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Bose-Einstein condensation of excitons in a single quantum well

Z. G. Koinov*
Department of Physics, Higher Institute of Transport Engineering, 1574 Sofia, Bulgaria

~Received 20 September 1999!

We study the problem of Bose-Einstein condensation of excitons in a single quantum well with infinitely
high potential barriers. A BCS-like theory is used to describe the modification of the one-particle Green’s
functions due to the presence of Bose-condensed excitons. By introducing those single-particle properties into
the two-particle Bethe-Salpeter equation, we derive a system of two couple equations for the exciton wave
functions, which is solved in the low-density limit in appropriate approximations. We obtain that in a single
quantum-well structure, the ground-state quadratic exciton dispersion nearQ50 is modified and starts linear
with momentum in the presence of a Bose condensate. We have calculated the chemical potential of excitons
in the quantum well in the low-density limit by the variational method. The first-order density correction to the
chemical potential is calculated for different thicknesses. We obtain that in the low-density limit, when the
electron-hole excitonic bound states can be considered as composite bosons, the critical temperature of the
Bose-Einstein condensation scales linearly with two-dimensional~2D! density of excitons. In a strictly two-
dimensional case a system of 2D excitons may undergo a phase transition to a superfluid state. We have
calculated the critical temperature of the Kosterlitz-Thouless phase transition to exciton superfluidity as a
function of the exciton density.
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I. INTRODUCTION

The excitons are the energetically lowest electronic ex
tations of ideal semiconductors. Depending on the exc
density and temperature they can be observed as a we
interacting exciton gas, molecular gas~biexcitons!, metallic
liquid, or electron-hole plasma. Due to the large zero-po
energy of the particles, the excitons in a simple direct-g
nondegenerate semiconductor are expected to remain in
form down to zero temperature. Such a condition is fav
able for the formation of the so-called Bose-Einstein cond
sate of excitons at a finite temperature. The Bose-Eins
condensation~BEC! of excitons means a macroscopic occ
pation of the zero-momentum ground state and the collec
of particles in the zero-momentum ground state is called
excitonic condensate. It is worth noting that the excitons m
exist in the condensate and outside of the condensate~in the
excited states and/or with finite center-of-mass momentu!.
Several early works predicting Bose condensation of e
tons are due to Moskalenko,1 Blatt, Boer, and Brandt,2 and
Casella.3 In many papers4–9 the BEC of excitons has bee
carefully examined by using a formal treatment similar
BCS theory of superconductivity, taking into account t
composite nature of excitons, made up with two fermion

In view of the great advances made in our abilities
design and manufacture low-dimensional semicondu
structure, the search for a low-dimensional condensed p
of excitons has greatly expanded in recent years. Most of
works studied the exciton condensed phase in lo
dimensional structures in which the electrons and holes
in two different infinitesimally thin layers separated by
wide barrier material.10–14 Such structures are favorable fo
both theoretical and experimental investigation of BEC
excitons because:~i! the barrier increases the exciton lifetim
and avoids formation of biexcitons;~ii ! from theoretical
point of view the electron and hole motions in the infinite
PRB 610163-1829/2000/61~12!/8411~9!/$15.00
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mally thin layers can be regarded as pure two-dimensio
~2D! motions without any quantization along the directio
perpendicular to the layers. But, in this structure the bar
reduces the electron-hole Coulomb interaction, and so
creases the critical temperature for condensation. From
point of view a single quantum well structure in which th
lifetime of excitons is long enough should be more suita
for manifestation of the appearance of exciton conden
phase.

In this theoretical study we also consider the special c
of an infinitesimally thin well, when the motion of exciton
can be regarded as pure two-dimensional motion. It is kno
from literature that in a strictly two-dimensional system t
phase fluctuations destroy the off-diagonal long-range or
and therefore the BEC cannot exist at finite temperatu
Kosterlitz and Thouless15 have shown the possibility of a
phase transition to superfluidity in a 2D system. This ph
transition is a topological phase transition, at which desp
ing of the vortex pairs takes place. Below the Kosterli
Thouless ~KT! critical temperatureTc those vortices are
bound in pairs with other vortices of opposite circulation a
that leads to a dissipationless flow. At temperatures aboveTc
there exist unbound vortices, which give rise to a dissipat
of the flow. The KT phase transition is a topological pha
transition and does not violate the Hohenberg theorem16 that
no off-diagonal long-range order can exist in 2D. Lozov
and co-workers17–20and Shevchenko21,22 have shown that in
low-dimensional structures in which the electrons and ho
are in two different infinitesimally thin layers separated by
wide barrier material with a thicknessd, the exciton conden-
sate can become superfluid. Fukuzawa, Mendez, and Ho23

have reported photoluminescence experiments in cou
quantum wells under the electric field which have been
terpreted in terms of a KT phase transition.

