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Effective mass of the ®e Jahn-Teller polaron in comparison with the Holstein polaron
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Based on an exact expression for the self-energy of the Jahn-Teller polaron, we find that symmetry of
pseudospin rotation makes the vertex correction much less effective than that for the Holstein polaron. This
ineffectiveness brings about a smaller effective nmassand a quantitatively different large-to-small polaron
crossover, as examined by exact diagonalization in a two-site system. In the strong-coupling and antiadiabatic
region, a rigorous analytic expression is found rfiof.

It is well recognized that both the double exchangecrossover occurs at~a— Ve, indicating that JT polarons
mechanism and the strong electron-phonon interaction, spére more mobile than Holstein ones.
cifically the Jahn-TellefJT) effect on doubly degeneratg Let us start with a singlE® e center at sit¢ described by
orbitals coupled with two degenerate vibratioftke E®e  the HamiltonianH; ad®
cas¢ at each MA" site, are essential ingredients to bring
about the colossal magnetoresistaf€#R) in manganese-  Hj=A[0ja(d;5dp+ djpdia) + djp(dj5dja— djbdin) 1+ Hjy
oxide perovskited-* Thus the theories on CMR need to in- 1)
c!ude_these ingredients simult_aneou5s1§/.'l'his C(_)mp_licated ~With A= wgy2E,, whered,, andd,, represent electron an-
S|tgat|on compels some theories to negle_ct kinetic energiegihjlation operators for the two degenerate orbitajg, and
of ions and others to treat the JT polaron in a way similar toqu are the two local JT distortions, atj, is the harmonic
the conventional polardh’ In either way, characteristic fea- Hamiltonian for the vibrational modes. In polar coordinates
tures of the JT polaron do not emerge from those theories.asqja: g; sin¢ andg;,=g; cosé, the energy eigenfunction
In fact, in spite of a broad interest in its role in supercon-for Hjv, (q 0]-|nl>, satisfying va|n|>:wo(n+ 1)Inl) is
ductivity, studies on the JT effect in an itinerant electrongiven byt
system are limited, probably because the phrase “the JT ef- .
fect” often implies strong lattice deformations and a local- (0 61|nl>=N|,pF(—p,|||+1,zj)zjl'|/ze_zilze"ai. 2
ized electron associated with them. dkeet al1° considered Q=12 5
the simplest case, hamely, tB& B JT polaron which, un-  With Nip=(=1) Voo([l[+p) !/ 7pl/[I]!, zj=woqy,
fortunately, possesses a too simple internal structure to pr&Ndn= [I|+2p, whereF(—p,[l|+17) is the confluent hy-
vide qualitatively different features from those of the Hol- Pergeometric function, is an integer, ang=0,1,7 . ...
stein polarorf. The second simpleg® e case was treated by !N térms of boson operatorg; andby, to represent;,
Fabrizio and Tosaftf as well as Benedetti and Zeyhérput ~ @nddjp in second quantizatiort; is rewritten as
both works addressed only localization in the strong-

coupling region. Hj=wov2al(a]" —by)cfic) +(a=bj )¢ ¢y ]
In this paper, we provide an interesting aspect to this +wo(aj+aj+bj+bj+l), &)

problem by making a comparative study of the e JT po-
laron with the Holstein polaron based on the knowledge atwhere pseudospin index(=+1=1 or |) for electron op-
tained after 40-year's investigation into the lattér. erators is introduced through the relationcj,

We have obtained the following results for the systems(dja-q-igdjb)/\/i, Note that second-quantized representa-
specified by the two parametets=t/w, and a=E;r/w,,  tion for phonons is not unique due ®U(2) symmetry in
wheret, w,, andE;r are the energies corresponding to bareva. We have chosen it in such a way as to diagonalize both

electron transfer, bare phonon, and Jahn-Teller stabilizatior;, andTJE —ia/96;. Then we obairjnl) as
respectively.(i) Based on an expression for the self-energy

derived by a similar method for the Hiich polaront* we 1 (s 2]
find that the vertex correction is much less effective in the JT Inl)= j+
polaron than that in the conventional polarons due to a local VL(n+ D2 (n=D/2)!

