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Effective mass of the E‹e Jahn-Teller polaron in comparison with the Holstein polaron

Yasutami Takada
Institute for Solid State Physics, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106 8666, Japan

~Received 29 November 1999!

Based on an exact expression for the self-energy of the Jahn-Teller polaron, we find that symmetry of
pseudospin rotation makes the vertex correction much less effective than that for the Holstein polaron. This
ineffectiveness brings about a smaller effective massm* and a quantitatively different large-to-small polaron
crossover, as examined by exact diagonalization in a two-site system. In the strong-coupling and antiadiabatic
region, a rigorous analytic expression is found form* .
ge
sp

g

-

gi
t

-
s
n
on
e

al-

pr
l-

y

g

hi

a

m

re
io
g

J
c

o
c

o

-

es

ta-

oth

ytic
f

op-
It is well recognized that both the double exchan
mechanism and the strong electron-phonon interaction,
cifically the Jahn-Teller~JT! effect on doubly degenerateeg

orbitals coupled with two degenerate vibrations~the E^ e
case! at each Mn31 site, are essential ingredients to brin
about the colossal magnetoresistance~CMR! in manganese-
oxide perovskites.1–4 Thus the theories on CMR need to in
clude these ingredients simultaneously.5–7 This complicated
situation compels some theories to neglect kinetic ener
of ions and others to treat the JT polaron in a way similar
the conventional polaron.8,9 In either way, characteristic fea
tures of the JT polaron do not emerge from those theorie

In fact, in spite of a broad interest in its role in superco
ductivity, studies on the JT effect in an itinerant electr
system are limited, probably because the phrase ‘‘the JT
fect’’ often implies strong lattice deformations and a loc
ized electron associated with them. Ho¨ck et al.10 considered
the simplest case, namely, theE^ b JT polaron which, un-
fortunately, possesses a too simple internal structure to
vide qualitatively different features from those of the Ho
stein polaron.9 The second simplestE^ e case was treated b
Fabrizio and Tosatti11 as well as Benedetti and Zeyher,12 but
both works addressed only localization in the stron
coupling region.

In this paper, we provide an interesting aspect to t
problem by making a comparative study of theE^ e JT po-
laron with the Holstein polaron based on the knowledge
tained after 40-year’s investigation into the latter.13

We have obtained the following results for the syste
specified by the two parameterst̃[t/v0 and a[EJT/v0,
wheret, v0, andEJT are the energies corresponding to ba
electron transfer, bare phonon, and Jahn-Teller stabilizat
respectively.~i! Based on an expression for the self-ener
derived by a similar method for the Fro¨hlich polaron,14 we
find that the vertex correction is much less effective in the
polaron than that in the conventional polarons due to a lo
conservation law imposed on the JT Hamiltonian.15 ~ii ! This
ineffectiveness leads us to a smaller effective mass, as sh
by an explicit expression for the JT polaron-mass enhan
ment factor asA2/pa ea in the antiadiabatic (t̃ !1) and
strong-coupling (a@1) region. ~iii ! The large-to-small po-
laron crossover is examined by exact diagonalization~ED! in
a two-site system on the ground that the ED calculation
small clusters is very effective fora@1. We find that the
PRB 610163-1829/2000/61~13!/8631~4!/$15.00
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crossover occurs att̃'a2Aa, indicating that JT polarons
are more mobile than Holstein ones.

Let us start with a singleE^ e center at sitej described by
the HamiltonianH j as16

H j5A@qja~dja
1djb1djb

1dja!1qjb~dja
1dja2djb

1djb!#1H jv ,
~1!

with A5v0A2EJT, wheredja anddjb represent electron an
nihilation operators for the two degenerate orbitals,qja and
qjb are the two local JT distortions, andH jv is the harmonic
Hamiltonian for the vibrational modes. In polar coordinat
asqja5qj sinuj andqjb5qj cosuj , the energy eigenfunction
for H jv , ^qju junl&, satisfying H jvunl&5v0(n11)unl& is
given by17

^qju junl&5Nl ,pF~2p,u l u11,zj !zj
u l u/2e2zj /2eil u j, ~2!

with Nl ,p5(21)(u l u2 l )/2Av0(u l u1p)!/pp!/ u l u!, zj[v0qj
2 ,

andn5u l u12p, whereF(2p,u l u11,zj) is the confluent hy-
pergeometric function,l is an integer, andp50,1,2, . . . .