In what follows we will investigate the Bose condensati
of excitons in a single quantum well with infinitely hig
8411 ©2000 The American Physical Society
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8412 PRB 61Z. G. KOINOV
potential barriers. The framework of Green’s function is us
to describe the effect of the condensate on the single-par
properties. Our basic assumption is that the presence
Bose-condensed excitons modifies the single-part
Green’s functions, and therefore one has to consider the
called ‘‘anomalous’’ one-particle electron and hole Gree
functions in a manner formally analogous to the BCS the
of superconductivity. The treatment by ‘‘anomalous
Green’s function is also known as a ‘‘coherent’’ approa
~the other one, the so-called ‘‘incoherent’’ approximation,
known from the literature!.24 The‘‘anomalous’’ Green’s
functions vanish above a certain critical temperature, indic
ing that there is no longer a condensate of excitons in
system. We will investigate the Bose condensation of ex
tons in a single quantum well with infinitely high potenti
barriers. We derive a system of two coupled Bethe-Salp
~BS! equations for the exciton wave functions. The simi
systems have been already found in the 3D case by Jer
Rice, and Kohn6 at high density and by Cote and Griffin9 at
low density. It is worth noting that whereas in the norm
phase~when the ‘‘anomalous’’ single-particle Green’s fun
tions equal zero! the excitons are well defined, the presen
of condensate leads to the serious difficulties in any atte
to solved exactly the above-mentioned BS equations bec
of the coupling between different excitonic modes. For t
reason we have solved the BS equations in the low-den
limit, when: ~i! the coupling between the different exciton
modes due to the condensate is ignored;~ii ! the original ex-
citon modes will not be affected too much by the presence
condensate. Those approximations enable us to obtain
result, that not only in the 3D case, but in the case of a sin
quantum well structure as well, the ground-state quadr
exciton dispersion nearQ50 is modified and starts linea
with momentum in the presence of a Bose condensate.
type of dispersion is known in literature as the spectrum
Bogolubov type. We also calculate the critical temperat
Tc of KT topological phase transition in an exactly tw
dimensional structure. We obtain that the critical temperat
of the KT phase transition to exciton superfluidity sca
linearly with the exciton density.

An outline of the paper is as follows. In Sec. II we prese
a theory of BEC of excitons in a single quantum well. In S
III we investigate KT phase transition in the 2D case.

II. BOSE-EINSTEIN CONDENSATION OF EXCITONS
IN QUANTUM WELL STRUCTURES

A. Single-particle spectrum in the low-density limit

In the present section, we address the problem of BEC
excitons in a single semiconductor quantum well, taking i
account the fact that the electron and hole motions along
z direction~throughout this paper, we takex-y plane to be the
plane of confinement of the two-dimensional electron-h
system! are quantized into discrete levels due to the prese
of a confinement potential along this direction. In what fo
lows we are interested in the case of quantum wells m
from direct-gap semiconductors with nondegenerate and
tropic bands when the electron-hole pair is confined betw
two parallel, infinitely high potential barriers. With the pe
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fect confinement approximation the dispersion laws for el
trons Ec(k,l) and holesEn(k,j) are as follows~we setq
51 throughout this paper!:

Ec~k,l!5Eg1
k2

2me
1

p2l2

2mcL
2 ;

En~k,j!52
k2

2mn
2

p2j2

2mnL2 ,

wheremc andmn are the electron and hole effective mass
Eg is the energy gap,k is a 2D wave vector, and the quantu
well has a thicknessL. l,j51,2, . . . denote the quantum
number of the states in the infinitely deep wells.

We will assume that the excitons in a quantum well b
have almost like weakly interacting Bose particles, a
therefore one might expect that the BEC of excitons is p
sible. From the theoretical point of view the presence
Bose-condensed excitons modifies the single-part
Green’s functions, and therefore one has to consider the
called ‘‘anomalous’’ one-particle electron and hole Gree
functions. In our case the Fourier transforms of the inve
‘‘normal’’ and ‘‘anomalous’’ one-particle Green’s function
are

Gcc
21~k,l,l8,ivm!5dll8$ ivm2@Ec~k,l!2mc#%, ~1a!

Gnn
21~k,j,j8,ivm!5djj8$ ivm2@En~k,j!2mn#%, ~1b!

Gcn
21~k,l,j,ivm!52Scn~k,l,j,ivm!, ~1c!

Gnc
21~k,j,l,ivm!52Snc~k,j,l,ivm!. ~1d!