conservation law imposed on the JT Hamiltontasii) This o L2 4
ineffectiveness leads us to a smaller effective mass, as shown i |vacuum. )

by an explicit expression for the JT polaron-mass enhancefhis phonon representation is a key step to obtain analytic
ment factor as\2/mae® in the antiadiabatic?(<1) and expressions in Eqg5) and (12) as well as a clear view of
strong-coupling &>1) region.(iii) The large-to-small po- less effectiveness of the vertex correction.

laron crossover is examined by exact diagonalizati€) in Because of the symmetry of pseudospin rotation, the op-
a two-site system on the ground that the ED calculation orerator L;, defined byL;=a;"a;—b;"b;—(cj;¢;;—¢;\cj)/2,
small clusters is very effective fax>1. We find that the is conserved as easily checked [#y;,L;]=0
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For a single electron at sife eigenvalues fot; are half (a) Self-energy
integers and each energy level is doubly degenerate corre- Y = . -
sponding toi|Lg|. In general we can give the ground-state with _‘—®
wave function¥{? only numerically, but for larger we find "L = e A @ ......
an analytic expression as (b) Vertex part =

V2l bic; + ¢ =>,+>.+ ) W T
YO~y \2aa b’ )|vacuun, (5) o x
b V(@) + (@) o LT T, T A
for L;=1/2"® whereJy(x) is the Bessel function antj(x) +}b~ +}mb~+ ') S
its modified form. The corresponding energy is given as i:;d ' T,
Eo~(— a+ 1/2+ 1/16a) wy~ — E 7. ze
Now we consider a lattice composed MfJT centers for FIG. 1. (a) Self-energy in diagrammatic representation. Thick

which the Hamiltonian is given asl;;=H;+ZXjH;, where solid and thin dashed lines indicate, respectively, the electron
H, describes the transfer energies between nearest-neighb®reen’s function and the bare phonon propagatior.Expansion

JT centers as series for the verteX’ up to second order in.
S ith S, %, =S C,, flecting the spi t
Moo Aot dt d). e Wi Y =ZwC o i » Teflecting the spinor nature
! g:) ;a za vy (G585 ) © of the problem. EquatioK9) serves as a firm basis to study
o ) ] the JT polaron in the Green'’s function approach.
For simplicity, we taket,, = 4,,/t in the following. Then Quite an analogous result has been obtained for the con-
Eq. (6) can be rewritten as ventional polarort® For the Holstein model specified by the

HamiltonianHy as
He=-t>, >, (cjf,cj,UJrcjfcho):kz £kCrsChor (7)
i 7
where ¢,(=N"23,e I "k¢;,) is the Fourier transform of
Cj, and e represents its bare dispersion relation. Note that
the operatorL defined byL==L; is conserved, namely, + 0o, (8 a+1/2), (12)
[Hyr,L1=0 in this choice oft.,, . !
The thermal one-electron Green’s functiBi, (i w,) With  wheres in this case refers to “real” spin inde,,, (i w,) is

+ + +
HH=kE EkCraCko T woN2a D (8 +a))C/hcj,
o jo

, a fermion Matsubara frequency is definedy given in the form of Eq.(9) in which G, _,(iw,) and
p A_,.(K'jiwy ;K,iw,) are, respectively, changed into
Gka(iwn):f drel G, (7), (8) Gyrg(iwny) andA (K iw, K, iwy,) thelcharge vertex func-
0

tion, defined through Eq(10) with S;,°, replaced by the

with B=T"* and Gy,(7)=—(T,cx,(7)Cy,). We first con-  charge operatqpy: = SyrgrCor, 1o Ciror dUe to the sca-
sider 9G,,(7)/d7 to derive an equation of motion which lar nature of the Holstein system.

relatesG,,(7) with the electron-phonon correlation function ~ The diagram to represent E(®) is given in Fig. 1a), in
<Trzq{[a;(7)_b—q(T)]Ck+q—(r(T)CI:rg}>- Next we derive a vv_hich we introduce the vertek by elim_inating_ improper
similar equation of motion for this correlation function in diagrams from the verteA. The expansion series fdt in
order to eliminate phonon operators in the expressions othderms ofe is shown in Fig. 1b). If we assume thab,,(i @)
than the bare phonon Green’s function which is the same fois independent of o and employ the Migdal's
both phonons a@o(iwm)=2wo/[(iwm)2—wg] with w, a approximatiof® in which only Ty is retained fo", namely,
boson Matsubara frequency. Then we arrive at an exact ex-=1, there exists no difference in the self-energy between

pression for the self-energy,,(iw,) as JT and Holstein systems. . _
There is, however, an important difference in the vertex

