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Relation between transmission rates and the wave functions in carbon nanotube junctions
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Electron transmission and wave functions through junctions with a pair of a pentagonal defect and a
heptagonal defect connecting two metallic carbon nanotubes are analyzed by the analytical calculation with the
effective-mass equation. The energy regi&n<E, is considered where the channel number is kept to two.
Close relation between the transmission rate and the wave function is found; the transmission rate is given by
the inverse squared absolute value of the wave function. The dependence of the transmission rates on the
energy and on the size of the junction is clearly explained by the nature of the wave function. Though the wave
function and the transmission rate calculated by the tight-binding model agree well with the corresponding
analytical results by the effective-mass approximation, the discrepancy becomes considerablgEwhen
=E.. To study the origin of this discrepancy, an efficient numerical calculation method is developed with a
generalized transfer matrix for the tight-binding model. Their numerical results are compared with the corre-
sponding analytical ones and the results show that the origin of the discrepancy comes from the evanescent
waves with the longest decay length in the tube parts.

I. INTRODUCTION law® WhenR,/Rs=0.5, the transmission rate shows a peak
structure as a function of the energy, while the corresponding
Recent experimental development on the carbon nanawave function shows a resonant feature, i.e., its amplitude is
tubes, especially electronic transport measurements for indenhanced in the middle of the junction part.
vidual nanotube$,has promoted much interest in the nano- Recently, Matsumura and Ando have confirmed the
tubes as a one-dimensional conductor with nanometersizepower-law decay forE=0 by using the effective-mass
Many experimental works concern the theoretical predictiorfheory™® We generalized their discussion to a more general
that the nanotube becomes metallic or semiconducting a&nergy regionE|<E., and obtained the complete analytical
cording to its circumferencé? The conductance of the me- form of the transmission rate with the two parame®j¢Rs
tallic nanotubes with potential energy disorder has bee@nd|E|/Ec.'® The agreement of the analytical transmission
studied®® The junction structures with a shape of a part of a'ate W|_th the numerical one is found to be falr.Iy g_ood as long
cone connecting two nanotubes with different radii have aIs@S|E|. IS not very C|OS§ tdc. By our generalization of the
been observell,and studied theoreticalfi*l They are effective-mass approximation, the band structures of the pe-

formed by a pair of a pentagonal defect and a heptagonéiOdiC multiple nanotube junctions, which are called the “he-
defect!?~3 By composing the nanotube junctions, the elec-lically coiled nanotube” in Ref. 17, can be also obtained as

tronic circuits with nanometer size might be designed. Theelosed analytical forms and their relation to the configuration
atom bond network of the nanotube junctions is uniquely®f the pentagon and the heptagon are clearly explained based
determined by its development map with the vector of the®D the symmetry featuré§ The effective-mass theory is de-

. . = rived from the tight-binding model and is valid when the
circumference of the connected thicker nanotigend that energy is near zero. It is suitable to obtain the analytical

of the connected thinner tublR;. We have calculated the yegyits and to explain the origin of the scaling law because it
conductance with Landauer's formula, i.e., the transmissiojreats not the discrete space but the continuous space, i.e., it
rate, for the various junctions connecting two metallic nano-jpes not necessitate the detailed atomic structures of the hon-
tubes by the tight binding mod&f Surprisingly, the depen-  eycomb latticé*51618-2rhough the analytical transmission
dence of the transmission rate on the paramd®gr<R;, and  rate of the nanotube junction by the effective-mass theory
E has a very simple form obeying the scaling law; in thehas been studied in detail in this way, the close relation be-
energy regionE|<E. where the channel number is kept to tween the transmission rate and the wave function observed
two in both the tubes, the transmission rate is independent éf the numerical result is not clarified by the effective-mass
detailed atomic arrangements as well as the angle betwegheory yet. In this paper, the spatial variations of the wave
the two tube axes but determined only by the two paramfunction are expressed unambiguously by the effective-mass
eters; one of the two parameters is the ratio of the circumtheory and it gives an intuitive explanation for the depen-
ference of the tubeR;/Rs and the other is the scaled energy dence of the transmission rate Ba/Rs. Furthermore, it will
E/E.. The close relation between the transmission rate andlso be found that its dependence on the energy has a close
the wave function in the junction part is also found by therelation to the other paramet¢E|/E. of the scaling law.
tight-binding modef° WhenE=0, the transmission rate de- These points are discussed in Sec. Ill. The concise expres-
cays with the thickness of the junction ag2# (Rs/R;)®  sion of the wave function characterized by only the two pa-
+(R;/Rs)®] while the spatial decay of the corresponding rameters will be useful when the scanning tunnel microscope
wave function in the junction part obeys the same powelSTM) images of the nanotube junction are analyzed.
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FIG. 2. Notation to represent the amplitudes of the wave func-
tion. It is illustrated with the first bar and the second bar in Fig. 1.
positive direction The site in thgth bar can be classified to the two groups according
to whether it connects with the righf € 1)th bar or with the left
FIG. 1. The development map showing the bond network of the(j — 1)th bar. The former and the latter are denoted py(closed
(2,2-(2,9 junction. The filled circle at the bottom and the open triangles and I;; (closed squargsrespectively, when the corre-

circle at the top in each bar indicate an identical atom. To form thesponding site has the boridwhich connects the neighboring bars
junction, the development map is rolled up so that the filled circleanq js numbered from the bottom to the top.

and the open circle coincide with each other in each bar. The solid

lines and the dashed lines represent the bonds within the bar ar&, i’ become the identical one. Thandj' sites are shown
those connecting the neighboring bars, respectively. The poin )

t _ _ o )
Ps(=Qs), P-(=Q,), andO are the centers of the pentagonal de- By the_ filled and the open circles in Fig. 1, r_espect|vely.
fect, that of the heptagonal defects, and the origin of the coordinate/VNenj =<0, thejth bar is formed by theng+n) unit cells of
respectively, which are also shown in Fig. 3. The two sets of thé"€ tWO'd'menS'({”a[ZD) graphite, where then Un'E cells
translation vectorge; ,€,} and{e;,€3}, and the corresponding sets are aligned along, and the others are aligned aloeg So
of orthogonal vector§e, ,6,} and{e,. ,,,} are shown. Note that the (m,n) tube defined in Ref. 4 is formed there. To connect
definition of sublattices\ andB are changed between the two sets. the (m,n) tube with anotherrf,,n,) tube, the other bars are
formed in the following way with integer parameteks

On the other hand, the discrepancy between the numerica (m,+n,) —(m-+n)=0 andl,=n,—n=0. For 1sj=<l,,
transmission rate with the tight-binding theory and the anathe jth bar consists ofn+j — 1 unit cells alonggl andn unit
lytical one by the effective-mass approximation become €onge|is alonge,, plus an extra atom that is represented in Fig.
siderable whefE| is very close tcE.; the numerical trans- 1 g the solidth circle. Forj =1+ 1, thejth bar consists of
mission rate shows a sharp dip there while the analytical ONE it cells alons,. followed bvm-+ 1« — 1. unit cells alon
does not. Since the effective-mass theory is an approxima? F2. ymrii=la 9
tion derived from the tight-binding model, the numerical re- 1, followed by n unit cells alonge,. The network made in
sult by the tight-binding model is considered to be the corthis way represents the junction of thenf) tube (=<0)
rect one. To discuss the origin of the sharp dip, the wavénd the (nz,n;) tube (=1,+1). This junction is called an
functions calculated by the tight-binding model have to be(M.;n)-(Mz,ny) junction hereafter. Then Fig. 1 corresponds
compared with those calculated by the effective-mass theory® the(2,2-(2,9) junction. A seven-membered ring is formed
To calculate the wave function by the tight-binding modelat the bottom of the first bar and a five-membered ring is
more efficiently, a numerical method is developed in Sec. I1introduced between thgth bar and thelg +1)th bar. There
From the comparison of the wave function calculated by thét® only six-membered rings elsewhere.
method in Sec. Il with the analytical one, we found in Sec. The number of the bonds connecting the-(L)th bar and
IV that the evanescent waves in the tube parts and the defetite jth bar is denoted by; as
levels at the pentagon and the heptagon have important roles

