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Intermediate scaling regime for multilayer epitaxial growth
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We explore the layer-by-layefFrank—van der Merwegrowth regime within the context of a discrete
solid-on-solid kinetic Monte Carlo model. Our results demonstrate a nontrivial scaling of the lattice step edge
density, a quantity that oscillates about a nominally constant value prior to the onset of kinetic roughening.
This value varies with the ratio of the surface diffusivity to the deposition iRz D/F, as a nearly perfect
power law over a wide range & This “intermediate” scaling regime extends in coverage from one to at least
a few tens of monolayers, which is exactly the regime of most importance to the growth of device-quality
semiconductor quantum heterostructures. Comparison with lowest-order linear theories for height fluctuations
demonstrates the validity of the Wolf-Villain mean-field theory for the description of lattice step density and
“in-plane” structure for all coverages down to the first monolayer of growth. However, the mean-field theory
does not fully account for the surface width in this regime and consequently does not quantitatively predict the
observed step density scaling.

Layer-by-layer(or Frank—van der Merwegrowth is by  dimensional kinetic Monte Carl@KMC) simulations aimed
far the growth mode of choice for the production of device-at exploring surface kinetics and morphology during
quality semiconductor material by molecular beam epitaxymultilayer growth. In particular we find that the mean step
(MBE). This growth mode produces exceptionally high- edge density, which is constant from the very first layer of
quality epitaxial material with the extremely low defect den- growth, varies with the ratio of the surface diffusivity to the
sities required for most electronic and optoelectronic deviceleposition fluxR=D/F, as a nearly perfect power law over
applications. The layer-by-layer mode offers other practicah wide range ofR. We use the Wolf-Villain linear MBE
advantages that make it desirable for device growth. Oscilequation, which has been successfully applied to the damp-
lations in the specular intensity of reflection high-energying of growth oscillations in this regimé;**to analyze this
electron diffraction(RHEED) patterns are often observed in mean-field behavior. We find that it is not only consistent
this regimé and have been correlated both theoretidadiyd ~ with the existence of a time-independent step density, but
experimentally to the instantaneous density of step edges orgorrectly predicts the evolution of the in-plane surface struc-
the surface. Oscillations in threshold photoemisfosig-  ture as measured by the correlation length. However, the step
nals have also been observed in this regime and may also Iensity scaling exponent is not correctly predicted by the
correlated to surface stepThese observations allow for the linear theory, because of its inability to correctly account for
possibility ofin situ monitoring and control of surface mor- the surface width in these early stages of growth. This result
phology. A typical scenario under device growth conditionsis not only of practical significance for the monitoring of
is a gradual decay of oscillations féat least tens of layers ~device growth, but also indicates that current theories under-
to an asymptotic value that may remain constant for manyying the damping of growth oscillations are incomplete and
more tens or even hundreds of layers. Possible explanationd need of modification.
for this behavior are a transition to step flow grofvir the We use a cubic pair-bond SOS KMC mo@eéf. This is in
attainment of a steady-state roughness on the surface.  the class of Arrhenius-type growth models, wherein the

In spite of the practical implications, relatively little the- probabilities for executing surface diffusion processes are
oretical attention has been focused on obtaining a detailegioverned by activated rates. The energy barriers for these
understanding of growth in this regime. While well- processes are determined only by the local bonding environ-
developed theories now exist for homoepitaxial growth inment for an atom, i.e., the number and configuration of near-
the submonolayer and asymptotically rough regimes, vergst neighbors. We allow only for the following process@s:
few models have attempted to describe the emergence @fposition at a constant rake (i) surface adatom diffusion
roughness and in-plane structure and the associated dampiggja raters=rqe~=s’T, and (iii) surface diffusion along a
of growth oscillations in the technologically relevant regime.step edge (one nearest neighbor at a rate r,
Notable exceptions are the work of Vvedensky and=rqe (Es"En~Eo/T This defines an irreversible aggregation
co-workeré® who were able to match RHEED oscillation model in whichE,, the energy barrier to break a nearest-
decays with a simple cubic solid-on-soli8OS model and neighbor bond, must be very largg, serves to cancel off
the more recent work of Wolf, Krug, and co-work&s®  most of this barrier so that the differen&&—E, is the
who have developed a scaling theory for the damping ofelatively small edge diffusion barrier. Note that in this irre-
growth oscillations. The former stopped short of examiningversible aggregation case, edge diffusion is only permitted
any details of surface morphology associated with thewhen there is exactly one nearest-neighbor bond. A doubly
RHEED oscillation decay while the latter has to date beerbonded edge atom, such as in the cleft of an inside corner,
almost exclusively restricted to one dimension. must break an additional bond in order to diffuse along the

