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Relation between transmission rates and the wave functions in carbon nanotube junctions
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Electron transmission and wave functions through junctions with a pair of a pentagonal defect and a
heptagonal defect connecting two metallic carbon nanotubes are analyzed by the analytical calculation with the
effective-mass equation. The energy regionuEu,Ec is considered where the channel number is kept to two.
Close relation between the transmission rate and the wave function is found; the transmission rate is given by
the inverse squared absolute value of the wave function. The dependence of the transmission rates on the
energy and on the size of the junction is clearly explained by the nature of the wave function. Though the wave
function and the transmission rate calculated by the tight-binding model agree well with the corresponding
analytical results by the effective-mass approximation, the discrepancy becomes considerable whenuEu
.Ec . To study the origin of this discrepancy, an efficient numerical calculation method is developed with a
generalized transfer matrix for the tight-binding model. Their numerical results are compared with the corre-
sponding analytical ones and the results show that the origin of the discrepancy comes from the evanescent
waves with the longest decay length in the tube parts.
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I. INTRODUCTION

Recent experimental development on the carbon na
tubes, especially electronic transport measurements for i
vidual nanotubes,1 has promoted much interest in the nan
tubes as a one-dimensional conductor with nanometer s2

Many experimental works concern the theoretical predict
that the nanotube becomes metallic or semiconducting
cording to its circumference.3,4 The conductance of the me
tallic nanotubes with potential energy disorder has b
studied.5,6 The junction structures with a shape of a part o
cone connecting two nanotubes with different radii have a
been observed,7 and studied theoretically.8–11 They are
formed by a pair of a pentagonal defect and a heptago
defect.12–14 By composing the nanotube junctions, the ele
tronic circuits with nanometer size might be designed. T
atom bond network of the nanotube junctions is uniqu
determined by its development map with the vector of
circumference of the connected thicker nanotubeRW 5 and that
of the connected thinner tubeRW 7. We have calculated the
conductance with Landauer’s formula, i.e., the transmiss
rate, for the various junctions connecting two metallic nan
tubes by the tight binding model.8,9 Surprisingly, the depen
dence of the transmission rate on the parametersRW 5 , RW 7 , and
E has a very simple form obeying the scaling law; in t
energy regionuEu,Ec where the channel number is kept
two in both the tubes, the transmission rate is independen
detailed atomic arrangements as well as the angle betw
the two tube axes but determined only by the two para
eters; one of the two parameters is the ratio of the circu
ference of the tubesR7 /R5 and the other is the scaled ener
E/Ec . The close relation between the transmission rate
the wave function in the junction part is also found by t
tight-binding model.8,9 WhenE50, the transmission rate de
cays with the thickness of the junction as 4/@21(R5 /R7)3

1(R7 /R5)3# while the spatial decay of the correspondi
wave function in the junction part obeys the same pow
PRB 610163-1829/2000/61~12!/8548~13!/$15.00
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law.8 WhenR7 /R5.0.5, the transmission rate shows a pe
structure as a function of the energy, while the correspond
wave function shows a resonant feature, i.e., its amplitud
enhanced in the middle of the junction part.9

Recently, Matsumura and Ando have confirmed t
power-law decay forE50 by using the effective-mas
theory.15 We generalized their discussion to a more gene
energy regionuEu,Ec , and obtained the complete analytic
form of the transmission rate with the two parametersR7 /R5
and uEu/Ec .16 The agreement of the analytical transmissi
rate with the numerical one is found to be fairly good as lo
as uEu is not very close toEc . By our generalization of the
effective-mass approximation, the band structures of the
riodic multiple nanotube junctions, which are called the ‘‘h
lically coiled nanotube’’ in Ref. 17, can be also obtained
closed analytical forms and their relation to the configurat
of the pentagon and the heptagon are clearly explained b
on the symmetry features.18 The effective-mass theory is de
rived from the tight-binding model and is valid when th
energy is near zero. It is suitable to obtain the analyti
results and to explain the origin of the scaling law becaus
treats not the discrete space but the continuous space, i.
does not necessitate the detailed atomic structures of the
eycomb lattice.6,15,16,18–20Though the analytical transmissio
rate of the nanotube junction by the effective-mass the
has been studied in detail in this way, the close relation
tween the transmission rate and the wave function obse
in the numerical result is not clarified by the effective-ma
theory yet. In this paper, the spatial variations of the wa
function are expressed unambiguously by the effective-m
theory and it gives an intuitive explanation for the depe
dence of the transmission rate onR7 /R5. Furthermore, it will
also be found that its dependence on the energy has a c
relation to the other parameteruEu/Ec of the scaling law.
These points are discussed in Sec. III. The concise exp
sion of the wave function characterized by only the two p
rameters will be useful when the scanning tunnel microsc
~STM! images of the nanotube junction are analyzed.
8548 ©2000 The American Physical Society
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On the other hand, the discrepancy between the nume
transmission rate with the tight-binding theory and the a
lytical one by the effective-mass approximation become c
siderable whenuEu is very close toEc ; the numerical trans-
mission rate shows a sharp dip there while the analytical
does not. Since the effective-mass theory is an approxi
tion derived from the tight-binding model, the numerical r
sult by the tight-binding model is considered to be the c
rect one. To discuss the origin of the sharp dip, the w
functions calculated by the tight-binding model have to
compared with those calculated by the effective-mass the
To calculate the wave function by the tight-binding mod
more efficiently, a numerical method is developed in Sec
From the comparison of the wave function calculated by
method in Sec. II with the analytical one, we found in Se
IV that the evanescent waves in the tube parts and the de
levels at the pentagon and the heptagon have important
in forming the dip structures.

II. THE CONDITIONED TRANSFER MATRIX METHOD

Figure 1 shows the development map of the nanot
junction. It is characterized by bars representing zigzag s
ments of the C-C bond network in the circumferential dire
tion of the single junction. They are aligned and numbe
along the directioneW12eW2 where eW1 and eW2 are the basic
translation vectors of the graphite plane. Each bar is c
nected with adjacent bars by the remaining C-C bonds.
network is rolled up so that the atoms denoted byj in the
bottom of thej th bar and the top one of the same bar deno

FIG. 1. The development map showing the bond network of
~2,2!-~2,5! junction. The filled circle at the bottom and the ope
circle at the top in each bar indicate an identical atom. To form
junction, the development map is rolled up so that the filled cir
and the open circle coincide with each other in each bar. The s
lines and the dashed lines represent the bonds within the bar
those connecting the neighboring bars, respectively. The po
P5(5Q5), P7(5Q7), andO are the centers of the pentagonal d
fect, that of the heptagonal defects, and the origin of the coordin
respectively, which are also shown in Fig. 3. The two sets of

translation vectors,$eW1 ,eW2% and$eW18 ,eW28%, and the corresponding se

of orthogonal vectors$eW x ,eW y% and $eW x8 ,eW y8% are shown. Note tha
definition of sublatticesA andB are changed between the two se
al
-
-
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-
-
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by j 8 become the identical one. Thej and j 8 sites are shown
by the filled and the open circles in Fig. 1, respective
When j <0, the j th bar is formed by the (m1n) unit cells of
the two-dimensional~2D! graphite, where them unit cells
are aligned alongeW1 and the others are aligned alongeW2. So
the (m,n) tube defined in Ref. 4 is formed there. To conne
the (m,n) tube with another (m2 ,n2) tube, the other bars ar
formed in the following way with integer parametersl 1
[(m21n2)2(m1n)>0 and l 2[n22n>0. For 1< j < l 1,
the j th bar consists ofm1 j 21 unit cells alongeW1 andn unit
cells alongeW2, plus an extra atom that is represented in F
1 as the solidj th circle. Forj > l 111, the j th bar consists of
l 2 unit cells alongeW2, followed bym1 l 12 l 2 unit cells along
eW1, followed byn unit cells alongeW2. The network made in
this way represents the junction of the (m,n) tube (j <0)
and the (m2 ,n2) tube (j > l 111). This junction is called an
(m,n)-(m2 ,n2) junction hereafter. Then Fig. 1 correspon
to the~2,2!-~2,5! junction. A seven-membered ring is forme
at the bottom of the first bar and a five-membered ring
introduced between thel 1th bar and the (l 111)th bar. There
are only six-membered rings elsewhere.