A

in forming the dip structures. bj=m+n (j<0),
Il. THE CONDITIONED TRANSFER MATRIX METHOD bj=m+n+j-1 (1sj=<ly),
Figure 1 shows the development map of the nanotube bj=m+n, (I3+1<j). )

junction. It is characterized by bars representing zigzag seg-

ments of the C-C bond network in the circumferential direc-The amplitudes of the wave function in thgh bar are rep-
tion of the single junction. They are aligned and numberedesented by the VeCtG}j:t(Cj,LCj,zy ...). Its component
along the directione;—e, wheree, and e, are the basic c;,i can be classified to the two groups according to whether
translation vectors of the graphite plane. Each bar is conthe corresponding site connects with the right (L) th bar or
nected with adjacent bars by the remaining C-C bonds. Thwith the left (j —1)th bar. These two groups are denoted by
network is rolled up so that the atoms denotedjbg the  r; andl;, respectively, as is shown in Fig. 2. Since each site
bottom of thejth bar and the top one of the same bar denotedn the jth bar belongs to only and necessarily one of the two
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groups, the dimension @}J equalsb;+b;;, which are de- where theith column ofU% is the normalized eigenvector
noted byd; hereafter. The bonds between the-(1)th bar Zyg, and A* is the diagonal matrix whosé ,{) element is
and thejth bar are numbered as Fig. 2 from the bottom to thethe eigenvalues’ .

top. According to this way of numbering, the amplitudes are  Unlike the tube parts, the “usual” square transfer matrix
also numbered by;_;; andl; ;, which have the bond num- cannot be obtained in the junction part, because the dimen-
bered byi (i=1,2,... ;). Then the tight-binding equation ;g ofc; and that ofc; . , are different, i.e., thé\; for 1

becomes <j=<I, becomes a rectangle matrix that has no inverse ma-
trix. Nevertheless there is@ _, X 2b; matrix that is similar
Eri_y=vy 'me le,i’) 2 L(;the inverse matrix of; . It is denoted byA; and defined
I!
and Ai=(AfA) AT (6)

This matrix satisfies the conditioyA; =1 butAjA;#1. By
Elji= y( rj,1,i+2 cw), (3)  this pseudoinverse matrix, we can define the “transfer ma-
" trix” T;=—A;B;. If Eq. (4) is satisfied, then

where the first and the other terms in the right-hand sides
represent the bonds between the neighboring bars and those
within the bar, respectively. Here we use the tight-bindingis satisfied, but its converse does not hold generally. It means
model including onlys orbitals with common hopping inte- thatc; in Eq. (7) cannot be chosen to be arbitrary but has to
gral y(=—2.7 eV) and common site energy chosen to besatisfy
zero. In order to get more accurate results, the effects from
the mixing with o orbitals caused by curvature of the gra- (Bj+AjTJ-)5j=O. (8
phitic plane also have to be considered. But we believe that ) - )
this tight-binding model gives a transparent view about this! © Make Eq.(7) equivalent to Eq(4), the condition(8) is
system and qualitative valid results. Another reason why thi§€cessary, so we call; a “conditioned transfer matrix”
model is used is that the purpose of this paper is to focus oRereafter. In our problem, the number of the independent
the effects from theonnectivityof the bond network rather "OWs of (B;+A;T)) is only one, so Eq(8) can be written as
than those from the curvature. > -

The tight-binding equation, Eq§2) and(3), can be sum- §j-¢;=0, ©)
marized by the matrix form as

where ‘§j is one of the nonzero rows oB{+ A;T;). Multi-
- - plying T; generates the coefficient at the bar with the de-
AjCj-1+Bjc;=0, (4) creased, so we define the positive direction along which

, decreases, i.e., from the right thicker tube to the left thinner
whereB; andA; are a D;Xd; matrix and a B;Xdj_; ma-  ype.

trix, r_espectively. In the Ief_(right) tube parts, i.e., Wheu'1_ By using the inverse matrix('V tvh)=(UL ,ut)~1
<0 (j=I1,+2), these matrixes become constant matrixes, _ . -
A_ andB, (Ag andBg). The transfer matrixes for the tube andK; =T 1 Tjrz... Ty 1, the relatlorl betweeq;, ., and
parts are obtained ag = —A[lBL for the left tube andrr ~ the right-going waves in the thinner tulk are summarized
= —A,;lBR for the right tube. The eigenvalues and eigenvec-as

tors of T, are classified into two groups &@{*,4%,} and

{1B#,y*;}. Hereafter,u=R and u=L represent the left VEKg X-

thinner tube and the right thicker tube, respectively. The ‘§,1+1

propagating waves in the former group, which gre with g K 0

|Bi|=1, are assigned ic=1, . .. n,, wheren , is called the Sy Gl 1= _ (10)
channel number of the corresponding tube. They carry the tgll_lKll_l ! 0

probability flow with the positive velocity; . The propagat-
ing waves in the latter group;_;= ¢ , carry that with the -
negative velocity—v;. From now on, the normalized ex- 2K

tended states with unit flowy;=yi/\v; and ¥  The (m,+n,)x (2m,+2n,) matrix in the left-hand side of
=y_;/\Jv; are used instead af; andy_; . The other states Eq. (10) is represented b@ hereafter.

for |i|>n, are evanescent waves and the sign mieans the Now we define all the necessary things to calculate the
direction along which they decay exponentially, i.g8/|  transmission rate and the wave function. When the electron
<1. The wave function in the tube parts are represented bis incident from the right and transmitted into the thinner

superposition of these eigenvectors and its coefficients argpe j.e., when? #0 andx" =0, the reflected wave® and
represented by as the transmitted wave’, are obtained from

0

Cj= UK (AM) FIXH + Uk (A#) TIx (5) xR=—(QUR)"{(QUR)XT (12)
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and

X:=VLKJ[UR-URQUR)YQUH IR, (12

respectively. The corresponding wave function in the junc- E-
tion part, i.e.,6j for 1=j=<lI,, is given by 3
2 o
¢ =Kj[UR-URQUR)"'QUHE. (13 | o —
For the inverse direction of the incident electraff,=0 F;

andx" #0, the reflected wave’; and the transmitted wave
xR are obtained from

oL
XZ
Xt =VLKUR(QUR) Y (14)
FIG. 3. Development map of the nanotube junctions. The lines
and E,P,PsEs are connected and become identical with the lines
F,Q,QsFs, respectively. The rectanglesE,P;Q,F; and
x- PsEsF5Qs form the thinner tube and the thicker tube, respectively.
xR = (QUF_?)*l ol (15) The triangleO P;Ps is the same as th® Q,Qs rotated by 60°. The

quadrilateralP;P5Q5Q- forms a junction part with a shape of a
) o ) _ o part of a cone. A heptagonal defect and a pentagonal defect are
In this case, the wave function in the junction part is givenintroduced atP;(=Q,) andP5(=Qs), respectively. The direction

by of the circumferences of the tubes in the development map is rep-
. resented by their angleg and ; measured counterclockwise with
e respect to thex axis, which is defined in Fig. 1. The angle between
Ei =K;UR(QuUR)? ol (16)  the axes of the two tubeg is defined asp= 7;— 7s.

