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Bose-Einstein condensation of excitons in a single quantum well
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We study the problem of Bose-Einstein condensation of excitons in a single quantum well with infinitely
high potential barriers. A BCS-like theory is used to describe the modification of the one-particle Green'’s
functions due to the presence of Bose-condensed excitons. By introducing those single-particle properties into
the two-particle Bethe-Salpeter equation, we derive a system of two couple equations for the exciton wave
functions, which is solved in the low-density limit in appropriate approximations. We obtain that in a single
quantum-well structure, the ground-state quadratic exciton dispersiorQe@ris modified and starts linear
with momentum in the presence of a Bose condensate. We have calculated the chemical potential of excitons
in the quantum well in the low-density limit by the variational method. The first-order density correction to the
chemical potential is calculated for different thicknesses. We obtain that in the low-density limit, when the
electron-hole excitonic bound states can be considered as composite bosons, the critical temperature of the
Bose-Einstein condensation scales linearly with two-dimensiia) density of excitons. In a strictly two-
dimensional case a system of 2D excitons may undergo a phase transition to a superfluid state. We have
calculated the critical temperature of the Kosterlitz-Thouless phase transition to exciton superfluidity as a
function of the exciton density.

[. INTRODUCTION mally thin layers can be regarded as pure two-dimensional
(2D) motions without any quantization along the direction
The excitons are the energetically lowest electronic exciperpendicular to the layers. But, in this structure the barrier
tations of ideal semiconductors. Depending on the excitomeduces the electron-hole Coulomb interaction, and so de-
density and temperature they can be observed as a weakltyeases the critical temperature for condensation. From that
interacting exciton gas, molecular gésiexcitong, metallic ~ point of view a single quantum well structure in which the
liguid, or electron-hole plasma. Due to the large zero-poinfifetime of excitons is long enough should be more suitable
energy of the particles, the excitons in a simple direct-gagor manifestation of the appearance of exciton condensed
nondegenerate semiconductor are expected to remain in a galsase.
form down to zero temperature. Such a condition is favor- In this theoretical study we also consider the special case
able for the formation of the so-called Bose-Einstein condenef an infinitesimally thin well, when the motion of excitons
sate of excitons at a finite temperature. The Bose-Einsteinan be regarded as pure two-dimensional motion. It is known
condensatiofiBEC) of excitons means a macroscopic occu-from literature that in a strictly two-dimensional system the
pation of the zero-momentum ground state and the collectiophase fluctuations destroy the off-diagonal long-range order,
of particles in the zero-momentum ground state is called thend therefore the BEC cannot exist at finite temperatures.
excitonic condensate. It is worth noting that the excitons may<osterlitz and Thoule$s have shown the possibility of a
exist in the condensate and outside of the conderisatte  phase transition to superfluidity in a 2D system. This phase
excited states and/or with finite center-of-mass momentum transition is a topological phase transition, at which despair-
Several early works predicting Bose condensation of exciing of the vortex pairs takes place. Below the Kosterlitz-
tons are due to MoskalenRoBlatt, Boer, and Brandt,and Thouless(KT) critical temperatureT, those vortices are
Casella® In many paper5® the BEC of excitons has been bound in pairs with other vortices of opposite circulation and
carefully examined by using a formal treatment similar tothat leads to a dissipationless flow. At temperatures afigve
BCS theory of superconductivity, taking into account thethere exist unbound vortices, which give rise to a dissipation
composite nature of excitons, made up with two fermions. of the flow. The KT phase transition is a topological phase
In view of the great advances made in our abilities totransition and does not violate the Hohenberg thed?¢hat
design and manufacture low-dimensional semiconductono off-diagonal long-range order can exist in 2D. Lozovik
structure, the search for a low-dimensional condensed phasad co-workerS ~?°and Shevchenkd??have shown that in
of excitons has greatly expanded in recent years. Most of theow-dimensional structures in which the electrons and holes
works studied the exciton condensed phase in loware in two different infinitesimally thin layers separated by a
dimensional structures in which the electrons and holes ar@ide barrier material with a thicknesk the exciton conden-
in two different infinitesimally thin layers separated by a sate can become superfluid. Fukuzawa, Mendez, and3ong
wide barrier material®=* Such structures are favorable for have reported photoluminescence experiments in coupled
both theoretical and experimental investigation of BEC ofquantum wells under the electric field which have been in-
excitons becauséi) the barrier increases the exciton lifetime terpreted in terms of a KT phase transition.
and avoids formation of biexcitongji) from theoretical In what follows we will investigate the Bose condensation
point of view the electron and hole motions in the infinitesi- of excitons in a single quantum well with infinitely high
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potential barriers. The framework of Green'’s function is usedect confinement approximation the dispersion laws for elec-
to describe the effect of the condensate on the single-particigons E.(k,\) and holest (k,¢&) are as follows(we seth
properties. Our basic assumption is that the presence of1 throughout this papgr