The number of the bonds connecting the (j 21)th bar and
the j th bar is denoted bybj as

bj5m1n ~ j <0!,

bj5m1n1 j 21 ~1< j < l 1!,

bj5m21n2 ~ l 111< j !. ~1!

The amplitudes of the wave function in thej th bar are rep-
resented by the vectorcW j5

t(cj ,1 ,cj ,2 , . . . ). Its component
cj ,i can be classified to the two groups according to whet
the corresponding site connects with the right (j 11)th bar or
with the left (j 21)th bar. These two groups are denoted
r j and l j , respectively, as is shown in Fig. 2. Since each s
in the j th bar belongs to only and necessarily one of the t

e

e
e
id
nd
ts

te,
e

.

FIG. 2. Notation to represent the amplitudes of the wave fu
tion. It is illustrated with the first bar and the second bar in Fig.
The site in thej th bar can be classified to the two groups accord
to whether it connects with the right (j 11)th bar or with the left
( j 21)th bar. The former and the latter are denoted byr j ,i ~closed
triangles! and l j ,i ~closed squares!, respectively, when the corre
sponding site has the bondi, which connects the neighboring ba
and is numbered from the bottom to the top.
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groups, the dimension ofcW j equalsbj1bj 11, which are de-
noted bydj hereafter. The bonds between the (j 21)th bar
and thej th bar are numbered as Fig. 2 from the bottom to
top. According to this way of numbering, the amplitudes a
also numbered byr j 21,i and l j ,i , which have the bond num
bered byi ( i 51,2, . . . ,bj ). Then the tight-binding equation
becomes

Er j 21,i5gS l j ,i1(
i 8

cj 21,i 8D ~2!

and

El j ,i5gS r j 21,i1(
i 9

cj ,i 9D , ~3!

where the first and the other terms in the right-hand si
represent the bonds between the neighboring bars and t
within the bar, respectively. Here we use the tight-bind
model including onlyp orbitals with common hopping inte
gral g(.22.7 eV) and common site energy chosen to
zero. In order to get more accurate results, the effects f
the mixing with s orbitals caused by curvature of the gr
phitic plane also have to be considered. But we believe
this tight-binding model gives a transparent view about t
system and qualitative valid results. Another reason why
model is used is that the purpose of this paper is to focus
the effects from theconnectivityof the bond network rathe
than those from the curvature.

The tight-binding equation, Eqs.~2! and~3!, can be sum-
marized by the matrix form as

AjcW j 211BjcW j50, ~4!

whereBj andAj are a 2bj3dj matrix and a 2bj3dj 21 ma-
trix, respectively. In the left~right! tube parts, i.e., whenj
<0 ( j > l 112), these matrixes become constant matrix
AL andBL (AR andBR). The transfer matrixes for the tub
parts are obtained asTL52AL

21BL for the left tube andTR

52AR
21BR for the right tube. The eigenvalues and eigenv

tors of Tm are classified into two groups as$b i
m ,c1 i

m % and
$1/b i

m ,c2 i
m %. Hereafter,m5R and m5L represent the left

thinner tube and the right thicker tube, respectively. T
propagating waves in the former group, which arec1 i with
ub i u51, are assigned toi 51, . . . ,nm , wherenm is called the
channel number of the corresponding tube. They carry
probability flow with the positive velocityv i . The propagat-
ing waves in the latter group,c2 i5c i* , carry that with the
negative velocity2v i . From now on, the normalized ex
tended states with unit flowc̃ i5c i /Av i and c̃2 i

5c2 i /Av i are used instead ofc i andc2 i . The other states
for u i u.nm are evanescent waves and the sign ofi means the
direction along which they decay exponentially, i.e.,ub i

mu
,1. The wave function in the tube parts are represented
superposition of these eigenvectors and its coefficients
represented byxW as

cW j5U1
m ~Lm!1 j xW 1

m 1U2
m ~Lm!2 j xW 2

m , ~5!
e
e

s
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e
m

at
s
is
n

,

-

e

e

y
re

where thei th column ofU6
m is the normalized eigenvecto

c̃6
m , andLm is the diagonal matrix whose (i ,i ) element is

the eigenvalueb i
m .

Unlike the tube parts, the ‘‘usual’’ square transfer mat
cannot be obtained in the junction part, because the dim
sions ofcW j and that ofcW j 11 are different, i.e., theAj for 1
< j < l 1 becomes a rectangle matrix that has no inverse
trix. Nevertheless there is adj 2132bj matrix that is similar
to the inverse matrix ofAj . It is denoted byÃj and defined
by

Ãj[~Aj
†Aj !

21Aj
† . ~6!

This matrix satisfies the conditionÃjAj51 butAjÃjÞ1. By
this pseudoinverse matrix, we can define the ‘‘transfer m
trix’’ Tj[2ÃjBj . If Eq. ~4! is satisfied, then

cW j 215TjcW j ~7!

is satisfied, but its converse does not hold generally. It me
that cW j in Eq. ~7! cannot be chosen to be arbitrary but has
satisfy

~Bj1AjTj !cW j50. ~8!

To make Eq.~7! equivalent to Eq.~4!, the condition~8! is
necessary, so we callTj a ‘‘conditioned transfer matrix’’
hereafter. In our problem, the number of the independ
rows of (Bj1AjTj ) is only one, so Eq.~8! can be written as

tsW j•cW j50, ~9!

where tsW j is one of the nonzero rows of (Bj1AjTj ). Multi-
plying Tj generates the coefficient at the bar with the d
creasedj, so we define the positive direction along whichj
decreases, i.e., from the right thicker tube to the left thin
tube.

By using the inverse matrixt( tV1
L ,tV2

L )[(U1
L ,U2

L )21

andK j[Tj 11Tj 12 . . . Tl 111, the relation betweencW l 111 and

the right-going waves in the thinner tubexW 2
L are summarized

as

S V2
L K0

tsW l 111

tsW l 1
Kl 1

tsW l 121Kl 121

A
tsW2K2

D cW l 1115S xW 2
L

0

0

0

A

0

D . ~10!

The (m21n2)3(2m212n2) matrix in the left-hand side of
Eq. ~10! is represented byQ hereafter.

Now we define all the necessary things to calculate
transmission rate and the wave function. When the elec
is incident from the right and transmitted into the thinn
tube, i.e., whenxW 1

R Þ0 andxW 2
L 50, the reflected wavexW 2

R and

the transmitted wavexW 1
L are obtained from

xW 2
R 52~QU2

R !21~QU1
R !xW 1

R ~11!
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and

xW 1
L 5V1

L K0@U1
R 2U2

R ~QU2
R !21~QU1

R !#xW 1
R , ~12!

respectively. The corresponding wave function in the ju
tion part, i.e.,cW j for 1< j < l 1, is given by

cW j5K j@U1
R 2U2

R ~QU2
R !21~QU1

R !#xW 1
R . ~13!