The transmission rate is obtained from E&2) or Eq.(15), resent the circumferences of the thicker tube and the thinner

while the reflection rate is obtained from Ha1) or Eq.(14)  tube, respectively. Line&;P;PsEs and linesF;Q;QsFs

from the matrix elements corresponding to the open channebre stuck to each other so that the points connecteéjby
i.e., x&; with i=1~n,. We have confirmed that unitarity become identical j=5,7). ThenPs(=Qs) and P7(=Q-)
holds very well in the conditioned transfer matrix method.turn out to be the centers of a heptagonal defect and a pen-
Agreement of their results with those calculated by usuatagonal defect, respectively. These points are marked also in
recursive Green’s-function methods is also quite good. IrFig. 1. Thus, from now on, the indices “7” and “5” are
both methods, matrix inversions are necessary albout ysed to represent the thinner and the thicker tube, respec-
times, but they can be done muph faster in th_e conditioneqve|y_

transfer matrix method than in the recursive Green's- The equilateral triangles AOP,Q,” and “ AOPsQs”

function method, because matrixes that have to be inverte\g,ith bases ‘P;Q,” and “ PsQs" have a common ape®
are real sparse symmetric matrixé§A; in the former \pich is chosen to be the origin of the coordinasey( in

method while those in the latter method are complex mag,iq papert® The origin O lies between the- (m+ n)th bar
trixes with no symmetry. Therefore the conditioned transfer '

matrix method is much faster than the recursive Green'sand the —(m+n—1)th bar in Fig. 1, sinceQ;0=me,
function method. This efficiency is expected to be more im-+n(e;—e;).

portant when more general related problems are calculated, Then the position of a general sitecan be labeled by
e.g., those including electron-phonon interaction or electron(s,ql,qz), whereq, andq, are integer components repre-

electron i_n_teraction self-consi_stently. Another advantage_ Ogenting the position of the unit cefl=q,6,+q,6, and s
the cqndmongd transier matrix r_nethod over .the recurs'v.erepresents the sublattice=A,B. The relation between the
Green’s-function method, which is not essential but practi- " - i . )
cally important, is that it is more intuitive and easy to be POsition vector of the site and its label §,9,,q,) is written
implemented. by

In Sec. IV, the wave functions are calculated numerically
by the conditioned transfer matrix method and compared to

those calculated analytically by the effective-mass equation. r(A,q1,00) =0+ (e,+e,)/3

Ill. EFFECTIVE-MASS THEORY AND ITS APPLICATION \/§

2\, 1 .
=g +qo+=|6+=(q,—0qr)e, (1
TO THE SINGLE NANOTUBE JUNCTION 2 (ql A2t 3)&t 5 (d2-auey (17

Figure 3 shows a development map of the nanotube junc-
tion neglecting the atomic sites. The vect6}§and |§7 rep- and
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F(B,qy,0,)=q+2(6,+6,)/3 D= (e 112 = &l12 0 )i (kD). (26)
\/§ 4\ . 1 . The wave number must satisfy the boundary condition in the
= > |1t dat 5 /et 5(d2—d1)ey. metallic nanotube parts as
2 3 2
(18) k-Rj=2ml; (j=5,7), 27

In the aboveg,=(e;+€,)/+/3 and éyzéz—él, which de-  wherel; is an integer representing the number of oscillations

fine the coordinate systenx,/) shown in Fig. 1. The am- of the envelope function around the circumferences. As for

plitude of the wave function at these sites is denoted byhe semiconducting tubes, the boundary condition becomes
¥(s,01,0,). In the effective-mass theory, the wave function different from Eq.(27),%° but we concentrate our discussion

is represented by on the metallic nanotubes in this paper. The upper sign and
the lower sign in EqQ.(26) represent the direction of the
#(s,q1,0,)= FSK(r*)W(qqu)jL FSK’(F)W(quql) (s=A,B). propagating waves. Whe is close to zero, i.ek=0, the

(29 only possible number df; is zero. It means that is perpen-

- , dicular toR; so thaty is the angle oR; with respect to the
Herew=e>fp@27r/3) andr is defined by Eqs(17) a”dK(}ﬁ) x axis. Within the eﬁ?ective-masgs theo]ry schemg, the possible
as a function of the labels(dy,qz). In Eq. (19), FAs ,  maximum value ofls (I;) is the channel number of the
w(%79%), andw(%2~%) are the envelope wave functions and thicker tube (the thinner tube Therefore, the range of
the wave function of the Bloch states at teand theK’ the energy where the channel number is kept to two in
point, respectively. This wave funcltion is/expressed bY @ne thicker tube (the thinner tubg is |E/y|<\3ma/
vector = (FK(r),FS(r+e./\3),FK (r),F5 (r+e/43)) Rs (|E/y|< \37al/R;). Discussions in this paper are con-
hereafter. This definition ofF’s is different from other centrated on the energy region where the channel number is
reference$™®1by certain factors. The reason why this kept to two in both tubes. It is represented HE|
definition is used is that the representation of the time rever< (,/37|y|)(a/Rs)=E. andE, is called a threshold energy
sal operation, | = *, becomes simpler as hereafter. From the propagating waves near khgoint,
, , ) , -+, the other propagating waves . are obtained by the
I(FA.FE.Fa .FE)=(FR)*.(F§ )*:(F/}i)*v(':g)*)-zo) éiﬁr;é reversal op?erzftiog(‘QO) gs s ’

. . L . P N A in2 — a—in/2y ari(ker
By using Eq.(19), the effective-mass equation is derived Y= == =(0,08""2, Fe 172k (29
from the tight-binding equatlogl 7uqsed in tglgqprecedlng S€CNote that the direction of the propagation is reversed by the
tion. When energyE is zero,w%~%2 andw?"" are solu-  time reversal operatioh In order to discuss the wave func-
tions of the tight-binding model,'so that the correspondingign in the junction part, the polar coordinate §) is useful.
solutions of the envelope functiorfs are constant. Thus ;5 relation to the coordinatex(y) is the usual one, i.er,

whenE is not zero but close to zero, spatial variation of the _ 7 +y2 tand=y/x. Then the wave function satisfies the
envelope functions is slow compared to the lattice constant, -« equation r2(ﬁ§+§§+k2)F:(22&§+zaz+ a§+22)F

e =|e,/=a=0.25 nm. In this case, itis a good approxima- = wherez=kr. The solution is represented by Bessel
tion to take only the first-order term in the Taylor expansionfynctionsJ,, and Neumann function,,, as

