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Multiple-scattering theory of the surface resistivity of stepped Al surfaces
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Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston,

Birmingham, B15 2TT, United Kingdom
~Received 2 August 1999; revised manuscript received 7 December 1999!

When an electrical current flows parallel to a stepped metal surface, the steps contribute to the surface-
induced resistivity due to the diffuse scattering of the carriers that occurs at the step edges. In this paper,
multiple-scattering theory is used to compute the surface resistivity induced by steps on the vicinal~100!
surfaces of Al. The carrier scattering by the surface barrier is described by a model corrugated potential fit to
the results of a first-principles calculation of the surface-induced resistivity of the unstepped surface. The Bloch
states of the semi-infinite bulk are described by a layer–Korringa-Kohn-Rostoker calculation. The surface
resistivity is found to be a function of the step density,hs , and becomes a linear function ofhs for low
step-edge densities. Deviation for linearity at higher step densities results from the multiple scattering of
carriers between step edges.
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I. INTRODUCTION

In this paper we study the surface resistivity that is
duced by steps at the surface of a metal through whic
current is flowing. It is well known that the adsorption
adatoms or molecules onto a metallic thin film changes
surface resistivity,rs , because the adsorbates act as ad
tional scattering centers for carriers impinging on t
surface.1,2 This is a fundamental problem in the theory
electron scattering at surfaces3 and, as Persson has demo
strated, is closely related to the theory of vibrational dam
ing at surfaces,4 electronic friction,5,6 and surface
electromigration.5,7 From a technological viewpoint, ad
vances in miniaturization will make it increasingly importa
to understand the surface contribution to resistance of na
cale metallic interconnects and devices.8 The sensitivity of
the resistivity of thin films to surface contamination al
forms the physical basis for many solid-state sensors.2

In addition to adatoms, the presence of surface st
would be expected to alterrs since the diffuse scattering o
carriers at the step edges alters the momentum distributio
carriers scattered by the surface6 and therefore makes an ad
ditional contribution to the surface resistivity. Steps ha
been invoked as the microscopic origin of resistivity chan
that can be described in terms of the surface profile auto
relation function.9 However, to our knowledge there ha
been only one prior microscopic study of surface resistiv
induced by steps, a pseudopotential/jellium calculation ofrs
for a stepped surface modeled by removing rows of ato
from Al~100! to create a (431) missing-row
superstructure.10 The removal of atom rows from Al~100!
was found to significantly increase the surface resistiv
This phenomenon was interpreted in terms of the additio
diffuse scattering of the carriers produced by the miss
row. In this paper we adopt an alternative, albeit appro
mate, theoretical approach that allows us to isolate
surface-induced resistivity of a single step and computers
for stepped surfaces with terrace widths that are significa
longer than could be treated by first-principles methods
addition, by computing the surface resistivity for a range
PRB 610163-1829/2000/61~12!/8484~5!/$15.00
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terrace widths we are able to study how the scattering in
action between step edges influences the magnitude ofrs .
Our approach is to use a multiple-scattering model to tr
the carrier scattering by the vicinal~100! surfaces of Al,
replacing the true surface potential with a model corruga
surface barrier fit to first-principles calculations. The mu
tiple scattering of the carriers between the surface barrier
the semi-infinite bulk is evaluated to determine the effect
surface reflectivity for carriers impinging on the surface fro
the interior of the metal.

The contribution of a step tors is related to the effective
wind valence that describes the force acting on a step e
when a current flows parallel to a stepped metal surface. T
is because both quantities are a measure of the effective
with which a step diffusely scatters the carriers incident fro
the bulk. Explicitly, if we consider a jellium thin film, thick-
nessl f , with an array of identical steps having parallel edg
oriented perpendicular to the applied electric field, then
effective wind valence per unit length of the step edge,zw , is
related tors as follows:

zw5
hel frs

hsrb
. ~1!

Here,rb is the bulk resistivity andhe is the carrier density.
hs is the one-dimensional step density. The calculation of
wind valence for steps was the subject of a pr
publication.11

This paper is organized as follows. In the next section
outline our theoretical approach to the calculation ofrs for
stepped surfaces. In Sec. III the results of this method
compared to prior first-principle results for Al~100! and
Al ~111!. The method is then used to compute the surfa
resistivity of stepped surfaces vicinal to Al~100!.

II. THEORY

Consider a surface parallel to thexy plane that consists o
a periodic array of steps. The step edges are all orien
parallel to they axis, thez axis is the surface normal, and
8484 ©2000 The American Physical Society
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current flows along the surface parallel to thex axis. The
stepped surface is periodic with perioda along thex axis and
period b parallel to they axis and generates a set of tw
dimensional reciprocal lattice vectorsG5(Gx ,Gy).