For the inverse direction of the incident electron,xW 1
R 50

andxW 2
L Þ0, the reflected wavexW 1

L and the transmitted wav

xW 2
R are obtained from

xW 1
L 5V1

L K0U2
R ~QU2

R !21S xW 2
L

0 D ~14!

and

xW 2
R 5~QU2

R !21S xW 2
L

0 D . ~15!

In this case, the wave function in the junction part is giv
by

cW j5K jU2
R ~QU2

R !21S xW 2
L

0 D . ~16!

The transmission rate is obtained from Eq.~12! or Eq. ~15!,
while the reflection rate is obtained from Eq.~11! or Eq.~14!
from the matrix elements corresponding to the open chan
i.e., x6 i

m with i 51;nm . We have confirmed that unitarit
holds very well in the conditioned transfer matrix metho
Agreement of their results with those calculated by us
recursive Green’s-function methods is also quite good.
both methods, matrix inversions are necessary aboul 1
times, but they can be done much faster in the conditio
transfer matrix method than in the recursive Green
function method, because matrixes that have to be inve
are real sparse symmetric matrixesAj

†Aj in the former
method while those in the latter method are complex m
trixes with no symmetry. Therefore the conditioned trans
matrix method is much faster than the recursive Gree
function method. This efficiency is expected to be more i
portant when more general related problems are calcula
e.g., those including electron-phonon interaction or electr
electron interaction self-consistently. Another advantage
the conditioned transfer matrix method over the recurs
Green’s-function method, which is not essential but pra
cally important, is that it is more intuitive and easy to
implemented.

In Sec. IV, the wave functions are calculated numerica
by the conditioned transfer matrix method and compared
those calculated analytically by the effective-mass equat

III. EFFECTIVE-MASS THEORY AND ITS APPLICATION
TO THE SINGLE NANOTUBE JUNCTION

Figure 3 shows a development map of the nanotube ju
tion neglecting the atomic sites. The vectorsRW 5 andRW 7 rep-
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resent the circumferences of the thicker tube and the thin
tube, respectively. LinesE7P7P5E5 and linesF7Q7Q5F5

are stuck to each other so that the points connected byRW j

become identical (j 55,7). ThenP5(5Q5) and P7(5Q7)
turn out to be the centers of a heptagonal defect and a
tagonal defect, respectively. These points are marked als
Fig. 1. Thus, from now on, the indices ‘‘7’’ and ‘‘5’’ are
used to represent the thinner and the thicker tube, res
tively.

The equilateral triangles ‘‘DOP7Q7’’ and ‘‘ DOP5Q5’’
with bases ‘‘P7Q7’’ and ‘‘ P5Q5’’ have a common apexO,
which is chosen to be the origin of the coordinate (x,y) in
this paper.10 The origin O lies between the2(m1n)th bar

and the 2(m1n21)th bar in Fig. 1, sinceQ7OW 5meW2

1n(eW22eW1).

Then the position of a general siterW can be labeled by
(s,q1 ,q2), whereq1 and q2 are integer components repre

senting the position of the unit cellqW [q1eW11q2eW2 and s
represents the sublattices5A,B. The relation between the

position vector of the siterW and its label (s,q1 ,q2) is written
by

rW~A,q1 ,q2!5qW 1~eW11eW2!/3

5
A3

2 S q11q21
2

3DeW x1
1

2
~q22q1!eW y ~17!

and

FIG. 3. Development map of the nanotube junctions. The lin
E7P7P5E5 are connected and become identical with the lin
F7Q7Q5F5, respectively. The rectanglesE7P7Q7F7 and
P5E5F5Q5 form the thinner tube and the thicker tube, respective
The triangleOP7P5 is the same as theOQ7Q5 rotated by 60°. The
quadrilateralP7P5Q5Q7 forms a junction part with a shape of
part of a cone. A heptagonal defect and a pentagonal defect
introduced atP7(5Q7) andP5(5Q5), respectively. The direction
of the circumferences of the tubes in the development map is
resented by their anglesh5 andh7 measured counterclockwise wit
respect to thex axis, which is defined in Fig. 1. The angle betwe
the axes of the two tubesf is defined asf5h72h5.
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rW~B,q1 ,q2!5qW 12~eW11eW2!/3

5
A3

2 S q11q21
4

3DeW x1
1

2
~q22q1!eW y .

~18!

In the above,eW x[(eW11eW2)/A3 andeW y[eW22eW1, which de-
fine the coordinate system (x,y) shown in Fig. 1. The am-
plitude of the wave function at these sites is denoted
c(s,q1 ,q2). In the effective-mass theory, the wave functi
is represented by

c~s,q1 ,q2!5Fs
K~rW !w(q12q2)1Fs

K8~rW !w(q22q1) ~s5A,B!.
~19!

Herew[exp(i2p/3) andrW is defined by Eqs.~17! and ~18!

as a function of the label (s,q1 ,q2). In Eq. ~19!, FA,B
K,K8,

w(q12q2), andw(q22q1) are the envelope wave functions an
the wave function of the Bloch states at theK and theK8
point, respectively. This wave function is expressed by

vector cW 5„FA
K(rW),FB

K(rW1eW x /A3),FA
K8(rW),FB

K8(rW1eW x /A3)…
hereafter. This definition ofF ’s is different from other
references6,15,16,19 by certain factors. The reason why th
definition is used is that the representation of the time rev
sal operationI, Ic5c* , becomes simpler as

I ~FA
K ,FB

K ,FA
K8 ,FB

K8!5„~FA
K8!* ,~FB

K8!* ,~FA
K!* ,~FB

K!* ….
~20!

By using Eq. ~19!, the effective-mass equation is derive
from the tight-binding equation used in the preceding s
tion. When energyE is zero,wq12q2 and wq22q1 are solu-
tions of the tight-binding model, so that the correspond
solutions of the envelope functionsF are constant. Thus
whenE is not zero but close to zero, spatial variation of t
envelope functions is slow compared to the lattice const
ueW xu5ueW yu[a.0.25 nm. In this case, it is a good approxim
tion to take only the first-order term in the Taylor expansi
of the envelope function asF(rW1eW x).(11a]x)F(rW). From
this approximation, one obtains6,19,20

~2 i ]y1]x!FB
K~rW1bW !5eFA

K~rW !, ~21!

~2 i ]y2]x!FA
K~rW !5eFB

K~rW1bW !, ~22!

~ i ]y1]x!FB
K8~rW1bW !5eFA

K8~rW !, ~23!

~ i ]y2]x!FA
K8~rW !5eFB

K8~rW1bW !, ~24!

wheree52E/(A3ga) andbW [eW x /A3. When the plane-wave
solution FA

K ,FB
K}exp(6ikW•rW) is used in Eqs.~21! and ~22!,

one can get the linear isotropic dispersion relation,

k[ukW u5ueu, ~25!

and FB
K(rW1bW )/FA

K(rW)56exp(ih), where (kx ,ky)

5(2e sinh,e cosh), i.e., h is the angle ofkW with respect to
the y axis measured counterclockwise. It follows that t
corresponding wave function,cW K6 is written as
y

a

r-

-

g

t,

cW K65~e2 ih/2,6eih/2,0,0!e6 i (kW•rW). ~26!

