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Green’s function approach to the dynamics-controlled truncation formalism:
Derivation of the x „3… equations of motion
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The dynamics-controlled truncation~DCT! formalism is a successful microscopic approach that describes
coherent correlations in optically excited semiconductors. For practical reasons~including numerical evalua-
tions!, its application is limited to lowest-order nonlinearities, such as thex (3) regime. Therefore, it is not
convenient to use this formalism to examine the role played by incoherent many-body effects, such as carrier-
carrier scattering and screening. Traditionally, the most powerful approach to study incoherent effects and
correlations in highly excited semiconductors is that of nonequilibrium Green’s functions~NGF!. A combina-
tion of the insights and technical advantages provided by the two~NGF and DCT! approaches will lead to a
comprehensive microscopic theory for nonlinear optical phenomena in semiconductors. In this paper, we take
a first step in this direction by presenting detailed one-to-one relations between the two formalisms within the
x (3) approximation. Starting from the standard perturbation theory of nonequilibrium Green’s functions, we
derive the essential minimal order factorization theorems, to arbitrary order, of DCT and the equations of
motions for the interband polarization and the ‘‘biexcitonic’’ correlation function. This lays the foundation for
future diagrammatic high-intensity generalizations of the DCT formalism.
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I. INTRODUCTION

The dynamics-controlled truncation~DCT! formalism1–5

is a successful microscopic approach that describes coh
phenomena in optically excited semiconductors in
weakly nonlinear~low-density! limit. In each order of the
external field, it demonstrates that only a finite set of cor
lation functions contribute to optical processes and lead
exact, closed equations for the correlation functions. A co
plete description of all coherent phenomena to certain
orders~e.g., x (3)) is therefore possible. Its most importa
application to date has been the elucidation of excit
exciton correlation effects in femtosecond scale four-wa
mixing experiments in thex (3) regime.5–8

Despite its successes, DCT’s usefulness cannot easil
extended to higher-intensity regimes or situations with p
excited electrons and holes. All but the lowest-order (x (3))
evaluation lead to untractable equations of motion, espec
with regard to numerical evaluations. Furthermore, questi
concerning certain aspects of the formalism remain. For
ample, it is not clear how incoherent many-body effects en
the description, which precludes a quantitative definition
the time scale of strict validity of the DCT.

Traditionally, the most powerful approach to study all a
pects of many-body effects in semiconductors, includ
both coherent and incoherent effects, have been equilibr
~see, e.g., Refs. 9 and 10! and nonequilibrium~see, e.g.,
Refs. 11–14! Green’s functions. For general treatments
Green’s functions see, e.g., Refs. 15 and 16. The applica
ity of the nonequilibrium Green’s functions~NGF! is not
limited in intensity or density, but so far it has not be
PRB 610163-1829/2000/61~12!/8341~18!/$15.00
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practical to study strong four-body correlations rigorous
within this approach.

By combining the advantages of the two~NGF and DCT!
approaches, a comprehensive microscopic theory for non
ear optical phenomena in semiconductors can be develo
In this general theory, the strict validity of the DCT forma
ism for higher-order nonlinearities will have to be abandon
in order to account for physically relevant high-density e
fects. Nevertheless, the aim is to keep the benefits of
general theoretical approach of the DCT formalism, nam
coupled equations of motion for various expectation valu
and correlation functions, in such a generalization. Our ov
all strategy toward this goal is to embed the low-order~at
least x (3)) results of DCT in a diagrammatic perturbativ
NGF treatment. In this paper we take a first step in t
direction, which is to develop a detailed one-to-one cor
spondence between the two approaches in thex (3) limit.

Diagrammatic perturbation theories of Green’s functio
have been most useful in many-body problems where
can group classes of diagrams, representing certain phy
processes, in such a way that their sum can be written as
solution to an integral equation or a differential initia
boundary-value problem. Familiar examples are the Dy
equation for two-point functions and the Bethe-Salpe
equation for the four-point functions with various approx
mations for the self energies and the irreducible four-po
vertices, respectively. The formalism provides a unifi
framework to examine the various processes quantitativ
Within this framework, the DCT equations to a certain ord
in the external field should also be representable as the s
mation of classes of Green’s function diagrams. The gen
idea of relating the DCT formalism to a diagrammatic re
8341 ©2000 The American Physical Society
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8342 PRB 61N. H. KWONG AND R. BINDER
resentation has already been pointed out and used by Ma
and Sham.17,18 Some results on the diagrams’ properties d
rived in the present paper were already discussed in Ref
However, for future development, we believe it is importa
to establish a detailed correspondence between convent
nonequilibrium Green’s function diagrams and DCT equ
tions of motion.

In this paper, we examine in detail the standard Feynm
Dyson perturbation theory diagrams for the relevant n
equilibrium Green’s functions. In Sec. II, the model Ham
tonian and the Green’s functions are defined. The Feynm
rules for constructing perturbation theory diagrams for
Green’s functions in the electron-hole system are collecte
Appendix B. The crucial result from this examination~Sec.
III ! is that the assumption of an initial ground state ann
lates a vast class of diagrams. We classify the nonvanis
diagrams in increasing order of the external field~Sec. IV!.
In each order up to order three, we show that all nonvan
ing terms~to arbitrary order in the two-particle interaction!
contributing to the equal-time Green’s functions—the de
sity, the polarization, the biexcitonic correlation—can be
summed to yield closed equations of motions that have b
derived within DCT. It is intended that these diagrams w
be kept in future generalizations to higher densities. So
directions for such generalizations are mentioned in the c
cluding section.

The formal development of the DCT scheme to arbitra
order in the external field was based on severalfactorization
and contraction theorems on multipoint density matrice
stated and proved in Ref. 3. In Appendix A, going beyo
x (3), we give diagrammatic proofs of two special cases
these theorems that involve minimal order factorization
two classes of density matrices. Although, as explain
above, we are unlikely to extend our present exact iden
cation between the NGF and the DCT formalisms to hig
orders in our future development, the purpose of Appendi
is to indicate how one might proceed if one desires to
that.

II. GREEN’S FUNCTIONS ON THE KELDYSH CONTOUR

We work with a model semiconductor system with tw
groups of bands: conduction and valence bands. In the
tem’s ground state, all the valence bands are filled while
conduction bands are empty. The excited states of the sy
are described in terms of two species of charged partic
electrons in the conduction bands and holes in the vale
bands. We write the Hamiltonian in an arbitrary sing
particle basis as follows:

Ĥ5Ĥ11Ĥ21Ĥext ,

Ĥ15(
i j

ee~ i , j !ae
†~ i !ae~ j !1(

i j
eh~ i , j !ah

†~ i !ah~ j !,

~1!

Ĥ25
1

2 (
i jmn

@^ i j uVeeeeumn&ae
†~ i !ae

†~ j !ae~n!ae~m!

1^ i j uVhhhhumn&ah
†~ i !ah

†~ j !ah~n!ah~m!

1^ i j uVehehumn&ae
†~ i !ah

†~ j !ah~n!ae~m!
lle
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1^ i j uVheheumn&ah
†~ i !ae

†~ j !ae~n!ah~m!#

Ĥext5
1

2 (
i j

@e2 iv0tE~ t !•deh~ i , j !ae
†~ i !ah

†~ j !

1eiv0tE* ~ t !•dhe~ j ,i !ah~ j !ae~ i !#.

Each single-particle orbital is labeled by a species subsc
e or h, and an orbital index that represents the collection
single-particle quantum numbers, e.g., band, momentum
the orbital. To allow for a general treatment of band co
pling, the one-body partĤ1 of the system Hamiltonian is
taken to be non-diagonal in the single-particle basis,
though it is diagonal in the species label. InĤ2, we have
only included those parts of a general electron-electron in
action that do not effect a transition between a conduct
band and a valence band, or, equivalently,Ĥ2 neither creates
nor annihilates electron-hole pairs. This approximation
represented graphically in Fig. 1 where all possible types
matrix elements of a two-body interaction are shown. O
the terms represented by Fig. 1~a! are included inĤ2. The
justification of this approximation has been discussed
e.g., Refs. 19 and 20. The ground state of the model sys
Hamiltonian Ĥ11Ĥ2 is the electron-hole vacuum provide
the binding energy per electron-hole pair in a gas of a
density is smaller than the bare band gap, i.e., when
vacuum is stable, which we will assume in the followin
The external field HamiltonianĤext only acts to create or
annihilate electron-hole pairs. The rotating-wave approxim
tion is taken.

The density matrices that obey the DCT equations of m
tion, namely the interband polarizationpeh , the densitiesf ee
and f hh , and the biexcitonic density matrixBeehh, are de-
fined by:

FIG. 1. Matrix elements of a general two-body interaction in
two-component~electrons and holes! plasma. The matrix element

represented by the diagrams in~a! are included inĤ2 in Eq. ~1!
while those in~b! are not.
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peh~ i , j ,t ![^ah~ j ,t !ae~ i ,t !&,

f nn~ i , j ,t ![^an
†~ j ,t !an~ i ,t !&

Beehh~ i , j ,k,l ,t ![^ah~ l ,t !ah~k,t !ae~ j ,t !ae~ i ,t !&,

wheren5e,h and ^•••& denotes averaging with the initia
density operator. Here the creation and annihilation opera
are Heisenberg picture operators. In this paper we consid
version of the DCT equations in which the mean-field part
the interaction is separated from the correlation part. T
four-body dynamical variable in this version is the correla
part of Beehh, defined as

beehh~ i , j ,k,l ,t ![Beehh~ i , j ,k,l ,t !2^ah~ l ,t !ae~ i ,t !&

3^ah~k,t !ae~ j ,t !&1^ah~ l ,t !ae~ j ,t !&

3^ah~k,t !ae~ i ,t !&.