The resistivity of such a surface may be calculated
computing the momentum transfer between the surface
the carriers for carriers incident from the interior of the me
at Fermi energy, eF , with parallel wave vector ki

5(kx ,ky). Since the stepped surface possesses t
dimensional periodicity, the carriers are diffracted back in
the bulk as a set of beams with parallel wave vectorski

1G. If the probability of reflection into beamG is
pG(eF ,k) then the rate of momentum transferred to the s
face for unit incident flux isGpG(k). The total momentum
transfer is obtained by integrating this quantity over allki ,
weighted by the appropriate carrier population~shifted Fermi
sphere!. This leads to an expression~in atomic units! for the
surface-induced resistivity tensor expressed in terms
pG ,10,12

l frs
ab5

1

~2p!3he
2V

E E
SBZ

F(
G

GaGbpG~eF ,ki!Gd2ki ,

~2!

wherea,b5x,y, V is the area of the surface, and the int
gral is performed over the surface Brillouin zone. Equat
~2! is valid where a plane-wave expansion of the carr
states can be made@see Eq.~4! below#.

In order to determine the the surface resistivity from E
~2! the reflectivity of the stepped surface for carriers incid
from the interior of the metal must be computed. Our a
proach for computing this quantity is adapted from that
tailed in earlier publications13,11 and will be described only
briefly here.

We seek solutions of the Schro¨dinger equation which pro
duce a set of incoming and outgoing Bloch states asymp
cally deep in the metal:

c~ki ,r !5fG~ki ,r !1(
G

r ~G,ki!fG~ki ,r !. ~3!

The surface reflectivity,r (G,ki), was obtained by separate
computing the reflectivity of the semi-infinite bulk
r b(G,ki), and the surface barrier,r s(G,ki), with respect to a
matching plane (z50) just outside of the topmost plane o
atoms. Atz50 we have

c~ki ,r !5eiki•r ieiK Gz
1 z1(

G
@r s~12rbr s!

21#

3ei ~ki1G!•r ieiK Gz
2 z, ~4!

where theki andG dependence ofr s andrb are implicit and
KGz

6 56A2eF2uki1Gu2. The probability of nonspecula
diffraction is obtained by matching the solutions of Eq.~4! to
Eq. ~3! to determine the amplitudes of the nonevanesc
reflected Bloch states,r (G,ki).

The semi-infinite bulk reflectivities were computed usi
a standard layer Korringa-Kohn-Rostoker method previou
applied to the problem of adatom electromigration.13 For the
periodic surface barrier, Fourier transformation of the Sch¨-
dinger equation generates a set of coupled differential eq
y
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tions for the scattered wave functions in terms of the Fou
components of the potentialVG(z),11

2
1

2

d2

dz2 fG~z!1(
G8

VG2G8~z!fG8~z!5~KGz
2 !2fG~z!.

~5!

For relatively small unit cells, Eq.~5! can be solved using
the close-coupling method;14 essentially Eq.~5! is numeri-
cally integrated from outside the metal to the matchi
plane. This method is not suitable for the stepped surfa
considered in this paper since, for eachki , the number of
reciprocal lattice vectorsG needed to obtain convergent am
plitudes increases rapidly with the step terrace width~i.e., the
area of the surface unit cell!. Instead, we employ an approx
mate model in which the surface potential is represented b
corrugation functionz(r i) that sets the location of an infi
nitely repulsive barrier with periodic corrugations represe
ing the underlying surface crystallography.15 This model po-
tential does not reproduce, exactly, the actual~soft! surface
barrier potential. Nevertheless, we can select a corruga
function that closely mimics the actual surface reflectivi
Since this is the quantity needed to computers , we fit z(r i)
parametrically to a first-principles calculation for the u
stepped surface.

