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Phonon spectral function for an interacting electron-phonon system

J. E. Han and O. Gunnarsson
Max-Planck-Institut fu Festkaperforschung, D-70506 Stuttgart, Germany
(Received 4 October 1999

Using exact diagonalization techniques, we study a model of interacting electrons and phonons. The spectral
width of the phonons is found to be reduced as the Coulomb interddtisrincreased. For a system with two
modes per site, we find a transfer of coupling strength from the upper to the lower mode. This transfer is
reduced adJ is increased. These results give a qualitative explanation of differences between Raman and
photoemission estimates of the electron-phonon coupling constartg@g (A=K, Rb).

In a metallic system a phonon can decay into electronThis results in rather different electron-phonon coupling con-
hole pair excitations. This decay contributes to the width ofstants. Although the main coupling was to the low-lying
the phonon. It was pointed out by Allen that this additionalmodes, there was also a substantial coupling to the two high-
broadening can be used to estimate the electron-phong#stHy modes. The total coupling strength was also larger
coupling! The width can be measured in neutron scatteringhan deduced from Raman scattering.
or, for the orientationally disordered fullerenes, in Raman In this paper we study a simple model with electron-
scattering. Normally, the electron-phonon coupling is de- Phonon and electron-electron interactions. We consider a fi-
duced by assuming noninteracting electrbiifie method is, Nite cluster with a nondegenerate electronic level and a non-
however, often applied to systems with strong correlatiorflegenerate phonon on each site. This model is solved by
due to the Coulomb interaction, such as the alkali-metallsing exact diagonalization. We find that the Coulomb inter-

doped fullerened.In the alkali-metal-doped fullerenes the action reduces the phonon width, and that the use of Allen’s
e|ectron-phon0n interaction p|ays an important role, and actormuld' there:fore leads to 6'1n Underesumate.o'f the ele'Ctron'
curate estimates of the coupling strength are essential. ARhonon coupling constants in Raman scattering experiments.
most all experimental estimates for these systems are bas&#rthermore we find that due to the indirect interaction of
on Allen’s formula, and the accuracy of this formula is there-different phonon modes via electron-hole pair excitations in
fore crucial. metallic systems, there is a transfer of coupling strength to

In strongly correlated systems the hopping is reduced anthe low-lying modes that is not present for a free molecule.
the excitation of electron-hole pairs may be more difficult. Since the Raman measurements of the electron-phonon cou-
For instance, if the correlation is so strong that the systenRling are performed for a solid, but the photoemission esti-
has a metal-insulator transition, the decay into electron-hol&ate is for a free molecule, the weight transfer is present in
pair excitations is Comp|ete|y Suppressed_ One aim of th|§he Raman but not in the photoemiSSion estimate. These ob-
paper is therefore to study how the estimate of the electrorservations are consistent with differences between the cou-
phonon coupling is influenced if the electron-electron inter-Pling constants deduced from Raman scattering and photo-
action is taken into account. emission.

In metals a phonon can decay into(\drtual) electron- We consider a model with,,qe NONdegenerate phonons
hole pair excitation, which can then decay into a differentPer site and with electrons without orbital degeneracy. The
phonon. In this way there is a coupling between differentHamiltonian is
phonon modes of the same symmetry, leading to new modes
that are linear combinations of the old ones. These new
modes can have quite different coupling strengths than the  H=2, o,blbj,+ > |eo+> g,(bj,+bl)|ni,
old modes. A second aim of this paper is to study how the v 7 g
coupling strength is transferred between the modes due to the
coupling via electron-hole pair excitations. +UD myng + 2 tiel,ci, («y

The electron-phonon coupling has been studied exten- ' !
sively for the alkali-metal-doped fullerenes. In particular, ) ] .
there has been one study based on neutron scafteairy wherei labels theNg;, sites,c;, andb;, annihilate an elec-
Several Studies based on Raman Scattegrpng'_he h|gh_ tron with Spin(r and a phonon with the Iab@l, reSpeCtiVer,
resolution studies of Winter and Kuzmanghow a very On sitei, andn;,=c/,c;, is an occupation number operator.
strong coupling to a few of the low-lying modes, but aimostThe energy of the phonon is w, and its coupling to the
no coupling to the high-lying modes. The neutron scatteringglectrons isg, . The corresponding dimensionless electron-
study gave estimates of the coupling for the four lowestphonon coupling is given by\VZZg,Z,N(O)/wph, where
modes. Among these the two lowest modes were found ttN(0) is the density of states per spin. The energy of the
have a strong coupling, although with a different distributionelectronic level issy. Two electrons on the same site have a
than was found in Raman scattering. An alternative approacoulomb repulsiorlJ. The hopping between the sites is de-
is based on photoemission from free negatively chargedcribed by matrix elements; . A Hamiltonian such as Eq.
Ceo molecules. By studying the weight of vibration satel- (1) with t;j=t for the nearest neighbor hopping has a high
lites, it is possible to deduce the electron-phonon cougling.symmetry and a correspondingly large degeneracy. Since we
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use exact diagonalization to solve the model, we have to 80 —%5 .
limit the number of sites to a small numb@our to siX. The
resulting one-particle states are then very sparse in energy. so ts
Therefore we lower the symmetry by choosing eéghan- % 0.1 - .
domly within some interval, which leads to a denser energy *