In the x (3) regime, the correlation functionbeehh( i , j ,k,l ,t)
carries the most interesting physical information, and
properties have been studied extensively from a mem
function point of view21,22 and within DCT.4–8

In the NGF formalism, the above density matrices a
obtained as equal-time limits of multitime Green’s functio
ordered along the Keldysh time contour~Fig. 2!. The exten-
sion to multitime functions facilitates the application of pow
erful perturbation theory techniques. The two-point Gree
functions for our system are defined by

Gee~ i , t̄ , j , t̄ 8!52 i ^TC@ae~ i , t̄ !ae
†~ j , t̄ 8!#&,

Ghh~ i , t̄ , j , t̄ 8!52 i ^TC@ah~ i , t̄ !ah
†~ j , t̄ 8!#&,

Geh~ i , t̄ , j , t̄ 8!52 i ^TC@ae~ i , t̄ !ah~ j , t̄ 8!#&,

G̃eh~ i , t̄ , j , t̄ 8!52 i ^TC@ae
†~ i , t̄ !ah

†~ j , t̄ 8!#&, ~2!

where the time arguments run along the Keldysh cont
~Fig. 2!, which starts from the initial timet0, goes forward
along the positive branchC1 to infinity, and then goes back
ward along the negative branchC2 to t0 . TC denotes time
ordering along this contour. As above,^•••& denotes aver-
aging by the initial density operator. In calculations, an
ternative representation of the time structure in the Gree
functions is often more convenient. Here a time pointt̄ is
represented by (t,b), where t is the ordinary time andb5
1,2, the Keldysh sign, gives the branch of the contour
which the point resides. Each path-ordered two-po
Green’s function is then broken down into four compone
labeled by the Keldysh signs of the two time arguments.
example, the four components of the electron den
Green’s functionGee are

FIG. 2. The Keldysh time contour.
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Gee
12~ i ,t, j ,t8!5 i ^ae

†~ j ,t8!ae~ i ,t !&,

Gee
21~ i ,t, j ,t8!52 i ^ae~ i ,t !ae

†~ j ,t8!&,
~3!

Gee
11~ i ,t, j ,t8!52 i ^T1@ae~ i ,t !ae

†~ j ,t8!#&

5u~ t2t8!Gee
21~ i ,t, j ,t8!

1u~ t82t !Gee
12~ i ,t, j ,t8!,

Gee
22~ i ,t, j ,t8!52 i ^T2@ae~ i ,t !ae

†~ j ,t8!#&

5u~ t2t8!Gee
12~ i ,t, j ,t8!

1u~ t82t !Gee
21~ i ,t, j ,t8!,

where T1(T2) denotes time~antitime! ordering along the
ordinary time axis. The components of the other Gree
functions are written in the same way. For example, th
(11) component of the polarization Green’s function is

Geh
11~ i ,t, j ,t8!52 i ^T1@ae~ i ,t !ah~ j ,t8!#&. ~4!

Green’s functions involving more than two operators a
similarly defined. The four-point function corresponding
Beehh is

Geehh~ i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-!5~2 i !2^TC@ae~ i , t̄ !ae~ j , t̄ 8!

3ah~k, t̄ 9!ah~ l , t̄-!#&. ~5!

This function has 16 components in the (t,b) representation.
The (1111) component,Geehh

1111 , for example, has the
same expression as Eq.~5! with TC replaced byT1 . We
give the definition ofgeehh, the correlated part ofGeehh, in
Appendix B. It bears the same relation toGeehhasbeehhdoes
to Beehh. Some density matrices and Green’s functions w
an arbitrary number of external points are also defined
Appendix A.

To analyze and/or calculate the Green’s functions, o
may follow standard procedures and expand each of them
a time-dependent perturbation series withĤ1 as the unper-
turbed Hamiltonian. Each term can be represented by a
gram, and the Feynman rules for enumerating these diagr
to arbitrary order and translating them into analytic expr
sions are stated in Appendix B, to which we also refer
reader for some of the notational and terminological conv
tions used in this paper. Then, as mentioned above, the
sity matrices of interest can be obtained as the equal-t
limits of particular Green’s functions,

Geh
11~ i ,t, j ,t1e!5 ipeh~ i , j ,t !,

Gee
12~ i ,t, j ,t !5 i f ee~ i , j ,t !,

~6!
Ghh

12~ i ,t, j ,t !5 i f hh~ i , j ,t !,

geehh
1111~ i ,t, j ,t1e,k,t12e,l ,t13e!52beehh~ i , j ,k,l ,t !,

where e↘0. The ambiguity at the equal-time point in th
definitions of the Green’s function components with all1
Keldysh signs calls for the specification of an ordering of t
time variables as all of them approach the common ti
point, as is done here forGeh

11 andgeehh
1111 . For these two
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8344 PRB 61N. H. KWONG AND R. BINDER
functions, however, the choice of the ordering is immate
as these functions are continuous in all time variables at
common time point.

The crucial assumption for the DCT scheme to be valid
that the initial state of the system is the electron-h
vacuum. In our approach, this assumption results in the
lowing expressions for the free-particle~electron or hole!
Green’s functions:

Gn(0)
12 ~ i ,t, j ,t8![ i ^an(0)

† ~ j ,t8!an(0)~ i ,t !&50,

Gn(0)
21 ~ i ,t, j ,t8![2 i ^an(0)~ i ,t !an(0)

† ~ j ,t8!&

52 i @e2( i /\)en(t2t8)# i j ,
~7!

Gn(0)
11 ~ i ,t, j ,t8!5u~ t2t8!Gn(0)

21 ~ i ,t, j ,t8!

5Gn(0)
R ~ i ,t, j ,t8!,

Gn(0)
22 ~ i ,t, j ,t8!5u~ t82t !Gn(0)

21 ~ i ,t, j ,t8!

52Gn(0)
A ~ i ,t, j ,t8!,

where the subscript (0) in the creation and annihilation
erators indicates that these are Heisenberg operators ev
by the unperturbed HamiltonianĤ1 , n5e, h, anden is the
n-band single-particle energy matrix inĤ1. The vanishing of
Gn(0)

12 ~Fig. 3! eliminates many terms in the exact Green
functions’ perturbation series. In the following, rules for co
structing the surviving graphs are stated and proved. Th
graphs are then classified by the number ofĤext vertices.
Minimal order factorization theorems, to arbitrary order,
DCT and the DCT equations of motion up tox (3) are de-
rived.

III. GRAPHICAL RULES FOR THE CASE
OF A VACUUM INITIAL STATE

The rules for drawing perturbation diagrams for our s
tem and translating them into algebraic expressions are
lected in Appendix B. As noted above, in the special case
using a vacuum initial state, a large number of diagra
become zero. In this section, we state and prove rules
constructing nonzero graphs. Parts of our terminology, s
as particlesegmentsand particlechains, are not in common
usage. For their definitions and those of all graphical e
ments, the reader is referred to Appendix B. We recall t
the full set of labels of the lines and the vertices are tim
Keldysh sign, species, and orbital. In order not to unnec
sarily clutter the figures or equations, from here on some
the labels not essential to the argument at hand will be o
ted. In general we treat anE vertex and anE* vertex as
different vertices. But by saying a certain graph is of ord
En, we mean the total number of external field,E and E* ,
vertices isn.

FIG. 3. The (12) component of the free-particle Green’s fun
tion, being proportional to the initial density, vanishes.
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The validity of the first three rules is actually not limite
to situations with initial vacuum states: they are con
quences of the fact thatĤ2 does not create or annihilat
particle-hole pairs at either vertex. Because these rules
repeatedly invoked in later sections, we collect them here
convenience.

Rule 1. Each fermion loop contains an equal number oE
vertices andE* vertices. TheE-vertices and theE* -vertices
are placed alternately along the loop@Fig. 4~a!#.

Proof. This rule is trivially true for a loop with noE(E* )
vertices. For a loop with external field vertices, start at a
particle line and run around the loop in the direction of th
line’s arrow. By item~B4! in Appendix B, the arrow main-
tains its direction (V vertices do not switch the arrow’s di
rection! until it meets an external field vertex. By item~B7!,
the first external field vertex that this line meets must be
E* vertex. After this vertex, the segment’s arrow ru
counter to the sense in which we are going around the lo
Since one segment cannot contain two counterpointing
rows, we can see that we must encounter at least onE
vertex before returning to the particle line where we start
By the same token, additionalE vertices andE* vertices
must appear in pairs, theE* preceding theE in each pair.

Rule 2. Consider a particle chain connecting two extern
points in a graph. If both external points correspond to an
hilation operators, then the number ofE vertices on the chain
is one more than that ofE* vertices. If both are creation
operators, the excess external field vertex is anE* -vertex. If
the external points are one creation operator and one an
lation operator, then the chain contains an equal numbe
E-vertices andE* -vertices.

Proof. The proof is essentially the same as that of Rule

FIG. 4. Examples of closed particle loops.
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Rule 3. Consider a Green’s function that is the expectat
value of N annihilation operators andM creation operators
(N1M must be an even number!. If a contributing graph
containsNE E vertices andNE* E* vertices, then the follow-
ing relation holds:

NE2NE* 5
N2M

2
.

For example, a graph of the density two-point functionGee
has an equal number ofE vertices andE* vertices, a graph
of Geh has one excessE-vertex, and a graph ofGeehh has
two excessE vertices.

Proof. By Rule 1, the loops do not contribute toNE
2NE* . SupposeN.M . The excessE* vertices generated b
the M creation operators on the chains are matched by
excessE vertices generated byM of the annihilation opera-
tors. So the net contribution toNE2NE* comes from the
extra N2M annihilation operators that are linked by (N
2M )/2 chains, each of which has one excessE vertex by
Rule 2. The same argument applies forN,M .