In terms of boson operators,aj and bj , to representqja
andqjb in second quantization,H j is rewritten as

H j5v0A2a@~aj
12bj !cj↑

1cj↓1~aj2bj
1!cj↓

1cj↑#

1v0~aj
1aj1bj

1bj11!, ~3!

where pseudospin indexs(5615↑ or ↓) for electron op-
erators is introduced through the relationcjs

[(dja1 isdjb)/A2. Note that second-quantized represen
tion for phonons is not unique due toSU(2) symmetry in
H jv . We have chosen it in such a way as to diagonalize b
H jv and l̂ j[2 i ]/]u j . Then we obainunl& as

unl&5
1

A@~n1 l !/2#! @~n2 l !/2#!
aj

1@~n1 l !/2#

3bj
1@~n2 l !/2#

uvacuum&. ~4!

This phonon representation is a key step to obtain anal
expressions in Eqs.~5! and ~12! as well as a clear view o
less effectiveness of the vertex correction.

Because of the symmetry of pseudospin rotation, the
erator L j , defined byL j[aj

1aj2bj
1bj2(cj↑

1cj↑2cj↓
1cj↓)/2,

is conserved as easily checked by@H j ,L j#50.
8631 ©2000 The American Physical Society
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For a single electron at sitej , eigenvalues forL j are half
integers and each energy level is doubly degenerate co
sponding to6uL ju. In general we can give the ground-sta
wave functionC j

(0) only numerically, but for largea we find
an analytic expression as

C j
(0)'

A2/a bjcj↑
11cj↓

1

AI 0~a!1I 1~a!
J0~A2aaj

1bj
1 !uvacuum&, ~5!

for L j51/2,18 whereJ0(x) is the Bessel function andI i(x)
its modified form. The corresponding energyE0 is given as
E0'(2a11/211/16a)v0'2EJT.

Now we consider a lattice composed ofN JT centers for
which the Hamiltonian is given asHJT5Ht1( jH j , where
Ht describes the transfer energies between nearest-neig
JT centers as

Ht52(
^ jj 8&

(
g5a

b

(
g85a

b

tgg8~djg
1dj8g81dj8g8

1 djg!. ~6!

For simplicity, we taketgg85dgg8t in the following. Then
Eq. ~6! can be rewritten as

Ht52t(
^ jj 8&

(
s

~cjs
1 cj8s1cj8s

1 cjs!5(
ks

«kcks
1 cks , ~7!

where cks(5N21/2( je
2 i j•kcjs) is the Fourier transform o

cjs and «k represents its bare dispersion relation. Note t
the operatorL defined byL[( jL j is conserved, namely
@HJT,L#50 in this choice oftgg8 .

The thermal one-electron Green’s functionGks( ivn) with
vn a fermion Matsubara frequency is defined by19

Gks~ ivn!5E
0

b

dteivntGks~t!, ~8!

with b5T21 and Gks(t)[2^Ttcks(t)cks
1 &. We first con-

sider ]Gks(t)/]t to derive an equation of motion whic
relatesGks(t) with the electron-phonon correlation functio
^Tt(q$@aq

1(t)2bÀq(t)#ck¿q2s(t)cks
1 %&. Next we derive a

similar equation of motion for this correlation function
order to eliminate phonon operators in the expressions o
than the bare phonon Green’s function which is the same
both phonons asD0( ivm)52v0 /@( ivm)22v0

2# with vm a
boson Matsubara frequency. Then we arrive at an exact
pression for the self-energySks( ivn) as

Sks~ ivn!52T(
vn8

(
k8

2a

N
v0

2D0~ ivn82 ivn!

3Gk82s~ ivn8!L2ss~k8,ivn8 ;k,ivn!, ~9!

where the vertex functionLs8s(k8,ivn8 ;k,ivn), a key
quantity in this expression, is found to be

Gks~ ivn!Gk8s8~ ivn8!Ls8s~k8,ivn8 ;k,ivn!

5E
0

b

dt eivn8tE
0

b

dt8 ei (vn2vn8)t8

3^Ttck8s8~t!Sk82k
s8s

~t8!cks
1 &, ~10!
re-

bor

t

er
or

x-

with Sk82k
s8s [(k9ck91k82ks8

1 ck9s , reflecting the spinor nature
of the problem. Equation~9! serves as a firm basis to stud
the JT polaron in the Green’s function approach.