This model potential permits an approximate calculat
of the surface reflectivity using the Rayleigh ansa
@c(ki ,r5@r i ,z(r i)#)50# and solving

11(
G

r s~G,ki!eiG•r iei ~KGz
2

1KOz
1

!z~r i !50 ~6!

by the GR method.16 The surface is represented by a grid
sampling points in real space,r i , and a finite set of recipro-
cal lattice vectors,G. Then, Eq.~6! may be written as a
matrix equation forr s and, for eachki and G, the surface
reflectivities may be obtained by matrix inversion. Formal
this method generates an asymptotic series for the reflec
ties in the number ofG vectors. Although a detailed descrip
tion of the limitations of this approach can be foun
elsewhere,17 we note that it has been demonstrated that fo
two-dimensional sinusoidal corrugation with a peak-to-pe
amplitudeh and wavelengtha, the method is absolutely con
vergent for values ofh smaller than approximately 0.19a.17

In fact, for the specific case of the stepped surfaces vicina
Al ~100! considered in this paper, the approximation becom
more accurate for larger terrace widths and the corruga
height is larger than this limiting value only if the~100!
terraces are shorter than two atoms across. For all of
calculations presented in this paper the GR method produ
surface reflectivities that obeyed the flux conservation tes
within 0.1%. Consequently, the Rayleigh ansatz is not a s
nificant source of error in our calculation.

III. RESULTS

Using the approach described in the previous section
have computed the surface resistivity of step arrays co
sponding to the vicinal~100! surfaces of Al. The unsteppe
surface, Al~100!, has a square unit cell of sidea052.86 Å
and an interplanar spacingh052.02 Å. The vicinal Al sur-
faces considered in this paper consist of an array of ident
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8486 PRB 61P. J. ROUS
steps with~100! terraces. These surfaces are classified
N(100)3(111) whereN is the number of atoms on the te
race ~including the in-step atom!.18 Note that the limitN
→` corresponds to Al~100! while N51 corresponds to
Al ~111!. The generic corrugation function for these stepp
surfaces is shown in Fig. 1. The~100! terraces are modele
by a sinusoidal corrugation with a peak-to-peak amplitu
z0 . The step height is labeledh.

The surface reflectivity for this model surface was det
mined using the GR method described in the previous s
tion. The number ofki , G, andr i vectors needed to genera
converged amplitudes increases linearly with the area of
surface unit cell. In order to obtain the results described
this section we employed up to 328 symmetry inequival
ki points within the surface Brillouin zone, up to 900 reci
rocal lattice vectors and up to 1312 real-space samp
points.

The amplitude of the terrace corrugationz0 was adjusted
until the calculated surface-induced resistivity of the u
stepped~100! surface of Al was equal to the value obtain
from the first-principles calculation of Ishida12 (@ l frs

xx#
50.59 a.u.!. The best-fit value of the corrugation amplitud
for Al ~100! was z050.42 Å. As a test, we then compute
@@ l frs

xx# for N51; Al~111!#. We obtain a value of@ l frs
xx#

53.60 a.u. which is in excellent agreement with Ishida
first-principles calculation ofrs for Al ~111!; (@ l frs

xx#53.54
a.u.!. This good agreement might seem fortuitous, especi
given the approximations inherent on our approach. Ho
ever, the physical origin of the relatively large resistivity
Al ~111! is the symmetry of the surface which, in contrast
Al ~100!, does not generate a specularly reflected Blo
wave.12 Although the surface potential is treated appro
mately in our approach, the surface symmetry is corre
described. Therefore we expect to obtain reasonable va
for the relative resistivity of Al~100! and Al~111!, and we
have some confidence that our approach can reproduce
trends inrs for the intermediate set of stepped surfaces t
are the focus of this paper.

In order to make contact with a prior study by Ishida10

we considered first the surface-induced resistivity of
Al ~100! surface in which one in everyN rows of atoms par-
allel to the~001! direction are removed to create a (N31)
missing-row superstructure. This superstructure could be
garded as a set of up-down steps with terraces that areN
21) atoms wide, separated by a single missing row of
oms. Figure 2 shows the calculated values ofrs

xx andrs
yy for

FIG. 1. The corrugation function used to describe the vici
~100! surfaces of Al considered in this paper.h052.02 Å. The
~100! terraces have a sinusoidal corrugation with peak-to-peak
plitudez0 . The step height,h, is equal to the interplanar spacing o
Al ~100! projected onto the surface normal of the stepped surfa
s
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these missing row surfaces, plotted as a function ofN. In Fig.
3 the surface resistivity is normalized to the surface resis
ity of the unstepped~100! surface,r0 .