In this paper we present a scaling result for the mean stepdge, and is therefore rendered immobile. Diffusion around
density discovered while carrying out a series of two-an outside corner of an island is treated as a special case in
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X T S FIG. 2. Scaling of step edge density maxitagand minima(b).
Coverage (ML) Shown are a submonolayer value along with those at 1-, 2-, 5-, and

10-ML coverage. The miniméb) correspond to integer values of
FIG. 1. Step edge density and surface width simulated for eackoverage, while the maximé) correspond to coverages with an
value of D/F out to 30 ML. additional one-half monolayer of material. The data labeled
“asymp” are the median values to which the step edge density
which the edge atom makes a diagonal move at a ratescillations first decay, prior to the onset of roughening. Solid and
equivalent to the edge diffusion rate. No additional step edgéroken lines are linear fitsn gives the slope and goodness of fit.
(Schwoebeél barrier is included, nor is evaporation allowed.
We have performed multilayer growth simulations onmaxima of the envelope of the step edge densityat se-
500x 500 lattices. Coverage extends to 300 ML and normalected coverages. The submonolayer step edge dessitll
ized surface diffusion rateB/F=rg/F range from 16 to  filled diamond$ scales asD/F)~ %1 consistent with the
10’. For small values ob/F, 10® and lower, surfaces begin —1/6 power that is predicted by nucleation theory for the
to roughen after the growth of only a few monolayers. Concase of irreversible aggregatioh.The constant “mean
sequently, the early time scaling regime that is of particulamsymptotic” value(filled circles scales as®/F) ~°?5in dis-
interest here is not unambiguously present. For large valuegnct contrast. Note that the maxini&ig. 2a)] evolve to-
of D/F, 1¢° and higher, such simulations simply take too ward the asymptotic scaling over the first dozen or so mono-
long in the parameter range studied to obtain good statistic$ayers. In contrast, the minimiig. 2(b)] display the same
The edge diffusion rate, is fixed at 1/100 of the surface scaling as the asymptotic value, from the very first mono-
diffusion raterg. This is small enough to prevent contami- layer.
nation of the data by diffusion of dimers and large enough so Many of these results can be explained within the context
as to still ensure compact islands for the smallest value obf a linear theory for height fluctuations. This linear theory
D/F included in the study. The results presented below rephas been used to successfully explain the scaling of the time
resent averages over five independent runs for each paramat which oscillations decay in one-dimensional models of
eter set. growth1%'1so the extent to which it can explain the scaling
In Fig. 1 we show the step edge density of step density observed here is another important test of its
applicability to problems of this type. The lowest-order con-
1 servative equation of motion for height fluctuations in the
9N OED [(1=6ii+2) T (1= 65401, @) presence of a deposition fllkx and stochastic noise is

which is computed by counting up all edges on the lattice at
which there is a discontinuity, irrespective of the height dth=—KV*h+F+ 7. 3
difference!® and the surface width
The solutions of Eq(3) for the correlation lengti¢ and
interface widthw are'®1°

W:iEj (hij—h)2. 2

The key observation to make is that the step density oscil- é~(Kt)'7,
lates about a nominally constant value prior to the onset of
kinetic roughening, while the mean surface width is an ever-
increasing function of coverage. ThHigermediateregime is
longer for higherD/F, and spans the growth of at least the
first few tens of monolayers, consistent with experimental Assuming that there exists a single length and a single
data generated under device growth conditihs. time scale, i.e.K=1I%, the correlation length and surface
Figure 2 shows th®/F dependence of the minima and width scale as

W"’( n/K)1/2§(Z—2)/2.
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FIG. 3. Scaling of the correlation lengéh(as extracted from the
peak of the structure factor of the height functipmsth D/F (a)
and coveragéh). Solid lines are linear fitan gives the slope and
goodness of fit.
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FIG. 5. Scaling of the peak-to-peak surface wicis computed
from the surface height functionsvith D/F (a) and coveragéb).
The heavy lines irfa) have slopes of 1/12 and 1/6, while that(iy)
has a slope of 1/4 for comparison.
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For these relatively smooth morphologies, the step density W(R,1)~R™726"7, (6b)
should be satisfactorily described by the ratio of the surface
width to the correlation length. Hence o(R,t)~R™ 136, (60)