of the envelope function &B(r +e,)=(1+ad,)F(r). From

this approximation, one obtaih¥<° S
F:mZm e [ch‘m‘(z)ermN‘m‘(z)]. (29
(—idy+a,)F5(r+b)=eFX(r), (21) -
) o In Fig. 1, sitei is identical with sitei’ for i=1, .. .14,
(—idy—d)FA(r)=€eFE(r+b), (220 while corresponding labelss(q;,q,) are different between
i andi’; that fori is (B,1,—4—i) and that fori’ is
(idy+3 )FK’(F+ B)ZEFK’(F) (23) (A,3+i,—2—1i). In this way, the wave function in the junc-
vy AT tion part must satisfy the condition
(idy—a,)F R (N)=eFg (T+b), (24) Y(A.G1.02) = ¥(B.G1+ G, — Gy —1). (30
wheree=2E/(+/3ya) andb=e,/\/3. When the plane-wave Here transformation of the labelA(d;,q,)—(B,q:+qp,
solution Fﬁ,FEocexp(iilZ.F) is used in Eqs(21) and (22), —(q;—1) is equivalent to clockwise rotation by/3 with

respect to the origi®. From Egs.(30) and(19), the bound-

one can get the linear isotropic dispersion relation, o ; . . .
ary conditions in the junction part are derived as

k=k[=]el. (25 FX'(r,0+m/3)=wFK(r,6) (31
and  F5(r+b)/FR(r)==*exp(z), where  KKk) g
=(—esiny,ecosy), i.e., n is the angle ok with respect to
the y axis measured counterclockwise. It follows that the K 1
corresponding wave func:tionf;,(i is written as Fa(r, 0t m/3)= WFB (r,0). (32)
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The other boundary conditions andK in the right-hand side with-, — »;, andK’, respec-
) tively. To simplify the calculation, the integrations in the
Fi(r,0+7/3)=wFX (r,0) (33)  above are transformed as
and
1 7 gxi)R f_wmnj do 42
' X i .
Fi (r,6+w/3)=WF§(r,0) (34) Q; i — @23+ 42

are also obtained in the same way. The same boundary con- = | i o .
ditions are first discussed by Matsumura and Afti@he If variation of the wave function along the radial directions is

difference of Eqs(31)—(34) from those of Matsumura and SIOW near =Ry, this replacement can be allowéassump-

Ando by certain factors is due to the difference of the defi-fion I1). The relation kietwee}r: thel(laml<p!|tu<1es of the open
’ H _t

nition of FX'X" . From Egs.(31) and (32), the terms in Eq. channel in each tubey;='(aj, ,aj, ,aj_ ,aj_), and the

(29) for FK', and FX are not zero only whem=3p+2 (p coefficients representing the wave functions in the junction

= integer)/.A Because the open chanhet 0 in the tube parts part,g="(cz,d,cy,d;), are summarized in the following:

is spatially uniform along the circumference, it is better fitted

to the components with smallém| in Eq. (29) than to those 1

with larger|m|. So we assume that one can neglect all the ajZE\/EJ'P(ﬂj)MA(ﬂj)L(kRj)éfYJQ, (43)

terms except those witp=0 andp=—1 in Eq. (29) (as-

sumption ). Then the wave functions can be written as

whereM is a constant matrix given BY

FK =e2%f,(z)+e 1% ,(2) (35)
and € J3 €
K_ 20 —ig Y 0 -5
FB—e fz(Z)_e fl(Z), (36) |€| 2 |€|
where 0 _ \/_§ —j 0
2
fm(2)=Cmdm(2) +dyNm(z)  (M=1,2). (37) M= 3 (44)
From Egs.(21) and (24), the other two wave functions 0 T ! 0
FK" andFX can be derived fronFX andF§ as . e
i 0 0o ——
;e . |l 2 |el
Fo =g~ €M@ +e *T(2)], (39)
. A(7n) is a diagonal matrix, wherd ; ;= A3 = e'” and Ass
Fk:m[ei(??z(z)jLe*iZG?l(z)], (39 =Aj3,=€”". P(n) is defined by Eq(41) as
where eln2  g-inl2 0 0
T1(2)=c135(2) +d1Ny(2), 0 0 e 172 _gln2
B P(n)= 0 0 e im2  ginl2 (45)
fZ(Z):CZ‘Jl(Z)+d2N1(Z)- (40) ei 7l2 —e_i77/2 0 0

In the above we used the recursion formula of the Bessel
functions and Neumann functioRS It is easily confirmed .
that Egs.(38) and (39) satisfy the boundary conditions Egs. The matrix elements ofL(z) are L;;=L33=J1(2), L1,
(33) and(34). The amplitude of the open channel in the tube, = L34=N1(2), L21=L43=J2(2), andL,,=L4,=Ny(2). The
which is denoted by, is obtained from Eq(26) as other matrix elements df(z) are zero. From Eq43), the
relation betweeny; and a; is given bya7=Y7Y5_1a5 with
K __ 1 fpi D) (@l 72EK 4 a—iml2EK o the three parameterkR;, kRs, and ¢= »,;— 75 (angle be-
aji_z\/ﬁj Q dxD(el PR e ) (j=5.7) tweenR; andR; in the development mapThis reads as
(41)

. 2 . R R
for the K point. The value ofa|* equals the probability flow ar. ( ty 12 ) as.

g

as shown in the Appendix. The indices and — mean the R
direction along which the electron waves propagate. The ag_
path of the integral of E((41) is the straight lineP;Q; , and

the angle with respect to theaxis is denoted byy; . Equa-

tions fora}‘t’ are obtained from Ed41) by replacing*, 7;, where

t21tI
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3 3 (17,17) - (18,21)
. . 1
c05<§¢>), |sm<§¢) [ %,___
ti=hy| /3 3 : (47) e
I sin Egb , CoO Ed’ TE, 08 l
g I :,'1 3
5 06| |
3 e ;% 0.6 . ’,'
co > b, i sin > ¢ E _ “
S H !
tb=h_| /3 3 |\ |- 9 g %y I
i sin Ed) , co Ed) 2 ' |
= L (10,10)- (1821) — — — |
02t ! (14,5) - (16,22) -----xnn-a- |
The factorsh, andh_ in Egs.(47) and(48) are represented oo
by '
O 1 1 1 1 1 1 1
__1 — 0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
h.=—7[X12(kR7,kRs) = X51(kR7,kRs) | Energy ( units of [v] )
i . .
+ +3 FIG. 4. Transmission rates per chanflehs a function of the
2\/§[Xll(kR7’kR5) a X2 KRy kRs) ], (49) energy. The solid lines represent those calculated by(EL.for
two values ofR;/R5;=0.516,0.844. The other lines represent those
where calculated by the tight-binding model for tt&7,19-(18,21) junc-
_ tion, the(23,8-(16,22 junction, the(14,9-(16,22 junction, and the
Xi,j(21,22)= VZlZZW{‘]i(Zl)NJ’(ZZ)_Ni(zl)Jj(Zz)}- (10,10-(18,2) junction. The values of §,R;/Rs) of these four

(50 junctions are (0.01#,0.871), (0.116,0.844), (0.114,0.516),
The considered energy regid&|<E. corresponds to the and (0.014r,0.512), respectively. Since th@8,2]) tube and the
region 0<kRs< 2. It can be easily confirmed analytically (16,22 tube have similar radii, their threshold energies are almost
that Eq.(46) satisfies the time reversal symmetry and unitar-the same, i.e£.=0.16y].
ity. The transmission rate per channel denoted liy calcu-

lated from Eq.(46) as tybe, and there is no incidence from the thinner tube, i.e.,
a7_=0. As in Sec. Il, it is called the positive incidence
B . 2 direction. Whenever the two incident waves are “orthogo-
T=1h,|*= ' nal” and have the same flow, ielal!)|=]a?)| and