The following rules are valid when the additional assum
tion of an initial vacuum state is adopted.

Rule 4. If a graph contains a fermion loop that does n
contain any external field vertex, the graph50.

Proof. We first consider the special case where the loo
one free-particle line beginning and ending at the samV
vertex. In the Wick’s factorization of the Green’s functio
this line comes from the contraction of two operators in
expression forĤ2. Since in this term the creation operato
are placed to the left of the annihilation operators, and
ordering is preserved in theT product, the line that results i
^an(0)

† ( j ,t)an(0)( i ,t)&50. The more general case is whe
the loop contains an arbitrary number, sayn(.1), of
V-vertices, as illustrated in Fig. 4~b!. The loop contributes
the factor

F5 (
b1b2 , . . . ,bn51,2

f ~b1 ,b2 , . . . ,bn!

f ~b1 ,b2 , . . . ,bn!5E
2`

`

dt1 . . . dtnGn(0)
b1b2~ t1 ,t2!

3Gn(0)
b2b3~ t2 ,t3!•••Gn(0)

bnb1~ tn ,t1!

3V~ t1!V~ t2!•••V~ tn!

to the graph. For a given sequence of Keldysh sig
(b1 ,b2 , . . . ,bn), if any bi is different from any otherbj ,
then following the arrow around the loop, we are certain
encounter aGn(0)

12 and sof (b1 , . . . ,bn)50. So the only pos-
sible non-zero terms in the sum over the Keldysh signs
f (1,1, . . . ,1) and f (2,2, . . . ,2). For f (1,1, . . . ,
1) the integrand contains the factoru(t12t2)u(t2
2t3)•••u(tn2t1) which reduces the integrand support to
set of measure zero. The same argument applies tof (2,
2, . . . ,2). SoF50.

Rule 5. This rule concerns a fermion line segment~i.e., it
does not contain anyE(E* ) vertices!, the arrow of which
goes from (t8,b8) to (t,b).
n

e

-

t

is

e

is

s

o

re

~a! If b51 andb852, the segment is zero and so ann
hilates the whole graph.

Proof. In this case, no matter how the intermedia
Keldysh signs are assigned, the segment must conta
Gn(0)

12 .
~b! If b5b851, all the intermediate Keldysh signs ar

1, and the time arguments go in increasing order along
direction of the arrow.

Proof. The same argument as in Rule 4 restricts the s
viving contributions to those in which all the intermedia
Keldysh signs are1. Suppose there aren intermediateV
vertices. Label them, in the direction fromt8 to t,
t1 ,t2 , . . . ,tn ~Fig. 5!. Because of the step function inGn(0)

11 ,
these arguments must go in increasing order along the d
tion of the arrow:t8,t1,t2,•••,tn,t.

~c! If b5b852, all the intermediate Keldysh signs are
2, and the time arguments go in decreasing order along
direction of the arrow. The proof is similar to that of Ru
5~b!.

~d! If b52 andb851, a surviving segment is made u
of two subsegments: a chain of2 ’s linked to (t,2) and a
chain of 1 ’s linked to (t8,1) connected by aGn(0)

21 at an
intermediate point~Fig. 6!. Again the time ordering appro
priate to each subsegment applies. The proof is again sim
to that of Rule 5~b!.

The four parts of the rule can be summarized by the st
ment that in a surviving segment, the vertices along the
row’s direction must have increasing Keldysh-time arg
ments.

Rule 6. Any nonzero graph of orderEn contributing to
Gnn

12 , n5e,h, containsat most n/221 loops. Any nonzero
graph of orderEn contributing toGeh

b1b2 for any b1 ,b2 con-
tainsat most(n21)/2 loops.

Proof. By Rule 4, a nonzero loop must contain at lea
one pair ofE and E* vertices. The maximum number o
loops is attained if we place exactly one pair in each lo
For Gnn

12 , n is even by Rule 3. The open chain contains
least one pair ofE and E* vertices. Hence the maximum
number of these vertex pairs available to the loops isn/2
2a, which is then the maximum number of loops. The a
gument forGeh

b1b2 is similar.

FIG. 5. A particle segment with (1) Keldysh sign on both ends
By Rule 5~b!, the Keldysh signs at all intermediate vertices are1.

FIG. 6. A particle segment with the arrow going from one e
with (1) Keldysh sign to the other end with (2) Keldysh sign. By
Rule 5~d!, the intermediate vertices are segregated by their Keld
signs.
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Rule 7. If a V line connects two vertices in the sam
segment, the graph is zero~Fig. 7!.

Proof. Consider the subsegment the end points of wh
are the vertices of theV line in question. The times an
Keldysh signs at the two end points must then be the sa
and the arrow goes in one direction from one end point to
other. Then the same argument in Rule 4 above that pro
the vanishing of a loop with noE(E* ) vertices holds here.

Rule 8. If the end points of a particle segment have equ
time arguments and Keldysh signs, but they are not c
nected by aV line, then the segment is a noninteracting p
ticle line. In fact, it is equal to zero or the identity matrix
the single-particle basis, depending on from which side
the equal-time point the limit is taken.

Proof. The same argument as in the proof of Rule 4~the
collapsing of the support of the integrand to a zero-meas
set! shows that the segment considered here is zero if it c
tains at least oneV vertex. If the whole segment is just on
free-particle line, however, since the two points are not c
nected by aV line, the restriction of operator orderin
brought about byĤ2 does not apply. So such a segment m
survive. The two possible limiting values for the free-partic
line follows from the definitions ofGn(0)

bb , Eq. ~7!.
Rule 9. If two V lines connect the same two segments,

arrows must go in the same direction between theV lines.
For example, Fig. 8~a! represents a nonzero graph, while F
8~b! vanishes.

Proof. Consider the two subsegments bounded by the
tices of the twoV lines in question in Fig. 8~b!. Suppose first
the Keldysh signsb1 andb2 are different. Then the arrow in
one of the two subsegments goes from2 to 1 which anni-
hilates the graph by Rule 5~a!. If b15b251, then by Rule
5~b!, the arrows must go in the direction of increasing tim
in both subsegments, which is impossible. So the grap
zero. The argument is the same forb15b252.

FIG. 7. A graph with aV line connecting two points on the sam
segment is zero.

FIG. 8. ~a! is nonzero while~b! is zero.
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Rule 10. In any nonzero-order~in E) two-point density
graph, the (11) component is continuous in each time va
able at the point where the two times are equal. In ot
words, the discontinuity inGnn

11(t1 ,t2) at t15t2 arises en-
tirely from the zeroth-order terms.

Proof. Consider first the case where the open chain is f
of E(E* ) vertices. Since, by hypothesis, there areE vertices
in the graph, there must be at least one loop. The connec
ness of the graph then implies that the open chain must c
tain someV vertices. Such a chain is then a segment w
equal-time arguments and Keldysh signs at both ends, w
is zero by Rule 8. So the open chain must containE(E* )
vertices, in which case it is quite easy to see the grap
continuous at the equal-time point by writing down the an
lytical expression for the open chain.

IV. THE x „3… DYNAMICS-CONTROLLED TRUNCATION
EQUATIONS

To derive thex (3) DCT equations, we consider the pe
turbation series of the density matricespeh , f ee, f hh and the
correlation functionbeehh, defined in Eq.~6! as the equal-
time limit of two-point and four-point Green’s functions. Fo
each Green’s function, we consider the perturbation gra
that contain up to a fixed number (<3) of E vertices and any
number ofV lines. By grouping classes of graphs in certa
ways, with the help of the simplifying rules in the previou
section, we derive equations of motion for the equal-tim
Green’s functions that are exact to the chosen order inE and
which are the same as those derived by DCT.

According to the Feynman rules in Appendix B, certa
graphical features, such as the particle label and the ar
direction of a particle segment, are not changed by the a
tion or subtraction ofV lines. It is thus useful, to each orde
in E, to first consider the graphs with noV lines. We will call
them the ‘‘bare’’ graphs for that order inE. All graphs can
be constructed by ‘‘dressing’’ the bare graphs withV lines.
This line of analysis was also adopted in Ref. 17.

A. O„E1
… polarization graphs

Although the first-order polarizationGeh
11(t,t1e) is

trivial, it is economical to clarify its graphical features he
since it will appear repeatedly as subgraphs in higher or
quantities. By Rule 6, there is only one bare graph which
an open particle chain consisting of onee line and oneh line
separated by anE vertex @first graph in Fig. 9~a!#. Rule 5
restricts the possible combinations of arrow directions a
Keldysh signs to that shown in Fig. 9~a!. All contributing
graphs are obtained by dressing this bare graph withV lines.
By Rule 7, aV line must have one vertex in each of the tw
segments that are separated by theE vertex. By Rule 9, theV
lines cannot ‘‘cross’’ each other~Fig. 8!. To summarize, the
sum of all contributions toO(E1) is represented by the serie
shown in Fig. 9~a!, which is the bareeh graph dressed by the
retardedT matrix of a particle-hole pair in free space.

This ~infinite! series of graphs can be efficiently summ
by deriving and solving an equation of motion satisfied
the sum. Denoting the sum byiGeh

11(1)(t,t1e), we see from
the structure of the graphical series in Fig. 9~a! that it satis-
fies the following integral equation:
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Geh
11(1)~ i ,t, j ,t1e!5 (

m1n1

E dt1
\

Ge(0)
11 ~ i ,t,m1 ,t1!

3@2Eeh~m1 ,n1 ,t1!

