeneous in
the entire material, but depends xrand locally the shear is

Exy(X) = %(auylax). The displacement, and the sheas,,

C. Determination of the local shear

In order to determine the local sheay,(x) which mini-
mizes the energy, we apply a variational method:elg(tx)
be the shear that minimizes the energy. In &), &,,(X) is
replaced byeo(X) + de,,(X), wherede,y(X) is a perturbation
of the solution, which corresponds to a displaceman{(x).
deyy(X) and duy(x) are necessarily periodic with period
At first order in de,,(X), Eq. (8) becomes

W(eyy)=W(egg+ deyy) ~W(gq) + 6W

A 41a,
:W(go)—Bfo exd — « cogkx)] b

dmeyyay

X sin
b

deyydX. (9)

are taken periodic, with period. The energy variation in a Since su,(x) is periodic with period\, one has to solve

sample of thickness is now

a( x)

A2 0 7»/2;

<

FIG. 8. Modulated separation between thel1l} planes(the
direction are the same as in Fig. 6

SW=0
and

ﬁa d —fhléﬂuyd
o Sxy(x) X= OE X X

1
= E[(Suy()\)— ouy(0)]=0. (10
These equations can be solved using the Lagrange multipli-
ers method ()W—constféésxydx=0 for every deyy), so
that one obtains



8712 S. BROCHARD, P.

0.05 E A | é=2 %
0.04 £ -—-E=3%
0.03 £ §=3.5 %
02t /.
g€ 001 F
OF >
001 E ... - o
-O.()ZZ—I“’,T,,,|,,.|.,.|...|\..hI
/2 -8 40 0 40 80
/ x (A) A2

FIG. 9. Local shear versusfor different homogeneous applied
shearss. A=100a, ande=0.1a,.

dmay . [dmeyyay
exf — a cogkx)] b Si b =const. (11
The solution of Eq(11) is
Exy(X)= arcsifexp(a cog kx) +C)]. (12

4ra,

C is a constant of integration which can be obtained numeri
cally from the mean shear, using

f )\axy(x)dx= \e. (13)
0

According to Eq.(12), the constantC must be negative,
smaller than— e« in order fore, (x) to be defined for anx

D. Analysis of the local shear

In Fig. 9, the local sheat,,(x), defined by Eq(12), is
plotted for different mean strainsin the twinning direction.
As expectedg,,(x) is maximum when the separation be-
tween planes is maximum, i.e., fee=0, and minimum when
the separation is minimum, i.e., for==®\A/2. For small
mean straing , the local sheag,(x) varies almost linearly
with separation. As a matter of fact, for small &,,(x) is
small and ifa=e/a. is assumed to be small, one obtains

4a,

b
=exp(C—1)exp(a cogkx)+1)

41a,

b ~SINn

8xy(X) € xy(x)

~exp(C—1)[ @ cogkx)+1]. (149
Using Eq.(13) to determineC, we have then
exy(X)~e[a cogkx)+1]. (15)

Whene is increased, nonlinear effects appear: in Fig. 9, itis
seen that the shear becomes to localize in a nonuniform Wa)W

and fore =¢e.=3.5%, an angular point appears at the maxi-
mum of shear. Above this valu&€ becomes larger than
—a and the local shear,,(x) is no more defined for any.
For this critical values, the limit of elasticity in the twinning
direction is reached locally forx=0, since &,,(0)+e
=5.25%+ 3.5%=8.75%~= 3 (b,/4)/a,. In the antitwinning
direction, the same features can be noted.

BEAUCHAMP, AND J. GRILHE
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(a) twinning direction

(b) anti-twinning direction

=5%

0.25 &=5% ©e=11%
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0.1
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-0.05

>» -0
X

By 0 By x

FIG. 10. Local shear versudfor different homogeneous applied
shears: in the twinning directior(a), and the antitwinning direction
(b). On the first four figures, the solid line curves are determined

from Eq.(12). The points result from the atomistic calculation.