2 2
(1/6) >, > (3/4)+172X2(kRs,kRy) { +1 tal)* . al?)=0, the corresponding two transmitted waves
mhist (51) are also orthogonal and have the same flow, becalise
=1/T. Note that it does not hold generally and is character-
and it gives the conductance as o=2T by Landauer's istic of the nanotube junctiof?:?®
formula. In Fig. 4, the two solid lines represent the values of The two orthogonal transmitted waves are represented by
T calculated by Eq.(51) for two values of R7/Rs D =t(a, a,) anda!?="(—a} a}). In the analytical cal-
=0.516,0.844. The other lines represent those calculated yjation, we use different normalization from that of Sec. II;
tgg t'ghltéb'znd'_”g rr;_odelﬂflor ;2‘&17,112-2(18_,2]) {_UnCt'O”a t&e we take the transmitted waves with unit flow represented by
210:51;)0(-(1532];[;35(;32}1. Teh(e v’a?u(es ,ofzgéftlj?:(ill?(;?’o?r:hes: |a(7')+|=il(i)|n th|s.sect|on while the mmdgnt waves have_ unit
four junctions are (0.014,0.871), (0.116,0.844), flows |at) =1 in Sec. Il. Correspgndmg l/yave functions
(0.1147,0.516), and (0.014,0.512), respectively. Since the denoted byy() are obtained fromg=Y;'a{’ and Egs.
(18,21 tube and the(16,22 tube have similar radii, their (35)—(40). They depend on the phasesagfanda,, but the
threshold energies are almost the same, Eg=0.16y|. It  sum of the squared absolute values of thek(s,q;,q,)
can be seen that the transmission rate by the tight-bindinge| ¥*)(s,q1,9,)|?+|#?(s,9:,9,)|?, does not depend on
model with fixedR;/Rsg is almost independent of the angle them and can be determined uniquely. Therefore, we discuss
¢ and its agreement with Eq51) is fairly good*® When W =|yD)|2+|4?)|2 rather thar ¢*)|? and|y(?)|? hereafter.
E=0, T becomes consistent with Ref. 15 as Similar discussions are also possible for the negative inci-
dence direction. Th& (s,q;,9,) in the junction part is de-
4 rived as

T= : 52
(Rs/R7)%+ (R7/Rg)3+2 (52

2

[

€

Equation(52) reproduces well the numerical results in Ref. V(A 01,02) = ar izl (314~ XP +XP,+2

8. N
We are now ready to consider the analytical calculation of

the wave functions by the effective-mass theory and its rela- Xco

tion to the transmission rate. Let us consider the case where
the two wavesal) (i=1,2) are incident from the thicker and

€l

21
0+ ?(Ch_%)) Xi,lxi,2} (53
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. 1/T1+ R4/ Ty = ©(kRg, kry )

X2 1+ XP 2W
€ D(kR 5 , kry)

2
1 _
W(B,a1,00)= 55 2, (3147

2
xcos( 60— ?(Ql_QZ))Xi,lxi,Z}a (54

where X; ;=X ;(kKR;,kr) is defined by Eq.(50), with the
circumferenceR; of the tube into which the electron is trans- R, /Ty
mitted. That is to sayR;=R; and kR;<kr<kRs<2 for
the positive incidence direction, whilR;=Rg andkR,<kr
<kR, <27 for the negative incidence direction. Note that
the squared wave functioW in Egs. (53) and (54) does
depend on the sign of energy unlike the conductance in Eq
(51). Note also that the sign d is the inverse of that o,
E/|E|=—€l|e|==1, because the transfer integral is
negative. In the right-hand sides of E¢53) and (54), only
the third term depends on the an@leand it becomes zero as
E approaches zero, becau¥g;—0. Therefore the spatial
oscillation of ¥ along the# direction decreases with de-
creasing E|.

There are several possible choices of the basic translatiol
vectorse; ande,. The wave function represented by Egs.
(53) and (54) should be invariant under the change of the

choice. Whene;=e, and e;=e,—e,; are used instead of

(e,,e,), the corresponding’,y’ axes are rotated byr/3 ®( kR 5, kr,) D’
with respect to originak,y axes as shown in Fig. 1. Corre-
spondingly, the polar coordinates and the labels are trans 1/T,+R,/T o= ®(kRs, kry)
formed as (,0)—(r,0—m/3), (A,q1,9,)—(B,q;
+q,,—q;—1) and B,9;,9,)—(A,q;+0,+1,—q;—1). FIG. 5. Schematic development maps r_epresenting th_e relation
For example, the site indicated by the square symbol near tHetween the radllal norep and the transm|§S|0n rafe The thicker
origin O in Fig. 1 has two different labels, which ara.0,0) tube and the regio@C’'D’'D are common in both the development
defined by é,,6,) and @,0,— 1) defined by &,,65). Under P>
this transformation of i, ) and (s,q;,0q,), the values of between the radial norm and the transmission rate. It shows
Egs.(53) and(54) are invariant, that is to say, the results aretwo junctions with a common thicker tube where the inci-
independent of the way of the labeling, or choice of thedence direction is negative. Though they have different
vectors,él and 52. trar)smissi(,)n ,ratesTl and T,, thei_r wave functions in the
In order to relate the wave function to the transmissionf€9i0n CC'D'D and the transmitted wave are common.
rate, the integral of the squared wave function with a fixed rljcr)?m r}g\;v glnm[\;\lllec igi" '%'ﬁ)e-’- iln)vgpsemgfer?re]e OrfatgiZIrar?clj?%
defined below should be introduced: 2 D(KR, kRe) + 1], 2[d(KRg,kR;)+1] and the trans-
or mission rateT of Eq. (51) are shown in Fig. 6 as a function
fI)(th,kr)EFf do[W(A;r,0)+W¥(B;r,0)] (_)f E/E. by the_ dashed lines, the dotted lines, and the solid
m lines, respectively. The curves are shown for the cases

1 2 R;/Rs=0.1, 0.3, 0.5, 0.7, and 0.9. For each valudiefRs,

_= 2 E (3/4)i—1xi2j(th’kr)_ (55) the inv_ers_e of the radial norm is close_to the corresponding
(AN ‘ transmission rate. Therefore, we can discuss the dependence

. . . . of the transmission rate oR;/Rs and|E|/E. by the radial

The third ter_ms in the “th'ha”d side of E¢S3) a_nd (54) norm. For this purpose, we show in Fig. 7 the radial norm for

do not contribute to the integral becaug-ds varies rap- e negative incidence directiods(kRs,kr) as a function of

idly as a function ofd. We call ® defined by Eq.(55) a r/Rs at six energie€/E,=kRs/(27)=0.1, 0.3, 0.5, 0.65,

radial norm, hereafter. The radial norm is normalized so tha@_& and 1.0. There are four regions of the parameter space

it equals unity ar =R;, i.e., at the exit of the transmitted that have different characters; they are region >¢IRs
wave from the junction part. It corresponds to the unit flow > 9o: 1>|E|/E.=0), region Il (0.9>r/Rs>0.1; 0.7

of the transmitted wave. Thus at the entrance of the inciden§|E|/EC> 0), region Il (0.9>r/Rs>0.1; 1>|E|/E,
wave into the junction part, the radial norin becomes the >0.7), and region IV (0.£r/Rs>0; 1>|E|/E.=0). In re-
sum of the amplitude of incident waveTlLand that of the gion I, all the curves in Fig. 7 are very close to unity. It
reflected waveR/T=(1—T)/T. Accordingly, the transmis- indicates that the corresponding transmission rate is near
sion rate T can be given byT=2/(®+1), where ® unity and independent 9E|/E. as is shown by the lines of
=®(kR;,kRs) for the positive incidence direction and R;/R5=0.9 in Fig. 6. In region IlI, the radial norm shows
=®(kRs,kR;) for the negative incidence direction. Figure 5 monotonic decrease as eith#Rs or |E|/E, increases. The

is the schematic development maps representing this relatiaecrease with respect tdRs becomes steep d&|/E. de-
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portional to Rs/r)® so that the transmission rate is almost

