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The dynamics-controlled truncatigibCT) formalism is a successful microscopic approach that describes
coherent correlations in optically excited semiconductors. For practical re@schsgling numerical evalua-
tions), its application is limited to lowest-order nonlinearities, such asytfié regime. Therefore, it is not
convenient to use this formalism to examine the role played by incoherent many-body effects, such as carrier-
carrier scattering and screening. Traditionally, the most powerful approach to study incoherent effects and
correlations in highly excited semiconductors is that of nonequilibrium Green’s fundtid®E). A combina-
tion of the insights and technical advantages provided by the(lN@F and DCT approaches will lead to a
comprehensive microscopic theory for nonlinear optical phenomena in semiconductors. In this paper, we take
a first step in this direction by presenting detailed one-to-one relations between the two formalisms within the
x©® approximation. Starting from the standard perturbation theory of nonequilibrium Green’s functions, we
derive the essential minimal order factorization theorems, to arbitrary order, of DCT and the equations of
motions for the interband polarization and the “biexcitonic” correlation function. This lays the foundation for
future diagrammatic high-intensity generalizations of the DCT formalism.

I. INTRODUCTION practical to study strong four-body correlations rigorously
within this approach.
The dynamics-controlled truncatiadCT) formalismt=> By combining the advantages of the tfldGF and DCJ

is a successful microscopic approach that describes coheretipproaches, a comprehensive microscopic theory for nonlin-
phenomena in optically excited semiconductors in theear optical phenomena in semiconductors can be developed.

weakly nonlinear(low-density limit. In each order of the In this general theory, the strict validity of the DCT formal-
external field, it demonstrates that only a finite set of correiSm for higher-order nonlinearities will have to be abandoned

lation functions contribute to optical processes and leads t§! order to account for physically relevant high-density ef-

exact, closed equations for the correlation functions. A com{€Cts. Nevertheless, the aim is to keep the benefits of the

plete description of all coherent phenomena to certain |0V\9€neral theore.t|cal approa}ch of the PCT formallsr_n, namely
orders(e.g., y') is therefore possible. Its most important coupled equations of motion for various expectation values

application to date has been the elucidation of exciton-and correlation functions, in such a generalization. Our over-

exciton correlation effects in femtosecond scale four-wavef'jl Il strategy toward this goal is to embed the low-or¢
L : . (3) o 58 least (®)) results of DCT in a diagrammatic perturbative
mixing experiments in thg'>’ regime:

o i fl i NGF treatment. In this paper we take a first step in this
Despite its successes, DCT's usefulness cannot easily Rgection, which is to develop a detailed one-to-one corre-

exte_nded to higher-intensity regimes or situations with Pré3pondence between the two approaches indf&limit.
excited electrons and holes. All but the lowest-ordgf*) Diagrammatic perturbation theories of Green’s functions
evaluation lead to untractable equations of motion, especiallyzye been most useful in many-body problems where one
with regard to numerical evaluations. Furthermore, questionggn group classes of diagrams, representing certain physical
concerning certain aspects of the formalism remain. For eXprocesses, in such a way that their sum can be written as the
ample, itis not clear how incoherent many-body effects entegolution to an integral equation or a differential initial/
the description, which precludes a quantitative definition ofboundary-value problem. Familiar examples are the Dyson
the time scale of strict validity of the DCT. equation for two-point functions and the Bethe-Salpeter
Traditionally, the most powerful approach to study all as-equation for the four-point functions with various approxi-
pects of many-body effects in semiconductors, includingmations for the self energies and the irreducible four-point
both coherent and incoherent effects, have been equilibriurvertices, respectively. The formalism provides a unified
(see, e.g., Refs. 9 and 1@nd nonequilibrium(see, e.g., framework to examine the various processes quantitatively.
Refs. 11-14 Green'’s functions. For general treatments ofWithin this framework, the DCT equations to a certain order
Green’s functions see, e.g., Refs. 15 and 16. The applicabiln the external field should also be representable as the sum-
ity of the nonequilibrium Green’s functiondNGF) is not  mation of classes of Green’s function diagrams. The general
limited in intensity or density, but so far it has not beenidea of relating the DCT formalism to a diagrammatic rep-
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resentation has already been pointed out and used by Maiall e e e h h

and Shant/*8 Some results on the diagrams’ properties de- M },\N\N\{ }NWV\{
rived in the present paper were already discussed in Ref. 17