Bose-condensed excitons modifies the single-particle

Green’s functions, and therefore one has to consider the so- k2 m2\?
called “anomalous” one-particle electron and hole Green’s Ec(k, M) =Eg+ 2_me+ W;
functions in a manner formally analogous to the BCS theory

of superconductivity. The treatment by “anomalous” K2 22
Green'’s function is also known as a ‘“coherent” approach E (k,&)=———

—,
(the other one, the so-called “incoherent” approximation, is 2m, 2m,L

known from the literature®® The“anomalous” Green’s .

. . T .. _.wherem; andm, are the electron and hole effective masses,
functions vanish above a certain critical temperature, indicat= . .
ing that there is no longer a condensate of excitons in thc!:‘Eg is the energy gaik is a 2D wave vector, and the guantum

9 o 9 . .Well has a thicknes&. \,£=1,2,... denote the quantum
system. We will investigate the Bose condensation of exci-

. . o . ~“'number of the states in the infinitely deep wells.
tons in a single quantum well with infinitely high potential We will assume that the excitons in a quantum well be-

barriers. We derive a system of two coupled Bethe-Salpet§f, e aimost like weakly interacting Bose particles, and
(BS) equations for the exciton wave functions. The similarinerefore one might expect that the BEC of excitons is pos-
systems have been already found in the 3D case by Jeromgple. From the theoretical point of view the presence of
Rice, and Kohhat high density and by Cote and Griffiat ~ Bose-condensed excitons modifies the single-particle
low density. It is worth noting that whereas in the normal Green's functions, and therefore one has to consider the so-
phase(when the “anomalous” single-particle Green’s func- called “anomalous” one-particle electron and hole Green'’s
tions equal zerpthe excitons are well defined, the presencefunctions. In our case the Fourier transforms of the inverse
of condensate leads to the serious difficulties in any attemptnormal” and “anomalous” one-particle Green'’s functions

to solved exactly the above-mentioned BS equations becausee

of the coupling between different excitonic modes. For this

reason we have solved the BS equations in the low-density chl(k,x,h’,iwm)z Sy {iom—[Ec(k,N)— uel}, (18

limit, when: (i) the coupling between the different excitonic
modes due to the condensate is ignor@d;the original ex-
citon modes will not be affected too much by the presence of
condensate. Those approximations enable us to obtain the

G, (KEE iwm)=Seeliom—[E (K &) —u, ]} (1b)

result, that not only in the 3D case, but in the case of a single Go (KN £ i) = =S (KN, Eiwy), (10
qguantum well structure as well, the ground-state quadratic
exciton dispersion nea®=0 is modified and starts linear G,jcl(k,f,)\,iwm)=—Eyc(k,f,)\,iwm). (1d)

with momentum in the presence of a Bose condensate. This

type of dispersion is known in literature as the spectrum ofyere =1 G~ ! andG-L G-I are the inverse “normal”
Bogolubov type. We also calculate the critical temperature,{ “anomalous” Green’s flljcnctions, respectively, and

T of KT topological phase transition in an exactly to- a6 the chemical potentials of the electrons and holes, and
dimensional structure. We obtain that the critical temperatur

. ; o ij (i,j=c,v) denote the corresponding mass operattrs
ﬁ:,etgﬁyﬂthp?r?efi;ﬁg?té%m;ﬁyeXC'ton superfluidity scalesyasq operators .. and3,, have been included in the effec-

i fh ) ol tive masses in the corresponding dispersion relatiofilse
An outline of the paper is as follows. In Sec. Il we presentsymbOI o, denoteso = (27/B)(m+1), B=(ksT) %, kg

a theo_ry of B.EC of excitons in a sin_gle quantum well. In Sec'is the Boltzmann constant, is the temperature, ant=0,