Quite an analogous result has been obtained for the c
ventional polaron.14 For the Holstein model specified by th
HamiltonianHH as

HH5(
ks

«kcks
1 cks1v0A2a (

js
~aj

11aj !cjs
1 cjs

1v0(
j

~aj
1aj11/2!, ~11!

wheres in this case refers to ‘‘real’’ spin index,Sks( ivn) is
given in the form of Eq.~9! in which Gk82s( ivn8) and
L2ss(k8,ivn8 ;k,ivn) are, respectively, changed int
Gk8s( ivn8) andLc(k8,ivn8 ;k,ivn) the charge vertex func

tion, defined through Eq.~10! with Sk82k
s8s replaced by the

charge operatorrk82k[(k9s9ck91k82ks9
1 ck9s9 due to the sca-

lar nature of the Holstein system.
The diagram to represent Eq.~9! is given in Fig. 1~a!, in

which we introduce the vertexG by eliminating improper
diagrams from the vertexL. The expansion series forG in
terms ofa is shown in Fig. 1~b!. If we assume thatGks( ivn)
is independent of s and employ the Migdal’s
approximation20 in which onlyG0 is retained forG, namely,
G51, there exists no difference in the self-energy betwe
JT and Holstein systems.

There is, however, an important difference in the ver
correction. In contrast to the Holstein system, the correcti
represented by the diagramsG1 ,G2a , . . . ,G2e is seen to van-
ish in the JT system by merely considering the pseudos
assignment together with the direction of phonon propa
tors, because Eq.~3! dictates that the JT-phonon exchan
interaction works only in the pseudospin exchange proc
between electrons with opposite pseudospins. Physic
both electrons and phonons in the JT system are assoc
with a notion of clockwise or counterclockwise ‘‘rotation
around each JT center and electrons interact with phon
only when the total rotation is conserved. In this sense,
vanishment of these vertex corrections is due to the lo
rotation conservation law. This law allows only process
such as the one represented byG2 f for G. Similarly, all the

FIG. 1. ~a! Self-energy in diagrammatic representation. Thi
solid and thin dashed lines indicate, respectively, the elec
Green’s function and the bare phonon propagator.~b! Expansion
series for the vertexG up to second order ina.
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third-order vertex corrections vanish. Ineffectiveness of
vertex correction widens the applicable range ina of the
Migdal’s approximation in the JT system and it leads us
the smaller polaron mass enhancement factorm* /m than that
in the Holstein model in which the correctionG1 is known to
enhancem* /m asa increases.

The above perturbative approach is not useful in discu
ing a small polaron or polaron localization in a site. Accor
ing to the studies on the Holstein model,13 an ED calculation
in a two-site system provides qualitatively correct and qu
titatively fair results for the small polaron in the stron
coupling region (a.1), irrespective of the value oft̃ . Thus
we shall make a similar analysis of a single electron in the
model withN52 in which the eigenvalues of the conserv
quantityL are half integers and each energy level is dou
degenerate.

Let us consider the antiadiabatic region (t̃ !1) first. At
a@1, both the ground and first-excited states belong to
sector of uLu51/2. UsingC j

(0) in Eq. ~5!, their wavefunc-
tions C6 are written asC6'(C1

(0)6C2
(0))/A2 for L51/2

with the corresponding energiesE65E06t/@ I 0(a)
1I 1(a)#. The energy difference,E12E2 , can be used to
estimate the polaron bandwidth in a crystal and thus its r
with the bare value 2t determines the polaron effective ma
through the relation

m

m*
5

E12E2

2t
5

1

I 0~a!1I 1~a!
'Apa

2
e2a. ~12!

This result should be compared withe22a the Holstein’s
famous result9 for the system defined in Eq.~11!.

We resort to ED calculations to obtainm/m* through the
numerical evaluation ofE6 for arbitrarya. The conservation
of L helps reduce the number of expansion bases for phon
considerably. We plot the calculatedm/m* for both JT and
Holstein models in Fig. 2 in whicht̃ is taken as 0.2, althoug
the result itself does not depend ont̃ provided that it is much
smaller than unity.~The result for the Holstein model hardl
changes from the analytic resulte22a in the whole region of
a.! For small a, both models give essentially the sam
m/m* as implied by the previous weak-coupling analys
For largea, however, there is a difference inm* /m which is
more than orders of magnitude fora.1, indicating that the
JT polaron is quite mobile compared to the Holstein polar

FIG. 2. Polaron mass reduction factorm/m* for the JT ~the
solid curve! and the Holstein~the dashed curve! models with each
analytic expression in the strong-coupling region.
e

o

s-
-

-

T

y

e

io

ns

.

.