However, for future development, we believe it is important Z) € h
to establish a detailed correspondence between convention:i

nonequilibrium Green’s function diagrams and DCT equa-e e e € h e

tions of motion. M }NW\N{ }N\AM{
In this paper, we examine in detail the standard Feynman:-

Dyson perturbation theory diagrams for the relevant non-j h ° h h h

equilibrium Green'’s functions. In Sec. Il, the model Hamil-

tonian and the Green'’s functions are defined. The Feynmat

rules for constructing perturbation theory diagrams for the e e h e

5] [<]
Green'’s functions in the electron-hole system are collected in M M M
Appendix B. The crucial result from this examinati¢8ec.
lIl) is that the assumption of an initial ground state annihi- h
lates a vast class of diagrams. We classify the nonvanishing
diagrams in increasing order of the external fiekkc. 1V). R
In each order up to order three, we show that all nonvanish-
ing terms(to arbitrary order in the two-particle interaction }N\N"“(
contributing to the equal-time Green’s functions—the den- h h
sity, the polarization, the biexcitonic correlation—can be re- ()
summed to yield closed equations of motions that have been
derived within DCT. It is intended that these diagrams will ~ FIG. 1. Matrix elements of a general two-body interaction in a
be kept in future generalizations to higher densities. Somé&vo-componentelectrons and holgsplasma. The matrix elements
directions for such generalizations are mentioned in the correpresented by the diagrams (@ are included inH, in Eq. (1)

cluding section. while those in(b) are not.

The formal development of the DCT scheme to arbitrary . frix tos
order in the external field was based on sevéaelorization +(ij[Vhendmn)ap(i)ae(j)ag(n)an(m)]
and contraction theorems on multipoint density matrices 1
stated and proved in Ref. 3. In Appendix A, going beyond o e 19otE(t). do(i . D)al(ival(i
x®, we give diagrammatic proofs of two special cases of ext2 ; [ (1) der(i))3e(Dan(})

these theorems that involve minimal order factorization of otk . : :

two classes of density matrices. Although, as explained +e'“0'E* (1) - dpe(j,i)an(j)ae(i)].

above, we are unlikely to extend our present exact identifiach single-particle orbital is labeled by a species subscript,
cation between the NGF and the DCT formalisms to higheg or h, and an orbital index that represents the collection of

orders in our future development, the purpose of Appendix Asingle-particle quantum numbers, e.g., band, momentum, of
is to indicate how one might proceed if one desires to dahe orbital. To allow for a general treatment of band cou-

that. pling, the one-body part; of the system Hamiltonian is
taken to be non-diagonal in the single-particle basis, al-
Il. GREEN'S FUNCTIONS ON THE KELDYSH CONTOUR though it is diagonal in the species label. iy, we have

We work with a model semiconductor system with two only included those parts of a general electron-electron inter-
groups of bands: conduction and valence bands. In the Sygg:tion that do not effect a transition beAztween a conduction
tem’s ground state, all the valence bands are filled while thédand and a valence band, or, equivaleritly,neither creates
conduction bands are empty. The excited states of the systenor annihilates electron-hole pairs. This approximation is
are described in terms of two species of charged particlesepresented graphically in Fig. 1 where all possible types of
electrons in the conduction bands and holes in the valencaatrix elements of a two-body interaction are shown. Only
bands. We write the Hamiltonian in an arbitrary single-the terms represented by Figlal are included inA,. The

particle basis as follows: justification of this approximation has been discussed in,
o e.g., Refs. 19 and 20. The ground state of the model system
H=Hi+Hy+Hex, HamiltonianH,+H, is the electron-hole vacuum provided

the binding energy per electron-hole pair in a gas of any
density is smaller than the bare band gap, i.e., when the
vacuum is stable, which we will assume in the following.

(1)  The external field Hamiltoniai,, only acts to create or

Hfg ee<i,j>al(i>ae<j>+i2j en(iLat(an(j),

.1 B f annihilate electron-hole pairs. The rotating-wave approxima-
HZZE i;n [<|] |Veee4mn>ae(|)ae(])ae(n)ae(m) tion is taken.
: The density matrices that obey the DCT equations of mo-
+(ij|Vanndmnyal(i)al(j)an(n)an(m) tion, namely the interband polarizatigq;,, the densitied

. fois s and f,,, and the biexcitonic density matri®eepnn, are de-
+(ij[Venedmn)ag(i)an(j)an(n)ag(m) fined by:
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FIG. 2. The Keldysh time contour.