[Il we investigate KT phase transition in the 2D case. +1,+2, ... . Themass operators in the Dyson E¢gc) and
(1d) can be written as a sum of a Hartree part and a screened
Fock part. The Hartree term vanishes because of the global

Il. BOSE-EINSTEIN CONDENSATION OF EXCITONS neutrality of the electron-hole system. In what follows we
IN QUANTUM WELL STRUCTURES will extract from the mass operators only the screened static
A. Single-particle spectrum in the low-density limit Fock terms 2., (K,\,§)=Ac, (k&) and X,(k,&N)

=A,.(k,&N). In this approximation Eq91c) and (1d) as-
In the present section, we address the problem of BEC °§umeC(the§ fo)rms PP gs10 (19

excitons in a single semiconductor quantum well, taking into
account the fact that the electron and hole motions along the
z direction(throughout this paper, we takey plane to be the
plane of confinement of the two-dimensional electron-hole
system are quantized into discrete levels due to the presence chl(k,g,)\,i om)=—A(K,EN). (1f)

of a confinement potential along this direction. In what fol-

lows we are interested in the case of quantum wells mad&he “normal” G..(k,\\',ioy), G, (k¢ ¢ iw,) and
from direct-gap semiconductors with nondegenerate and isd‘anomalous” F.,(k,\,iwy), Foo(k éNiw,) one-
tropic bands when the electron-hole pair is confined betweeparticle Green’s functions can be obtained by solving the
two parallel, infinitely high potential barriers. With the per- following set of equations:

Gl (kN Eiwm) = —Ac, (kN 6), (18
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quantized motion along the direction perpendicular toxdye

S =2 Ged K AN 0 G (KN N i) plane. For this reason a complicated mixing of excitations
N will take place unlike the case of two different infinitesimally
. thin layers. If one takes into account=1,2, ... n quan-
— > Fo (kN EiomA (K EN), (28 tized electron states ang=1,2,...n, quantized hole
¢ states, them; + n, poles for each of propagato&.., G,,,
F.,, andF . have to be considered.
0=—2 Geelk, N\ iwmAc, (KN, &) It is impossible to solve exactly the set of EqR) for
A arbitraryn, andn,, and so we must introduce some approxi-

mation. The simplest approximation is to take into account
+E ch(k,)\,g’,iwm)G,jvl(k,g’,g,iwm), (2b) only the first electron and hole confined levels. In this ap-
¢ proximationn;=n,=1 and the solutions of the set of Egs.

(2) are
ozg Foo(K &N iom) God (kN & i) 2
Gec(K,1,1j o) =G K iwm) = Tor—w.(K)
=2 Gk &€ TopA,kE N, (29 2
¢ = (42
lwn—o_(K)
8eer == 2 Fue(K &M 1 0m) A, (KN, €) 2
va(kil’llwm):GVV(k!Iwm): Iwm—w+(k)
+2 Gk &€ 10n) G, (K, EE o). u?
¢ lon—o_(k)’ (4b)
(2d) mo
The “normal” phase of the system under consideration carFc,(K,1,1jwy) =F,(k,1,1j oy)
be described by setting the nondiagonal parts of mass opera- — Gy (K iwpy)
tor A,, and A, equal to zero. Thua ., and A, are the ~ Poti@m
order parameters for the condensed phase. Using the static _ A(k)
Fock terms, one can write the order parameters in the fol- =Ge(Kioy=—~—"—7+
: . w1 (k)—o_(k)
lowing forms:
1 1
. - } (40
CV(k A f 2 2 2 s |q k| f}\glg)\! |wm_a)+(k) |a)m_w_(k)
9 M om e . where the following notations have been used:
X(Lla=kD)Fc (aN" € iwy), (33 @ @
| g ”5:%{ )
vc(k A f % 2/ E |q k| fxg’gw
Mo | w0 (K)=£(k) = e(k);
X(L|q—kl)F,,C(q,f/,)\',lwm), (3b) N
The functionf, ., is defined as follows: k) =2lBk DHE(KD = e s
L L Ac,(k,1L,D)=A,.(k,1,1)=A(k); (5b)
an'gw(l—|p|):j d21f dz, exp(—|p|-|z1—z|)
0 0 8(k)=\/77§(k)+Az(k);
X xx(Z (z z 1(2y), 3c