In Fig. 2 we observe several trends. First, we note that
N51, and in the limitN→`, there are no missing row
present on the surface and we would expect thatrs

xx5rs
yy

5r0 . This trend is clearly reproduced in the calculatio
Second, surfaces with a relatively high density of miss
rows @i.e., (231) – (631)# show a substantial increase
rxx compared to the Al~100!. rxx corresponds to the cas
where rows of atoms are removed perpendicular to the di
tion of current flow. Clearly, this increase is a result of t
additional diffuse scattering of carriers at the~100! surface,
generated by the missing row line defects. We observe t
for N52 – 6,rxx is relatively insensitive to the density of th
missing rows at the surface. However, forN>6, rxx drops as

l

-

. FIG. 2. The calculated surface-induced resistivity for a series
Al ~100! N31 missing-row superstructures. The surface resistiv
of the missing-row surface is expressed in units of the surface
sistivity of the~flat! Al ~100! surface,r0 . Solid circles: thexx com-
ponent of the surface resistivity tensor corresponding to the re
tivity of the surface when the current flow and applied field a
perpendicular to the step edges. Open circles: theyy component of
the surface resistivity tensor corresponding to the resistivity of
surface when the current flow and applied field are parallel to
step edges. The lines are guides to the eye only.

FIG. 3. The calculatedxx component of the surface-induce
resistivity tensor for surfaces vicinal to the Al~100! surface plotted
as a function of the terrace widthN and normalized to the surfac
resistivity of the~flat! Al ~100! surface,r0 . The solid line is a guide
to the eye only.
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the density of missing rows decreases. This latter beha
would be expected in the regime where the missing rows
sufficiently far apart for the diffuse scattering from each li
defect to be considered independent of the other mis
rows.

From Fig. 2 we observe that, compared torxx, ryy is only
weakly changed by the presence of the missing row. T
reflects the relative ineffectiveness of steps in scattering
riers which impinge parallel to the step edges, an effect a
observed in Ishida’s calculation for the (431) superstruc-
ture. For comparison we note that Ishida’s pseudopoten
calculation10 for the (431) superstructure yieldedrs

xx/r0

;2 – 3.3. ~This range of values arises because in Ishid
calculation r0 and rs

xx were computed for two differen
model surfaces; one-layer and two-layer slabs on jelliu
respectively.! Clearly, the substantial increase in therxx ob-
served in the pseudopotential calculation is reproduced
the results shown in Fig. 2.

Next we considered a more realistic set of stepped
faces; the surfaces vicinal to Al~100! described at the begin
ning of this section. Figure 3 shows the calculated value
rxx for these surfaces plotted as a function of the terr
width, N, and is normalized to the surface resistivity
Al ~100!. For terrace widths ofN;5 we see thatrxx is in-
creased by approximately a factor of 6 over its value
Al ~100!. Again, this increase is a reflection of the addition
diffuse scattering of carriers by the step edges. We note
the case ofN51 corresponds to the Al~111! surface. As was
noted earlier, a first-principles calculation of the surface
sistivity of Al~111! and Al~100! by Ishida12 determined that
rxx for Al ~111! was a factor of 6 larger than for Al~100!.
That result is clearly consistent with the results shown in F
3.

As the terrace width increases we observe a drop in
surface-induced resistivity towards its value for the u
stepped Al~100! surface. This decrease simply reflects t
reduction of the spatial density of step edges on the sur
as a function of the terrace width. This is more apparen
Fig. 4 whererxx is replotted as a function of the one
dimensional step-edge density of the surfacehs ~i.e., the

FIG. 4. The calculatedxx component of surface-induced resi
tivity tensor for surfaces vicinal to the Al~100! surface plotted as a
function of the one-dimensional step-edge density and normal
to the surface resistivity of the~flat! Al ~100! surface,r0 . The solid
line is a linear fit to the low step-density results with slope 98 Å
or
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number of step edges per unit Å!. From Fig. 4 it is apparen
that ashs→0 the surface resistivity becomes a linear fun
tion of the step density,

lim
hs→

rs
xx

r0
511

1

r0

drstep

dhs
hs , ~7!

where (1/r0)(drstep/dhs) isolates the contribution to the
surface resistivity from the step edges. In this low ste
density regime, where the step edges are far apart, it is c
that each step edge makes an independent contribution t
surface resistivity of the stepped surface. This is consis
with a model in which the multiple scattering of carrie
between step edges is short range and becomes negligib
sufficiently low step densities. From Fig. 4 we see that t
linear dependence is established when the step edges ar
ther than approximately 25 Å apart.