A

C.
Pen(iLj,t)=(an(j,t)ae(i,1)),
f,.(0,0,0=(@l(j,0a,it)

Beehr{i !j 1k!| vt)E<ah(| vt)ah(kat)ae(j 1t)ae(i ,t)>,
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Gee (i,tj,t)=i(al(j,t)ai,),
Ggo (i,t,j,t)=—i(ag(i,t)al(j,t")),

++
Gee

)
(i,t,j,t)=—i(T,[adi,Hal(j,t")])

=0(t—t")Ggo (i,t,j,t")
+0(t'—1)Gg (i,t,j,t"),
Gee (i,t,),t)=—I(T [ac(i,)al(j,t")])
=0(t—t")Gg, (i,t,j,t")
+0(t' —1)Ggo (i,t,j,1),

wherev=e,h and(- - -) denotes averaging with the initial \yhere T, (T ) denotes time(antitime ordering along the
density operator. Here the creation and annihilation operatorérdinary time axis. The components of the other Green’s
are Heisenberg picture operators. In this paper we consider@nctions are written in the same way. For example, the
version of the DQT equations in which the mear_w-ﬂeld part of(Jr +) component of the polarization Green’s function is
the interaction is separated from the correlation part. The

four-body dynamical variable in this version is the correlated

part of Bgopp, defined as
beeht{i lj ,k,l vt)EBeehf‘(i !j ,k,l !t)_<ah(| !t)ae(i !t)>
X (an(k,t)ae(j, 1)) +(an(l,t)aq(j,t))

X(ap(k,t)ag(i,t)).

In the x® regime, the correlation functiobgen(i,j,k,!,t)
carries the most interesting physical information, and it
properties have been studied extensively from a memo
function point of vievi:?? and within DCT#-8

In the NGF formalism, the above density matrices ar

ordered along the Keldysh time contatig. 2). The exten-
sion to multitime functions facilitates the application of pow-
erful perturbation theory techniques. The two-point Green’
functions for our system are defined by

Gedi,t,j,t")=—i(Tclae(i,al(j, t")]),
Ghn(i, 1], 1) =—i(Tc[an(i, aj(j,t")]),
Gen(i,t,j,t")=—(Tc[ae(i,an(j,t)]),

Gen(i,1,j, 1) =—i(Tc[al(i,Daf(j,t)]), (2)

where the time arguments run along the Keldysh contoup

(Fig. 2), which starts from the initial time,;, goes forward
along the positive branc@i , to infinity, and then goes back-
ward along the negative bran@. to ty. T denotes time
ordering along this contour. As abovg,- -) denotes aver-

aging by the initial density operator. In calculations, an al-
ternative representation of the time structure in the Green’

functions is often more convenient. Here a time p(fris
represented byt(b), wheret is the ordinary time and=

+,—, the Keldysh sign, gives the branch of the contour on

which the point resides. Each path-ordered two-poin

e
obtained as equal-time limits of multitime Green’s functions

G;-h+(i,t,j,t’):_i<T+[ae(i,t)ah(j,t/)]>. (4)

Green’s functions involving more than two operators are
similarly defined. The four-point function corresponding to
Beehhis

Geent(i L, t" k"1, t") = (=) ATclacli,t)aqj,t")
Xap(k,t"an(l,t" ). (5

SThis function has 16 components in thigh) representation.
“he (++++) componentG/.i ", for example, has the
same expression as E(b) with T, replaced byT,. We
give the definition ofgeenn, the correlated part dBgepp, IN
Appendix B. It bears the same relationGQcnp,asbeenndoes
to Beenn- SOme density matrices and Green’s functions with
an arbitrary number of external points are also defined in
Appendix A.

To analyze and/or calculate the Green’s functions, one

may follow standard procedures and expand each of them in

a time-dependent perturbation series V\frttg as the unper-
turbed Hamiltonian. Each term can be represented by a dia-
gram, and the Feynman rules for enumerating these diagrams
to arbitrary order and translating them into analytic expres-
sions are stated in Appendix B, to which we also refer the
reader for some of the notational and terminological conven-
tions used in this paper. Then, as mentioned above, the den-
ity matrices of interest can be obtained as the equal-time
imits of particular Green’s functions,

on (i,t,],t+€)=ipen(i,j,t),

Gae (iLt,j,0)=ifodlij 1),
s P o (6)
th (|,t,],t):|fhh(|,J,t),

++++

Oeenn  (,t,],t+ €,k t+2€,1,t+3€)=—Dbeendi,j.k,1,t),

where €\,0. The ambiguity at the equal-time point in the

Green’s function is then broken down into four componentgdefinitions of the Green’s function components with ll

labeled by the Keldysh signs of the two time arguments. FoKeldysh signs calls for the specification of an ordering of the
example, the four components of the electron densityime variables as all of them approach the common time
Green’s functionG,, are point, as is done here fdB.," andgg.nh . For these two
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FIG. 3. The (+ —) component of the free-particle Green’s func-
tion, being proportional to the initial density, vanishes.

functions, however, the choice of the ordering is immaterial
as these functions are continuous in all time variables at the
common time point.