1Veh
HF~m1 ,n1 ,t1!#

3Gh(0)
11 ~ j ,t1e,n1 ,t1!, ~8!

where the Hartree-Fock field is given by

Veh
HF~m1 ,n1 ,t1!5 i (

m2n2

^m1n1uVehehum2n2&

3Geh
11(1)~m2 ,t1 ,n2 ,t1!.

This equation is represented graphically in Fig. 9~b!. We
now convert Eq.~8! into an equation of motion for theO(E)
polarization peh

(1)( i , j ,t)[2 iGeh
11(1)( i ,t, j ,t1e). We note

thatGeh
11(1) ~and any other two-point Green’s functions! is a

function of two independent time variables. Therefore,
derivative of its equal-time limit with respect tot is properly
defined as

d

dt
Geh

11(1)~ i ,t, j ,t1e!5F S ]

]t1
1

]

]t2
D

3Geh
11(1)~ i ,t1 , j ,t2!G

t15t,t25t1e

.

~9!

Correspondingly, in differentiating the right-hand side of E
~8!, we take partial derivatives with respect tot and t1e in
turn, treating them as independent variables, and add the
partial derivatives. Carrying out the differentiation, we o
tain, using Eq.~7!,

i\
d

dt
peh

(1)~ i , j ,t !2(
mn

@ee~ i ,m!d jn1eh~ j ,n!d im#peh
(1)~m,n,t !

5Eeh~ i , j ,t !1(
mn

^ i j uVehehumn&peh
(1)~m,n,t !, ~10!

which is of course just the semiconductor Bloch equation
the low-density limit.

FIG. 9. ~a! The diagram series that representpeh
(1) . ~b! The series

in ~a! resummed into an integral equation.
e

.

wo

n

It is very useful to regard the above differentiation proc
dure as applying the inverse operator of the free Gree
function,Gn(0)

21 ( i , j ,t)[ i\]/]td i j 2en( i , j ):

(
m

Gn(0)
21 ~ i ,m,t !Gn(0)

bb8 ~m,t, j ,t8!5\bdbb8d i j d~ t2t8!.

Equation ~10! is the result of applying the operato
Ge(0)

21 (t)1Gh(0)
21 (t1e) to Eq. ~8!. Diagrammatically, on the

right-hand side of Fig. 9~b!, each of theGn(0)
21 ’s acts at an

external point where it removes the external11 particle
line—the line that connects the external point to the rest
the graph—and replace the time and orbital labels on
‘‘exposed’’ vertex by those of the external point.

For later reference, we also note that, from their defi
tions, peh* ( i , j ,t)5 iG̃eh

22( i ,t, j ,t1e). A parallel argument as
above givespeh

(1)* , the O(E) part of peh* , as the sum of the
graphical series in Fig. 10.

B. O„E2
… density graphs

We consider here theO(E2) contributions toGee
12(t,t).

The considerations forGhh
12 are similar. By Rule 6, there is

only one bare graph which is an open particle chain cons
ing of two e lines and oneh line separated by anE vertex
and anE* vertex ~Fig. 11!. As a result of Rule 5, the only
surviving combination of arrow directions and Keldysh sig
is the one shown in Fig. 11.

All O(E2) graphs are obtained by dressing this gra
with V lines, the introduction of which is again restricted
certain ways in order to produce a nonzero graph. First,
Rule 5, all graphs have the same three segments as the
graph, i.e., they have the same particle labels, arrow di
tions, and Keldysh signs at theE(E* ) vertices. Furthermore
all the V vertices in eithere segment are assigned th
Keldysh sign of that segment’s end points@Rules 5~b! and
5~c!#, while the middleh segment is divided into two sub
segments withV vertices carrying opposite Keldysh sign
@Rule 5~d! and Fig. 6#. By Rule 7, aV line must connect two
different segments. Since the twoe segments are on differen
Keldysh branches, noV lines connect them: eachV line goes
from the h segment to one of the twoe segments. TheseV
lines cannot ‘‘cross’’ each other. This is true for twoV lines
going into the samee segment as a result of Rule 8~Fig. 8!.
For two V lines going into differente segments, since the

FIG. 10. The diagram series that representspeh
(1)* .

FIG. 11. The bare graph forf ee
(2) .
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two e segments have different Keldysh signs, it is clear t
the twoV lines cannot cross each other~Fig. 6!.

The upshot is that each contributing graph is obtain
from the bare graph by dressing theE(E* ) vertices with
nonoverlapping sets ofV lines ~Fig. 12!. In such a graph, an
h line, given by the factoriGh(0)

21 (t1 ,t2), separates the two
sets ofV lines. Since the vertices att1 and t2 are connected
by V lines to thee segments that are bounded by exter
points at timet, we havet1 ,t2,t. From this and the defini-
tions of the free Green’s functions in Eq.~7!, one may write

Gh(0)
21 ~ i ,t1 , j ,t2!5 i(

m
Gh(0)

22 ~ i ,t1 ,m,t1e!

3Gh(0)
11 ~m,t1e, j ,t2!. ~11!

It is then clear that this density graph can be factorized i
two O(E1) polarization graphs~Fig. 12!. Summing over all
the contributing graphs, we have

f ee
(2)~ i , j ,t !5(

m
peh

(1)* ~ j ,m,t !peh
(1)~ i ,m,t !, ~12!

which was derived in DCT and also corresponds to the lo
density limit of the Hartree-Fock theory.

C. O„E3
… Polarization Graphs

In this subsection, we will derive the DCT equations f
the O(E3) contributions to the polarizationiGeh

11( i ,t, j ,t
1e). By Rule 6, there are two bare graphs:~a! an open chain
with two E vertices and oneE* vertex on it@Fig. 13~a!#, and

FIG. 12. Factorization of a representative graph off ee
(2) into a

product of graphs forpeh
(1) andpeh

(1)* .

FIG. 13. The bare graphs forpeh
(3) .
t

d

l

o

-

~b! an open chain with oneE vertex plus one loop containing
oneE vertex and oneE* vertex@Fig. 13~b!#. Again, all con-
tributing graphs are constructed by dressing these two b
graphs withV lines. Being disconnected, the bare graph~b!
itself does not contribute, but its connected dressed vers
do. As in Sec. IV A, we will apply inverse~free! Green’s
functions to derive equations of motion. We will show ho
the graphs can be grouped so that the sums of individ
groups can be identified with terms in the DCT equations

After the application ofGe(0)
21 1Gh(0)

21 ~see Sec. IV A!, the
equation we seek has the following form, wit
Geh

11(3)( i ,t, j ,t)[ ipeh
(3)( i , j ,t):

i\
d

dt
peh

(3)~ i , j ,t !2(
mn

@ee~ i ,m!d jn1eh~ j ,n!d im#peh
(3)~m,n,t !

52 i\@all graphs with one external line

and one exposed vertex#. ~13!

If the exposed vertex is aV vertex, we will refer to theV line
emanating from this vertex as the exposedV-line. The two
classes stemming from the two bare graphs are consid
separately.

Class a. One open particle chain. This class is further
divided by physical interpretations into three subclasses:

~1! The exposed vertex is anE vertex. There are two
possible ways to assign species indices to the three suc
sive segments: (h2e2h) and (e2h2e). The first way is
shown in Fig. 14. According to the Feynman rules, the s
of this set is given by

2
1

\ (
m

Eeh~ i ,m,t !Ghh
11(2)~ j ,t1e,m,t !.

By its definition, Eqs.~3! and ~6!, f hh
(2)( j ,m,t) is equal to

2 iGhh
11(2)( j ,t,m,t1e) in which the second time argumen

approaches the first from above—a time ordering opposit
that inGhh

11(2) in the above expression. But this difference
time ordering is immaterial since, by Rule 10,Ghh

11(2) is
continuous in time at the equal-time point. Hence the ab
expression can be written asi (mEeh( i ,m,t) f hh

(2)( j ,m,t).
Analogous considerations apply to the set with the ot
species-index assignment. The contributions from the
sets together give the sum of the class as

Sa1~ i , j ,t !52
i

\ (
m

@Eeh~ i ,m,t ! f hh
(2)~ j ,m,t !

1 f ee
(2)~ i ,m,t !Eeh~m, j ,t !#, ~14!

This class represents Pauli blocking to the electron-hole
citation.

FIG. 14. Summation of Class a~1! graphs. The graph shown o
the left is a representative of the series.
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~2! The exposed vertex is aV vertex, and the exposedV
line is not crossed by any otherV lines. These graphs wil
give the Fock mean-field contributions to the right-hand s
of the equation forpeh

(3) . The sum of this class is given b
three terms, each of which corresponds to the sum of a s
graphs in which the exposedV line ends in a particular seg
ment ~Figs. 15–17!:

Sa2~ i , j ,t !5Sa211Sa221Sa23,

Sa21~ i , j ,t !52
i

\ (
kmn

@^ ikuVehehumn&peh
(1)~m,n,t ! f hh

(2)~ j ,k,t !

1^k j uVehehumn&peh
(1)~m,n,t ! f ee

(2)~ i ,k,t !#,
~15!

Sa22~ i , j ,t !52
i

\ (
kmn

@^ inuVeeeeumk& f ee
(2)~m,n,t !peh

(1)~k, j ,t !

1^ jnuVhhhhumk& f hh
(2)~m,n,t !peh

(1)~ i ,k,t !#,

Sa23~ i , j ,t !5
i

\ (
mn

^ i j uVehehumn&peh
(3a)~m,n,t !,

whereSa21, Sa22, Sa23 are contributions from Figs. 15, 16
and 17, respectively.peh

(3a) is defined by Fig. 17 and denote
that part ofpeh

(3) that is given by graphs stemming from th
bare graph in Fig. 13~a!.

FIG. 16. Summation of Class~a22! graphs, in which the ex-
posedV line ends in the middlee segment. The graph shown on th
left is a representative of the series.