wher .
ere The d|sper3|on law of the smgle-partlcle eXC|tat|am§(k),

2\ 12\ pmz given by the poles of the Green’s functio®, depends on
X”(Z):(E) sin(T the excitonic density. At the temperatufe=0 K and in the
low-density Iimitna§<1 (n is 2D density of free electron-
In the set of Egs(2) for the “normal” and “anomalous”  hole pairs,ap=¢..u ‘e 2 is the 3D exciton Bohr radius,
one-particle Green’s functions one can observe the differandy.~*=m_*+m; ! is the exciton reduced mashe func-
ence between the condensate we are studying and this occiiion A (k) and the chemical potential of excitoRg.= e
ring in the case when the electrons and holes are in two- . can be calculated self-consistently. Definigg(q)

d_ifferent |nf|n|teS|maIIy thin Iaye_rs Separated by a wide bar-:A(q)/ZS(q), one can write to the lowest order in the den-
rier material. In the case of a single quantum well structuresjty n

one has to take into consideration the composite nature of
excitons, made up with two fermions, each one with different Po(Q)=(n/2)Y2p,(q). (50
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The functiongg(q) is a normalized function 4 I T T I T T I
f d’a/(2m)%e5(a) =1, L |
which is a solution of the following equation:
T k2 : L- ]
0)
E9+ 21 L2 ~ Mexct 2/-‘« ®o(k) (L)
251 =1
J (2m)2e. |k al frudLIk—al)o(a)=0, (6)
whereu Q= u?— 1(% s the chemical potential of excitons |
(the upper symbol “0” means that in this approximation the
corresponding chemical potentials does not depend on th
exciton densityn).
Equation(6) is the familiar Wannier equation for an ex- 15 L L L ' L L :
[} 0.2 04 0.6 08 1 1.2 14 1.6

citon with zero center-of-mass momentum in the infinitely

deep well. One can solve E@6) by using a variational
method with a function

4B ﬁZ —3/2
Rl,o<k>=\[2( O) [kz az} . (7

0

Here R, n(K) =R, m(k,¥) denote the radial functions of a

2D hydrogen atom systéhn=0,1,2 ... is theprincipal

guantum number, and for a givemn the angular momentum

quantum numbem=0,=1,+2, ... +n.

The parameteB can be determined by maximizing the

chemical potentiak %), with respect tg3. Thus we obtain the
following equation for the chemical potentiafC).:

Eg+[72/(LIag)?1Eq— uio( B)
Eo

+o f(xL/ag)
:_4B2+12863f0 dx (X +16B2)3 ’ (8)

whereE,=(2ua3) ! is the effective exciton Rydberg and

the functionf(x) is defined as follows:

3x?+ 872
X(x2+4m?)

32m [ 1—exp—x)]
X2(x2+472)?

f1111X) =f(x)=

9)

We have numerically maximized the expressi@h for the
different values of the well thickneds'a,. Figure 1 shows
the dimensionless chemical potentlaJ(O)C/Eo, measured
from the total ground-state enerdy,+[ =*/(L/ag)?]E, of

FIG. 1. The calculated dimensionless chemical potential of ex-
citons m(L):,ugx(llEo(EO is the 3D exciton rydbeng measured
from the total ground-state energy of the electron-hole pair in the
well as a function of the dimensionless well thicknésgs, (a, is
the 3D exciton Born radigs

B. Density correction to the chemical potential

The chemical potentigh{%) does not depend on the exci-
ton density because in that approximation the excitons are
completely independent. The density only enters through the
magnitude ofA (k). The next correction to the chemical po-
tential arises from the exchange repulsion between the elec-
trons and holes that are involved in two excitons. In the 3D
case such short-range repulsion due to the overlap of internal
wave function is known from the literature.

In the low-density limit the dispersion laws of the single-
particle excitations in a quantum well are

0= (k)=&K =72 (k)

n d’q ( 2mre?

i§¢o(k) 2m? m)f(Hk—QD%(Q),

(10

where

EO()=3[Ec(k, D) +E, (kD) — u = ui)];

79(k)=3[Es(k,1)— E,(k,2)— u'2].

