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Intermediate scaling regime for multilayer epitaxial growth
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We explore the layer-by-layer~Frank–van der Merwe! growth regime within the context of a discrete
solid-on-solid kinetic Monte Carlo model. Our results demonstrate a nontrivial scaling of the lattice step edge
density, a quantity that oscillates about a nominally constant value prior to the onset of kinetic roughening.
This value varies with the ratio of the surface diffusivity to the deposition flux,R[D/F, as a nearly perfect
power law over a wide range ofR. This ‘‘intermediate’’ scaling regime extends in coverage from one to at least
a few tens of monolayers, which is exactly the regime of most importance to the growth of device-quality
semiconductor quantum heterostructures. Comparison with lowest-order linear theories for height fluctuations
demonstrates the validity of the Wolf-Villain mean-field theory for the description of lattice step density and
‘‘in-plane’’ structure for all coverages down to the first monolayer of growth. However, the mean-field theory
does not fully account for the surface width in this regime and consequently does not quantitatively predict the
observed step density scaling.
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Layer-by-layer~or Frank–van der Merwe! growth is by
far the growth mode of choice for the production of devic
quality semiconductor material by molecular beam epita
~MBE!. This growth mode produces exceptionally hig
quality epitaxial material with the extremely low defect de
sities required for most electronic and optoelectronic dev
applications. The layer-by-layer mode offers other practi
advantages that make it desirable for device growth. Os
lations in the specular intensity of reflection high-ener
electron diffraction~RHEED! patterns are often observed
this regime1 and have been correlated both theoretically2 and
experimentally3 to the instantaneous density of step edges
the surface. Oscillations in threshold photoemission4,5 sig-
nals have also been observed in this regime and may als
correlated to surface steps.6 These observations allow for th
possibility of in situ monitoring and control of surface mor
phology. A typical scenario under device growth conditio
is a gradual decay of oscillations for~at least! tens of layers
to an asymptotic value that may remain constant for m
more tens or even hundreds of layers. Possible explana
for this behavior are a transition to step flow growth7 or the
attainment of a steady-state roughness on the surface.

In spite of the practical implications, relatively little the
oretical attention has been focused on obtaining a deta
understanding of growth in this regime. While we
developed theories now exist for homoepitaxial growth
the submonolayer and asymptotically rough regimes, v
few models have attempted to describe the emergenc
roughness and in-plane structure and the associated dam
of growth oscillations in the technologically relevant regim
Notable exceptions are the work of Vvedensky a
co-workers8,9 who were able to match RHEED oscillatio
decays with a simple cubic solid-on-solid~SOS! model and
the more recent work of Wolf, Krug, and co-workers10–13

who have developed a scaling theory for the damping
growth oscillations. The former stopped short of examin
any details of surface morphology associated with
RHEED oscillation decay while the latter has to date be
almost exclusively restricted to one dimension.

In this paper we present a scaling result for the mean
density discovered while carrying out a series of tw
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dimensional kinetic Monte Carlo~KMC! simulations aimed
at exploring surface kinetics and morphology duri
multilayer growth. In particular we find that the mean st
edge density, which is constant from the very first layer
growth, varies with the ratio of the surface diffusivity to th
deposition flux,R[D/F, as a nearly perfect power law ove
a wide range ofR. We use the Wolf-Villain linear MBE
equation, which has been successfully applied to the da
ing of growth oscillations in this regime,10–13 to analyze this
mean-field behavior. We find that it is not only consiste
with the existence of a time-independent step density,
correctly predicts the evolution of the in-plane surface str
ture as measured by the correlation length. However, the
density scaling exponent is not correctly predicted by
linear theory, because of its inability to correctly account
the surface width in these early stages of growth. This re
is not only of practical significance for the monitoring o
device growth, but also indicates that current theories und
lying the damping of growth oscillations are incomplete a
in need of modification.