=W/~ 2z Z, (5)
Note that if the order of the theory i5=4, corresponding

to the Wolf-Villain linearized fluctuation theor§t FT),%° the

step density isndependenbof time (or coveragg This is

Interestingly, while the coverage dependence of the step
edge density is in agreement with the predictions of the lin-
ear theory, the scaling exponeR lependenages not. In an

attempt to understand this breakdown of LFT for the step
density, we investigate further the behavior of the correlation

consistent with our simulation data in the intermediatefunction and two measures of the surface width.

growth regime and invites comparison of the predictions of

the linear theory for scaling of the step density wilhiF in
this regime. Choosing to be the interisland spacing for ir-
reversible aggregation as predicted by nucleation thdory,

~(D/F)¥8, the dependences for the correlation length, inter-

face width, and step edge density B{=D/F) and cover-
aged are

Figure 3 shows the scaling of the correlation length with
coverage andR as computed from the peak of the structure
factor of the surface height function. The power-law fits to
the data are all excellent, except for tRescaling at late
times 6>100 ML when nonlinear effects begin to enter. The
data indicate tha¢ scales a$®?% independent oR, and as
R independent of coverage, in nearly perfect agreement
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with the prediction of the LFT. The surface roughness, as
computed directly from the surface height function and
shown in Fig. 4, appears to scale with coveragé®$ This
exponent is significantly lower than the value expected from
LFT, 0.25. In addition, the roughness does not scale well at
all with R for any coverage. A different measure of the sur-
face width, the average peak-to-peak heighis shown in
Fig. 5 anddoesdisplay reasonable scaling with both cover-
age andR. So long as the surface width is below about 10
(roughness-4%), thescaling of this quantity with coverage

TABLE I. Theoretical and simulated exponents.

Linear fluctuation theory KMC simulation

b)
| 1 R 0 R 0
100 1000
DIF Coverage 3 1/6 1/4 0.1720.01  0.24:0.01
w -1/6 1/4 0.18:0.01
FIG. 4. Variation of the surface roughne@s computed from H —0.08:0.04  0.25:0.05
the surface height functiopsvith D/F (a) and coveragéb). Heavy o —-1/3 0 —0.25+0.05 0.0x0.05

lines in (b) have slopes of 0.18 and 1/4 for comparison.
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is very consistent with a power of 1/4. TRescaling is weak, In conclusion, we have demonstrated that although the
more consistent with~1/12 power, as opposed to the 1/6 existence of a constant step edge density can be explained by
power predicted by the LFT. a transition of the entire surface to step flow growth, this is

Table | is a summary of the exponents for the Wolf- not the only explanation. It can also be the subtle balance
Villain LFT and those extracted from the simulation data.Petween lateral coarsening and the generation of surface
The data can be summarized as follow: Wolf-Villain width (roughneskthat properly' accounts for this behavior.
theory correctly predicts the time independence of step edgeh€ layer-by-layer growth regime is correctly described by

density. (i) The correlation length scaling measured is agthe Wolf-Villain linearized theory for height fluctuations to

predicted by LFT. Therefore, the in-plane structure is COr_the extent that it accounts for in-plane structure and the ex-

rectly accounted for by the LFT for all coverages down to aistence of a constant average step edge density. The linear

; ; theory fails, however, to account for the correct scaling of
zggéenglodr;glalgeragf %rc?r\pgg(t'lgé ;I—i?]e irrrlntshissurr(fea(i:r?]gw'(lj';tvscalg’tep density withR, but only because LFT does not describe
ing of the pegkxgo p)e/:ak surface wigt-h howevegr is 'consis surface width correctly. We, therefore, expect a breakdown

: . ' ~ of th iousl ling f illati
tent with the LFT in coverage, but not R Consequently the of the previously observed scaling for oscillation decay

. C oL . times, as this behavior does depend on the generation of
ratio of H to £ is time independent, as predicted by LFT, bUtsurface roughness, hence surface width. A further under-

displays a slightly differenR scaling, 0.25 vs 1/3. Interest- standing of the role of surface width in these systems is

ingly, the observed scaling off and ¢ (consistent with a1y required to satisfactorily complete this picture
~R™ 12914 and ~RY69', respectively do correctly ac- yred il P

count for the full scaling of the step densityassumed to be This work was supported by the NSF and DARPA
given by H/¢, hence validating the assumption of a meanthrough cooperative agreement DMS-9615854 as part of the
surface slope based on a single length scale,(Hq. Virual Integrated Prototyping Initiative.
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