spectrum. The model is solved and the result is then aver-
aged over different sets ¢f;;}. The strength of the hopping 004 5 10

is measured by the one-particle widdk of the electronic L

band(for g=0 andU=0). In this model we for simplicity J/
consider nondegeneratéd§) phonons and electrons. In, for 20 8
instance A;Cgo (A=K, Rb) the phonons are fivefold degen- 4
erateHy phonons and the electron states have a threefold 10 2
1

=

orbital degeneracy. The new physics that may be introduced m/ﬂ\&
by these degeneracies, e.g., the Jahn-Teller effect, is not con- o L U=2 . ,
sidered here. 0.0 0.5 1.0 1.5

(]

FIG. 1. The phonon spectral function for different values of the
Coulomb interactiotd. The insert shows the width of the spectral
function as a function otl. The figure illustrates the narrowing of
the spectral function a8 is increased. The parameters avg
=1, A=0.073, andW=2.5, and the system has six sites.

We consider a half-filled system, i.&;, electrons. With
Nsie=6 there are then 400 different electronic configura-
tions. To obtain a finite size Hilbert space, we limit the maxi-
mum number of phonons per modesNg,,,. The number of
phonon states is theMgqq+ 1)Nsie for the case of one mode
per site. For instance, WitNgj=6 andNp,,~=3, the total
Hilbert space has the dimension 1.63840°. Such a prob- system with a finiteU. For systems such afsCe (A

lem can be solved using exact diagonalization, i.e., the i Rpy where the Coulomb interaction is believed to play
ground state is expressed as a linear combination of all POy, important role, the width of the phonons may then be

sible basis states in the Hilbert space. The lowest Eige”fun‘é‘ubstantially reduced. The use of Allen’s formula would then

tiop of the corresponding Hamiltonian matrix is then fo”ndcorrespondingly underestimate the electron-phonon cou-
using the Lanczos method. We further calculate the phonoB”ng

Green’s function We next discuss the case when there are two phonon

Yy — i . . modes per site, which have the unperturbed energieand
Dij(1)= =0 T{1,(1)$;,(0)}|0), @ w,. First we calculate the lowest order phonon self-energy.
where|0) is the ground stataﬁiy(t)=bi,,(t)+bi*v(t) is the  This involves evaluating a “bubble” diagram. The self-
phonon field operator in the interaction representation,Tand energy can be written as
is the time-ordering operator. Calculation of the Fourier

transform givesD/ (). We then define a spectral function I,,(0,0)~0,9, f(w), 4
as wheref(w) depends on the precise band structure. We con-
1 sider contributions to the self-energy that are both diagonal
Ajj(@)=—[ImDj(w)|, (3 and nondiagonal in the index. The nondiagonal contribu-

tion corresponds to a phonan decaying into an electron-
J]ole pair followed by this electron-hole pair decaying into a
phononv’. The noninteracting phonon Green'’s function is

and study the averagg,,(w) == ,iAj{(w)/Ngje. Due to the
finite size of the system, the spectrum is discrete. We ther
fore introduce a Lorentzian broadening with a full width at
half maximum(FWHM) of 0.01 eV. 0 _ 2 2

Figure 1 shows the phonon spectral functidfw) for D yl@)=20, /(0" = @)) 8, ®
different values ofU and A=0.073. In the alkali-metal- The interacting phonon Green'’s function is then given by
doped G, compounds) is of the order 0.5-%.We have . o 1
here used a smaller value, since the number of phonons iR (@)=D"(w) "~ Il(w)

cluded in our Hilbert space would otherwise be too small. 02— w2
The Gy bandwidthw=0.6 eV,U~1-1.5 eV and the pho- 5 L 9% (w) —0195f(w)
non frequencies extend up to about 0.2 eV. The energy scale _ w1 ©)
in Fig. 1 should therefore be reduced by a factor of 4-5 to B 2— w3 :
make a comparision with the fullerenes. Due to the small —010>f(w) 5w —ggf(w)
2