In the next order in densityorder n) Eq. (6) assumes the

the electron-hole pair in the well as a function of the dimen-form

sionless well thicknesk/a,. In a strictly 2D casg8=1 and
f(x)=1, so the chemical potential goes t&dwhenL goes

to zero. As can be seen, the two-dimensional behavior of the

chemical potential disappears very quickly: farag=1,
ulQ~2E,. For L>4a, the trial functionR, , leads to the
chemical potential already smaller th&g, and so our trial

wave function is well suited for narrow well structures, but is

not so good for largé limit.

2

T
2ul?

k2
Eq+ uéi2+m+n3<k,q=o> @o(K)

d?2q  2me? )
_f(2w)2mf(L|k_Q|)<Po(q)—0, (12)

whereS(p,Q) denotes
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20 T T C. Two-particle excitation modes in the low-density limit
at T=0
Lok _ Our next aim is to obtain the poles of the two-particle
Green’s function of mechanical excitoné, which takes
into account Elliott exchange interaction. In what follows we
12h- - will assume that the exciton is made up with two fermions
each one with a quantum number of the states in the well
N=¢&=1. We denote byy(Q) (I is the band index an@ is
1k - the 2D wave vector of the excitonghe poles of the Green’s
function K, . If we restrict the range of frequenciesto a
dm(L) neighborhood of the position,(Q) we may write
161 ]
g(M101 T303 | F'rp04;1100)F' (r404;150)
M b0y [404 w—w|(Q)+|0+
15 7 (15
Herer is 2D radius vectorg is the spin index. The exciton
141 - wave functionsF'(r,0,;r,04) satisfy the BS equation
rioy rzo3
13 | I I F'Q(rzo-z;rlo-l)zK((’)(r o Taor w|(Q))
0 05 1 15 2 22 a4
L ot r3os r505)
FIG. 2. The calculated correction to the chemical potential ¢ 404 [Tg0g
dm(L)= (D~ u)/(nad)E, in the low-density limitnaZ<1
(Eq is the 3D exciton rydberg) is 2D density of free electron-hole 4 303 TIs0s FIQ(r gog T 50s)
pairs,a, is the 3D exciton Bohr radilisas a function of the dimen- Elrio4 reos 6767555/
sionless well thicknesk/a.
(16)
S(p,Q)=i[@o(p)+ ¢o(p— Q)] Herel. and | are the Coulomb and the Elliott exchange
) ) electron-hole interactions, respectively. It is more convenient
« 2me d*q ¢o(a)f(L[p—al) 12 to write the BS equation ik representation, taking into ac-
£, (2m)° p—q| : count the one-particle band structure of the crystak hep-

resentation the BS Eq16) assumes the form
From Eg.(11) one can obtain the correction to the chemical

— d?p d?q
potential: F}i(q’Q)zsg;’t, jw WK(O)
Sl i uimn [ P, Gipsin.o=0) 0 P S tio®
(2m) j9-Q tp-Q P
=(na§)EOg —3+1283 |1 S.p s’k )
t,p—Q t',k—Q
+» f(xL/ag)dx s.p s’ k
s s 9 el oo t,,k_Q”F{',Sr(k,Q), an

P I — | ; :
By settingL— 0 one can obtain the density correctiap (L, ~ Where{i,j,s,t,s’,t'}={c,»} and Fji(_q'%) is the Fourier
in the 2D case. In the limit —0, B=1 andf(x)=1. Thus transform of the exciton wave functidf' ~(r,o;r1o4). In

we find that the density correction to the chemical potentiaFd: (16) I c denotes the Coulomb interaction screened by the

in the 2D case is given by high-frequency dielectric constant:
1) 1 0 2 hp sk
A:Uvgexc: :U’(ex)c_ :U“Eex)c: 4m(nag)Ey. (14 lc ip—Q tk-0Q
Figure 2 shows x{Y/[ (na2)E,] as a function of the dimen- [ 2me’) 1 (1= 5,165, F(L|p—kI)
sionless well thicknesk/a, calculated by using the 2D hy- £, ||p—K]| ij) Gis Oy T LLIP '
drogen functionpy(q) =Ry o(d), where the parametgsd has (183

been already determined by maximizing the chemical poten-

tial (%) with respect tog. The free two-particle propagatét(®) is defined as
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(0)( i s,p ) another two functionsfF', (q,Q) and F' (q,Q), defined as
K ) i -
i,g-Q tp-q/'“r follows:
. . . F'V , =1lu Uy oF' , —vv,Fl,, ,
:5[)(]2 Gis(q1|wm+|wp)Gij(q_Qu|wm)- C(q Q) 2[ q“Yq—Q +(q Q) q”q—Q (q Q)](lga
18h
B e 0,Q)= Hugty oF (0.Q) rerg oF L (4.Q)].
In the case of a quantum well structure we will neglect the (19b)
Elliott exchange electron-hole interactidp that will sim-
plify the task. At the temperaturd =0 K by means of the BS Eq17) we