Here Gcc
21, Gnn

21 and Gcn
21, Gnc

21 are the inverse ‘‘normal’’
and ‘‘anomalous’’ Green’s functions, respectively,me and
mn are the chemical potentials of the electrons and holes,
S i j ( i , j 5c,n) denote the corresponding mass operators~the
mass operatorsScc andSnn have been included in the effec
tive masses in the corresponding dispersion relations!. The
symbol vm denotesvm5(2p/b)(m1 1

2 ), b5(kBT)21, kB
is the Boltzmann constant,T is the temperature, andm50,
61,62, . . . . Themass operators in the Dyson Eqs.~1c! and
~1d! can be written as a sum of a Hartree part and a scree
Fock part. The Hartree term vanishes because of the gl
neutrality of the electron-hole system. In what follows w
will extract from the mass operators only the screened st
Fock terms Scn(k,l,j)5Dcn(k,l,j) and Snc(k,j,l)
5Dnc(k,j,l). In this approximation Eqs.~1c! and ~1d! as-
sume the forms

Gcn
21~k,l,j,ivm!52Dcn~k,l,j!, ~1e!

Gnc
21~k,j,l,ivm!52Dnc~k,j,l!. ~1f!

The ‘‘normal’’ Gcc(k,l,l8,ivm), Gnn(k,j,j8,ivm) and
‘‘anomalous’’ Fcn(k,l,j,ivm), Fnc(k,j,l,ivm) one-
particle Green’s functions can be obtained by solving
following set of equations:
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dll85(
l9

Gcc~k,l,l9,ivm!Gcc
21~k,l9,l8,ivm!

2(
j

Fcn~k,l,j,ivm!Dnc~k,j,l8!, ~2a!

052(
l8

Gcc~k,l,l8,ivm!Dcn~k,l8,j!

1(
j8

Fcn~k,l,j8,ivm!Gnn
21~k,j8,j,ivm!, ~2b!

05(
l

Fnc~k,j,l,ivm!Gcc
21~k,l,j8,ivm!

2(
j8

Gnn~k,j,j8,ivm!Dnc~k,j8,l!, ~2c!

djj852(
l

Fnc~k,j,l,ivm!Dcn~k,l,j8!

1(
j9

Gnn~k,j,j9,ivm!Gnn
21~k,j9,j8,ivm!.

~2d!

The ‘‘normal’’ phase of the system under consideration c
be described by setting the nondiagonal parts of mass op
tor Dcn and Dnc equal to zero. ThusDcn and Dnc are the
order parameters for the condensed phase. Using the s
Fock terms, one can write the order parameters in the
lowing forms:

Dcn~k,l,j!52(
q

(
l8,j8

(
vm

2pe2

«`uq2ku
f lj8jl8

3~Luq2ku!Fcn~q,l8,j8,ivm!, ~3a!

Dnc~k,l,j!52(
q

(
l8,j8

(
vm

2pe2

«`uq2ku
f lj8jl8

3~Luq2ku!Fnc~q,j8,l8,ivm!, ~3b!

The functionf lj8jl8 is defined as follows:

Flj8jl8~Lupu!5E
0

L

dz1E
0

L

dz2 exp~2upu•uz12z2u!

3xl~z1!xj8~z2!xj~z2!xl8~z1!, ~3c!

where

xl~z!5S 2

L D 1/2

sinS lpz

L D
In the set of Eqs.~2! for the ‘‘normal’’ and ‘‘anomalous’’
one-particle Green’s functions one can observe the dif
ence between the condensate we are studying and this o
ring in the case when the electrons and holes are in
different infinitesimally thin layers separated by a wide b
rier material. In the case of a single quantum well struct
one has to take into consideration the composite natur
excitons, made up with two fermions, each one with differ
n
ra-

tic
l-

r-
ur-
o
-
e
of
t

quantized motion along the direction perpendicular to thex-y
plane. For this reason a complicated mixing of excitatio
will take place unlike the case of two different infinitesimal
thin layers. If one takes into accountl51,2, . . . ,n quan-
tized electron states andj51,2, . . . ,n2 quantized hole
states, thenn11n2 poles for each of propagatorsGcc , Gnn ,
Fcn , andFnc have to be considered.

It is impossible to solve exactly the set of Eqs.~2! for
arbitraryn1 andn2 , and so we must introduce some appro
mation. The simplest approximation is to take into acco
only the first electron and hole confined levels. In this a
proximationn15n251 and the solutions of the set of Eq
~2! are

Gcc~k,1,1,ivm!5Gcc~k,ivm!5
uk

2

ivm2v1~k!

1
nk

2

ivm2v2~k!
, ~4a!

Gnn~k,1,1,ivm!5Gnn~k,ivm!5
nk

2

ivm2v1~k!

1
uk

2

ivm2v2~k!
, ~4b!

Fcn~k,1,1,ivm!5Fnc~k,1,1,ivm!

5Gcn~k,ivm!