The wave number must satisfy the boundary condition in
metallic nanotube parts as

kW•RW j52p l j ~ j 55,7!, ~27!

wherel j is an integer representing the number of oscillatio
of the envelope function around the circumferences. As
the semiconducting tubes, the boundary condition beco
different from Eq.~27!,19 but we concentrate our discussio
on the metallic nanotubes in this paper. The upper sign
the lower sign in Eq.~26! represent the direction of th
propagating waves. WhenE is close to zero, i.e.,k.0, the
only possible number ofl j is zero. It means thatkW is perpen-
dicular toRW j so thath is the angle ofRW j with respect to the
x axis. Within the effective-mass theory scheme, the poss
maximum value ofl 5 ( l 7) is the channel number of th
thicker tube ~the thinner tube!. Therefore, the range o
the energy where the channel number is kept to two
the thicker tube ~the thinner tube! is uE/gu,A3pa/
R5 (uE/gu,A3pa/R7). Discussions in this paper are con
centrated on the energy region where the channel numb
kept to two in both tubes. It is represented byuEu
,(A3pugu)(a/R5)[Ec andEc is called a threshold energ
hereafter. From the propagating waves near theK point,
cW K6 , the other propagating wavescK86 are obtained by the
time reversal operation~20! as

cW K865IcW K75~0,0,eih/2,7e2 ih/2!e6 i (kW•rW). ~28!

Note that the direction of the propagation is reversed by
time reversal operationI. In order to discuss the wave func
tion in the junction part, the polar coordinate (r ,u) is useful.
Its relation to the coordinate (x,y) is the usual one, i.e.,r
5Ax21y2,tanu5y/x. Then the wave function satisfies th
wave equation r 2(]x

21]y
21k2)F5(z2]z

21z]z1]u
21z2)F

50, wherez5kr. The solution is represented by Bess
functionsJm and Neumann functionsNm as

F5 (
m52`

`

eimu@cmJumu~z!1dmNumu~z!#. ~29!

In Fig. 1, site i is identical with sitei 8 for i 51, . . . l 1,
while corresponding labels (s,q1 ,q2) are different between
i and i 8; that for i is (B,1,242 i ) and that for i 8 is
(A,31 i ,222 i ). In this way, the wave function in the junc
tion part must satisfy the condition

c~A,q1 ,q2!5c~B,q11q2 ,2q121!. ~30!

Here transformation of the label (A,q1 ,q2)→(B,q11q2,
2q121) is equivalent to clockwise rotation byp/3 with
respect to the originO. From Eqs.~30! and~19!, the bound-
ary conditions in the junction part are derived as

FA
K8~r ,u1p/3!5wFB

K~r ,u! ~31!

and

FA
K~r ,u1p/3!5

1

w
FB

K8~r ,u!. ~32!
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The other boundary conditions

FB
K~r ,u1p/3!5wFA

K8~r ,u! ~33!

and

FB
K8~r ,u1p/3!5

1

w
FA

K~r ,u! ~34!

are also obtained in the same way. The same boundary
ditions are first discussed by Matsumura and Ando.15 The
difference of Eqs.~31!–~34! from those of Matsumura an
Ando by certain factors is due to the difference of the de

nition of FA,B
K,K8 . From Eqs.~31! and ~32!, the terms in Eq.

~29! for FA
K8 and FB

K are not zero only whenm53p12 (p
5 integer). Because the open channell j50 in the tube parts
is spatially uniform along the circumference, it is better fitt
to the components with smallerumu in Eq. ~29! than to those
with larger umu. So we assume that one can neglect all
terms except those withp50 and p521 in Eq. ~29! ~as-
sumption I!. Then the wave functions can be written as

FA
K85e2iu f 2~z!1e2 iu f 1~z! ~35!

and

FB
K5e2iu f 2~z!2e2 iu f 1~z!, ~36!

where

f m~z!5cmJm~z!1dmNm~z! ~m51,2!. ~37!

From Eqs.~21! and ~24!, the other two wave functions

FB
K8 andFA

K can be derived fromFA
K8 andFB

K as

FB
K85

e

ueu @2eiu f̃ 2~z!1e2 i2u f̃ 1~z!#, ~38!

FA
K5

e

ueu @eiu f̃ 2~z!1e2 i2u f̃ 1~z!#, ~39!

where

f̃ 1~z!5c1J2~z!1d1N2~z!,

f̃ 2~z!5c2J1~z!1d2N1~z!. ~40!

In the above we used the recursion formula of the Bes
functions and Neumann functions.21 It is easily confirmed
that Eqs.~38! and ~39! satisfy the boundary conditions Eq
~33! and~34!. The amplitude of the open channel in the tub
which is denoted bya, is obtained from Eq.~26! as

a j 6
K 5

1

2ARj
E

Qj

Pj
dx( j )~eih j /2FA

K6e2 ih j /2FB
K! ~ j 55,7!

~41!

for theK point. The value ofuau2 equals the probability flow
as shown in the Appendix. The indices1 and 2 mean the
direction along which the electron waves propagate. T
path of the integral of Eq.~41! is the straight linePjQj , and
the angle with respect to thex axis is denoted byh j . Equa-

tions fora j 6
K8 are obtained from Eq.~41! by replacing6, h j ,
n-

-

e

el

,

e

andK in the right-hand side with7, 2h j , andK8, respec-
tively. To simplify the calculation, the integrations in th
above are transformed as

E
Qj

Pj
dx( j )→RjE

2(2/3)p1h j

2p/31h j
du. ~42!

If variation of the wave function along the radial directions
slow nearr 5Rj , this replacement can be allowed~assump-
tion II!. The relation between the amplitudes of the op

channel in each tube,aW j5
t(a j 1

K ,a j 1
K8 ,a j 2

K8 ,a j 2
K ), and the

coefficients representing the wave functions in the junct
part,gW 5 t(c2 ,d2 ,c1 ,d1), are summarized in the following:

aW j5
1

2
ARj P~h j !ML~h j !L~kRj !gW [YjgW , ~43!

whereM is a constant matrix given by21

M51
2 i

e

ueu
0 0 2

A3

2

e

ueu

0 2
A3

2
2 i 0

0 2
A3

2
i 0

i
e

ueu
0 0 2

A3

2

e

ueu

2 . ~44!

L(h) is a diagonal matrix, whereL1,15L3,3* 5eih andL2,2

5L4,4* 5e2ih. P(h) is defined by Eq.~41! as

P~h!5S eih/2 e2 ih/2 0 0

0 0 e2 ih/2 2eih/2

0 0 e2 ih/2 eih/2

eih/2 2e2 ih/2 0 0

D . ~45!

The matrix elements ofL(z) are L115L335J1(z), L12
5L345N1(z), L215L435J2(z), andL225L445N2(z). The
other matrix elements ofL(z) are zero. From Eq.~43!, the
relation betweenaW 7 andaW 5 is given byaW 75Y7Y5

21aW 5 with
the three parameters,kR7 , kR5, andf[h72h5 ~angle be-
tweenRW 5 andRW 7 in the development map!. This reads as

S aW 71

aW 72
D 5S t1 ,t2*

t2 ,t1* D S aW 51

aW 52
D ~46!

where
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t15h1S cosS 3

2
f D , i sinS 3

2
f D

i sinS 3

2
f D , cosS 3

2
f D D , ~47!

t25h2S 2cosS 3

2
f D , 2 i sinS 3

2
f D

i sinS 3

2
f D , cosS 3

2
f D D . ~48!