% proportional to R;/Rs)? at each value ofE|/E,,.
= The oscillating behavior in region lll can be interpreted as
g a resonant effect in the following discussion. The wave func-
@ tion propagates both in the radial and the angular direction.
® Its wavelength along the radial direction is assumed to be
:5_ close to that of the plane wave obtained from the dispersion
o relation (25); the wavelength is given by2/k=Rs|E./E|.
g When the length of the junction part along the radial direc-
Q tion, i.e.,Rs— Ry, coincides with half of the wavelength, the
£ . o resonance occurs. From this discussion, the condition of the
0 0.2 0.4 0.6 0.8 1 resonance can be easily obtained as
Scaled energy E/E_
R;/Rs=1—|E./2E]|. (56)

FIG. 6. Inverse of the radial norm for the positive incidence The minimum points of the curves in Fig. 7 in region I
direction defined by 2/b(kRy kRs)+1], and that for the negative - ¢orrespond to this resonance following approximately condi-
incidence direction 2 (kRs,kR;)+ 1] are shown by the dashed tion (56); it comes around/Rs=0.5 when|E|/E.=1 and
lines and the dotted lines, respectively. Here the radial nériis moves t(;wards the left 4E|/Ec decreases. Arourﬁd the reso-

def.'nEd in Bq(59). Values ofR; /R are 0.1,03, 0.5, 0.7, a'?d 09, pance point, the transmission is almost perfect. Such a reso-
which are attached to the corresponding lines. The transmission rate

per channel calculated by E¢1) is shown by the solid lines. It can nancea'hloweverl'), does nodt. oceur Itn regions |l ar;}d IV, since
be seen that the radial norm gives a good estimated value of th%‘e radial norm becomes divergent whenapproaches zero,

transmission rate. The horizontal axis is the energy normalized b€ Wh?n ?'thedEl/Ec:kRS/(ZW) or r/Rs apgroaches
E.. Here|E|<E, represents the energy region where the channel€r0. This divergence comes from the termskoi;(kr) in
number is kept to two in both the tube parts. Eq. (55), which is almost proportional to J¢)* for smallkr

values. Accordingly, the transmission rate decays with the
creases and is almost proportional ®(r)> when|E|/E, power law in proportion toR;/Rs)? in regions Il and IV.
<0.1. In the region lll, however, the radial norm oscillates

asr/Rs increases. WhehE|/E.=1 the radial norm has a IV. COMPARISON BETWEEN THE ANALYTICAL

minimum value at around/Rs=0.5. Correspondingly, the RESULTS AND THE NUMERICAL RESULTS

curves ofR;/Rs=0.5 are larger than those &;/R;=0.3 Since the effective-mass theory is an approximation of the
and 0.7 afE|/E.= 1 in Fig. 6. It oscillates also with increas- {jght-binding model as is explained in Sec. Ill, its results

ing |E|/E; when 0.4~Rs>0.2. The lines oRs/R;=0.3 N haye to be confirmed by comparing them to the correspond-
Fig. 6 show the corresponding oscillations. Around thejng numerical results from the tight-binding model. In this

boundary between region Il and IlI, the decrease of the radiadection, we shall compare the wave function calculated nu-
norm with increasing /Rs becomes critical as is indicated merically by the tight-binding moded?,— With those deter-

by the plateau of the curve correspondind&¥E.=0.65 in . , :
! . c mined analytically by Eq953) and(54), V. For the numeri-
Fig. 7. Correspondingly, all the curves B /Rs=0.7, 0.5, cal calculation with the tight-binding model, the conditioned

and 0.3 in Fig. 6 cross each other *’?“OU“O‘ th_e boundary ®ransfer matrix method explained in Sec. Il is used. Figure 8
ergy E/E.=0.7. In region 1V, the radial norm is nearly pro- shows the ratio of the corresponding quantitielscj(lflz

+[c{?3)/(T¥) as a function of radial distance for the
energyE=—0.09y|. The values are plotted for th&0,10-
(18,29 junction in Fig. 8a) and for the(17,179-(18,21) junc-
tion in Fig. 8b). Here the incidence direction is positi\té:?

is caused by the incident wave&, . For the opposite inci-
dence direction, similar results are also obtained. Here the
factor 1T =|h, |? defined by Eq(49) is necessary because
the transmitted waves have unit flow in E¢S3) and (54),
while the incident waves have unit flow in Ed.3). One can
N ——— see that the ratio is close to unit, i.e., the coincidence is fairly
10° | |E|/ECZO,8 RS EE=10 = good. Correspondingly, the transmission rate by the condi-
02 03 04 05 06 07080091 tioned transfer matrix and that by E&.1) cplnc!de well with
Radial distance . r/R each other whehE|<0.14v|, as shown in Fig. 4. The de-
’ 5 viation from unity becomes smaller §&| approaches zero,
FIG. 7. Radial norm for the negative incidence direction, i.e.,P€cause all the assumptions postulated in deriving &.
®(kRs,kr) is shown as a function of/Rs for six energies, and(54) are more valid for smallgiE|. The deviations, how-
kRs/(27)=E/E,=0.1, 0.3, 0.5, 0.65, 0.8, and 1.0. Hekeis de-  ever, become larger when=Rs in Fig. 8@a), while such a
fined by Eq.(55). The values ofE/E, are attached to the corre- feature is not found in Fig.(8). The most natural explana-
sponding lines. Both the axes are represented with a logarithmition for this difference is that the deviations are caused
scale. The inset shows the regions of the parameter space |, II, limainly by the evanescent waves in the tube parts, and their
and IV, which are used in the discussion in the text. effects become more significant as their decay lengths along

10°

Radial norm, @




PRB 61 RELATION BETWEEN TRANSMISSION RATES AND THE ... 8557

10 10
[ . [ Tight Effective
>pentagon o 9: _Binding 7Mass
N & I S & E=-015]y|
c ° - I T
_% heptagon & S 8 O m E=-0.1]7]
3 S
o = I
8 < 7T
z 1l > '
® o L
£ = 6
5 £ |
g S st
g [
o [
Z 4
O.l""""'I""I""IIIII 3:..,,|,,..|....|...-
15 20 25 30 35 40 0 5 10 15 20
() Radial distance (units of @) Position of the bar, |

10 [ FIG. 9. Norm of the wave function of each bim|? of the
(14,9-(16,22 junction forE= —0.1]y| and forE=—0.15y|. The
horizontal axis represents the position of the pahown in Fig. 1.
The incidence direction is positive, i.e., from right to left in this
pentagon figure. The dotted lines with closed symbols and the solid lines with

heptagon N open symbols correspond to those calculated by &gs.and(54),

¢ and those calculated by E(L3), respectively. The diamonds and
the squares correspond o= —0.15y| andE=—0.1y|, respec-
tively.

other hand, whelRRs=R-, as the case of Fig.(B), the eva-
nescent waves have similar decay lengths both in the thicker
and in the thinner tube side, so that the difference of the
deviation does not depend on the sides.