2 correction. In contrast to the Holstein system, the corrections
Spoliog)=—T2 X WQ)%DO(iwn’_iwn) represented by the diagramig,I',,, . . . I’ is seen to van-
@ K ish in the JT system by merely considering the pseudospin
X Gy gliwn)A _yo(K'jiwn :Kiw,), (9)  assignment together with the direction of phonon propaga-
tors, because Ed3) dictates that the JT-phonon exchange
where the vertex function, ,(k’,iw, ;K,iwp), @ Key interaction works only in the pseudospin exchange process

quantity in this expression, is found to be between electrons with opposite pseudospins. Physically
) _ ) _ both electrons and phonons in the JT system are associated
Gioli@n)Gyror(l0n) Agro(K'iwn 1K iwp) with a notion of clockwise or counterclockwise “rotation”
g B _ around each JT center and electrons interact with phonons
=f dre'wn’ff dr’ e (en—en)7 only when the total rotation is conserved. In this sense, the
0 0

vanishment of these vertex corrections is due to the local-
oo e rotation conservation law. This law allows only processes
X(TCuror (1) S0 (7)) Cg) (10 such as the one representedIby for I'. Similarly, all the



PRB 61 BRIEF REPORTS 8633

L e e e e (a) Jahn-Teller Polaron
t=0.2 w; Y
\ —: Jahn-Teller Polaron 7] Large Polaron
A\ N : (na /2) P exp(-o)
15 '\\ : Holstein Polaron
= 0.5 L @XP(-201) —
e I il g
\ ~
L \ - —
E N ]
- ., e —
R R R RN
0 1 2 3 4 5

o

FIG. 2. Polaron mass reduction factovm* for the JT (the
solid curve and the Holsteir{the dashed curyemodels with each
analytic expression in the strong-coupling region.

third-order vertex corrections vanish. Ineffectiveness of the

vertex correction widens the applicable rangedinof the

Migdal's approximation in the JT system and it leads us to

the smaller polaron mass enhancement factolm than that

in the Holstein model in which the correctidh is known to

enhancem*/m as « increases. W
The above perturbative approach is not useful in discuss- 0o 1 2

ing a small polaron or polaron localization in a site. Accord-

ing to the studies on the Holstein moé_iéan ED calculation FIG. 3. Contour plot forlT/1]| for (a) JT and(b) Holstein po-

in a two-site system provides qualitatively correct and quansarons (Only the curves in the range 0.1—1.0 are shown to avoid too

titatively fair results for the small polaron in the strong- many curves. The thick dotted curves correspond to the semiclas-

coupling region &>1), irrespective of the value df Thus sical criteria to divide large and small polarons, Edgl) and(15).

we shall make a similar analysis of a single electron in the JT

model withN=2 in which the eigenvalues of the conserved Next we make a semiclassical argument on the adiabatic

quantity L are half integers and each energy level is dOUblyregion {>1) by considering the adiabatic potential, for

degenerate. given phonon variables,q, 6, ;q,6,}. Since it was calcu-

Let us consider the antiadiabatic region<(1) first. At  |ated previously in connection with the Berry phaseye
a>1, both the ground and first-excited states belong to thgust give the result here as

sector of|L|=1/2. Using¥{? in Eq. (5), their wavefunc-

t/

Qw)
N
[6)]
o

tions W, are written as¥ .~ (¥ +w®)/\2 for L=1/2 w2
. . . B _ 0 2 2 3.2 3.2r 2

with the corresponding energiesE. =Eq*+t/[14(a) Uas=>9 (t*+ awq“+ {20t 19"+ 20,10,