Figure 4 indicates that there is a strong deviation fro
linearity for higher step-edge densities where the calcula
surface resistivity is lower than predicted by a linear extra
lation of the low step-density resistivity. This suggests th
the scattering interaction between step edges reduces th
amount of diffuse scattering from the surface so that
surface resistivity is smaller than would be expected fr
simply superposing the effect of each step edge. This
manifestation of multiple scattering of the carriers betwe
adjacent step edges; each step edge lies in the ‘‘shadow
the upstream step edge~s!. Similar behavior has been seen
calculations of the wind force of pairs of adatoms, and a
toms and atom rows.19 For disordered overlayers of adatom
on metallic substrates this multiple-scattering interact
gives rise to the so-called Nordheim effect in surface re
tivity; the parabolic dependence of thers which rises and
then falls as the adatom coverage is varied betweenu50 and
1.2 Figure 4 shows that there also exists similar behavio
the surface resistivity of stepped surfaces. However, ther
a fundamental difference between the step and adatom c
For stepped surfaces, the zero (N5`) and unit (N51) cov-
erage limits correspond to two different low Miller inde
surfaces, Al~100! and Al~111!, respectively. Therefore, un
like the adatom case~whereu50 and 1 correspond to th
same surface!, the surface resistivity of a stepped surface
zero and unit step-edge coverage will not, in general, be
same.

In the low step-density regime, we deduce from the line
fit shown in Fig. 4 that (1/r0)(drstep/dhs);98 Å. This
quantity is a measure of the contribution of a single Al~100!
step to the surface resistivity of a stepped Al~100! surface. It
has a simple physical interpretation in the low step-den
regime. When compared to the unstepped Al~100! surface, it
is the average distance between step edges that double
surface resistivity.

Given this interpretation of the variation ofrs with the
step-edge density, we now return to the missing-row res
presented earlier~Fig. 2! and in Fig. 5 we replotrxx as a
function of the one-dimensional missing-row density. Co
paring Fig. 5~missing rows! to Fig. 4 ~step edges! we ob-
serve that, when the missing-row density is low, the surfa
induced resistivity depends linearly upon the density
missing rows. Then, each missing row makes an indepen
contribution tors . As in the step case~Fig. 4!, a deviation

d
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from linearity occurs for higher missing-row densities. Ho
ever, in contrast to the stepped surface, in this casers rises
above the value predicted by a linear dependence. This
ference is a consequence of the scattering interaction
tween rows of vacancies, rather than the rows of ato
which constitute the step edges, which tends to increase
diffuse scattering from the surface. We deduce from the
ear fit shown in Fig. 5 that for an isolated missing ro
(1/r0)(drmr /dhs);13 Å. This value is significantly smalle
than that obtained for a single step edge, 98 Å.

It is informative to compare the contribution tors from an
isolated step edge or missing row to that from an isolated
adatom on Al~100!, l fra , wherel f is the film thickness. In
the limit of low adatom coverage

@ l fra#5
naZw

ne
, ~8!

wherena is the two-dimensional adatom density at the s
face, ne is the carrier density andZw is the adatom wind

FIG. 5. The calculatedxx component of the surface-induce
resistivity tensor for a series of Al~100! N31 missing-row super-
structures, plotted as a function of the missing-row density. T
solid line is a linear fit to the low density results with slope 13
-

n

if-
e-
s
he
-

l

-

valence. This relation is strictly valid only for jellium wher
all the momentum transfer occurs between the adatom
the carriers. Nevertheless, we may use Eq.~8! to estimate the
contribution to the surface resistivity of a single row of ad
toms, with the same interatomic spacing as the rows of ato
parallel to the step edges or missing rows, on Al~100!, a0
52.86 Å. Assuming that there is no scattering of carrie
between atoms in the row, using the calculated wind vale
of an isolated Al adatom~monomer! on semi-infinite
jellium,20 Zw5230e, we obtainr row /r0;64 Å. Therefore,
the contribution to the surface resistivity from an isolat
step on Al~100! is approximately a factor of 1.5 greater tha
for a single atom row. This suggests that the diffuse scat
ing of carriers produced by a step is generated within the
one or two rows of atoms at the leading edge of the step.
contrast, the contribution to the surface resistivity from
isolated missing row on Al~100! is approximately a factor of
5 smaller than for a single row of adatoms.

IV. CONCLUSIONS

We have used a multiple-scattering model to compute
surface resistivity of steps vicinal to Al~100!. We find that
the surface resistivity is a function of the step density,hs ,
and becomes a linear function ofhs for low step-edge den-
sities. In this regime the contribution of a step to the surfa
resistivity can be described by an effective lengthdrstep/dhs
which is the average terrace width of a stepped surface
doubles the surface resistivity. For noninteracting steps
Al ~100! (1/r0)(drstep/dhs);98 Å. This value is a factor of
approximately 1.5 larger than for a single row of Al adatom
aligned parallel to the step edge suggesting that the diff
scattering of carriers produced by a step occurs within
first one or two rows of atoms at the leading edge of the s
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