The factorsh1 andh2 in Eqs.~47! and~48! are represented
by

h652 1
4 @X12~kR7 ,kR5!7X21~kR7 ,kR5!#

1
i

2A3
@X11~kR7 ,kR5!6 3

4 X22~kR7 ,kR5!#, ~49!

where

Xi , j~z1 ,z2![Az1z2p$Ji~z1!Nj~z2!2Ni~z1!Jj~z2!%.
~50!

The considered energy regionuEu,Ec corresponds to the
region 0,kR5,2p. It can be easily confirmed analyticall
that Eq.~46! satisfies the time reversal symmetry and unit
ity. The transmission rate per channel denoted byT is calcu-
lated from Eq.~46! as

T51/uh1u25
2

H ~1/6!(
i 51

2

(
j 51

2

~3/4! i 1 j 22Xi , j
2 ~kR5 ,kR7!J 11

,

~51!

and it gives the conductances as s52T by Landauer’s
formula. In Fig. 4, the two solid lines represent the values
T calculated by Eq. ~51! for two values of R7 /R5
50.516,0.844. The other lines represent those calculate
the tight-binding model for the~17,17!-~18,21! junction, the
~23,8!-~16,22! junction, the~14,5!-~16,22! junction, and the
~10,10!-~18,21! junction. The values of (f,R7 /R5) of these
four junctions are (0.014p,0.871), (0.116p,0.844),
(0.114p,0.516), and (0.014p,0.512), respectively. Since th
~18,21! tube and the~16,22! tube have similar radii, their
threshold energies are almost the same, i.e.,Ec.0.16ugu. It
can be seen that the transmission rate by the tight-bind
model with fixedR7 /R5 is almost independent of the ang
f and its agreement with Eq.~51! is fairly good.16 When
E50, T becomes consistent with Ref. 15 as

T5
4

~R5 /R7!31~R7 /R5!312
. ~52!

Equation~52! reproduces well the numerical results in Re
8.

We are now ready to consider the analytical calculation
the wave functions by the effective-mass theory and its r
tion to the transmission rate. Let us consider the case w
the two wavesaW 51

( i ) ( i 51,2) are incident from the thicke
-

f

by

g

.

f
-
re

tube, and there is no incidence from the thinner tube, i
aW 7250. As in Sec. II, it is called the positive incidenc
direction. Whenever the two incident waves are ‘‘orthog
nal’’ and have the same flow, i.e.,uaW 51

(1)u5uaW 51
(2)u and

taW 51
(1)* •aW 51

(2)50, the corresponding two transmitted wav
are also orthogonal and have the same flow, becauset1

†t1

51/T. Note that it does not hold generally and is charact
istic of the nanotube junction.22,23

The two orthogonal transmitted waves are represented
aW 71

(1)5 t(a1 ,a2) andaW 71
(2)5 t(2a2* ,a1* ). In the analytical cal-

culation, we use different normalization from that of Sec.
we take the transmitted waves with unit flow represented
uaW 71

( i ) u51 in this section while the incident waves have u

flows uaW 51
( i ) u51 in Sec. II. Corresponding wave function

denoted byc ( i ) are obtained fromgW 5Y7
21aW 7

( i ) and Eqs.
~35!–~40!. They depend on the phases ofa1 anda2, but the
sum of the squared absolute values of them,C(s,q1 ,q2)
[uc (1)(s,q1 ,q2)u21uc (2)(s,q1 ,q2)u2, does not depend on
them and can be determined uniquely. Therefore, we disc
C5uc (1)u21uc (2)u2 rather thanuc (1)u2 anduc (2)u2 hereafter.
Similar discussions are also possible for the negative in
dence direction. TheC(s,q1 ,q2) in the junction part is de-
rived as

C~A,q1 ,q2!5
1

3r (
i 51

2

~3/4! i 21FXi ,1
2 1Xi ,2

2 12
e

ueu

3cosS u1
2p

3
~q12q2! DXi ,1Xi ,2G ~53!

and

FIG. 4. Transmission rates per channelT as a function of the
energy. The solid lines represent those calculated by Eq.~51! for
two values ofR7 /R550.516,0.844. The other lines represent tho
calculated by the tight-binding model for the~17,17!-~18,21! junc-
tion, the~23,8!-~16,22! junction, the~14,5!-~16,22! junction, and the
~10,10!-~18,21! junction. The values of (f,R7 /R5) of these four
junctions are (0.014p,0.871), (0.116p,0.844), (0.114p,0.516),
and (0.014p,0.512), respectively. Since the~18,21! tube and the
~16,22! tube have similar radii, their threshold energies are alm
the same, i.e.,Ec.0.16ugu.
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C~B,q1 ,q2!5
1

3r (
i 51

2

~3/4! i 21FXi ,1
2 1Xi ,2

2 22
e

ueu

3cosS u2
2p

3
~q12q2! DXi ,1Xi ,2G , ~54!

where Xi , j5Xi , j (kRt ,kr) is defined by Eq.~50!, with the
circumferenceRt of the tube into which the electron is tran
mitted. That is to say,Rt5R7 and kRt,kr,kR5,2p for
the positive incidence direction, whileRt5R5 andkR7,kr
,kRt,2p for the negative incidence direction. Note th
the squared wave functionC in Eqs. ~53! and ~54! does
depend on the sign of energy unlike the conductance in
~51!. Note also that the sign ofE is the inverse of that ofe,
E/uEu52e/ueu561, because the transfer integralg is
negative. In the right-hand sides of Eqs.~53! and ~54!, only
the third term depends on the angleu, and it becomes zero a
E approaches zero, becauseXi ,i→0. Therefore the spatia
oscillation of C along theu direction decreases with de
creasinguEu.

There are several possible choices of the basic transla
vectorseW1 and eW2. The wave function represented by Eq
~53! and ~54! should be invariant under the change of t
choice. WheneW185eW2 and eW285eW22eW1 are used instead o

(eW1 ,eW2), the correspondingx8,y8 axes are rotated byp/3
with respect to originalx,y axes as shown in Fig. 1. Corre
spondingly, the polar coordinates and the labels are tra
formed as (r ,u)→(r ,u2p/3), (A,q1 ,q2)→(B,q1
1q2 ,2q121) and (B,q1 ,q2)→(A,q11q211,2q121).
For example, the site indicated by the square symbol nea
origin O in Fig. 1 has two different labels, which are (A,0,0)
defined by (eW1 ,eW2) and (B,0,21) defined by (eW18 ,eW28). Under
this transformation of (r ,u) and (s,q1 ,q2), the values of
Eqs.~53! and~54! are invariant, that is to say, the results a
independent of the way of the labeling, or choice of t
vectors,eW1 andeW2.

In order to relate the wave function to the transmiss
rate, the integral of the squared wave function with a fixer
defined below should be introduced:

F~kRt ,kr ![
9r

14pE du@C~A;r ,u!1C~B;r ,u!#

5
1

7 (
i 51

2

(
j 51

2

~3/4! i 21Xi , j
2 ~kRt ,kr !. ~55!