Next we make a semiclassical argument on the adiab
region (t̃ @1) by considering the adiabatic potentialUad for
given phonon variables,$q1u1 ;q2u2%. Since it was calcu-
lated previously in connection with the Berry phase,21 we
just give the result here as

Uad5
v0

2

2
q22„t21av0

3q21$2av0
3t2@q212q1q2

3cos~u12u2!#1a2v0
4~q1

22q2
2!2%1/2

…

1/2, ~13!

with q2[q1
21q2

2. This potential has rather simple features;

the adiabaticity parameterl[a/ t̃ 5EJT/t is less than unity,
Uad has only one minimum in$q1u1 ;q2u2%-coordinate
space, implying no symptom for a small polaron. On t
other hand, it is a double-well potential forl.1 with the
energy barrierD5(av0/2)(12l21)2. If the largest zero-
point energy of phononsDzero ~which isv0/2 in this case! is
smaller thanD, localization leading to a small polaron oc
curs. Thus the conditionD*Dzero provides the criterion to
obtain a small polaron as

t̃ &a2Aa, with a.1. ~14!

A similar argument has been done for the Holstein mo
described in Eq.~11! for which a double-well potential ap
pears only whenl.1/2 with D5av0(121/2l)2 andDzero

5(v0/2)A121/4l2,13 leading to the criterion

aS 12
1

2l D 2

*
1

2
A12

1

4l2. ~15!

FIG. 3. Contour plot foruT/I u for ~a! JT and~b! Holstein po-
larons.~Only the curves in the range 0.1–1.0 are shown to avoid
many curves.! The thick dotted curves correspond to the semicl
sical criteria to divide large and small polarons, Eqs.~14! and~15!.
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This condition cannot be reduced to such a simple form
that in Eq.~14!, but clearly it is much less restrictive than E
~14! for the small-polaron formation.

Finally we make a more quantitative argument on
large-to-small polaron crossover based on the exact gro
state wave functionC0 obtained by the ED calculation. W
evaluate two quantitites, ‘‘the transfer amplitude per bon
T[^C0u(s(c1s

1 c2s1c2s
1 c1s)uC0&/Nbond with the number

of the bondNbond51 and ‘‘the interaction amplitude pe
site’’ I[^C0u( j@(aj

12bj )cj↑
1 cj↓1(aj2bj

1)cj↓
1 cj↑#uC0&/N

with N52. Then we measure ‘‘itineracy’’ by the ratiouT/I u,
because the ratio must be large for an itinerant polaron.

Contour plots foruT/I u in ( t̃ ,a) plane are given in Fig. 3
The result for the Holstein polaron indicates that the se
classical criterion for the small-polaron formation corr
sponds to the conditionuT/I u'0.5. More or less the sam
result is obtained for the JT polaron for which Eq.~14! is
well represented by the conditionuT/I u'0.6. In either way,
we can conclude that the large-to-small polaron crosso
occurs at arounduT/I u'0.5–0.6 and that a small polaron
much harder to realize in the JT system than the Hols
one.

Three comments are in order:~i! In the manganese oxides
the parameters are estimated ast'0.2 eV,v0'0.08 eV, and
EJT'0.2–0.4 eV, leading tot̃'2.5 anda'2.5–5, which
covers the crossover region according to Fig. 3~a!. This is
s

e
d-

’

i-

er

in

convenient to explain the observed CMR behavior.~ii ! The
very largem* in the Holstein model is unfavorable for th
bipolaron scenario for high-Tc superconductivity.22 In this
respect, a smallerm* was suggested for the Fro¨hlich
polaron.23 The same may be claimed for the JT polaron.~iii !
The electron-phonon coupling constant inHH @Eq. ~11!# is so
determined as to give the same polaron effect as the JT
in the weak-coupling region for the proper comparison
vertex corrections. In this choice, the ground-state energy
HH at t50 is given as (22a11/2)v0 which is about
22EJT at a@1. Thus, if we make an alternative choice
the coupling constant as to give the same polaron stabil
tion energy in the strong-coupling limit, the difference inm*
between the JT and Holstein models looks to be much
duced, but even in this choice, the JT polaron has smallerm*
at least by the factor of 1/Aa.

In conclusion, we have compared theE^ e JT polaron
with the Holstein one by using various theoretical tec
niques. Features of these polarons are exactly the same i
weak-coupling region, but they are different quantitatively
other regions due to the symmetry of pseudospin rotat
the JT polaron is more mobile than the Holstein one.
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