We use a cubic pair-bond SOS KMC model.8,14 This is in
the class of Arrhenius-type growth models, wherein t
probabilities for executing surface diffusion processes
governed by activated rates. The energy barriers for th
processes are determined only by the local bonding envi
ment for an atom, i.e., the number and configuration of ne
est neighbors. We allow only for the following processes:~i!
deposition at a constant rateF, ~ii ! surface adatom diffusion
at a rater S[r 0e2ES /T, and ~iii ! surface diffusion along a
step edge ~one nearest neighbor! at a rate r e
[r 0e2(ES1EN2Ee)/T. This defines an irreversible aggregatio
model in whichEN , the energy barrier to break a neare
neighbor bond, must be very large.Ee serves to cancel off
most of this barrier so that the differenceEN2Ee is the
relatively small edge diffusion barrier. Note that in this irr
versible aggregation case, edge diffusion is only permit
when there is exactly one nearest-neighbor bond. A dou
bonded edge atom, such as in the cleft of an inside cor
must break an additional bond in order to diffuse along
edge, and is therefore rendered immobile. Diffusion arou
an outside corner of an island is treated as a special cas
8602 ©2000 The American Physical Society
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which the edge atom makes a diagonal move at a
equivalent to the edge diffusion rate. No additional step e
~Schwoebel! barrier is included, nor is evaporation allowe

We have performed multilayer growth simulations
5003500 lattices. Coverage extends to 300 ML and norm
ized surface diffusion ratesD/F[r S /F range from 104 to
107. For small values ofD/F, 103 and lower, surfaces begi
to roughen after the growth of only a few monolayers. Co
sequently, the early time scaling regime that is of particu
interest here is not unambiguously present. For large va
of D/F, 108 and higher, such simulations simply take to
long in the parameter range studied to obtain good statis
The edge diffusion rater e is fixed at 1/100 of the surfac
diffusion rater S . This is small enough to prevent contam
nation of the data by diffusion of dimers and large enough
as to still ensure compact islands for the smallest value
D/F included in the study. The results presented below r
resent averages over five independent runs for each pa
eter set.

In Fig. 1 we show the step edge density

s5
1

N (
^ i , j &

@~12d i ,i 11!1~12d j , j 11!#, ~1!

which is computed by counting up all edges on the lattice
which there is a discontinuity, irrespective of the heig
difference,15 and the surface width

W5(
i , j

^hi , j2h̄&2. ~2!

The key observation to make is that the step density os
lates about a nominally constant value prior to the onse
kinetic roughening, while the mean surface width is an ev
increasing function of coverage. Thisintermediateregime is
longer for higherD/F, and spans the growth of at least th
first few tens of monolayers, consistent with experimen
data generated under device growth conditions.16

Figure 2 shows theD/F dependence of the minima an

FIG. 1. Step edge density and surface width simulated for e
value ofD/F out to 30 ML.
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maxima of the envelope of the step edge densitys at se-
lected coverages. The submonolayer step edge density~small
filled diamonds! scales as (D/F)20.19, consistent with the
21/6 power that is predicted by nucleation theory for t
case of irreversible aggregation.17 The constant ‘‘mean
asymptotic’’ value~filled circles! scales as (D/F)20.25 in dis-
tinct contrast. Note that the maxima@Fig. 2~a!# evolve to-
ward the asymptotic scaling over the first dozen or so mo
layers. In contrast, the minima@Fig. 2~b!# display the same
scaling as the asymptotic value, from the very first mon
layer.

Many of these results can be explained within the cont
of a linear theory for height fluctuations. This linear theo
has been used to successfully explain the scaling of the
at which oscillations decay in one-dimensional models
growth,10,11 so the extent to which it can explain the scalin
of step density observed here is another important test o
applicability to problems of this type. The lowest-order co
servative equation of motion for height fluctuations in t
presence of a deposition fluxF and stochastic noiseh is

] th52K¹zh1F1h. ~3!

The solutions of Eq.~3! for the correlation lengthj and
interface widthW are18,19

j;~Kt !1/z,

W;~h/K !1/2j (z22)/2.

Assuming that there exists a single length and a sin
time scale, i.e.,K5 l zt, the correlation length and surfac
width scale as

h

FIG. 2. Scaling of step edge density maxima~a! and minima~b!.
Shown are a submonolayer value along with those at 1-, 2-, 5-,
10-ML coverage. The minima~b! correspond to integer values o
coverage, while the maxima~a! correspond to coverages with a
additional one-half monolayer of material. The data labe
‘‘asymp’’ are the median values to which the step edge den
oscillations first decay, prior to the onset of roughening. Solid a
broken lines are linear fits,m gives the slope and goodness of fit
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j; l t 1/z, ~4a!

W; l 21t (z22)/2z. ~4b!

For these relatively smooth morphologies, the step den
should be satisfactorily described by the ratio of the surf
width to the correlation length. Hence

s5W/j; l 22t (z24)/2z. ~5!