BS Eqgs.(17) are equations for the exciton wave functions obtain the following coupled equations for the functions
F'.(0,Q) andF. (g,Q). It is more convenient to introduce F',(q,Q) andF' (q,Q):

f(L
[01— Q. (p.Q)IF (p.Q)= f(Z'n') ( o ) (|p|pq|q|)[Upup—Ququq—Q""Vpr—QVqVq—Q]FlJr(Q:Q)

d?q (2we ) f(LIp—q|)
(2m?*\ e, | |p—q

+

[Uplp—o¥q¥q-oF Uplp—oPqrq-olF-(a,Q), (203

d?q (27762) f(L|p—al)
_ | _
(0= Q- (P.QIF (P,Q) f(zﬂ)z =dl
d?q (ZWeZ) f(LIp—q)
(2m)*? [p—q

where() ., (p,Q)=w.(p) ~w_(p—Q) andQ_(p,Q)=w . (p— Q) ~w_(p).
In the low-density Iimitnaé<1 the coupled Eq920) to the first order of density assume the form

|
o [UpUp—qUqUg—Q Tt ¥p¥p-q¥q¥q-olF-(Q.Q)

[UpUp-¥a¥q-+ Uplp-o¥a¥q-olF 1 (A,Q), (20D

o

Fl.(p,Q)

. 7T2 . 1 mc 2 Q2
0By o2 T he 5 p_mc+myQ —M—HS(D,Q)

n 2 2 2 2 |
- Z(QDo(p)"”(Po(p_Q)+ o)+ e(d—Q))|F(a,Q)

(2m? |p—q

g27e2> d’q f(L|p—a) o o -
> e Toq LeoP (P~ Q)+ ol @eo(a-QIFL(0.Q) (213

:_(ZWeZ) d*q f(Llp—ql)[

+

772 1 m, 2 Q2 |
wI+Eg+m_Mexc+ﬂ p— mc+va —ernS(p,Q) F_(p.Q)

2me? d’q f(L|p—ql) n
( . ) 2’ |g_q|| (1—Z[@S(D)+¢S(D—Q)+¢§(q)+¢§(q—Q)])F'(q,Q)

2 2 d2 f(Llp—
2 [ o M aigotp- @)+ eu(@en(a- Q. (0.0) (210

(2m?* |p—q

We look for the solutions', (q,Q) andF' (q,Q) of the above equations in the form

FL(Q,Q)Z% Clam( Q)Rnm(Q). (22)

By putting Eq.(22) into the coupled Eqg21) we obtain we obtain a set of linear homogeneous equatior@ﬁ%. The last

system cannot be solved exactly. For this reasoriiivignore the coupling between the different excitonic modes due to the
condensate(ii) suppose that the original exciton modes will not be affected too much by the presence of condensate. This is
equivalent to keep in the summation over the hydrogen quantum numbers (22ZEqnly those terms with quantum numbers

n,m, which have energies+ (7212uL%) —E~ |+ pexc. IN this approximation the chemical potentialig, .= ,ug()c and the
non-zero-momentum ground-state enetgy o(Q) = wq(Q) is obtained to be
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: s
w0(Q) = \/V?Q?+ ZQM) - (23

whereM =m.+m, . As can be seen the exciton ground state in a single quantum well structure at finite but small wave vectors
shows a phononlike dispersion relation with the speed of sdtiad/(n/(M)(du'%/dn), wherew(L.is the chemical potential,

defined by Eq(13).
In the 2D case the velocity is given by

V=\4m(naj)EoM 1. (24)