5Gnc~k,ivm!5
D~k!

v1~k!2v2~k!

3F 1

ivm2v1~k!
2

1

ivm2v2~k!G , ~4c!

where the following notations have been used:

uq
25 1

2 F11
h~q!

«~q! G ; nq
25 1

2 F12
h~q!

«~q! G ~5a!

v6~k!5j~k!6«~k!;

j~k!5 1
2 @Ec~k,1!1En~k,1!2mc2mn#;

Dcn~k,1,1!5Dnc~k,1,1!5D~k!; ~5b!

«~k!5Ah2~k!1D2~k!;

h~k!5 1
2 @Ec~k,1!2En~k,1!2~mc2mn!#.

The dispersion law of the single-particle excitationsv6(k),
given by the poles of the Green’s functions~4!, depends on
the excitonic density. At the temperatureT50 K and in the
low-density limit na0

2!1 ~n is 2D density of free electron
hole pairs,a05«`m21e22 is the 3D exciton Bohr radius
andm215mc

211mn
21 is the exciton reduced mass! the func-

tion D(k) and the chemical potential of excitonsmexc5me
2mn can be calculated self-consistently. Definingc0(q)
5D(q)/2«(q), one can write to the lowest order in the de
sity n

c0~q!5~n/2!1/2w0~q!. ~5c!
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The functionw0(q) is a normalized function

E d2q/~2p!2w0
2~q!51,

which is a solution of the following equation:

FEg1
p2

2mL22mexc
~0!1

k2

2mGw0~k!

2E d2q

~2p!2

2pe2

«`uk2qu
f 1111~Luk2qu!w0~q!50, ~6!

wheremexc
(0)5mc

(0)2mn
(0) is the chemical potential of exciton

~the upper symbol ‘‘0’’ means that in this approximation t
corresponding chemical potentials does not depend on
exciton densityn!.

Equation~6! is the familiar Wannier equation for an ex
citon with zero center-of-mass momentum in the infinite
deep well. One can solve Eq.~6! by using a variational
method with a function

R1,0~k!5Ap

2 S 4b

a0
D 2Fk21

4b2

a0
2 G23/2

. ~7!

Here Rn,m(k)5Rn,m(k,q) denote the radial functions of
2D hydrogen atom system25 n50,1,2, . . . is theprincipal
quantum number, and for a givenn, the angular momentum
quantum numberm50,61,62, . . . ,6n.

The parameterb can be determined by maximizing th
chemical potentialmexc

(0) with respect tob. Thus we obtain the
following equation for the chemical potentialmexc

(0) :

Eg1@p2/~L/a0!2#E02mexc
~0!~b!

E0

524b21128b3E
0

1`

dx
f ~xL/a0!

~x2116b2!3/2, ~8!

whereE05(2ma0
2)21 is the effective exciton Rydberg an

the functionf (x) is defined as follows:

f 1111~x!5 f ~x!5
3x218p2

x~x214p2!
2

32p4@12exp~2x!#

x2~x214p2!2 .

~9!

We have numerically maximized the expression~8! for the
different values of the well thicknessL/a0 . Figure 1 shows
the dimensionless chemical potentialmexc

(0)/E0 , measured
from the total ground-state energyEg1@p2/(L/a0)2#E0 of
the electron-hole pair in the well as a function of the dime
sionless well thicknessL/a0 . In a strictly 2D caseb51 and
f (x)51, so the chemical potential goes to 4E0 whenL goes
to zero. As can be seen, the two-dimensional behavior of
chemical potential disappears very quickly: forL/a051,
mexc

(0)'2E0 . For L.4a0 the trial functionR1,0 leads to the
chemical potential already smaller thanE0 , and so our trial
wave function is well suited for narrow well structures, but
not so good for largeL limit.
he

-

e

B. Density correction to the chemical potential

The chemical potentialmexc
(0) does not depend on the exc

ton density because in that approximation the excitons
completely independent. The density only enters through
magnitude ofD(k). The next correction to the chemical po
tential arises from the exchange repulsion between the e
trons and holes that are involved in two excitons. In the
case such short-range repulsion due to the overlap of inte
wave function is known from the literature.

In the low-density limit the dispersion laws of the singl
particle excitations in a quantum well are

v6~k!5j~0!~k!6h~0!~k!

6
n

2
w0~k!E d2q

~2p!2 S 2pe2

«`uk2qu D f ~Luk2qu!w0~q!,

~10!

where

j~0!~k!5 1
2 @Ec~k,1!1En~k,1!2mc

~0!2mn
~0!#;

h~0!~k!5 1
2 @Ec~k,1!2En~k,1!2mexc

~0!#.