E. Atomistic calculation and comparison to
the analytical model

We have performed a simulation with the potential pre-
sented in Sec. Il for aluminum. The structure studied is that
presented in Fig. 6, with111} planes parallel toQyz). The
crystal sample analyzed is representative of the bulk: in the
(Ox) direction, two margins sufficiently large are chosen,
while in the Oy) and (©O2) directions, periodic boundary
conditions are imposed. The interplanar separatiofilafi}
planes is modulated according to Ef), with a wavelength
equal to 106, and a magnitude equal to 0.4, . The crystal

is then submitted to a homogeneous strajp=¢ and the
atoms are allowed to move along th@y) direction so as to
minimize the system internal energy. The displacenugruf
each plane indexeidwith respect to its initial positioicrys-
tal submitted to the homogeneous stja thus calculated
and the local shear is then determineqx',(i)—szé[uy(i)

—uy(i—1)]/a,. The values ok,,— & obtained in the simu-
lation are plotted in Fig. 10, together with the analytical so-
lution given by Eq.(12).

In Fig. 10, one can see that the atomistic simulation re-
sults are in good agreement with the analytical analysis.

hen the homogeneous strain becomes larger than
=5% (respectively, 11%in the twinning(respectively, an-
titwinning) direction, for the{111} planes close t&x=0 A

(i.e., the planes for which the interplanar distance is maxi-
mum), the local shear strain reaches 30W&spectively,
80%), which corresponds to a displacemenjtof the order

of b, (respectivelyp,,): neighboring planes have undergone
relative displacements equal to those produced by the pas-
sage of dislocations.
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V. CONCLUSION interplanar distance, and concentrates rapidly. Once again,

The aim of this paper was to analyze the possible Originghe limit of stability is found to correspond to a displacement

of the localized shear observed before dislocation nucleatiofidu2! top99°/ " . .
at a surface step. Indeed, in a previous computer simulation A variation in the interplanar distance, as produced here
of dislocation nucleation from a surface step in a stresselY the stress concentration in the vicinity of the step, will
solid 12 it has been shown that the transformation of the suréffect not only the dislocation nucleation from a surface step,
face step into a real dislocation proceeds through the formaut is also likely to take a part in many other problems, such
tion of a shear of increasing amp"tude and extension, conas dislocation motion and Peierls stress, interaction between
fined into a single dense plane in zone with the surface steglislocations themselves, and with other defects, etc. Useful
i.e., the plane where the nucleation will be activated for asimulations are envisaged on these points.
sufficient applied stress. The maximum value attained by the The calculation presented here gives information on the
localized shear, just before dislocation nucleation, correbarrier that a straight dislocation has to overcome to enter
sponds to a displacement equaldig.-/4, which in the Fren- into the crystal: what is determined is the applied stress at
kel model represents the point where the crystal becomeshich the system constituted of an infinite straight step on a
unstable, i.e., the elastic limit. surface becomes unstable and transforms into an infinite
This shear localization has been related to the local stresstraight dislocation having sheared the crystal. In reality, the
field in the step region. Using the point force model as a firsprocess of dislocation nucleation from a surface step is ther-
approach, we show that although the stress concentratiamally activated: when the crystal is submitted to an external
does not involve any shear in the plane in zone with the stegstress, there exists a minimum distance from the surface be-
it can influence indirectly the appearance of the localized/ond which a dislocation formed from the step has a lower
shear by increasing the interplanar distance around the plammergy than the surface step. The energy barrier between the
where this shear is observed. The interplanar distance inwo states can be overcome by thermal activation and the
crease can make shear easier in this plane. It is worth notingaddle-point configuration is something like a dislocation
that the intensity of the point force, and consequently théhalf-loop emanating locally from the surface step. The deter-
change in interplanar separation, increases linearly with thenination of the energy of this half-loop requires a three-
step heighth. If the step height is increased, one can thendimensional simulation able to determine out-of-equilibrium
expect a decrease in the critical stress for dislocation emisstates such as saddle points. Of course the stress level at
sion. This point will be investigated in detail in complemen- which thermally activated nucleation becomes possible is
tary studies. much lower than the stress level determined here in our two-
An analytical calculation based on the Frenkel modeldimensionak2D) calculation which corresponds to the com-
shows that the wider the planes are separated, the larger tpéete disappearance of the energy barrier. The nucleation
local shear. For small strains, the localized shear determinestress found here in the two-dimensional simulation is then
from the analytical model varies almost linearly with the an upper bound. Full 3D calculations would then be able to
interplanar separation. But when the mean strain is ingive information on the saddle energy and configuration in-
creased, the local shear no longer varies linearly with theccessible to the present 2D study.
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