D. Bose-Einstein condensation temperature

In this section we concern the problem at which temperatures the condensate should be readily observed. If we want to
calculate the BEC temperatuligse by solving the equatioix. ., (Tgg,n) =0, we must include the effects of the two-particle
modes on the single-particle excitations. In our analysis we neglect the fact that both the mass operator and the one-particle
“anomalous” Green’s functions depend on the two-particle Green’s funéfbR’ For this reason we will estimate the
temperaturel gg using the fact that in the low-density limit the two-fermion electron-hole bound states can be considered as
bosons with a spectrui23). The density of particles populating the staig( Q) is given by summing over the corresponding
Bose-Einstein distributions

s

V2D

1 M [+ EdE
exp{Blwo(Q) ~rexdt—1 27 Jo JEZ+ M2V (exp BLE+ Eg+ m2(L/ag) 2= pexd}— 1)

n(m)= (25

whereV,p is a 2D volume. Thus we define the temperaturewith nondegenerate and isotropic bands. In the low-density
Tge as a temperature at which the actual density equals thiémit the excitons, which are made of an even number of
density of particles populating the state,(Q). For T  fermions, can be considered as bosons, and we would thus
<Tge the actual density exceeds this density and the extraxpect that no BEC of excitons is possible, but KT phase
amount particles will occupy the zero-momentum groundtransition to a superfluid state takes place. It is worth noting
state and Bose-condensed excitons should be observed. that the excitons may exist in the superfluid phase and out-
order to determine the critical temperature in terms of the
densityn, we assumeue~ull. As a result, we obtain a 30
linear relationship between the critical temperature and the
exciton density

25

1
() Eo(nag)ks . 20 w0

Herez, denotes the solution of the following equation:

Tee(L)=
)

T4(x)
T s

1 (mg+m, )2 xdx 0 T3(x)
47 mgm \/x7+ b?Z2{exp(x)—1} L
@27 1w
where
5
b 1o +e f(xL/ag)dx og i
5| 3T [x2+ 1687177 28) o ! I ! ! ! f
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
and the parameteB has been already determined by maxi- x
mizing the Chemlcal pOtent'aLexc.W'th rgspect to3. A plot FIG. 3. The Bose-Einstein condensation temperaflige in
of TgE in Kelvin versus the dimensionless parameter yelyin versus the dimensionless parametema for GaAs struc-
=ng; for different GaAs structures is shown in Fig. 3. tures for different quantum well thickness&sl (x)—T6(x) repre-
sent the temperatur€ge as a function of parametet= nag for
IIl. EXCITONS IN TWO DIMENSIONS: L/ag=0.25, 0.5, 0.75, 1, 1.25, and 1.5, respectively. The exciton is
PHASE TRANSITION TO SUPERFLUIDITY made of an electron with effective masg=0.067m, and a heavy

hole with effective massn,=0.197n,. The values of a dielectric
In this section we will calculate the critical temperature constant, 3D exciton Bohr radius and 3D exciton Rydberg, used in
T. of KT topological phase transition in an exactly two- calculations are as follows:s,,=10.9, a,=115A, and E,
dimensional structure made from direct-gap semiconductors 6 meV.
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side of the superfluid state, i.e., in the normal phase. Thus 3 T I ] T T
one can write for the total exciton concentrationat the
temperaturer:
25 -
n=n,(T)+ngT), (29

wheren, and ng are 2D densities of excitons in a normal
exciton phase and in a superfluid phase, respectively. Ac- 2k —
cording to the work by Kosterlitz and Thoulé3she critical

temperatureT . of KT topological phase transition is given Te(x)

b

y 15 ]

mng(Te)
Te= S (309
- -
whereng(T.) is the value of the density of the superfluid
component at the KT transition temperature. The density of
the normal phase is given by the well-known Landau expres- 05 { | ] | i
sion T 002 003 004 005 006 007 008
2 X
d’Q _,n[E(Q)]
Na(T)=— M (277)2 JE(Q) (30b) FIG. 4. The critical temperatur€, of the Kosterlitz-Thouless

phase transition in kelvin versus the dimensionless parameter

where n(E) is the Bose-Einstein distribution function and =naj for 2D GaAs structures. The exciton is made of an electron
E(Q) is the exciton energy. with effective massn,=0.067n, and a heavy hole with effective

given by the expression Bohr radius and 3D exciton rydberg, used in calculations are as
follows: £.,=10.9,a,=115A, andE,=6 meV.