In the next order in density~order n! Eq. ~6! assumes the
form

FEg1
p2

2mL22mexc
~1!1

k2

2m
1nS~k,Q50!Gw0~k!

2E d2q

~2p!2

2pe2

«`uk2qu
f ~Luk2qu!w0~q!50, ~11!

whereS(p,Q) denotes

FIG. 1. The calculated dimensionless chemical potential of
citons m(L)5mexc

0 /E0 (E0 is the 3D exciton rydberg!, measured
from the total ground-state energy of the electron-hole pair in
well as a function of the dimensionless well thicknessL/a0 (a0 is
the 3D exciton Born radius!.
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S~p,Q!5 1
2 @w0~p!1w0~p2Q!#

3S 2pe2

«`
D E d2q

~2p!2

w0~q! f ~Lup2qu!
up2qu

. ~12!

From Eq.~11! one can obtain the correction to the chemic
potential:

Dmexc
~1!5mexc

~1!2mexc
~0!5nE d2p

~2p!2 w0
2~p!S~p,Q50!

5~na0
2!E0

4p

5 F231128b

3E
0

1` f ~xL/a0!dx

@x2116b2#3/2G . ~13!

By settingL→0 one can obtain the density correctionDmexc
(1)

in the 2D case. In the limitL→0, b51 and f (x)51. Thus
we find that the density correction to the chemical poten
in the 2D case is given by

Dmexc
~1!5mexc

~1!2mexc
~0!54p~na0

2!E0 . ~14!

Figure 2 showsDmexc
(1)/@(na0

2)E0# as a function of the dimen
sionless well thicknessL/a0 calculated by using the 2D hy
drogen functionw0(q)5R1,0(q), where the parameterb has
been already determined by maximizing the chemical po
tial mexc

(0) with respect tob.

FIG. 2. The calculated correction to the chemical poten
dm(L)5(mexc

(1)2mexc
(0))/(na0

2)E0 in the low-density limit na0
2!1

(E0 is the 3D exciton rydberg,n is 2D density of free electron-hole
pairs,a0 is the 3D exciton Bohr radius! as a function of the dimen
sionless well thicknessL/a0 .
l

l

n-

C. Two-particle excitation modes in the low-density limit
at TÄ0

Our next aim is to obtain the poles of the two-partic
Green’s function of mechanical excitonsKM

E which takes
into account Elliott exchange interaction. In what follows w
will assume that the exciton is made up with two fermio
each one with a quantum number of the states in the w
l5j51. We denote byv l(Q) ~l is the band index andQ is
the 2D wave vector of the excitons! the poles of the Green’s
function KM

E . If we restrict the range of frequenciesv to a
neighborhood of the positionv l(Q) we may write

KM
E S r1s1 r3s3

r2s2 r4s4
Uv D'

FlQ~r2s2 ;r1s1!FlQ* ~r4s4 ;r3s3!

v2v l~Q!1 i01 .

~15!

Here r is 2D radius vector,s is the spin index. The exciton
wave functionsFlQ(r2s2 ;r1s1) satisfy the BS equation

FlQ~r2s2 ;r1s1!5K ~0!S r1s1 r3s3

r2s2 r4s4
Uv l~Q! D

3F I CS r3s3 r5s5

r4s4 r6s6
D

1I ES r3s3 r5s5

r4s4 r6s6
D GFlQ~r6s6 ;r5s5!.

~16!

Here I C and I E are the Coulomb and the Elliott exchang
electron-hole interactions, respectively. It is more conveni
to write the BS equation ink representation, taking into ac
count the one-particle band structure of the crystal. Ink rep-
resentation the BS Eq.~16! assumes the form

F ji
l ~q,Q!5 (

s,t,s8,t8
E d2p

~2p!2 E d2q

~2p!2 K ~0!

3S i ,q s,p

j ,q2Q t,p2Q
U ivp→v l1 i01D

3F I CS s,p s8,k

t,p2Q t8,k2QD
1I ES s,p s8,k

t,p2Q t8,k2QD GFt8s8
9 ~k,Q!, ~17!

where $ i , j ,s,t,s8,t8%5$c,n% and F ji
l (q,Q) is the Fourier

transform of the exciton wave functionFlQ(r2s2 ;r1s1). In
Eq. ~16! I C denotes the Coulomb interaction screened by
high-frequency dielectric constant:

I CS i ,p s,k

j ,p2Q t,k2QD
5S 2

2pe2

«`
D 1

up2ku ~12d i j !d isd j t f ~Lup2ku!.

~18a!

The free two-particle propagatorK (0) is defined as

l
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K ~0!S i ,q s,p

j ,q2Q t,p2Q
U ivpD

5dpq(
vm

Gis~q,ivm1 ivp!Gi j ~q2Q,ivm!.

~18b!