size of the system, the width of the spectrum should not
necessarily be expected to agree with Allen’s formula everThe modes of the coupled system are obtained by looking for
for U=0. Nevertheless, the result of Allen's formula, zeros of the determinant of the matrix in E@). For the
Yallen=0.19, is comparable to the width found {dr=0. The  lowest mode, the corresponding eigenvector consists of a
figure illustrates how the spectral function becomes narrowebonding linear combination of the two unperturbed modes.
with increasingU. This is further illustrated by the inset, As a result the coupling to the electrons is increased for this
which shows the width of the spectrum, calculated as thenode, due to constructive interference between the couplings
mean square deviation of the spectral function. The figuréor the two unperturbed modes. In the same way the coupling
illustrates that one underestimates the electron-phonon cois reduced for the higher mode. For instance, we can look for
pling if Allen’s formula is used to extract the coupling for a the width of the lowest mode in the limit when
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30 006 tra. The width for very large values &f is due to the broad-
U= ening of the discrete spectrum that we have introducedJ As
1=0.01 is increased, the width of the mode is reduced, as discussed
above. The figure further illustrates that the transfer of cou-
pling strength is reduced &s$is increased. This is expected,
since the effects of hopping, and thereby the indirect cou-
pling, is reduced a¥l is increased.
It would be interesting to repeat these calculations for
systems with degenerate phonons, e.g., to include the Jahn-
10 Teller effect. This leads, however, to systems that are so
large that they cannot easily be treated using exact diagonal-
ization. Within a Hartree calculation we find a similar trans-

fer of coupling strength to the lower modes also for Jahn-

Teller phonons and electrons with orbital degeneracy. The

0 1 2 transfer is, however, reduced by the nonspherical parts of the
® Coulomb interaction, i.e., by the difference between the in-

FIG. 2. The phonon spectral function for a system with oneteraction for equal orbitals and unequal orbitals. This effect
phonon modeupper part and two phonon modegower pary per  may also play a role when we go beyond the Hartree ap-
site for U=0. The inset shows the width of the lower mode as aproximation.
function ofU in the cases of one or two modes per site. Comparison Finally, we observe that in theoretical approaches that do
of the widths in the two cases illustrates how the lower mode isnot explicitly include the transfer of coupling strength be-
broadened for small values & due to the interaction with the tween the modes, it is appropriate to include this transfer by
upper mode. The parameters ané=3.7, w;=0.5, w,=1, 91  using the corresponding coupling constants. On the other
=0.3, andg,=0.4, and the system has four sites. All spectra havehand, in a treatment where this transfer is explicitly included,
been given a Lorentzian broadening with a FWHM of 0.01. the transfer should not be contained in the coupling constants

o used in the model.
;> w; and when the electron-phonon coupling is weak. We 14 symmarize, we have calculated the phonon spectral

then find that the width of the lowest mode is increased by gnctions for systems with interacting electrons and phonons.

factor of We find that the Coulomb interaction between the electrons
1+chy, (7)  reduces the width of the phonons caused by the phonon de-

and the width of the highest mode is reduced by a factor cay into electron-hole_ pairs. As a result, estima_tes of the
) electron-phonon coupling based on the phonon width under-

1—c)\2<ﬂ) ®) estimate this coupling unless the Coulomb interaction is

wy) ' taken into account. This is consistent with the observations
that weaker couplings have been deduced from Raman mea-

surements than from photoemissid®ES experiments. Fur-

y (FWHM)

ppn((’-‘)

0

wherec is somewhat larger than unitye{3) and depends

on the shape of the band. thermore, we find that there is a transfer of coupling strength
The result in Eq(7) is based on the lowest order phonon from the hi her modes to the lower modes dueao gn indir?ect
self-energy and it neglects the Coulomb repulsion com- 9

pletely. We therefore study the same problem using eXaclpteracnon via electron-hole pairs. This may, at least partly,

- o : explain the difference in the distribution of coupling strength
O D o St Witletween Raman and PES esimates, athougt t can pobably
broadened by a Lorentzian with a FWHM of 0.01. The mainnOt fully expla_ln the weak coupling to th(:f' two_highest
figure shows results fotJ=0, and it illustrates how the phonons seen in Raman spectroscopy. In this v_vork we have
lower mode is broadened when the higher mode is switchegeatEd nondegenerate phonons. It would be Interesting to
on. For the parameters in Fig.)=0.043 and\,=0.085, extend the Work to degenerate, Ja}hn—TeIIer p'honons, since
and the additional broadening of the lowest mode is of th%ﬂﬁ:fer?éz the important phonons in the alkali-metal-doped
order of magnitude predicted by E{). The inset shows the '

width of the lower mode as a function &f. These results This work was supported by the Max-Planck-
were obtained by fitting Lorentzians to the broadened sped-orschungspreis.
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