FIG. 15. Summation of Class~a21! graphs, in which the ex-
posedV line ends in the middleh segment. The graph shown on th
left is a representative of the series.
e

of

~3! The remainder of the nonzero graphs give contrib
tions from four-particle correlations. In this class of graph
the exposedV line is crossed by at least one otherV line.
One consequence of the crossing is if that we remove
exposedV line, the graph is still connected. We further d
vide the class into four subsets by the particle label (e or h)
of the exposed vertex and the particle label of the segm
where the exposedV line terminates. Note that, by Rules
and 8, the exposedV line in this class can only end in eithe
of the two middle segments. An example from each subse
shown in Fig. 18. We will prove the following claim.

Claim. The sum of each subset of graphs under consid
ation here can be factorized into a product of the exposeV
line, peh

(1)* andB eehh
(2) , the last being theO(E2) contribution

to the nonsymmetrized biexcitonic correlation function@see
Appendix B, Eq.~B2!#.

We prove this claim only for the subset represented
Fig. 18~a!. The same proof applies for the other three su

FIG. 17. Summation of Class~a23! graphs, in which the ex-
posedV line ends in the endh segment. The graph shown on the le
is a representative of the series.

FIG. 18. Representatives of Class~a3! graphs.
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sets. We reproduce Fig. 18~a! in Fig. 19 with the exposedV
line removed. The graph has two open particle chains w
two E vertices and oneE* vertex. Assign the~Keldysh! time
label t̄ * to theE* vertex and the labele* to thee segment
bounded by theE* vertex and the external point. Then, sta
ing from the E* vertex along theh segment in the othe
direction, label by (t8,1) the firstV vertex, theV line from
which ends in a segment other thane* . Label by h* the
segment bounded byt̄ * and (t8,1). According to Rules 6,
7, and 9,t8,t, and all V lines starting ine* end in the
segmenth* since allV vertices ine* lie either on the nega
tive branch of the Keldysh contour or later thant on the
positive branch. Consider theh line between (t8,1) and the
next vertex onh* , which we labelt̄ 1. By factorizing thish
line in the same way as in Eq.~11!, we see that the graph i
factorized into aB eehh

(2) graph and a piece that would be
peh

(1)* graph except for a more complicated Keldysh si
structure. We show in Appendix C that this complicati
generates extra terms that exactly cancel, as causality w
demand, and the two-point graph in Fig. 19 is indeed apeh

(1)*
graph.

Since each graph in the set under consideration can
factorized in this way, and a graph assembled in the rev
manner from aV line, anyB eehh

(2) graph, and anypeh
(1)* graph

obviously belongs to this set, the claim is proved. Includ
the contributions from the other three subsets, represente
Fig. 18~b–d!, we obtain the sum of the whole class as

Sa3~ i , j ,t !52
i

\ (
klmn

@^ i l uVeeeeukm&

3peh
(1)* ~ l ,n,t !B eehh

(2) ~k,m, j ,n,t !

1^ i l uVehehukm&peh
(1)* ~n,l ,t !B eehh

(2) ~k,n, j ,m,t !

1^ j l uVhhhhukm&peh
(1)* ~n,l ,t !B eehh

(2) ~ i ,n,k,m,t !

1^ j l uVheheukm&peh
(1)* ~ l ,n,t !B eehh

(2) ~ i ,m,k,n,t !#.

~16!

Class b. One particle chain and one loop. We divide this
class into four subclasses:

~1! The exposed vertex is anE vertex ~Fig. 20!. In any
such graph, the rest of the particle chain is a segment w
is connected to the loop byV lines. All the graphs are then
zero by Rule 8.

FIG. 19. Factorization of the graph in Fig. 18~a! with the ex-
posedV-line removed into a product of graphs forB eehh

(2) andpeh
(1)* .
h

ld

be
se

by

ch

~2! The exposed vertex is aV vertex, and the exposedV
line ends on the open chain, not on the loop~Fig. 21!. Again,
by Rule 8, the segment between the end point of the expo
V line and the external point is an noninteracting parti
line. By our convention of time ordering the external poin
only the graphs in which the external line is anh line con-
tribute. The result is

Sb2~ i , j ,t !5
i

\ (
mn

^ i j uVehehumn&peh
(3b)~m,n,t !, ~17!

wherepeh
(3b) denotes that part ofpeh

(3) that is given by graphs
stemming from the bare graph in Fig. 13~b!. Sa21Sb2 gives
the complete Fock mean-field contribution to the right-ha
side of Eq.~13!. Note that sincepeh

(3a)1peh
(3b)5peh

(3) , Eq. ~13!
is closed as far as the Fock terms are concerned.

~3! The exposed vertex is aV vertex, the exposedV line
ends on the loop, and it is the only link between the loop a
the open chain. These graphs give the Hartree mean-
contribution to the right hand side of Eq.~13!. They vanish if
the system is spatially uniform and electrically neutral ov
all since in this case the momentum transfer along the
posedV line must be zero, and this Fourier component of t
Coulomb potential is excluded from the Hamiltonian. Th
do not, however, necessarily vanish in a more general
ting. The graphs can again be grouped into four subsets
the particle labels of the end points of the exposedV line,
and the sum of each subset can be expressed in closed
A representative of each subset is shown in Fig. 22~a–d!.
The analytic expression of the sums can be written down
inspection as

FIG. 20. A representative of Class~b1! graphs which all vanish.

FIG. 21. Representatives of Class~b2! graphs.
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Sb3~ i , j ,t !5
i

\ (
kmn

@^ inuVeeeeukm& f ee
(2)~m,n,t !peh

(1)~k, j ,t !

1^ jnuVhhhhukm& f hh
(2)~m,n,t !peh

(1)~ i ,k,t !

1^ inuVehehukm& f hh
(2)~m,n,t !peh

(1)~k, j ,t !

1^n j uVehehumk& f ee
(2)~m,n,t !peh

(1)~ i ,k,t !#.

~18!

FIG. 23. ~a!–~d! Representatives of Class~b4! graphs.~e! Fac-
torization of the graph in~a! with the exposedV line removed into
a product of graphs forB eehh

(2) andpeh
(1)* .

FIG. 22. Representatives of Class~b3! graphs.
~4! The exposed vertex is aV vertex, the exposedV line
ends on the loop, but the loop and the open chain are m
ply connected. This class gives the correlation contributio
and its analysis parallels that for the class a~3! above. The
graphs are again grouped into four subsets, an exampl
each is shown in Fig. 23. In Fig. 23~e!, we show how one of
the representative graphs, Fig. 23~a!, is factorized into a
biexcitonic correlation function and apeh

(1)* . The analytic
expression for each subset is that of its counterpart in c
a~3! with an ‘‘exchanged’’ correlation function
B eehh

(2) ( i , j ,k,l ,t)→B eehh
(2) ( i , j ,l ,k,t) and an extra minus sign

due to the creation of the particle loop as a result of join
the three graphical elements. Thus the sum of the contr
tions from the present class and class a~3! is given by Eq.
~16! with 2B eehh

(2) replaced by the antisymmetrized correl
tion function beehh

(2) . For clarity, we record this sum here
denoting it byS4:

S4~ i , j ,t !5
i

\ (
klmn

@^ i l uVeeeeukm&

3peh
(1)* ~ l ,n,t !beehh

(2) ~k,m,n, j ,t !

1^ i l uVehehukm&peh
(1)* ~n,l ,t !beehh

(2) ~k,n,m, j ,t !

1^ j l uVhhhhukm&peh
(1)* ~n,l ,t !beehh

(2) ~ i ,n,m,k,t !

1^ j l uVheheukm&peh
(1)* ~ l ,n,t !beehh

(2) ~ i ,m,n,k,t !#.

~19!

Summarizing, the equation of motion forpeh
(3) , Eq. ~13!,

can be written as

i\
d

dt
peh

(3)~ i , j ,t !2(
mn

@ee~ i ,m!d jn1eh~ j ,n!d i ,m

1^ i j uVehehumn&#peh
(3)~m,n,t !

52 i\@Sa1~ i , j ,t !1Sa21~ i , j ,t !1Sa22~ i , j ,t !

1Sb3~ i , j ,t !1S4~ i , j ,t !#, ~20!

where the Pauli blocking termsSa1 are given by Eqs.~14!,
the Fock termsSa21,Sa22 by Eq. ~15!, the Hartree termsSb3
by Eq. ~18!, and the correlation termsS4 by Eq. ~19!. Note
that we have moved the exciton interaction termSa231Sb2
@Eqs.~15! and~17!# to the left-hand side. Equation~20! is the
O(E3) equation of motion forpeh derived in DCT.

Finally, we note how some well-known angula
momentum selection rules can be easily deduced from
structures of the diagrams forpeh

(3) .17,23 We specialize to the
case of one conduction band (Jz56 1

2 ) and one hole band
(Jz56 3

2 ), where the two polarizationss1 ands2 of the E
field couple two separate sets of spin orbitals. Then we h
the following simple rule which is valid to all orders inV and
E: the polarization labels of all theE(E* ) vertices along a
continuous particle chain~open chain or loop! must be the
same. We illustrate how this rule can be used forpeh

(3) . Since
the V vertices do not change the orbital spins, we only ne
to examine the bare graphs in Fig. 13. We can see then
in each Class a graph@Fig. 13~a!#, all threeE(E* ) vertices



e
on
e

co
of

-
r

es

on

he

be
e in

ins

s

phs

s
g.
al

ight
are

ticle

rigi-

ple

ion

tion
t of

8352 PRB 61N. H. KWONG AND R. BINDER
have the same polarization sign. In a Class b graph@Fig.
13~b!#, theE-E* vertex pair on the loop must have the sam
polarization, which can, however, be different from that
the open chain. Take the example of two circularly polariz
beams with opposite polarizations. Label the two fieldsE1

andE2 . Only processes represented by Class b graphs
tribute topeh

(3) in this case. For the signal in the direction
E1 , corresponding to the combinationE1E2E2* , E2* , and
henceE2 , must be put on the loop, leavingE1 to find its
place on the open chain, which tells us thatpeh

(3) has the
polarizations1 . In the four-wave-mixing directions, corre
sponding toE1E1E2* and E2E2E1* , we see that neithe
can satisfy the rule that theE* and theE on the loop have
the same polarization sign. So there is no signal in th
directions in this case.