In the case of a quantum well structure we will neglect
Elliott exchange electron-hole interactionI E that will sim-
plify the task.

BS Eqs.~17! are equations for the exciton wave functio
Fnc

l (q,Q) andFcn
l (q,Q). It is more convenient to introduc
e

another two functions,F1
l (q,Q) and F2

l (q,Q), defined as
follows:

Fnc
l ~q,Q!5 1

2 @uquq2QF1
l ~q,Q!2nqnq2QF2

l ~q,Q!#,
~19a!

Fcn
l ~q,Q!5 1

2 @uquq2QF2
l ~q,Q!2nqnq2QF1

l ~q,Q!#.
~19b!

At the temperatureT50 K by means of the BS Eq.~17! we
obtain the following coupled equations for the functio
F1

l (q,Q) andF2
l (q,Q):
the
. This is
rs
@v l2V1~p,Q!#F1
l ~p,Q!52E d2q

~2p!2 S 2pe2

«`
D f ~Lup2qu!

up2qu @upup2Ququq2Q1npnp2Qnqnq2Q#F1
l ~q,Q!

1E d2q

~2p!2 S 2pe2

«`
D f ~Lup2qu!

up2qu @upup2Qnqnq2Q1upup2Qnqnq2Q#F2
l ~q,Q! , ~20a!

@v l2V2~p,Q!#F2
l ~p,Q!5E d2q

~2p!2 S 2pe2

«`
D f ~Lup2qu!

up2qu @upup2Ququq2Q1npnp2Qnqnq2Q#F2
l ~q,Q!

2E d2q

~2p!2 S 2pe2

«`
D f ~Lup2qu!

up2qu @upup2Qnqnq2Q1upup2Qnqnq2Q#F1
l ~q,Q!, ~20b!

whereV1(p,Q)5v1(p)2v2(p2Q) andV2(p,Q)5v1(p2Q)2v2(p).
In the low-density limitna0

2!1 the coupled Eqs.~20! to the first order of density assume the form

Fv l2Eg2
p2

2mL2 1mexc2
1

2m S p2
mc

mc1mn
QD 2

2
Q2

2~mc1mn!
2nS~p,Q!GF1

l ~p,Q!

52S 2pe2

«`
D E d2q

~2p!2

f ~Lup2qu!
up2qu F12

n

4
„w0

2~p!1w0
2~p2Q!1w0

2~q!1w0
2~q2Q!…GF1

l ~q,Q!

1
n

2 S 2pe2

«`
D E d2q

~2p!2

f ~Lup2qu!
up2qu @w0~p!w0~p2Q!1w0~q!w0~q2Q!#F2

l ~q,Q! ~21a!

Fv l1Eg1
p2

2mL22mexc1
1

2m S p2
mn

mc1mn
QD 2

2
Q2

2~mc1mn!
1nS~p,Q!GF2

l ~p,Q!

51S 2pe2

«`
D E d2q

~2p!2

f ~Lup2qu!
up2qu S 12

n

4
@w0

2~p!1w0
2~p2Q!1w0

2~q!1w0
2~q2Q!# DF2

l ~q,Q!

2
n

2 S 2pe2

«`
D E d2q

~2p!2

f ~Lup2qu!
up2qu @w0~p!w0~p2Q!1w0~q!w0~q2Q!#F1

l ~q,Q!. ~21b!

We look for the solutionsF1
l (q,Q) andF2

l (q,Q) of the above equations in the form

F6
l ~q,Q!5(

n,m
Cl ,nm

6 ~Q!Rn,m~q!. ~22!

By putting Eq.~22! into the coupled Eqs.~21! we obtain we obtain a set of linear homogeneous equations forCl ,nm
6 . The last

system cannot be solved exactly. For this reason we~i! ignore the coupling between the different excitonic modes due to
condensate;~ii ! suppose that the original exciton modes will not be affected too much by the presence of condensate
equivalent to keep in the summation over the hydrogen quantum numbers in Eq.~22! only those terms with quantum numbe
n,m, which have energiesEg1(p2/2mL2)2En'v l1mexc. In this approximation the chemical potential ismexc5mexc

(1) and the
non-zero-momentum ground-state energyv l 50(Q)5v0(Q) is obtained to be
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v0~Q!5AV2Q21S Q2

2M D 2

; V5ADmexc
~1!

M
, ~23!

whereM5mc1mn . As can be seen the exciton ground state in a single quantum well structure at finite but small wave
shows a phononlike dispersion relation with the speed of soundV5A(n/(M )(dmexc

(1)/dn), wheremexc
(1) is the chemical potential

defined by Eq.~13!.
In the 2D case the velocity is given by

V5A4p~na0
2!E0M 21. ~24!