The crucial assumption for the DCT scheme to be valid is
that the initial state of the system is the electron-hole
vacuum. In our approach, this assumption results in the fol-
lowing expressions for the free-particlelectron or holg
Green'’s functions:

G oIt " )=i(alo)(j,t")a,)(i,1))=0,

Goty(istjt ) =—i(a,qi,Hale(j.t"))

- _i[e—(i/ﬁ)fp(t—t’)]ij '

(7
++ . . 7+ . .
oLt ) =0(t—t")G ) (i,t,],t")
© @ (tnby)
:GIE(O)(i,t,j,t,),
G0yt t)=0(t' =) G gy(i 1], t") (b)
= —Gﬁ(o)(i 4ith, FIG. 4. Examples of closed particle loops.

where the subscript (0) in the creation and annihilation op-  The validity of the first three rules is actually not limited
erators indicates that these are Heisenberg operators evolvggl sjtuations with initial vacuum states: they are conse-
by the unperturbed Hamiltoniaid;, »=e, h, ande, is the  quences of the fact thdt, does not create or annihilate
v-band single-particle energy matrix k. The vanishing of  particle-hole pairs at either vertex. Because these rules are
Gj(a) (Fig. 3 eliminates many terms in the exact Green’srepeatedly invoked in later sections, we collect them here for
functions’ perturbation series. In the following, rules for con- convenience. _ _
structing the surviving graphs are stated and proved. These Rule 1 Each fermion loop contains an equal numbeEof

g ~ . 1 * i i * 1
graphs are then classified by the numberff,, vertices. ~ Vertices ancE* vertices. TheE-vertices and th&* -vertices
Minimal order factorization theorems, to arbitrary order, of are placed alternately along the |offig. 4@)].

DCT and the DCT equations of motion up 6% are de- P_roof. This rule is tr!vially true for a loop yvith n&(E*)
rived. vertices. For a loop with external field vertices, start at any
particle line and run around the loop in the direction of this
Il GRAPHICAL RULES EOR THE CASE Iin_e’s arrow. B_y item(B4_) in Appendix B the arrow mainf
OF A VACUUM INITIAL STATE tains its direction ¥ vertices do not switch the arrow’s di-

rection until it meets an external field vertex. By ite(B7),

The rules for drawing perturbation diagrams for our sys-the first external field vertex that this line meets must be an
tem and translating them into algebraic expressions are coE* vertex. After this vertex, the segment's arrow runs
lected in Appendix B. As noted above, in the special case ofounter to the sense in which we are going around the loop.
using a vacuum initial state, a large number of diagramsSince one segment cannot contain two counterpointing ar-
become zero. In this section, we state and prove rules faiows, we can see that we must encounter at leastEne
constructing nonzero graphs. Parts of our terminology, suckertex before returning to the particle line where we started.
as particlesegmentsnd particlechains are not in common By the same token, addition& vertices andE* vertices
usage. For their definitions and those of all graphical elemust appear in pairs, the* preceding theE in each pair.
ments, the reader is referred to Appendix B. We recall that Rule 2 Consider a particle chain connecting two external
the full set of labels of the lines and the vertices are timepoints in a graph. If both external points correspond to anni-
Keldysh sign, species, and orbital. In order not to unneceshilation operators, then the number®fertices on the chain
sarily clutter the figures or equations, from here on some ofs one more than that dE* vertices. If both are creation
the labels not essential to the argument at hand will be omiteperators, the excess external field vertex i€anvertex. If
ted. In general we treat aB vertex and arE* vertex as the external points are one creation operator and one annihi-
different vertices. But by saying a certain graph is of orderlation operator, then the chain contains an equal number of
E", we mean the total number of external fieElandE*,  E-vertices andE* -vertices.
vertices isn. Proof. The proof is essentially the same as that of Rule 1.
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value of N annihilation operators anM creation operators
(N+M must be an even numbeif a contributing graph

Rule 3 Consider a Green'’s function that is the expectation % % % %
containsNg E vertices andNg« E* vertices, then the follow- .