+1,(a)]. The energy differencek, —E_, can be used to

estimate the polaron bandwidth in a crystal and thus its ratio X cog 6;— 6,)]+ azwg(qi_qg)z}uz)l/z’ (13)

with the bare value 2determines the polaron effective mass

through the relation with g?=q?+ q3. This potential has rather simple features; if

the adiabaticity parametar= o/t =E;/t is less than unity,

m E,—-E_ 1 Ta U,y has only one minimum in{q,6,;q,6,}-coordinate
T2 i) () — €% (12 space, implying no symptom for a small polaron. On the

other hand, it is a double-well potential far>1 with the
. o . energy barrierA=(awy/2)(1—\"1)2. If the largest zero-
This result should be compared with “* the Holstein’s point energy of phonona ., (which is wg/2 in this casgis

farr\}\cl)us resut?ttforEt[?e slystle?l deftmedb':;irsm*l)t.h hth smaller thanA, localization leading to a small polaron oc-
€ resort1o caicuiations to 0 m™ through te€ ¢ s Thus the conditiod = A,,, provides the criterion to

numerical evaluation dE.. for arbltrarya..The conservation  J-io o small polaron as
of L helps reduce the number of expansion bases for phonons
considerably. We plot the calculatedf m* for both JT and

Holstein models in Fig. 2 in which is taken as 0.2, although t=a—Va, with a>1. (14)

the result itself does not depend dprovided that it is much
smaller than unity(The result for the Holstein model hardly
changes from the analytic reselt >® in the whole region of
a.) For small @, both models give essentially the same
m/m* as implied by the previous weak-coupling analysis.
For largea, however, there is a difference im* /m which is
more than orders of magnitude far>1, indicating that the a( 1 i
JT polaron is quite mobile compared to the Holstein polaron.

A similar argument has been done for the Holstein model
described in Eq(11) for which a double-well potential ap-
pears only when >1/2 with A= awg(1—1/21)? and A ¢,

= (wo/2)J1— 1/4\?% 23 leading to the criterion

i 1\/1 = 15
e p—
2 4\? (15)

2\
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This condition cannot be reduced to such a simple form asonvenient to explain the observed CMR behavioy. The
that in Eq.(14), but clearly it is much less restrictive than Eq. very largem* in the Holstein model is unfavorable for the

(14) for the small-polaron formation.

bipolaron scenario for higi; superconductivity? In this

Finally we make a more quantitative argument on therespect, a smallem* was suggested for the Fhiich

large-to-small polaron crossover based on the exact grounql;maron?f3 The same may be claimed for the JT polargin)
state wave functionW obtained by the ED calculation. We The glectron-phonon coupling constantg [Eq. (11)] is so

evaluate two quantitites, “the transfer amplitude per bond” yetermined as to give the same polaron effect as the JT case

T=(V|= (C],Co0+Cs,C15)| ¥}/ Npong With the number

of the bondNy,,i=1 and “the interaction amplitude per

site” 1=(Wo|2;[(a] —bj)c;icj +(aj—b;")c; ¢ ][ Wo)/N
with N=2. Then we measure “itineracy” by the ratja/I|,
because the ratio must be large for an itinerant polaron.

Contour plots foi T/1| in (t,a) plane are given in Fig. 3.

in the weak-coupling region for the proper comparison of
vertex corrections. In this choice, the ground-state energy for
Hy at t=0 is given as 2a+1/2)w, which is about
—2E;r at a>1. Thus, if we make an alternative choice of
the coupling constant as to give the same polaron stabiliza-
tion energy in the strong-coupling limit, the differenceni

The result for the Holstein polaron indicates that the semihetween the JT and Holstein models looks to be much re-
classical criterion for the small-polaron formation corre- y,ced. but even in this choice. the JT polaron has smaffer

sponds to the conditiofiT/l1|~0.5. More or less the same

result is obtained for the JT polaron for which EG44) is
well represented by the conditidii/1|~0.6. In either way,

we can conclude that the large-to-small polaron crossover,
occurs at aroundT/I|~0.5-0.6 and that a small polaron is
much harder to realize in the JT system than the Holste

one.

Three comments are in ordér) In the manganese oxides,

the parameters are estimateda.2 eV, wy~0.08 eV, and

E;;~0.2-0.4 eV, leading td~2.5 anda~2.5-5, which
covers the crossover region according to Fig) 3This is

at least by the factor of .

In conclusion, we have compared tReve JT polaron
with the Holstein one by using various theoretical tech-
niques. Features of these polarons are exactly the same in the

ir\]/veak-coupling region, but they are different quantitatively in

other regions due to the symmetry of pseudospin rotation;
the JT polaron is more mobile than the Holstein one.
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