The third terms in the right-hand side of Eqs.~53! and ~54!
do not contribute to the integral becauseq12q2 varies rap-
idly as a function ofu. We call F defined by Eq.~55! a
radial norm, hereafter. The radial norm is normalized so t
it equals unity atr 5Rt , i.e., at the exit of the transmitte
wave from the junction part. It corresponds to the unit flo
of the transmitted wave. Thus at the entrance of the incid
wave into the junction part, the radial normF becomes the
sum of the amplitude of incident wave 1/T and that of the
reflected waveR/T5(12T)/T. Accordingly, the transmis-
sion rate T can be given byT52/(F11), where F
5F(kR7 ,kR5) for the positive incidence direction andF
5F(kR5 ,kR7) for the negative incidence direction. Figure
is the schematic development maps representing this rela
q.

on
.

s-

he

n

t

nt

on

between the radial norm and the transmission rate. It sh
two junctions with a common thicker tube where the in
dence direction is negative. Though they have differ
transmission rates,T1 and T2, their wave functions in the
region CC8D8D and the transmitted wave are commo
From now on, we call 2/(F11) an ‘‘inverse’’ of the radial
norm for simplicity. The inverse of the radial norm
2/@F(kR7 ,kR5)11#, 2/@F(kR5 ,kR7)11# and the trans-
mission rateT of Eq. ~51! are shown in Fig. 6 as a functio
of E/Ec by the dashed lines, the dotted lines, and the so
lines, respectively. The curves are shown for the ca
R7 /R550.1, 0.3, 0.5, 0.7, and 0.9. For each value ofR7 /R5,
the inverse of the radial norm is close to the correspond
transmission rate. Therefore, we can discuss the depend
of the transmission rate onR7 /R5 and uEu/Ec by the radial
norm. For this purpose, we show in Fig. 7 the radial norm
the negative incidence directionsF(kR5 ,kr) as a function of
r /R5 at six energiesE/Ec5kR5 /(2p)50.1, 0.3, 0.5, 0.65,
0.8, and 1.0. There are four regions of the parameter sp
that have different characters; they are region I (1.r /R5
.0.9; 1.uEu/Ec>0), region II (0.9.r /R5.0.1; 0.7
.uEu/Ec>0), region III (0.9.r /R5.0.1; 1.uEu/Ec
.0.7), and region IV (0.1.r /R5.0; 1.uEu/Ec>0). In re-
gion I, all the curves in Fig. 7 are very close to unity.
indicates that the corresponding transmission rate is n
unity and independent ofuEu/Ec as is shown by the lines o
R7 /R550.9 in Fig. 6. In region II, the radial norm show
monotonic decrease as eitherr /R5 or uEu/Ec increases. The
decrease with respect tor /R5 becomes steep asuEu/Ec de-

FIG. 5. Schematic development maps representing the rela
between the radial normF and the transmission rateT. The thicker
tube and the regionCC8D8D are common in both the developme
maps.
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creases and is almost proportional to (R5 /r )3 when uEu/Ec
,0.1. In the region III, however, the radial norm oscillat
as r /R5 increases. WhenuEu/Ec51 the radial norm has a
minimum value at aroundr /R550.5. Correspondingly, the
curves ofR7 /R550.5 are larger than those ofR7 /R550.3
and 0.7 atuEu/Ec51 in Fig. 6. It oscillates also with increas
ing uEu/Ec when 0.4.R5.0.2. The lines ofR5 /R750.3 in
Fig. 6 show the corresponding oscillations. Around t
boundary between region II and III, the decrease of the ra
norm with increasingr /R5 becomes critical as is indicate
by the plateau of the curve corresponding touEu/Ec50.65 in
Fig. 7. Correspondingly, all the curves forR7 /R550.7, 0.5,
and 0.3 in Fig. 6 cross each other around the boundary
ergy E/Ec50.7. In region IV, the radial norm is nearly pro

FIG. 6. Inverse of the radial norm for the positive inciden
direction defined by 2/@F(kR7 ,kR5)11#, and that for the negative
incidence direction 2/@F(kR5 ,kR7)11# are shown by the dashe
lines and the dotted lines, respectively. Here the radial normF is
defined in Eq.~55!. Values ofR7 /R5 are 0.1, 0.3, 0.5, 0.7, and 0.9
which are attached to the corresponding lines. The transmission
per channel calculated by Eq.~51! is shown by the solid lines. It can
be seen that the radial norm gives a good estimated value o
transmission rate. The horizontal axis is the energy normalized
Ec . Here uEu,Ec represents the energy region where the chan
number is kept to two in both the tube parts.

FIG. 7. Radial norm for the negative incidence direction, i.
F(kR5 ,kr) is shown as a function ofr /R5 for six energies,
kR5 /(2p)5E/Ec50.1, 0.3, 0.5, 0.65, 0.8, and 1.0. HereF is de-
fined by Eq.~55!. The values ofE/Ec are attached to the corre
sponding lines. Both the axes are represented with a logarith
scale. The inset shows the regions of the parameter space I, II
and IV, which are used in the discussion in the text.
al

n-

portional to (R5 /r )3 so that the transmission rate is almo
proportional to (R7 /R5)3 at each value ofuEu/Ec .

The oscillating behavior in region III can be interpreted
a resonant effect in the following discussion. The wave fu
tion propagates both in the radial and the angular direct
Its wavelength along the radial direction is assumed to
close to that of the plane wave obtained from the dispers
relation ~25!; the wavelength is given by 2p/k5R5uEc /Eu.
When the length of the junction part along the radial dire
tion, i.e.,R52R7, coincides with half of the wavelength, th
resonance occurs. From this discussion, the condition of
resonance can be easily obtained as

R7 /R5512uEc/2Eu. ~56!

The minimum points of the curves in Fig. 7 in region I
correspond to this resonance following approximately con
tion ~56!; it comes aroundr /R550.5 whenuEu/Ec51 and
moves towards the left asuEu/Ec decreases. Around the reso
nance point, the transmission is almost perfect. Such a r
nance, however, does not occur in regions II and IV, sin
the radial norm becomes divergent whenkr approaches zero
i.e., when eitheruEu/Ec5kR5 /(2p) or r /R5 approaches
zero. This divergence comes from the terms ofkrN2

2(kr) in
Eq. ~55!, which is almost proportional to 1/(kr)3 for smallkr
values. Accordingly, the transmission rate decays with
power law in proportion to (R7 /R5)3 in regions II and IV.

IV. COMPARISON BETWEEN THE ANALYTICAL
RESULTS AND THE NUMERICAL RESULTS

Since the effective-mass theory is an approximation of
tight-binding model as is explained in Sec. III, its resu
have to be confirmed by comparing them to the correspo
ing numerical results from the tight-binding model. In th
section, we shall compare the wave function calculated
merically by the tight-binding modelcW j with those deter-
mined analytically by Eqs.~53! and~54!, C. For the numeri-
cal calculation with the tight-binding model, the conditione
transfer matrix method explained in Sec. II is used. Figur
shows the ratio of the corresponding quantities, (ucj ,i

(1)u2

1ucj ,i
(2)u2)/(TC) as a function of radial distancer, for the

energyE520.05ugu. The values are plotted for the~10,10!-
~18,21! junction in Fig. 8~a! and for the~17,17!-~18,21! junc-
tion in Fig. 8~b!. Here the incidence direction is positive;cj ,i

(k)

is caused by the incident wavesc̃1k
R . For the opposite inci-

dence direction, similar results are also obtained. Here
factor 1/T5uh1u2 defined by Eq.~49! is necessary becaus
the transmitted waves have unit flow in Eqs.~53! and ~54!,
while the incident waves have unit flow in Eq.~13!. One can
see that the ratio is close to unit, i.e., the coincidence is fa
good. Correspondingly, the transmission rate by the con
tioned transfer matrix and that by Eq.~51! coincide well with
each other whenuEu,0.14ugu, as shown in Fig. 4. The de
viation from unity becomes smaller asuEu approaches zero
because all the assumptions postulated in deriving Eqs.~53!
and~54! are more valid for smalleruEu. The deviations, how-
ever, become larger whenr .R5 in Fig. 8~a!, while such a
feature is not found in Fig. 8~b!. The most natural explana
tion for this difference is that the deviations are caus
mainly by the evanescent waves in the tube parts, and t
effects become more significant as their decay lengths a

te
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the tube axis become larger, i.e., as they approach the
tended states. The decay length is determined byl 5,7 in Eq.
~27! as a/A(2p l 5,7a/R5,7)