®

ing relation holds: .+ (t,) (t,. D) t+)
FIG. 5. A particle segment with+) Keldysh sign on both ends.
Ne— Ne, = N-M By Rule §b), the Keldysh signs at all intermediate vertices a@re
E E* - 2 .
(@ If b=+ andb’=—, the segment is zero and so anni-
For example, a graph of the density two-point functi®g,  hilates the whole graph.
has an equal number & vertices ancE* vertices, a graph Proof. In this case, no matter how the intermediate

of Ggp has one excesB-vertex, and a graph dB..nnhas  Keldysh signs are assigned, the segment must contain a
two exces<E vertices. j(a) )

Proof. By Rule 1, the loops do not contribute 8¢ (b) If b=b’=+, all the intermediate Keldysh signs are
—Ngx. SupposdN>M. The exces&™* vertices generated by + and the time arguments go in increasing order along the
the M creation operators on the chains are matched by th@irection of the arrow.
excessE vertices generated byl of the annihilation opera- Proof. The same argument as in Rule 4 restricts the sur-
tors. So the net contribution tblie—Ng« comes from the  viving contributions to those in which all the intermediate
extra N—M annihilation operators that are linked b (  Keldysh signs are+. Suppose there ame intermediateV
—M)/2 chains, each of which has one excé&ssertex by  vertices. Label them, in the direction from’ to t,
Rule 2. The same argument applies ko< M. ty.ty, ...ty (Fig. 5. Because of the step function @),

The following rules are valid when the additional assump-these arguments must go in increasing order along the direc-
tion of an initial vacuum state is adopted. tion of the arrowit’' <t;<t,<---<t,<t.

Rule 4 If a graph contains a fermion loop that does not () |f hb=b’=—, all the intermediate Keldysh signs are
contain any external field vertex, the grapt0. —, and the time arguments go in decreasing order along the

Proof. We first consider the special case where the loop igjirection of the arrow. The proof is similar to that of Rule
one free-particle line beginning and ending at the same 5.

vertex. In the Wick’s factorization of the Green’s function,  (q) If b= — andb’=+, a surviving segment is made up
this line comes from the contraction of two operators in thegf two subsegments: a chain ef’s linked to (t,—) and a
expression foH,. Since in this term the creation operators chain of +'s linked to (', +) connected by &, at an
are placed to the left of the annihilation operators, and thisntermediate pointFig. 6). Again the time ordering appro-

ordering is preserved in thEproduct, the line that results is priate to each subsegment applies. The proof is again similar
<aZ(0)(j,t)ay(o)(i,t)>=0. The more general case is whereto that of Rule Bb).

the loop contains an arbitrary number, say>1), of The four parts of the rule can be summarized by the state-
V-vertices, as illustrated in Fig.(d). The loop contributes ment that in a surviving segment, the vertices along the ar-
the factor row’s direction must have increasing Keldysh-time argu-
ments.
Rule 6 Any nonzero graph of ordeE" contributing to
F:blbz, _ ._an:h_ f(by,bz, ... by) G:V_ , v=e,h, containsat most 12— 1 loops. Any nonzero

graph of orderE" contributing toGzﬁb2 for any b, ,b, con-
® tainsat most(n—1)/2 loops.
f(by,b,, ... ,bn)zf dt; .. .dtnGS(lg)z(tl,tz) Proof. By Rule 4, a nonzero loop must contain at least
o one pair ofE and E* vertices. The maximum number of
loops is attained if we place exactly one pair in each loop.
For G}, nis even by Rule 3. The open chain contains at
XV(t)V(ty)- - - V(ty,) least one pair oE and E* vertices. Hence the maximum
number of these vertex pairs available to the loops/i3

to the graph. For a given sequence of Keldysh signs-a, which is then the maximum number of loops. The ar-

b,bg
v(0)

bnbl

XG0y (t2:t3) - - G oy (tn,t1)

(b1,by, ... by), if any b; is different from any otheb;,  gument forGZ#’Z is similar.

then following the arrow around the loop, we are certain to

encounter an(g) and sof (b, ... ,b,)=0. So the only pos-

sible non-zero terms in the sum over the Keldysh signs are

f(+,+,...,+) and f(—,—,...,—). For f(+,+,..., % % % % % % % _

+) the integrand contains the factog(t;—t,)6(t, W+ + + - - - )