D. O„E2
… biexcitonic correlation graphs

In this subsection, we will derive the evolution equati
of the two-electron–two-hole correlation functionbeehh

(2) ,
which appears in the source terms in the equation forpeh

(3) in
the previous subsection. We again apply the inversesGe(0)

21

or Gh(0)
21 to each of the four external lines and classify t

FIG. 24. ~a! The bare graph forbeehh
(2) . ~b! Graphs ofgeehh

(2) that
contribute to the source terms in the equation forbeehh

(2) .
d

n-

e

graphs with an exposed vertex. The derivation here will
brief since most of the arguments are repetitions of thos
previous subsections. We first note that, toO(E2), there is
only one bare graph that is composed of two open cha
with oneE vertex on each@Fig. 24~a!#. This bare graph itself
does not contribute tobeehh

(2) ; its connected dressed version
do. We also note that if the exposed vertex is anE vertex, the
graph is zero by Rule 8.

The source terms of the equation are given by gra
composed of two density functionsGnn , two polarization
functionsGeh , and aV line linking the two chains. Since we
are consideringO(E2) graphs, these two-point function
must beGn(0) and Geh

(1) . These graphs are shown in Fi
24~b! where ‘‘exchange’’ refers to interchanging the orbit
and time labels of the hole external points. ApplyingGn(0)

21 to
the external particle lines of these graphs produces e
source terms which are shown graphically in Fig. 25 and
collected below on the right-hand side of Eq.~21!. We next
consider the remaining graphs, each with an external par
line removed. Suppose the exposedV line terminates in a
particle segment labeledn* , which may be any one of the
three segments other than the one from where the line o
nates. Since the termination point of theV line then carries
the same time label as the external point ofn* , by Rule 8
the subsegment between the two points must be a sim
particle line iGn(0)

11 , which is equal to the identity in the
orbital basis or 0 depending on the time ordering convent
of the external points. If the exposedV line is removed, the
remainder is again a graph contributing tobeehh

(2) . It is then
easy to see that all the nonzero graphs under considera
can be grouped into six terms, each of which is a produc
the exposedV line andbeehh

(2) ~Fig. 26!. The equation of mo-
tion that results from the foregoing graphical analysis is

FIG. 25. Source terms in the equation forbeehh
(2) , Eq. ~21!.
i\
d

dt
beehh

(2) ~ i , j ,k,l ,t !2 (
i 8 j 8k8 l 8

@ee~ i ,i 8!1ee~ j , j 8!1eh~k,k8!1eh~k,k8!#beehh
(2) ~ i 8, j 8,k8,l 8,t !

2(
mn

F ^ i j uVeeeeumn&beehh
(2) ~m,n,k,l ,t !1^ ikuVehehumn&beehh

(2) ~m, j ,n,l ,t !1^ i l uVehehumn&beehh
(2) ~m, j ,k,n,t !

1^ jkuVehehumn&beehh
(2) ~ i ,m,n,l ,t !

5(
mn

@^ i j uVeeeeumn&$peh
(1)~m,l ,t !peh

(1)~n,k,t !2peh
(1)~m,k,t !peh

(1)~n,l ,t !%

1^ lkuVhhhhumn&$peh
(1)~ i ,m,t !peh

(1)~ j ,n,t !2peh
(1)~ i ,n,t !peh

(1)~ j ,m,t !%1$^ ikuVehehumn&peh
(1)~m,l ,t !

2^ i l uVehehumn&peh
(1)~m,k,t !%peh

(1)~ j ,n,t !1$^ j l uVehehumn&peh
(1)~m,k,t !

2^ jkuVehehumn&peh
(1)~m,l ,t !%peh

(1)~ i ,n,t !#. ~21!
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V. SUMMARY

In this paper, we have examined in details the pertur
tion series of the nonequilibrium Green’s functions for
optically excited semiconductor system in the low-intens
limit. The purpose is to understand the connection betw
Green’s function theory and the dynamic controlled trun
tion scheme for density matrices, which has been succes
in this limit. By exploiting the well-recognized flexibility of
the Green’s function formalism, a comprehensive appro
to semiconductor excitation dynamics may be developed
the future that incorporates features of DCT and is applica
to higher excitation intensities.

In the analysis, we have taken advantage of the diagr
matic representation of the perturbation series extensiv
The crucial point is that the assumption of an initial grou
state annihilates a vast class of diagrams. We classified
nonvanishing diagrams in increasing order of the exter
field. In each order up to order three, we showed that
nonvanishing terms~to arbitrary order in the two-particle
interaction! contributing to the equal-time Green’s function
—the density, the polarization, the biexcitonic correlati
—can be resummed to yield closed equations of motions
have been derived within DCT. Corresponding to each te
in the x (3) DCT equations, we have identified a class
Green’s function graphs.

It is intended that, in future generalizations to higher
tensities and/or nonzero initial densities, all these diagra
contributing to thex (3) DCT will be kept, and selected
classes of other diagrams representing relevant high-de
processes will be added in a ‘‘consistent’’ way. In the r
mainder of this section, we briefly comment on some dir
tions for such generalizations. At higher intensities, the m
mal order factorization theorems will be less and le
relevant practically. In particular, Eq.~12! is no longer valid

FIG. 26. Graphs representing interaction terms on the right-h
side of Eq.~21!.
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and the particle densities must be calculated by solvin
dynamical equation, which can be derived diagrammatica
in the form of a Dyson equation. Regrouping the grap
contributing to the interband polarization into a Dyson equ
tion will also provide a proper treatment of dephasing due
carrier~exciton! -carrier~exciton! scattering. More importan
is that the biexcitonic correlations among two electrons a
two holes are modified by the presence of other partic
within the correlation range. Heuristically, we expect t
four-body Hamiltonian in the equation of motion forbeehh to
be significantly modified by effects such as Pauli blockin
single-particle energy renormalizations~which consist of
Hartree-Fock and time-nonlocal self-energy contributio!
and collisional damping. In NGF, these effects are includ
by replacing each free-particle line in the graphs forbeehh
~see Figs. 18–26! by a full Green’s function. In doing so
care must be taken to avoid double counting of grap
which can be guaranteed by incorporating the biexcito
correlations in the self-energy in the Dyson equation for
interband polarization. In this regard, we note that the ‘‘no
crossing’’ rule~Rule 9 in Sec. III! leads to a ladder structur
for the interaction lines connecting the particle lines. Anoth
relevant density effect is the screening of the two-parti
interaction by density fluctuations. In NGF, screening is re
resented by a series of bubble diagrams. In the present c
two kinds of basic bubbles, namely, density and excito
bubbles, contribute.

More generally, to include all the effects listed above, o
needs a Dyson equation for the interband polarization wh
self-energy, as a functional of the full Green’s function
includes the ladderlike graphs induced by the excitonic a
biexcitonic correlations and the bubble screening graphs.
future publication, we plan to make these ideas more exp
and to state detailed diagrammatic rules for them. Toge
with the present paper, we then hope to have laid the fo
dation for a more general treatment of correlation effects
nonequilibrium semiconductor dynamics.
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APPENDIX A

We show in this section that two general factorizati
results on a class of multipoint density matrices, which w
derived in DCT,2,3 can also be obtained quite easily from o

d

FIG. 27. An example of a minimal~E! order graph for a corre-
lation function of an even number of creation operators and an e
number of annihilation operators.
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graphical considerations. Since the Hamiltonian conser
the numberNe2Nh , whereNe (Nh) is the number of elec-
trons~holes!, a density matrix of an odd number of creatio
annihilation operators must vanish. For the density matri
of an even number of operators, we will prove the followi
si

al
b-
-

he
rn
th
ve

s

r-

rb
re
es

s

claims.
Claim 1. The lowest-order~in the external field! contribu-

tions to a density matrix withM ae
†(t)’s, M ah

†(t)’s, N
ae(t)’s, andN ah(t)’s containM E vertices andN E* verti-
ces. To this minimal order, the density matrix factorizes
as

st-order
^an1

† ~ i 1 ,t !•••an2M

† ~ i 2M ,t !an2M11
~ i 2M11 ,t !•••an2(M1N)

~ i 2(M1N) ,t !&

5^an1

† ~ i 1 ,t !•••an2M

† ~ i 2M ,t !&^an2M11
~ i 2M11 ,t !•••an2(M1N)

~ i 2(M1N) ,t !&1O~EM1N12!, ~A1!

wherenk5e or h for k51, . . . ,2(M1N).
Claim 2. The lowest-order~in the external field! contributions to a density matrix withM11 ae

†(t)’s, M ah
†(t)’s, N11

ae(t)’s, andN ah(t)’s, containM11 E vertices andN11 E* vertices. To this minimal order, the density matrix factorizes

^an1

† ~ i 1 ,t !•••an2M11

† ~ i 2M11 ,t !an2M12
~ i 2M12 ,t !•••an2(M1N11)

~ i 2(M1N11) ,t !&

5(
j

^an1

† ~ i 1 ,t !•••an2M11

† ~ i 2M11 ,t !ah
†~ j ,t !&^ah~ j ,t !an2M12

~ i 2M12 ,t !•••an2(M1N11)
~ i 2(M1N11) ,t !&1O~EM1N14!.