2MkgT
n=——2"C4n(To). (300 L [MV2|2]32 MV2>3
oT (= ST eT) | T ket
The last equation can be solved and the critical temperature M(T)=—— fo 2\ 232 '
T. of a KT phase transition to a superfluid state can be ob- x2+( K T) [expx)—1]
tained as a function of the total density of excitandf we B (339

assume the quadratic dispersiB(Q)=(2M)1Q? for the
excitons, than the integral in E¢B0b) diverges logarithmi- As can be seen from E¢333a atT—0n,(T—0)=0 and all
cally, which means the absence of a KT phase transition to excitons are in a superfluid state. It is worth noting that in
superfluidity. In the previous section we have obtained thaRef. 18 the contribution of the collective excitation to the
the exciton ground state in the 2D case at finite but smaltlensity of excitons of the normal phase is estimated to be
wave vectors shows a phononlike dispersion relation ) 3 5
T (kBT) T kBT
2 (D= Zomv T M
(313

o (33b)

2M

wo(Q)=\/ V?Q*+

Obviously, the above two expressions are quite different.
Substituting Eq.(339 into Eq. (300 we obtain a linear

relationship between the KT critical temperature and the ex-

citon density

with the speed of sound

V=1(n/M)(dpl)dn)=[4mEx(nad)M ~1]¥2
(32b)

It is worth noting that the above speed of sound is different
from that, obtained in Ref. 18. The speed obtained by LoZOopere
vik and co-workers has the form ¢

T=£E(n2k_1 34
chOaO)B' (34)

denotes the solution of the following equation:

1M 1 (+=dx{(x?+a%z?)%°—a3z®
V=1(n/M)(duldn)=[4.7EEq(nad)M ~1]*2 i - —— 1+Zfo [Xz{_,_azzz]s/z{equ)_l?g =0,
(329 (35

In order to take into account the contribution of the col-wherea=4. A plot of T, in Kelvin versus the dimension-
lective modeg313 to the concentration of the normal phase less parametemznag for 2D GaAs structureqfor m.
we put the dispersion of the collective modékla into  =0.067m, andm,=0.197m,, z. is 1.684 is shown in Fig.
(30b). Thus by using for the chemical potential in a strictly 4.
2D caswexc~ugxc= Ey—4E, one can obtain for the density The superfluidity in a two-dimensional system is due to
of excitons in a normal exciton phase in the low-density limitthe presence of vortices. The superfluid densifyT) at the
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KT temperaturg308 undergoes a discontinuing from some case of a single quantum well structure as well, the ground-
finite value to zero. In contrast to this global superfluid den-state quadratic exciton dispersion n€a+ 0 is modified and
sity, the differencen—n,(T) is a smooth function of tem- starts linear with momentum in the presence of a Bose con-
perature and does not equal to zero even aldQuveOne can  densate.

obtain from Eq.(333 the temperatur&y~10.7T. at which (i) The critical temperature of the Bose-Einstein conden-
n,(To)=n. At the temperatureT, the superfluid density sation scales linearly with 2D density of excitons.

n(T) disappears with a jump, but at somewhat higher tem- (iii) We have obtained the critical temperature of the
peraturesT,>T>T, we have a nonzero local superfluid Kosterlitz-Thouless phase transition to exciton superfluidity
densityn—n,(T), which can be manifested in completely as a function of the exciton density.

accessible to measurement effect—an observation of a third Our BCS-like treatment can be applied also to the quan-
sound?? i.e., the propagation of density oscillations of a su-tum well structures in which the electrons and holes are in
perfluid component in a two-dimensional system. two different quantum wells with thicknessés and L,
separated by a wide barrier material with a thickness
Naveh and Lakhtmdnh have considered the casg ,>d,

and Zhuet al1°—the casd..=L,=0. In order to apply our

~ Inthis paper we discuss the one- and two-particle excitatreatment to those structures, one has to use instead of Eq.
tions of the electron-hole gas in a single quantum well usingqg) the following function:

the Green’s function method. The combination of Green’s
function technique for dealing with one- and two-particle
properties enables us to obtain some results that can be ap-
plied in the long search for the Bose condensed phase of
excitons in semiconductors. The following conclusions sum-

IV. CONCLUDING REMARKS

f(x,éc.€,,d)

167 [1—exp(— ) ][1—exp — ,x) Jexp( —dx)
- £l (AT + EXC) (AT + £,X7) '

marize our results:

(i) We have obtained that not only in 3D case, but in thewhere&; ,=L. ,/a,.
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