—t3)- - - 6(t,—t;) which reduces the integrand support to a G+

set of measure zero. The same argument applieq to, Vo

—,...,—). SoF=0. FIG. 6. A particle segment with the arrow going from one end

Rule 5 This r.U|e concerns a fermion line Segméim_,. it with (+) Keldysh sign to the other end with-) Keldysh sign. By
does not contain anfE(E*) vertices, the arrow of which  Rule 5d), the intermediate vertices are segregated by their Keldysh
goes from {’',b’) to (t,b). signs.
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Rule 10 In any nonzero-orde(in E) two-point density
graph, the - +) component is continuous in each time vari-
+ + _ able at the point where the two times are equal. In other
+ i = 0 words, the discontinuity irG} " (t;,t,) att,=t, arises en-

tirely from the zeroth-order terms.
Proof. Consider first the case where the open chain is free
FIG. 7._ A graph with & line connecting two points on the same of E(E*) vertices. Since, by hypothesis, there Breertices
segment s zero. in the graph, there must be at least one loop. The connected-
ness of the graph then implies that the open chain must con-
Rule 7 If a V line connects two vertices in the same tain someV vertices. Such a chain is then a segment with
segment, the graph is ze(Big. 7). equal-time arguments and Keldysh signs at both ends, which
Proof. Consider the subsegment the end points of whichg zerg by Rule 8. So the open chain must conf(E*)
are the vertices of th&/ line in question. The times and Vertices’ in which case it is quite easy to see the graph is

Keldysh signs at the two end points must then be the sameontinuous at the equal-time point by writing down the ana-
and the arrow goes in one direction from one end point to th@ytical expression for the open chain.

other. Then the same argument in Rule 4 above that proved

the vanishing of a loop with n&(E*) vertices holds here.
Rule 8 If the end points of a particle segment have equal- V- THE x'® DYNAMICS-CONTROLLED TRUNCATION

time arguments and Keldysh signs, but they are not con- EQUATIONS

nected by &/ line, then the segment is a noninteracting par-

oL - onint ) P To derive thexy®® DCT equations, we consider the per-
ticle I!ne. In faqt, it is e_qual to zero or the |dent|ty_matr_|x N 1 rbation series of the density matriges,, fee, fn, and the
the single-particle basis, depending on from which side o

' i e orrelation functionbeepn, defined in Eq.(6) as the equal-
the equal-time point the limit is taken. time limit of two-point and four-point Green'’s functions. For
Proof. The same argument as in the proof of Ruléie o 0h Green's function, we consider the perturbation graphs
R fhat contain up to a fixed numbe&@) of E vertices and any
. L MRumber ofV lines. By grouping classes of graphs in certain
tains at least on¥ vertex. If the whole segment is just one \4v.q it the help of the simplifying rules in the previous
free-particle line, however, since the two points are not CONgaction. we derive equations of motion for the equal-time
nected by aV IiAne, the restriction of operator ordering Green’s' functions that are exact to the chosen ord&ramd
brought about by, does not apply. So such a segment maywhich are the same as those derived by DCT.
survive. The two possible |Im|t|ng values for the free-particle According to the Feynman rules in Appendix B, certain
line follows from the definitions oGy, , Eq. (7). graphical features, such as the particle label and the arrow
Rule 9 If two V lines connect the same two segments, thedirection of a particle segment, are not changed by the addi-
arrows must go in the same direction between Whknes.  tion or subtraction o¥ lines. It is thus useful, to each order
For example, Fig. &) represents a nonzero graph, while Fig. in E, to first consider the graphs with nolines. We will call
8(b) vanishes. them the “bare” graphs for that order i. All graphs can
Proof. Consider the two subsegments bounded by the veibe constructed by “dressing” the bare graphs withines.
tices of the twoV lines in question in Fig. @). Suppose first  This line of analysis was also adopted in Ref. 17.
the Keldysh sign®, andb, are different. Then the arrow in
one of the two subsegments goes fremto + which anni-
hilates the graph by Rule(®. If b;=b,=+, then by Rule
5(b), the arrows must go in the direction of increasing time  Although the first-order polarizatiorG_. (t,t+e€) is
in both subsegments, which is impossible. So the graph irivial, it is economical to clarify its graphical features here
zero. The argument is the same fmr=hb,=—. since it will appear repeatedly as subgraphs in higher order
guantities. By Rule 6, there is only one bare graph which is
an open particle chain consisting of oméne and oneh line
separated by af vertex [first graph in Fig. @)]. Rule 5
restricts the possible combinations of arrow directions and
Keldysh signs to that shown in Fig(&. All contributing

A. O(EY) polarization graphs

(t1,by) VYV (t1,b)