~A2!

An analogous result holds withe andh exchanged.
We have already proved two special cases of Claim 2: the factorization of the second-order density into two fir

polarizations in Sec. IV B (M50,N50) and the factorizations shown in Figs. 19 and 23~e! (M50, N51). To prove Claim
1, we note that the density matrix in question can be written as the equal-time limit of the 2(M1N)-point Green’s function

Gn1•••n2(M1N)

N1,M2 ~ i 2(M1N) ,t2(M1N) , . . . ,i 1 ,t1!

[~2 i !M1N^T2@an2M

† ~ i 2M ,t2M !•••an1

† ~ i 1 ,t1!#T1@an2(M1N)
~ i 2(M1N) ,t2(M1N)!•••an2M11

~ i 2M11 ,t2M11!#&.

~A3!
ns
e as

ity

or
he
o-
igi

odd
Here all the annihilation operators are on the1 branch of the
Keldysh contour and the creation operators are on the2
branch. To agree with the operator ordering in the den
matrix, the time arguments approach the timet in the follow-
ing orders: t2M.•••.t1 and t2M11.•••.t2(M1N) . The
Green’s function can again be expanded diagrammatic
following the rules in Appendix B and Sec. III. Each contri
uting graph containsM1N open particle chains and a num
ber of particle loops. The orbital and time labels of t
creation/annihilation operators are assigned to the exte
points of the chains. We only consider the graphs with
minimal number ofE (E* ) vertices. First, these graphs ha
no loops. Each open chain has at least oneE (E* ) vertex on
it, and this minimal number is obtained by pairing anae

† with
anah

† , or anae with anah , on each open chain. This prove
the minimal contributing order is indeedM1N. Call an open
chain with arrows pointing towards the external points~cor-
responding to annihilation operators! a p chain, and one with
arrows pointing away from the external points~coresponding
to creation operators! a p* chain. Then the above conside
ations show that each minimal order graph, an example
which is shown in Fig. 27, consists ofM p chains with posi-
tive Keldysh signs on their external points,N p* chains with
negative Keldysh signs on their external points, and an a
trary number ofV lines connecting the chains. Furthermo
an E vertex appear on eachp chain, and oneE* vertex on
ty

ly

al
e

of

i-
,

eachp* -chain. Then, by Rule 5 in Sec. III, the Keldysh sig
at all vertices on each such open chain must be the sam
those on the chain’s external points. This implies that noV
lines can connect ap chain to ap* chain: the graph is a
product of two subgraphs, one with all thep chains and the
other with all thep* chains. The subgraph with thep-chains
is a contributing minimal order graph to the factor dens
matrix with all annihilation operators in Eq.~A1!, while that
with thep* chains contributes to minimal order to the fact
density matrix with all creation operators. It is clear that t
product of any pair of minimal order graphs from the tw
factor density matrices is a minimal order graph of the or

FIG. 28. An example of a minimal~E! order graph for a corre-
lation function of an odd number of creation operators and an
number of annihilation operators.
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nal product density matrix@left-hand side of Eq.~A1!#. Claim 1 is thus proved.
A similar proof applies to Claim 2. Again the density matrix in question can be written as the equal-time limit o

2(M1N11)-point Green’s function

Gn1•••n2(M1N11)

(N11)1,(M11)2~ i 2(M1N11) ,t2(M1N11) , . . . ,i 1 ,t1!

[~2 i !M1N11^T2@an2M11

† ~ i 2M11 ,t2M11!•••an1

† ~ i 1 ,t1!#

3T1@an2(M1N11)
~ i 2(M1N11) ,t2(M1N11)!•••an2M12

~ i 2M12 ,t2M12!#&. ~A4!
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in
The time arguments approach the timet in the following
orders:t2M11.•••.t1 and t2M12.•••.t2(M1N11) . Here
the number of open chains isN1M11. Again each externa
point to which an arrow points~corresponding to an annihi
lation operator! is assigned a positive Keldysh sign, and
negative sign is assigned to each external point away f
which an arrow is directed. To construct a minimal ord
graph, we again pair the operators to form as manyp chains
andp* chains as possible. AfterM p chains andN p* chains
are assembled, the remaining pair ofae(t) and ae

†(t) must
form the last chain, which we will call ane chain, with a
minimum of oneE vertex plus oneE* vertex on it. So the
minimal order for such density matrices isM1N12. In a
minimal order graph, e.g. Fig. 28, noV lines directly connect
the sets ofp andp* chains, but both sets may be connect
to thee chain. The~minimal order! e chain consists of twoe
segments separated by anh segment in the middle~Fig. 29!.
By Rules 5~b! and 5~c!, the Keldysh signs at all points on th
e segments are the same as those at the respective ex
points. The Keldysh signs on theh segment depend on th
origins of theV lines that reach this segment. By Rule 5~d!,
however, the positive signs and the negative signs mus
segregated as shown in Fig. 29. The twoh subsegments car
rying opposite Keldysh signs are joined by a noninteractinh
line, iGh(0)

21 . We can now factorize thish line as in Eq.~11!,
thereby creating twoh external points and factorizing th
whole graph~Fig. 29!. If we choose the time on the createdh
external points to approacht later than botht2M11 and
t2M12, we see that the factor graphs are minimal-order c
tributions to the respective factor density matrices in E
~A2!. It is clear that any pair of minimal-order graphs fro
the two-factor density matrices assembled in the reve
manner will yield a minimal-order graph of the origin
product density matrix@left-hand side of Eq.~A2!#. Claim 2
is thus proved.

FIG. 29. Factorization of the (ee) chain in Fig. 28.
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APPENDIX B: FEYNMAN RULES
FOR GREEN’S FUNCTIONS

For notational clarity, we state the Feynman rules used
this paper for the time-dependent perturbation theory of
NGF’s on the Keldysh time path. This set of rules is
extension to a two-component plasma of the standard o
component set stated in, e.g., Ref. 24. The derivation of th
rules follows the general lines of argument for Green’s fun
tions perturbation theory as explained in, e.g., Ref. 16,
will not be given here. References 24 and 16 are the b
references for this appendix.

Our system is an electron-hole system governed by
Hamiltonian Eq.~1!. We assume that, at the initial timet0,
the system is prepared in either a correlated, equilibri
state or an arbitrary but uncorrelated state. Wick’s theorem
applicable to either case.24 In the case of the initial equilib-
rium state with finite density, we assume the system has b
left to equilibrate a long time beforet0. We further assume
that the external field is switched on aftert0 and that the
initial state is ‘‘normal’’ in the sense that in the absence
the external field, i.e., ifĤext(t)50, all the ‘‘electron-hole-
coherent’’ Green’s functions, e.g.,Geh( i , t̄ , j , t̄ 8) and
G̃eh( i , t̄ , j , t̄ 8), vanish. In this regard, we note that the inte
action termsĤ2 in Eq. ~1! conserve electron and hole num
bers separately. The Keldysh time contour is shown in Fig
The positive time branch fromt0 to ` is labeledC1 , the
negative time branch is labeledC2 , and the entire contour is
labeledC.

The Feynman rules for writing down the contributions,
nth order in the two-body interactionV andmth order in the
external field E, to the two-point Green’s functions

FIG. 30. Graphical elements in the perturbation theory used
this paper.
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iGnn8( i , t̄ , j , t̄ 8), defined in Eq.~2!, are the following.
~B1! Draw all topologically distinct, connected diagram

with two external points,n interaction~or V) lines ~denoted
by wavy lines here!, m external field~or E) lines~denoted by
dashed lines!, and 2n1m11 particle lines~denoted by di-
rected solid lines!. A V vertex is a vertex from which thre
lines emerge, two being particle lines and the third aV line.
An E vertex is a vertex from which two particle lines and
E line emerge. EachV line begins and ends atV vertices.
EachE line enters the diagram at only oneE vertex. Each
particle line is bounded by vertices or external points at b
ends. These graphical elements are shown in Fig. 30
which the labels~of time, orbital, etc.! and the corresponding
analytical expressions, as given by the rules below, are
shown.

It is easy to see that in such a diagram the particle li
are arranged in a continuous chain running from one exte
point to the other and a number of nonoverlapping inter
particle loops. Two successive lines along the open chai
a loop are joined by a vertex. In this paper, any continu
succession of alternating particle lines and vertices, w
lines at the ends, is called achain. A segmentrefers to a
chain in which all the vertices areV vertices.

~B2! A particle line is labeled by eithere, for electrons, or
h, for holes. An orbital label is assigned to each end of
line. A time argument is assigned to each vertex, which
also labeled by the orbital and species labels of the par
lines emerging from it.

~B3! The two external points of the diagram are labe
by the time and orbital arguments of the Green’s functi
The arrow on the particle line connected to an external p
is directed towards~away from! the point if the point is as-
sociated with an annihilation~creation! operator. For ex-
ample, in a diagram contributing toGee( i , t̄ , j , t̄ 8), the arrow
points towards (i , t̄ ) and away from (j , t̄ 8), while for
Geh( i , t̄ , j , t̄ 8), the arrow is directed towards the extern
point at both ends.

~B4! The arrow preserves its direction in successive p
ticle lines until it meets anE vertex, where it switches to th
opposite direction. The value of the particle label,e or h, is
also preserved in successive particle lines until it meets aE
vertex, where it switches to the other value.

We note that this rule is a result of our excluding t
electron-hole pair creating or annihilating terms@Fig. 4~b!#

from our interaction HamiltonianĤ2. Including these pro-
cesses would invalidate the rule. Some important con
quences of the Feynman Rule~B4! are stated, as Rules 1–
and proved in Sec. III. Also, it is obvious that all the partic
lines in a segment, as defined below the Feynman Rule~B1!,
have the same arrow direction and species label.