D. Bose-Einstein condensation temperature

In this section we concern the problem at which temperatures the condensate should be readily observed. If we
calculate the BEC temperatureTBE by solving the equationScn(TBE,n)50, we must include the effects of the two-partic
modes on the single-particle excitations. In our analysis we neglect the fact that both the mass operator and the on
‘‘anomalous’’ Green’s functions depend on the two-particle Green’s function.9,26,27 For this reason we will estimate th
temperatureTBE using the fact that in the low-density limit the two-fermion electron-hole bound states can be conside
bosons with a spectrum~23!. The density of particles populating the statev0(Q) is given by summing over the correspondin
Bose-Einstein distributions

n~T!5
1

V2D
(
Q

1

exp$b@v0~Q!2mexc#%21
5

M

2p E
0

1` EdE

AE21M2V4
„exp$b@E1Eg1p2~L/a0!222mexc#%21…

, ~25!
r
t

xt
n
d.
th

th

xi-

re
o-
to

sity
of

thus
se

ing
out-

n is

d in
whereV2D is a 2D volume. Thus we define the temperatu
TBE as a temperature at which the actual density equals
density of particles populating the statev0(Q). For T
,TBE the actual density exceeds this density and the e
amount particles will occupy the zero-momentum grou
state and Bose-condensed excitons should be observe
order to determine the critical temperature in terms of
densityn, we assumemexc'mexc

(0) . As a result, we obtain a
linear relationship between the critical temperature and
exciton density

TBE~L !5
1

z0~L !
E0~na0

2!kB
21. ~26!

Herez0 denotes the solution of the following equation:

z2
1

4p

~mc1mn!2

mcmn
E

0

1` xdx

Ax21b2z2$exp~x!21%
50,

~27!

where

b5
4p

5 F231128bE
0

1` f ~xL/a0!dx

@x2116b2#3/2G ~28!

and the parameterb has been already determined by ma
mizing the chemical potentialmexc

(0) with respect tob. A plot
of TBE in Kelvin versus the dimensionless parameterx
5na0

2 for different GaAs structures is shown in Fig. 3.

III. EXCITONS IN TWO DIMENSIONS:
PHASE TRANSITION TO SUPERFLUIDITY

In this section we will calculate the critical temperatu
Tc of KT topological phase transition in an exactly tw
dimensional structure made from direct-gap semiconduc
e
he

ra
d

In
e

e

rs

with nondegenerate and isotropic bands. In the low-den
limit the excitons, which are made of an even number
fermions, can be considered as bosons, and we would
expect that no BEC of excitons is possible, but KT pha
transition to a superfluid state takes place. It is worth not
that the excitons may exist in the superfluid phase and

FIG. 3. The Bose-Einstein condensation temperatureTBE in
kelvin versus the dimensionless parameterx5na0

2 for GaAs struc-
tures for different quantum well thicknesses.T1(x) –T6(x) repre-
sent the temperatureTBE as a function of parameterx5na0

2 for
L/a050.25, 0.5, 0.75, 1, 1.25, and 1.5, respectively. The excito
made of an electron with effective massmc50.067m0 and a heavy
hole with effective massmv50.197m0 . The values of a dielectric
constant, 3D exciton Bohr radius and 3D exciton Rydberg, use
calculations are as follows:«`510.9, a05115 Å, and E0

56 meV.
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side of the superfluid state, i.e., in the normal phase. T
one can write for the total exciton concentrationn at the
temperatureT:

n5nn~T!1ns~T!, ~29!

where nn and ns are 2D densities of excitons in a norm
exciton phase and in a superfluid phase, respectively.
cording to the work by Kosterlitz and Thouless15 the critical
temperatureTc of KT topological phase transition is give
by

Tc5
pns~Tc!

2kBM
, ~30a!

where ns(Tc) is the value of the density of the superflu
component at the KT transition temperature. The density
the normal phase is given by the well-known Landau expr
sion

nn~T!52
1

2M E d2Q

~2p!2 Q2
]n@E~Q!#

]E~Q!
, ~30b!

where n(E) is the Bose-Einstein distribution function an
E(Q) is the exciton energy.

The total exciton density at the critical temperature
given by the expression

n5
2MkBTc

p
1nn~Tc!. ~30c!

The last equation can be solved and the critical tempera
Tc of a KT phase transition to a superfluid state can be
tained as a function of the total density of excitonsn. If we
assume the quadratic dispersionE(Q)5(2M )21Q2 for the
excitons, than the integral in Eq.~30b! diverges logarithmi-
cally, which means the absence of a KT phase transition
superfluidity. In the previous section we have obtained t
the exciton ground state in the 2D case at finite but sm
wave vectors shows a phononlike dispersion relation

v0~Q!5AV2Q21S Q2

2M D 2

~31a!

with the speed of sound

V5A~n/M !~dmexc
~1!/dn!5@4pE0~na0

2!M 21#1/2.
~32b!