22e2. Thus the discussion below
is concentrated on the most extended evanescent waves
responding tol 5,7561. WhenR5@R7, as in the case of Fig
8~a!, the evanescent waves in the thicker tube side are m
more extended and have larger effects than those in the
ner tube side. As a result, the deviation near the thicker t
side is enhanced compared to that in the other place. On

FIG. 8. Comparison between the wave functionsucj ,i
(k)u2 calcu-

lated by the tight-binding model, andC defined by Eqs.~53! and
~54!; it shows (ucj ,i

(1)u21ucj ,i
(2)u2)/(TC) as a function of radial dis-

tance,r, ~a! for the ~10,10!-~18,21! junction and~b! for the ~17,17!-
~18,21! junction. They are shown forj 51,2, . . . ,l 1. The energy is
E520.05ugu. Here ucj ,i

(k)u2 is caused by the incident waves wit

positive directionc̃k1
R . Here 1/T5uh1u2, defined by Eq.~49!, is

used for the normalization. The vertical axis is represented wi
logarithmic scale. Data at the pentagon and at the heptagon
shown by the closed diamonds indicated by the arrows.
x-

or-

ch
in-
e

he

other hand, whenR5.R7 , as the case of Fig. 8~b!, the eva-
nescent waves have similar decay lengths both in the thic
and in the thinner tube side, so that the difference of
deviation does not depend on the sides.

To see the spatial variation of the wave function, we sh
ucW j u2 of the ~14,5!-~16,22! junction calculated by the condi
tioned transfer matrix method and the corresponding qua
ties determined analytically by Eqs.~53! and~54!. The latter
is shown by the closed symbols joined by the dotted lin
and the former is shown by the open symbols joined by
solid lines forE520.1ugu andE520.15ugu in Fig. 9. The
horizontal axis is the number of the barj, which is almost
proportional to the radial distancer. The diamonds and the
squares correspond toE520.15ugu and E520.1ugu, re-
spectively. The squares show that the results by the
methods agree quite well. In contrast to this good agreem
the deviation becomes quite large for the diamonds whej
.10, i.e., nearr 5R5; the wave function by the conditione
transfer matrix grows rapidly while the analytical one deca
while approaching the thicker tube side. WhenuEu.Ec , the
decay lengths of the evanescent waves are very large,
cause the large discrepancies in this way. Correspondin
it, large discrepancies occur also in the transmission r
only the data by the tight-binding model show the sharp d
nearE560.16g in Fig. 4. The sharp dip appears approx
mately when 0.9<uE/Ecu<1, i.e., when the decay length o
the evanescent waves in the thicker tube are larger than
diameter of the thicker tube. Evanescent waves with th
decay length larger than the diameter of the correspond
tube are called ‘‘quasiextended’’ evanescent waves herea

a
re

FIG. 9. Norm of the wave function of each barucW j u2 of the
~14,5!-~16,22! junction for E520.1ugu and forE520.15ugu. The
horizontal axis represents the position of the barj shown in Fig. 1.
The incidence direction is positive, i.e., from right to left in th
figure. The dotted lines with closed symbols and the solid lines w
open symbols correspond to those calculated by Eqs.~53! and~54!,
and those calculated by Eq.~13!, respectively. The diamonds an
the squares correspond toE520.15ugu and E520.1ugu, respec-
tively.
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In Fig. 8, data corresponding to sites belonging to
pentagonal defect or the heptagonal defect are shown
closed diamonds and indicated by arrows. They indicate
the numerical wave function calculated by the tight-bindi
model is more localized at the defects than the analyt
wave function. Hereafter a localization strength for theu
direction at the defect is defined as the ratio between
numerical norm per site at the defect and that of the bars
defect belongs to. It is calculated by the tight-binding mo
and represented by (( i ,kPC7

uc0,i u21uc1,ku2)(d01d1)/

(7ucW0u217ucW1u2) at the heptagon and (( i ,kPC5
ucl 1 ,i u2

1ucl 111,ku2)(dl 1
1dl 111)/(5ucW l 1

u215ucW l 111u2) at the penta-

gon with the notation of Sec. II. Herei PCn means that site
i belongs to then-membered ring defect. Since the rad
distancer in the bar is almost constant, the analytical qua
tity corresponding to the localization strength has a ma
mum represented by ( i 51

2 (uXi ,1u1uXi ,2u)2/( i 51
2 (uXi ,1u2

1uXi ,2u2)<2 that is shown from Eqs.~53! and ~54!. There-
fore, we can say that the wave function is ‘‘quasilocalize
at the defect when the localization strength is larger th
two. The localization strength at the pentagon and that at
heptagon are shown as a function of the energy in Fig. 1~a!
and Fig. 10~b!, respectively. The calculated junctions a
common with those in Fig. 4. The localization strength of t
~17,17!-~18,21! junction shows the quasilocalization at bo
the defects whenuEu.Ec . It also shows asymmetry with
respect to the energy axis; the localization strength at
pentagon~at the heptagon! around E52Ec (E51Ec) is
larger than that around the energy with the opposite s
These results indicate that the quasilocalization occurs du
the mixing between the quasiextended evanescent waves
the ‘‘defect levels.’’ Here the defect levels are defined an
discrete energy levels22ugucos(2pł/n) (l51,2, . . . ,n) of an
isolated n-membered ring calculated by the tight-bindin
model.13 Since the energy region around zero is conside
now, the discrete level closest toE50, which is at E
.20.618ugu for the pentagon, and atE.10.445ugu for the
heptagon, is the most important. The closer distance in
energy between the two states enhances their mixing so
it causes the asymmetry with respect to the energy. Since
defect levels are caused by the discreteness of the lat
these results cannot be reproduced by the effective-m
equation.

As R7 /R5 decreases, however, the localization strength
the heptagon decreases as is shown in Fig. 10~b!; the local-
ization strength at the heptagon of the~10,10!-~18,21! junc-
tion is less than that of the~17,17!-~18,21! junction. It can be
explained as follows. The energy where the quasiexten
evanescent waves in the thinner tube side appear is ar
E56EcR5 /R7. As R7 /R5 decreases, it becomes dista
from the considered energy regionuEu,Ec so that there is no
quasiextended evanescent waves in the thinner tube
Though there are the quasiextended evanescent waves i
thicker tube side, the defect level of the heptagon canno
mixed with them due to the large spatial distance betw
the heptagon and the thicker tube.

By comparing the ~23,8!-~16,22! junction with the
~17,17!-~18,21! junction or comparing the~14,5!-~16,22!
junction with the~10,10!-~18,21! junction in Fig. 10, one can
see that increase off from 0.01p to 0.1p with a fixed
e
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R7 /R5 causes the decrease of the localization strength at
heptagon whenuEu.Ec . Though the reason for this decrea
is not clear yet, the dependence of the localization stren
on R7 /R5 with a fixedf is the same as that explained in th
preceding paragraph.

In summary, we can say that the defect level is mix
with the quasiextended evanescent waves only when they
close to each other both in the energy and in the space.
analytical results by the effective-mass approximation
not appropriate when the evanescent waves become qua
tended. The width of this energy region, however, is on
about 0.1Ec . Except for these narrow energy regions, t
analytical results are appropriate enough.