For a given diagram, the analytic expression of the c
tribution is given by the following rules:

~B5! For each particle line with particle labeln and the
arrow leading from a time-orbital label of (t̄ 2 , j ) to ( t̄ 1 ,i ),
write down a factoriGn(0)( i , t̄ 1 , j , t̄ 2), where Gn(0) is the
noninteracting Green’s function.

~B6! For eachV line, with orbitalsm and i entering and
exiting, respectively, a vertex labeled by timet̄ 1 and particle
n1, and orbitalsn andj entering and exiting, respectively, th
h
in

so

s
al
l

or
s
h

e
s
le

.
t

l

r-

e-

-

other vertex, labeled byt̄ 2 and n2, assign the factor
2( i /\)^ i j uVn1n2n1n2

umn&d̄( t̄ 12 t̄ 2), where

d̄~ t̄ 12 t̄ 2!5H d~ t12t2! if t̄ 1 , t̄ 2PC1

2d~ t12t2! if t̄ 1 , t̄ 2PC2

0 elsewhere.

~B7! For eachE vertex, labeled by electron orbitali, hole
orbital j, and time t̄ , assign a factor (i /\)Eeh( i , j ,t)
[( i /\)deh( i , j )•@E(t)/2#e2 iv0t if both particle lines are ex-
iting the vertex and a factor2( i /\)Eeh* if both particle lines
are entering the vertex. Note the difference in signs in
two cases. From here on, we call a vertex correspondin
Eeh anE vertex, and one corresponding toEeh* anE* vertex.

~B8! Sum over all internal particle orbital labels, and i
tegrate over all internal time variables along the Keldy
contour. The time integral is performed as a sum of the
tegrals on each branch of the contour:*Cd t̄5* t0

` dt1

2* t0
` dt2 , wheret6 is the time variable on the branchC6 .

~B9! Attach a sign factor of (21)Nl whereNl is the num-
ber of particle loops in the diagram.

The exact Green’s functions are denoted by double s
lines ~Fig. 31!, which are labeled at both ends by time, sp
cies, and orbital arguments.

Each Green’s function may alternatively be written as
four-component function~or 232 matrix! labeled by two
‘‘Keldysh signs’’ and depending on two time ordinary tim

variables: e.g.,Gee
bb8( i ,t, j ,t8),b,b856 and t,t8PC1 . This

change in convention leads to some slight modifications
the above rules. Each particle line is now labeled by a ti
Keldysh sign pair (t,b) at each end, and so are a vertex a
an external point. The factor associated with aV line is now
2( i /\)^ i j uVn1n2n1n2

umn&d(t12t2)b1db1b2
, the notations be-

ing those in the Feynman Rule~B6! above. At each interna
vertex, labeled by the orbital labels (i , j ), the time argument
t1 and Keldysh signb1 perform the following sums and in
tegral:( i j * to

` (b1
b1•••.

The perturbation series for the four-point functio
Geehh( i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-) can be written down by the abov
Feynman rules with the following differences:

FIG. 31. Graphical representations of the exact two-po
Green’s functions.
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~B10! A graph to ordern in V and orderm in E (E* ) has
2n1m12 particle lines, which are arranged into two op
chains and a number of internal loops. The two open cha
need not be connected to each other, but an internal
must be connected to at least one of the two chains.

~B11! With the above ordering of the orbital labe
( i , j ,k,l ) for the external points, an extra minus sign is a
signed to a graph in whichi andk are the external points o
one chain, andj and l are those of the other.

One can isolate those graphs that are factorizable
products of twoGeh’s and write

Geehh~ i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-!5Geh~ i , t̄ ,l , t̄-!Geh~ j , t̄ 8,k, t̄ 9!

2Geh~ i , t̄ ,k, t̄ 9!Geh~ j , t̄ 8,l , t̄-!

1geehh~ i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-!,

~B1!

wheregeehh, the correlated part ofGeehh, is composed of
graphs in which the open chains are also connected to
other. The antisymmetry ofgeehh under electron or hole ex
change is obvious from the graphical expansion. As a res
we can writegeehh in terms of a nonsymmetrized function

geehh~ i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-!5Geehh~ i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-!

2Geehh~ i , t̄ , j , t̄ 8,l , t̄-,k, t̄ 9!,

~B2!

where Geehh( i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-) is the sum of all those
graphs ingeehh( i , t̄ , j , t̄ 8,k, t̄ 9,l , t̄-) in which (i , t̄ ) is paired
with ( l , t̄-), and (j , t̄ 8) with (k, t̄ 9), in the open chains. In
the equal-time limit,geehh

1111 and G eehh
1111 define the anti-

symmetrized correlation functionbeehh and nonsymmetrized
correlation functionBeehh, respectively.

APPENDIX C

In this appendix, we prove that the sum of all two-po
graphs, each carrying oneE* vertex and Keldysh-time as
signment (t,1) at both ends, is equal topeh

(1)* , as is claimed
in Sec. IV C. We show a representative of the graphs, witn
V lines, in Fig. 32. Comparing this graph with Fig. 10, w
see that it the same as the graph frompeh

(1)* with the same
number ofV lines except that in Fig. 32, the Keldysh signs
the two end points are1, and a sum is performed over th
Keldysh signs at theV vertices. The claim is, despite th

FIG. 32. A graph that differs from a representative graph
peh

(1)* of the same order inV only by the Keldysh signs at the en
points.
s
op

-

to

ch

lt,

t

t

difference, that the two series yield the same analytical
pression order by order inV. The plausibility of this claim
can be seen by a heuristic causality argument. The differe
between the two graphs in question is a difference in
integration ranges over the Keldysh contour~Fig. 33!. For
the graph in Fig. 32, the integration range starts at (t,1) and
goes alongC1 to ` and then back alongC2 to t0, while for
the corresponding graph in Fig. 10, the integration goes fr
(t,2) to t0. Since events happening to the system at tim
later thant should not affect the correlation functions att, we
expect the net contribution from the part of the contour b
tween (t,1) and (t,2) to vanish. In the following, we give
a formal proof of the claim.

We can write the expression corresponding to the gr
that ends at (t,1) in the form @cf. Eq. ~7!#

E
2`

`

dtdt1 . . . dtn11u~ t,t1 , . . . ,tn11!F~ t,t1 , . . . ,tn11!,

whereu(t,t1 , . . . ,tn11) contains a sum of products of ste
functions in time corresponding to various combinations
Keldysh signs, andF(t,t1 , . . . ,tn11) contains factors of
2 ie2( i /\)en(t2t8) andV and is free of Kelysh signs. To figur
out the form of u(t,t1 , . . . ,tn11), we note that by Rule
5~d!, in each allowed combination, the positive signs and
negative signs must be segregated. We show a partic
combination in Fig. 34, in which the sign switches fro
positive attm to negative attm11. This gives rise to a factor
of (21)n112mu(t12t)u(t22t1)•••u(tm2tm21)u(tm11
2tm12)•••u(tn2tn11). Summing over all allowed combi
nations, we can write the result compactly as

u~ t,t1 , . . . ,tn11!5 (
m50

n11

~21!n112m

3)
k51

m

u~ tk2tk21!

3 )
j 5m11

n

u~ t j2t j 11!, ~C1!

r

FIG. 33. Keldysh contours showing respective time integrat
ranges for the graphs in Figs. 10 and 32.

FIG. 34. A particular combination of Keldysh signs for the i
termediate vertices in Fig. 32.
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wheret has been relabeledt0. Any product in Eq.~C1! is set
equal to 1 if the lower limit exceeds the upper limit@e.g.,
) j 5m11

n u(t j2t j 11)51 if m11.n#. The expression for the
graph frompeh

(1)* can also be written in the same form wi
the sameF(t,t1 , . . . ,tn11) but with u(t,t1 , . . . ,tn11) re-
placed by

~21!n11)
j 50

n

u~ t j2t j 11!. ~C2!

The claim is thus reduced to the statement that Eqs.~C1! and
~C2! are equal.

We will prove the claim by induction. First it is easy t
check that the claim is true forn51 andn52. Suppose the
claim is true forn5N, i.e.,

(
m50

N11

~21!N112m)
k51

m

u~ tk2tk21! )
j 5m11

N

u~ t j2t j 11!

5~21!N11)
j 50

N

u~ t j2t j 11!. ~C3!

Consider the casen5N11. The right-hand side is

(
m50

N12

~21!N122m)
k51

m

u~ tk2tk21! )
j 5m11

N11

u~ t j2t j 11!.

~C4!
B

u

.

K.

i-
We separate out them50 term and make the substitution
m85m21, k85k21, j 85 j 21 to turn the expression into

u~ t12t0! (
m850

N11

~21!N112m8 )
k851

m8

u~ tk8112tk8!

3 )
j 85m811

N

u~ t j 8112t j 812!1~21!N12 )
j 51

N11

u~ t j2t j 11!.

~C5!

We see that the first term, without the factoru(t12t0), is just
the right-hand side of Eq.~C3! if we replacetk8 by tk821 and
t j 8 by t j 821. Since Eq.~C3! is a formal identity for the set
(t0 ,t1 , . . . ,tN11), it is also valid for the set
(t1 ,t2 , . . . ,tN11). Thus Eq.~C5! can be written as

u~ t12t0!~21!N11 )
j 51

N11

u~ t j2t j 11!1~21!N12

3 )
j 51

N11

u~ t j2t j 11!

5~21!N12 )
j 51

N12

u~ t j2t j 11!. ~C6!

Thus the claim is true for alln.
s
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Schäfer, Phys. Rev. Lett.78, 1319~1997!.
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