(tr,by) NG (Tg,b) graphs are obtained by dressing this bare graph Wiihes.
M By Rule 7, aV line must have one vertex in each of the two
(a) segments that are separated byEheertex. By Rule 9, thé/

lines cannot “cross” each othdFig. 8). To summarize, the
sum of all contributions t@(E?) is represented by the series

(tibp) 9 (t2,b2) shown in Fig. a), which is the bareh graph dressed by the
E}!ﬂi = 0 retardedT matrix of a particle-hole pair in free space.
(tyby) ¢ (t,b) This (infinite) series of graphs can be efficiently summed
\ by deriving and solving an equation of motion satisfied by

the sum. Denoting the sum b /" (M(t,t+ €), we see from

the structure of the graphical series in Figa)%that it satis-
FIG. 8. (a) is nonzero whilgb) is zero. fies the following integral equation:

(b)
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(b)

FIG. 9. (a) The diagram series that represgf . (b) The series
in (a) resummed into an integral equation.

dt
GO ) t+e)= > f%
mqnq

X[ —=Een(my,ny,ty)

+(8’)(' 1t1m11tl)

+VH (my,ng,t)]

X GI’T(g)(J 1t+ €1nl vtl)y

8

where the Hartree-Fock field is given by

Vg‘ff(mlrnlvtl)zimEn (mM1ng|VenedMany)
2112

X G;rh+(1)(m2 Nt

This equation is represented graphically in Figb)9 We
now convert Eq(8) into an equation of motion for th@(E)
polarization p{P(i,j,t)=—iGJ, M(i.t,j,t+€). We note
thatG_," ™) (and any other two-point Green’s functigris a

function of two independent time variables. Therefore, th

derivative of its equal-time limit with respect tds properly
defined as
d J )
+_
57'2

d ++
_ @i+ i N
Gap (1Lt t+€E) e

dt

XG;hHl)(ile,jaTz)

'rl:t,rZ:H—e

9

GREEN’'S FUNCTION APPROACH TO THE DYNAMICS. ..

(t+8$')

FIG. 10. The diagram series that represesifs* .

It is very useful to regard the above differentiation proce-
dure as applying the inverse operator of the free Green's
fUnCtiOﬂ,G;(]d)(i,j,T)Eiﬁﬂ/ﬁT5ij—EV(i,j):

% G, by(1,M, 1) GEy (M., 1) =Tib Sy 8 S(t—1").

Equation (10) is the result of applying the operator
Ge0)(1) +Gpoy(t+€) to Eq. (8). Diagrammatically, on the
right-hand side of Fig. @), each of theG,5)’s acts at an
external point where it removes the external particle
line—the line that connects the external point to the rest of
the graph—and replace the time and orbital labels on the
“exposed” vertex by those of the external point.

For later reference, we also note that, from their defini-
tions, p3i(i,j ,t)=i(§gh_(i ,t,j,t+¢€). A parallel argument as
above givep!}* , the O(E) part of p%,,, as the sum of the
graphical series in Fig. 10.

B. O(E?) density graphs

We consider here th®(E?) contributions toG_, (t,t).

The considerations fd&,,, are similar. By Rule 6, there is
only one bare graph which is an open particle chain consist-
eing of two e lines and onéh line separated by ak vertex
and anE* vertex(Fig. 11). As a result of Rule 5, the only
surviving combination of arrow directions and Keldysh signs
is the one shown in Fig. 11.

All O(E?) graphs are obtained by dressing this graph
with V lines, the introduction of which is again restricted to
certain ways in order to produce a nonzero graph. First, by
Rule 5, all graphs have the same three segments as the bare
graph, i.e., they have the same particle labels, arrow direc-
tions, and Keldysh signs at tlie{E*) vertices. Furthermore,
all the V vertices in eithere segment are assigned the
Keldysh sign of that segment’s end poifgules %b) and

Correspondingly, in differentiating the right-hand side of Eq.5(c)], while the middleh segment is divided into two sub-

(8), we take partial derivatives with respectttandt+ € in

segments withV vertices carrying opposite Keldysh signs

turn, treating them as independent variables, and add the twiétule Sd) and Fig. §. By Rule 7, aV line must connect two
partial derivatives. Carrying out the differentiation, we ob-different segments. Since the tesegments are on different

tain, using Eq(7),
in oW i - (1)
|hapeh(|vjat)_%; [Ee(lvm)ajn"'eh(Jvn)‘sim]peh(mvnat)

=Eeh<i,j,t>+;n<ij|veherlmn>pé?<m,n,t>, (10

Keldysh branches, nd lines connect them: eadhline goes
from the h segment to one of the twe segments. These
lines cannot “cross” each other. This is true for tWdines
going into the same segment as a result of Rule(Big. 8).
For two V lines going into differente segments, since the

- +
(ts') ‘E’

e E h j( [+]

t+)

which is of course just the semiconductor Bloch equation in

the low-density limit.