FIG. 10. The localization strength for theu direction ~a! at the
pentagon and~b! at the heptagon as a function of the energy. T
incidence direction is positive. The solid lines, the dotted lines,
dashed lines, and the dot-dashed lines correspond to the~10,10!-
~18,21! junction, the ~17,17!-~18,21! junction, the ~14,5!-~16,22!
junction, and the~23,8!-~16,22! junction, respectively. The calcu
lated junctions are common in this figure and Fig. 4.
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PRB 61 8559RELATION BETWEEN TRANSMISSION RATES AND THE . . .
V. SUMMARY AND CONCLUSION

In this paper, the junctions connecting the two meta
nanotubes with different circumferences by a pair of the p
tagonal and the heptagonal defect are investigated. Both
wave function and the transmission rate are analytically
tained by the effective-mass equation, and a close rela
between them is found. To discuss the close relation,
junction part is divided into pieces according to the rad
distancer from the thinner tube side and the radial norm
the wave function is evaluated in each piece. The radial n
is determined by the two parametersuEu/Ec andr /R5 , where
Ec andR5 are the threshold energy and the circumference
the thicker tube, respectively. The transmission rate appr
mates the inverse of the radial norm wherer is substituted
with the circumference of the thinner tubeR7. From the
dependence of radial norm on the two parameters, the pa
eter space is roughly classified into four regions; regio
(1.r /R5.0.9; 1.uEu/Ec>0), region II (0.9.r /R5.0.1;
0.7.uEu/Ec>0), regions III (0.9.r /R5.0.1; 1.uEu/Ec
.0.7), and region IV (0.1.r /R5.0; 1.uEu/Ec>0). In re-
gion I, the radial norm is close to unity so that the cor
sponding transmission is almost perfect, independent
uEu/Ec . In region III, the radial norm oscillates near unity
the function of either of the two parameters. The period
the oscillation with respect tor is approximately the same a
half wavelength. Here the wavelength is that of the pla
wave, i.e., it is obtained from the linear dispersion relation
the monolayer graphite, Eq.~25!. Almost perfect transmis-
sion due to the resonance occurs in region III when the ra
length of the junction partR52R7 coincides with this period,
because the corresponding radial norm has a minimum v
there. As eitheruEu/Ec5kR5 /(2p) or r /R5 decreases, how
ever, the radial norm becomes divergent owing to the te
krN2

2(kr) so that the corresponding transmission rate
proaches zero. It leads to the power-law decay of the tra
mission rate proportional to (R7 /R5)3 in the regions II and
IV instead of the resonant feature.8,9,16

The nanotube junction can be considered as a comb
system, that is the quasi-two-dimensional structure~the junc-
tion part! connecting the two quasi-one-dimensional stru
tures~the tube parts!. The wave functions in the former pa
become the 2D waves, whose radial parts are given by
sum of Ji(kr) and Ni(kr) ( i 51,2), while they are the 1D
plane waves in the tube parts. Nevertheless, the conditio
the resonance in region III, Eq.~56!, is obtained from the
wavelength of the 1D plane wave. It indicates that the fo
components of the wave function in the junction part,Ji(kr)
andNi(kr) ( i 51,2), are combined appropriately to be fitte
well with the 1D plane waves in the tube parts. On the ot
hand, the wave function shows the power-law decay al
the radial direction in regions II and IV, because only t
componentN2(kr) becomes dominant. In other words, th
wave function in the junction part has the two-dimensio
character in regions II and IV so that its matching with t
plane wave in the tube parts becomes worse than in re
III. The wave function in the junction part has different d
mensionalities in this way.

The wave functions analytically obtained by the effectiv
mass equation are compared with that numerically obtai
by the tight-binding model. WhenuEu is very close toEc ,
-
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the discrepancies between them becomes considerable.
the dependence of the discrepancies on the radial dista
we speculate that they are mainly due to the evanes
waves with their decay length larger than the diameter of
corresponding tube and they are called quasiextended
nescent waves. The quasiextended evanescent waves
the sharp dip of the transmission rate, which is absent in
analytical result. When the quasiextended evanescent w
and the energy levels of then-membered ring defect (n
55,7) are close both in the energy and in the space, mix
between them appears as the enhancement of the wave
tion at the corresponding defect. Nevertheless, coincide
between the analytical wave functions and the numer
ones is fairly good except for the narrow energy region
,uE/Ecu,1.

The nature of the wave function discussed in this pa
can be observed by STM, because STM images reflect
local density of states, which are proportional to the sum
the squared wave functions, Eqs.~53! and~54!, in the nano-
tube junction part. The third terms in Eqs.~53! and~54! give
rise to theA33A3 pattern or the oscillation along theu
direction in the STM images. They fade away asuEu ap-
proaches zero. It is also expected that the images depen
the direction of the electronic current ‘‘along the tube axes
which should not be confused with that of the tunneling c
rent ‘‘from the STM tip to the sample.’’ WhenR5 /R7@1
and E.0, for example, the squared absolute value of
wave function per atom in the junction part is almost prop
tional to r 2 when the current flows from the thicker tube
the thinner tube and to 1/r 4 when it flows along the inverse
direction. We expect that these results will promote the
vestigation of the nanostructures composed by the nanot
including the nanotube junctions.
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APPENDIX

In the tight-binding model, the probability flow from sit
i to site j is represented by Im(ai* Hi , jaj ), whereai is the
amplitude of the wave function at sitei andHi , j is the hop-
ping integral connecting sitei andj. Conservation of the flow
is guaranteed by the tight-binding equationEai5( jHi , jaj .
In this paper,Hi , j is nonzero only wheni and j are nearest
neighbors. Consider bars forj <0 forming to the (m,n)
nanotube part in Fig. 1. The amplitudes of wave functio
are represented byr j ,i and l j ,i in the same way as Fig. 2
Then the flow between thej 21th bar and thej th bar is
represented byg( i 51

m1nIm(r j 21,i* l j ,i). Hereafter the common
hopping integral between the nearest neighborsg and the
lattice constanta is chosen to be units. The flowJ corre-
sponding to cW K1 in Eq. ~26! is J5m sin(h2k212p/3)
1n sin(2h1k112p/3), where the first term comes from th
m bonds, 1< i<m, and the second term comes from th
othern bonds. Hereki5kW•eW i andh is the angle ofRW 7 with
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respect to x axis, i.e., „cos(h),sin(h)…5„A3(m
1n)/(2R7),(n2m)/(2R7)… and R75Am21n21mn. By
developing aboutki to first order and using the bounda
conditionmk11nk250, the flowJ is represented as

J5R72
A3k1

2R7
m~n1m!1O~k1

2!1O~k2
2!. ~A1!

The absolute value of the second term in Eq.~A1! is less
thanA3pR7 /R5, since the energy region where the chan
A.

m

n

E.

de

hy
.
,

ta

B

.

l

number is kept to two, i.e.,kR5<2p, is considered now. It
can be deduced from it that the flow is the almost const
value R7 when R5@A3p. On the other hand, the value o
uaW 71u2 obtained by substitutingF ’s in Eq. ~41! with those of
Eq. ~26! for cW K1 is also R7. Therefore, the normalization
factor in Eq.~41! is correct. Difference of the normalizatio
factor does not change the transmission rate, but when
ratio between the wave function in the tube parts and tha
the junction part is considered, the normalization factor
Eq. ~41! has to be used.
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