To see the spatial variation of the wave function, we show

|Ej|2 of the (14,5-(16,22 junction calculated by the condi-
tioned transfer matrix method and the corresponding quanti-

Ratio of the wave function

0.1 et ties determined analytically by Eq&3) and(54). The latter
28 30 _32 . 4 _36 38 40 is shown by the closed symbols joined by the dotted lines
(b) Radial distance  (units of a ) and the former is shown by the open symbols joined by the

solid lines forE=—0.1y| andE=—0.15y| in Fig. 9. The
horizontal axis is the number of the bgrwhich is almost
proportional to the radial distange The diamonds and the
squares correspond t&=—0.19y| and E=—0.1]y|, re-
spectively. The squares show that the results by the two
methods agree quite well. In contrast to this good agreement,
positive direction@ﬁ. Here 1T=|h_|?, defined by Eq(49), is the de_Viation becomes quite large f_or the diamond_s_V\jhen
used for the normalization. The vertical axis is represented with a>10' 1.e., ne_ar =Res; the _Wave f_unct|0n by th_e conditioned
logarithmic scale. Data at the pentagon and at the heptagon afEansfer matrix grows rapidly while the analytical one decays

shown by the closed diamonds indicated by the arrows. while approaching the thicker tube side. WH&j=E_, the
decay lengths of the evanescent waves are very large, and

the tube axis become larger, i.e., as they approach the exause the large discrepancies in this way. Corresponding to
tended states. The decay length is determinetishyn Eg. it, large discrepancies occur also in the transmission rate;
(27) asal (25 alRs)?— €2 Thus the discussion below only the data by the tight-binding model show the sharp dips
is concentrated on the most extended evanescent waves coearE=*=0.16y in Fig. 4. The sharp dip appears approxi-
responding tds ;= = 1. WhenRs>R;, as in the case of Fig. mately when 0.8 |E/E|<1, i.e., when the decay length of
8(a), the evanescent waves in the thicker tube side are mudfe evanescent waves in the thicker tube are larger than the
more extended and have larger effects than those in the thigiameter of the thicker tube. Evanescent waves with their
ner tube side. As a result, the deviation near the thicker tubgecay length larger than the diameter of the corresponding
side is enhanced compared to that in the other place. On tHebe are called “quasiextended” evanescent waves hereafter.

FIG. 8. Comparison between the wave functi¢a$’|? calcu-
lated by the tight-binding model, an#l defined by Eqgs(53) and
(549); it shows (c{})|2+[c{?|)/(T¥) as a function of radial dis-
tancer, (a) for the (10,10-(18,2)) junction and(b) for the (17,17-
(18,29 junction. They are shown fgr=1,2, ... J,. The energy is
E=-0.09y|. Here|c(¥|? is caused by the incident waves with
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In Fig. 8, data corresponding to sites belonging to the 4.5
pentagonal defect or the heptagonal defect are shown by
closed diamonds and indicated by arrows. They indicate thai 4
the numerical wave function calculated by the tight-binding
model is more localized at the defects than the analytical
wave function. Hereafter a localization strength for the [
direction at the defect is defined as the ratio between the 2 3 [
numerical norm per site at the defect and that of the bars the = :
defect belongs to. It is calculated by the tight-binding model £ -5}

€—— (10,10) - (18,21)

pentagon

35

a

and represented by 3(.c |coil*+[c1ul?)(dotdy)/ g [
(7Icol?+7|ce/?) at the heptagon and S(y.cfci i & 2f N AT
1o, A+ 1)/ (56 25, 47 at the penta- & (| 07471820
. . . . N O
gon with the notation of Sec. Il. Helie= C,, means that site § s
i belongs to then-membered ring defect. Since the radial § ¢ /)
distancer in the bar is almost constant, the analytical quan- [ (14,5) - (16,22) —
tity corresponding to the localization strength has a maxi- 05:.......................................
mum  represented by S7_(|X; 1 +|X; )2/ S5 (X 4| 0.2 -0.15 -0.1 -0.05 0 005 0.1 0.15 0.2
+|X; o|?) <2 that is shown from Eqg¢53) and (54). There-  (a) Energy ( unitsof |y| )
fore, we can say that the wave function is “quasilocalized”
at the defect when the localization strength is larger than 61

two. The localization strength at the pentagon and that at the
heptagon are shown as a function of the energy in Figg)10
and Fig. 10b), respectively. The calculated junctions are
common with those in Fig. 4. The localization strength of the
(17,17-(18,2) junction shows the quasilocalization at both
the defects whenE|=E,.. It also shows asymmetry with
respect to the energy axis; the localization strength at the
pentagon(at the heptagonaroundE=—E; (E=+E,) is
larger than that around the energy with the opposite sign.
These results indicate that the quasilocalization occurs due t
the mixing between the quasiextended evanescent waves ar
the “defect levels.” Here the defect levels are definedhas
discrete energy levels 2| y|cos(2m/n) (I=1,2, ... n) of an
isolated n-membered ring calculated by the tight-binding
model?® Since the energy region around zero is considered
now, the discrete level closest =0, which is atE

W

(17,17)-(18,21) —

(23,8)-(16,22) N

1
'
1
'
) -
P
L il

.ot

P

Localization strength at the heptagon
(98]

=—0.6187y| for the pentagon, and &= +0.443y| for the ol
heptagon, is the most important. The closer distance in the -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 015 0.2
energy between the two states enhances their mixing so thgp) Energy ( unitsof |y| )

it causes the asymmetry with respect to the energy. Since the o o

defect levels are caused by the discreteness of the lattice, FIG. 10. The localization strength for tiedirection (a) at the

these results cannot be reproduced by the effective-maggntagon andb) at the heptagon as a function of the energy. The

equation. incidence direction is positive. The solid lines, the dotted lines, the
As R, /Rs decreases, however, the localization strength afiashed lines, and the dot-dashed lines correspond t¢130-

the heptagon decreases as is shown in Figo)ithe local- (8.2 junction, the(17,17-(18,2] junction, the (14,5-(16,22

ization strength at the heptagon of t9,10-(18,23) junc- junction, a.nd the(23,8)-(16,22.) junction, respectlyely. The calcu-

tion is less than that of the.7,17-(18,21 junction. It can be lated junctions are common in this figure and Fig. 4.