It is worth noting that the above speed of sound is differ
from that, obtained in Ref. 18. The speed obtained by Lo
vik and co-workers has the form

V5A~n/M !~dmexc
~1!/dn!5@4.71E0~na0

2!M 21#1/2.
~32c!

In order to take into account the contribution of the c
lective modes~31a! to the concentration of the normal pha
we put the dispersion of the collective modes~31a! into
~30b!. Thus by using for the chemical potential in a strict
2D casemexc'mexc

0 5Eg24E0 one can obtain for the densit
of excitons in a normal exciton phase in the low-density lim
s

c-

f
s-

re
-

a
t
ll

t
-

t

nn~T!5
MkBT

2p E
0

1`

dx
Fx21S MV2

kBT D 2G3/2

2S MV2

kBT D 3

Fx21S MV2

kBT D 2G3/2

@exp~x!21#

.

~33a!

As can be seen from Eq.~33a! at T→0 nn(T→0)50 and all
excitons are in a superfluid state. It is worth noting that
Ref. 18 the contribution of the collective excitation to th
density of excitons of the normal phase is estimated to b

nn~T!5
p2~kBT!3

30MV4 1
p2kBT

6M
. ~33b!

Obviously, the above two expressions are quite different
Substituting Eq.~33a! into Eq. ~30c! we obtain a linear

relationship between the KT critical temperature and the
citon density

Tc5
1

zc
E0~na0

2!kB
21. ~34!

Herezc denotes the solution of the following equation:

z2
1

p

M

m F11
1

4 E0

1` dx$~x21a2z2!3/22a3z3%
@x21a2z2#3/2$exp~x!21% G50,

~35!

wherea54p. A plot of Tc in Kelvin versus the dimension
less parameterx5na0

2 for 2D GaAs structures~for mc

50.067m0 andmn50.197m0 , zc is 1.684! is shown in Fig.
4.

The superfluidity in a two-dimensional system is due
the presence of vortices. The superfluid densityns(T) at the

FIG. 4. The critical temperatureTc of the Kosterlitz-Thouless
phase transition in kelvin versus the dimensionless parametx
5na0

2 for 2D GaAs structures. The exciton is made of an elect
with effective massmc50.067m0 and a heavy hole with effective
massmv50.197m0 . The values of a dielectric constant, 3D excito
Bohr radius and 3D exciton rydberg, used in calculations are
follows: «`510.9,a05115 Å, andE056 meV.
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KT temperature~30a! undergoes a discontinuing from som
finite value to zero. In contrast to this global superfluid de
sity, the differencen2nn(T) is a smooth function of tem
perature and does not equal to zero even aboveTc . One can
obtain from Eq.~33a! the temperatureT0'10.7Tc at which
nn(T0)5n. At the temperatureTc the superfluid density
ns(T) disappears with a jump, but at somewhat higher te
peraturesT0.T.Tc we have a nonzero local superflu
density n2nn(T), which can be manifested in complete
accessible to measurement effect—an observation of a
sound,22 i.e., the propagation of density oscillations of a s
perfluid component in a two-dimensional system.

IV. CONCLUDING REMARKS

In this paper we discuss the one- and two-particle exc
tions of the electron-hole gas in a single quantum well us
the Green’s function method. The combination of Gree
function technique for dealing with one- and two-partic
properties enables us to obtain some results that can be
plied in the long search for the Bose condensed phas
excitons in semiconductors. The following conclusions su
marize our results:

~i! We have obtained that not only in 3D case, but in t
e

-

-

ird
-

-
g
s

ap-
of
-

e

case of a single quantum well structure as well, the grou
state quadratic exciton dispersion nearQ50 is modified and
starts linear with momentum in the presence of a Bose c
densate.

~ii ! The critical temperature of the Bose-Einstein cond
sation scales linearly with 2D density of excitons.

~iii ! We have obtained the critical temperature of
Kosterlitz-Thouless phase transition to exciton superfluid
as a function of the exciton density.

Our BCS-like treatment can be applied also to the qu
tum well structures in which the electrons and holes ar
two different quantum wells with thicknessesLc and Ln ,
separated by a wide barrier material with a thicknessd.
Naveh and Lakhtman11 have considered the caseLc,n@d,
and Zhuet al.10—the caseLc5Ln50. In order to apply our
treatment to those structures, one has to use instead o
~9! the following function:

f ~x,jc ,jn ,d!

5
16p4@12exp~2jcx!#@12exp~2jnx!#exp~2dx!

jcjn~4p21jcx
2!~4p21jnx2!

,

wherejc,n5Lc,n /a0 .
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