Note that if the order of the theory isz54, corresponding
to the Wolf-Villain linearized fluctuation theory~LFT!,20 the
step density isindependentof time ~or coverage!. This is
consistent with our simulation data in the intermedia
growth regime and invites comparison of the predictions
the linear theory for scaling of the step density withD/F in
this regime. Choosingl to be the interisland spacing for ir
reversible aggregation as predicted by nucleation theorl
;(D/F)1/6, the dependences for the correlation length, int
face width, and step edge density onR ([D/F) and cover-
ageu are

FIG. 3. Scaling of the correlation lengthj ~as extracted from the
peak of the structure factor of the height functions! with D/F ~a!
and coverage~b!. Solid lines are linear fits;m gives the slope and
goodness of fit.

FIG. 4. Variation of the surface roughness~as computed from
the surface height functions! with D/F ~a! and coverage~b!. Heavy
lines in ~b! have slopes of 0.18 and 1/4 for comparison.
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j~R,t !;R1/6u1/4, ~6a!

W~R,t !;R21/6u1/4, ~6b!

s~R,t !;R21/3u0. ~6c!

Interestingly, while the coverage dependence of the s
edge density is in agreement with the predictions of the
ear theory, the scaling exponent (R dependence! is not. In an
attempt to understand this breakdown of LFT for the s
density, we investigate further the behavior of the correlat
function and two measures of the surface width.

Figure 3 shows the scaling of the correlation length w
coverage andR as computed from the peak of the structu
factor of the surface height function. The power-law fits
the data are all excellent, except for theR scaling at late
timesu.100 ML when nonlinear effects begin to enter. Th
data indicate thatj scales ast0.25, independent ofR, and as
R0.17, independent of coverage, in nearly perfect agreem
with the prediction of the LFT. The surface roughness,
computed directly from the surface height function a
shown in Fig. 4, appears to scale with coverage asu0.18. This
exponent is significantly lower than the value expected fr
LFT, 0.25. In addition, the roughness does not scale we
all with R for any coverage. A different measure of the su
face width, the average peak-to-peak heightH is shown in
Fig. 5 anddoesdisplay reasonable scaling with both cove
age andR. So long as the surface width is below about
~roughness;4%), thescaling of this quantity with coverag

FIG. 5. Scaling of the peak-to-peak surface width~as computed
from the surface height functions! with D/F ~a! and coverage~b!.
The heavy lines in~a! have slopes of 1/12 and 1/6, while that in~b!
has a slope of 1/4 for comparison.

TABLE I. Theoretical and simulated exponents.

Linear fluctuation theory KMC simulation
R u R u

j 1/6 1/4 0.1760.01 0.2460.01
W 21/6 1/4 0.1860.01
H 20.0860.04 0.2560.05
s 21/3 0 20.2560.05 0.0160.05
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is very consistent with a power of 1/4. TheR scaling is weak,
more consistent with;1/12 power, as opposed to the 1
power predicted by the LFT.

Table I is a summary of the exponents for the Wo
Villain LFT and those extracted from the simulation da
The data can be summarized as follows:~i! Wolf-Villain
theory correctly predicts the time independence of step e
density. ~ii ! The correlation length scaling measured is
predicted by LFT. Therefore, the in-plane structure is c
rectly accounted for by the LFT for all coverages down to
single monolayer of growth.~iii ! The rms surface widthW
does not display any correct scaling in this regime. The s
ing of the peak-to-peak surface widthH, however, is consis-
tent with the LFT in coverage, but not inR. Consequently the
ratio of H to j is time independent, as predicted by LFT, b
displays a slightly differentR scaling, 0.25 vs 1/3. Interest
ingly, the observed scaling ofH and j ~consistent with
;R21/12u1/4 and ;R1/6u1/4, respectively! do correctly ac-
count for the full scaling of the step densitys assumed to be
given by H/j, hence validating the assumption of a me
surface slope based on a single length scale, Eq.~5!.
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In conclusion, we have demonstrated that although
existence of a constant step edge density can be explaine
a transition of the entire surface to step flow growth, this
not the only explanation. It can also be the subtle bala
between lateral coarsening and the generation of sur
width ~roughness! that properly accounts for this behavio
The layer-by-layer growth regime is correctly described
the Wolf-Villain linearized theory for height fluctuations t
the extent that it accounts for in-plane structure and the
istence of a constant average step edge density. The li
theory fails, however, to account for the correct scaling
step density withR, but only because LFT does not descri
surface width correctly. We, therefore, expect a breakdo
of the previously observed scaling for oscillation dec
times, as this behavior does depend on the generatio
surface roughness, hence surface width. A further und
standing of the role of surface width in these systems
clearly required to satisfactorily complete this picture.
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