explained as follows. The energy where the quasiextendeg, /R causes the decrease of the localization strength at the
evanescent waves in the thinner tube side appear is aroum@ptagon whefhE|=E,. Though the reason for this decrease
E=*E.Rs/R;. As R;/Rs decreases, it becomes distantis not clear yet, the dependence of the localization strength
from the considered energy regiff| <E, so that thereisno onR,/Rs with a fixed ¢ is the same as that explained in the
quasiextended evanescent waves in the thinner tube sidgreceding paragraph.
Though there are the quasiextended evanescent waves in theln summary, we can say that the defect level is mixed
thicker tube side, the defect level of the heptagon cannot baith the quasiextended evanescent waves only when they are
mixed with them due to the large spatial distance betweeRlose to each other both in the energy and in the space. The
the heptagon and the thicker tube. analytical results by the effective-mass approximation are
By comparing the (23,8-(16,22 junction with the not appropriate when the evanescent waves become quasiex-
(17,19-(18,21) junction or comparing the14,9-(16,22  tended. The width of this energy region, however, is only
junction with the(10,10-(18,21 junction in Fig. 10, one can about 0.E.. Except for these narrow energy regions, the
see that increase op from 0.0kr to 0.1w with a fixed analytical results are appropriate enough.
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V. SUMMARY AND CONCLUSION the discrepancies between them becomes considerable. From
the dependence of the discrepancies on the radial distance,
N . . we speculate that they are mainly due to the evanescent
nanotubes with different circumferences by a pair of the peng, ., es with their decay length larger than the diameter of the
tagonal and the heptagonal defect are investigated. Both the,responding tube and they are called quasiextended eva-
wave function and the transmission rate are analytically 0bpegcent waves. The quasiextended evanescent waves cause
tained by the effective-mass equation, and a close relatiofhe sharp dip of the transmission rate, which is absent in the
between them is found. To discuss the close relation, thgnalytical result. When the quasiextended evanescent waves
junction part is divided into pieces according to the radialand the energy levels of the-membered ring defectn(
distancer from the thinner tube side and the radial norm of =5 7) are close both in the energy and in the space, mixing
the wave function is evaluated in each piece. The radial norrbetween them appears as the enhancement of the wave func-
is determined by the two paramet¢Ed/E. andr/Rs, where  tion at the corresponding defect. Nevertheless, coincidence
E. andRg are the threshold energy and the circumference obetween the analytical wave functions and the numerical
the thicker tube, respectively. The transmission rate approxienes is fairly good except for the narrow energy region 0.9
mates the inverse of the radial norm wheres substituted <|E/E¢|<1.
with the circumference of the thinner tutR,. From the The nature of the wave function discussed in this paper
dependence of radial norm on the two parameters, the pararian be observed by STM, because STM images reflect the
eter space is roughly classified into four regions; region llocal density of states, which are proportional to the sum of
(1>r/Rs>0.9; 1>|E|/E;=0), region Il (0.9>r/Rs>0.1;  the squared wave functions, E¢S3) and(54), in the nano-
0.7>|E|/E;=0), regions Il (0.9-r/Rs>0.1; 1>|E|/E, tube junction part. The third terms in E453) and(54) give
>0.7), and region IV (0.2r/Rs>0; 1>|E|/E.=0). Inre-  rise to the V3% /3 pattern or the oscillation along the
gion |, the radial norm is close to unity so that the corre-direction in the STM images. They fade away |& ap-
sponding transmission is almost perfect, independent gproaches zero. It is also expected that the images depend on
|E|/E,. In region I, the radial norm oscillates near unity as the direction of the electronic current “along the tube axes,”
the function of either of the two parameters. The period ofwhich should not be confused with that of the tunneling cur-
the oscillation with respect tois approximately the same as rent “from the STM tip to the sample.” WheRs/R;>1
half wavelength. Here the wavelength is that of the planeand E=0, for example, the squared absolute value of the
wave, i.e., it is obtained from the linear dispersion relation ofwave function per atom in the junction part is almost propor-
the monolayer graphite, Eq25). Almost perfect transmis- tional tor? when the current flows from the thicker tube to
sion due to the resonance occurs in region 11l when the radiahe thinner tube and to ¥ when it flows along the inverse
length of the junction pai®;— R; coincides with this period, direction. We expect that these results will promote the in-
because the corresponding radial norm has a minimum valueestigation of the nanostructures composed by the nanotubes
there. As eithetE|/E.=kRs/(27) or r/Rs decreases, how- including the nanotube junctions.
ever, the radial norm becomes divergent owing to the term
krN'ﬁ(kr) so that the corresponding transmission rate ap- ACKNOWLEDGMENTS
proaches zero. It leads to the power-law decay of the trans-
mission rate proportional toR;/Rs)® in the regions Il and
IV instead of the resonant featuté:1®

The nanotube junction can be considered as a combin
system, that is the quasi-two-dimensional structthe junc-
tion pard) connecting the two quasi-one-dimensional struc-
tures(the tube parts The wave functions in the former part
become the 2D waves, whose radial parts are given by the APPENDIX

sum of Ji(kr) andNj(kr) (i=1,2), while they are the 1D |, the tight-binding model, the probability flow from site
plane waves in the tube parts. Nevertheless, the condition of; sitej is represented by Ina¢H, ), wherea, is the
[ i P I

the relzsonﬁlncfet;]n rfglor: lll, E¢56), IItS' odptalpedtr:r()trr;hth? amplitude of the wave function at siteandH; ; is the hop-
\c/:vc%?)gr:lgntsoof thee wa\f)ea:‘ﬂicvt\?g\rlleiﬁ thlgjllj(;wact?c?n paa rtkre) Ourping integral connecting siteandj. Conservation of the flow
andN;(kr) (i=1,2), are combined appropriately to be fitted is guaranteed by the tight-binding equatifia; = 2;H; ;a; .

well with the 1D plane waves in the tube parts. On the Othel:,]neitgésbg;peég;]’jsige?og] az rirc; q.?Q'g)’ v]:/: r?“r:"ir?; dté atrhee ncenarrgst

?hin?éé?:j \évi?gcetigin?:c;g ‘7‘22;\"7' tgre] dpﬂ,wet::?;vugscﬂ al,[?]gglanotube part in Fig. 1. The amplitudes of wave functions
9 ' y are represented by;; andl;; in the same way as Fig. 2.

componenwz(kr) be<_:0me_s dominant. In other v_vords,_the Then the flow between the—1th bar and theth bar is
wave function in the junction part has the two-dimensional m+n *
character in regions Il and IV so that its matching with therepre_sen?ed by =y Im(ril,0)- Hereaftgr the common
plane wave in the tube parts becomes worse than in regiolﬂopp'ng integral _between the nearest neighbprand the
lll. The wave function in the junction part has different di- Iatt|ce.consta[1a 'S_ chosen to k?e units. The flow corre-
mensionalities in this way. sponding to ¢y, in Eq. (26) is J=msin(y—k,+27/3)
The wave functions analytically obtained by the effective- + N sin(— 7+k;+27/3), where the first term comes from the
mass equation are compared with that numerically obtainef? bonds, ki<m, and the second term comes from the

by the tight-binding model. WhetE| is very close toE;,  othern bonds. Herek;=Kk- €, and 7 is the angle oR, with

In this paper, the junctions connecting the two metallic
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respect to x axis, i.e. (cos@),sin(m)=(y3(m  number is kept to two, i.ekRg=<2r, is considered now. It
+n)/(2R;),(n—m)/(2R;)) and R,= JmZ+nZ+mn. By can be deduced from it that the flow is the almost constant
developing abouk; to first order and using the boundary value R; when Rs> J37. On the other hand, the value of
conditionmk; + nk,=0, the flowJ is represented as |a;.|? obtained by substituting’s in Eq. (41) with those of

3k Eq. (26) for zZK+ is alsoR;. Therefore, the normalization

5 1 2 2 factor in Eq.(41) is correct. Difference of the normalization

J=Ry 2R, m(n+m)+0O(ky) +O(ky). (A1) factor does not change the transmission rate, but when the
. . ratio between the wave function in the tube parts and that in

The absolute value of the second term in EAl) is less  the junction part is considered, the normalization factor in

than37R;/Rs, since the energy region where the channelEq. (41) has to be used.
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