FIG. 11. The bare graph fdt? .
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(BM;? ) (te,+) ) ted) D

H H
L * *

¢ h h

+ ¥

e ,L
" h

FIG. 14. Summation of ClasgB graphs. The graph shown on

the left is a representative of the series.
(t -) ) t+) )

N M { PRI (b) an open chain with onkE vertex plus one loop containing
oneE vertex and on&™* vertex[Fig. 13b)]. Again, all con-
tributing graphs are constructed by dressing these two bare
FIG. 12. Factorization of a representative graphf@ into a  graphs withV lines. Being disconnected, the bare grdph
product of graphs fop{} andp{}* . itself does not contribute, but its connected dressed versions
do. As in Sec. IV A, we will apply inverséfree) Green’s
two e segments have different Keldysh signs, it is clear thafunctions to derive equations of motion. We will show how

e - h h + e

the twoV lines cannot cross each othgtig. 6). the graphs can be grouped so that the sums of individual
The upshot is that each cqntributing graph_ is ob_tainedgroups can be identified with terms in the DCT equations.
from the bare graph by dressing tB§E*) vertices with After the application of5 )+ Gp,g) (see Sec. IV A the

nonoverlapping sets df lines (Fig. 12. In such a graph, an equation we seek has the following form, with
h line, given by the factorGh(o)(t1 t,), separates the two G++(3)(| t,j, t)—|p(3)(|,j,t):
sets ofV lines. Since the vertices &t andt, are connected
by V lines to thee segments that are bounded by external d ) 3)
points at timet, we havet, ,t,<t. From this and the defini- 17 g7 Per(i.J,1)— E [€e(i,M) Sjn+ €n(].N) Sim]Pen (M,N,1)
tions of the free Green’s functions in E(), one may write

= —i#[all graphs with one external line

oI t1,] t2) =i % Gho)(i,t1,m,t+¢€) and one exposed vertpx (13)

If the exposed vertex is ¥ vertex, we will refer to the/ line
emanating from this vertex as the exposdétine. The two
It is then clear that this density graph can be factorized int¢lasses stemming from the two bare graphs are considered
two O(EY) polarization graphgFig. 12. Summing over all ~ separately.
the contributing graphs, we have Class a. One open particle chaiffhis class is further
divided by physical interpretations into three subclasses:
(2) @ 1) (1) The exposed vertex is aB vertex. There are two
fee(i,j,0)= 2 Pen (J,m,t)pen (i,m,1), (120 possible ways to assign species indices to the three succes-
sive segments:n—e—h) and —h—e). The first way is
which was derived in DCT and also corresponds to the lowshown in Fig. 14. According to the Feynman rules, the sum
density limit of the Hartree-Fock theory. of this set is given by

C. O(E®) Polarization Graphs _ E E Eeh(i,m,t)G;h+(2)(j,t+s,m,t).
In this subsection, we will derive the DCT equations for g
the O(E®) contributions to the polarizationG . (i,t,j,t
+€). By Rule 6, there are two bare grapka). an open chain
with two E vertices and on&* vertex on it[Fig. 13a)], and

By its definition, Eqgs.(3) and (6), f{2)(j,m,t) is equal to
—iG T ®(j,t,m,t+€) in which the second time argument
approaches the first from above—a time ordering opposite to
that inG;'," ® in the above expression. But this difference in

+ +
(t+e,+) o : : . o (t+) time ordering is immaterial since, by Rule 1G,."® is
h + 6 % h 4 e continuous in time at the equal-time point. Hence the above
(@) expression can be written & Eqn(i,m,t)fa(j,m,t).
tH Analogous considerations apply to the set with the other
species-index assignment. The contributions from the two
e sets together give the sum of the class as
B X
. Sarlij 1) = ——2 [Eer(i,m,0f{R(,m,t)
(t+e4) + R0, D Eer(m,j,1)], (14

(b) . . .
This class represents Pauli blocking to the electron-hole ex-

FIG. 13. The bare graphs f@{3) . citation.
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(t+e,+)
M t+

h +

(t+e,+) .=<=£:2: (5]
h h

€

FIG. 15. Summation of Clas&@2l) graphs, in which the ex-
posedV line ends in the middlé segment. The graph shown on the
left is a representative of the series.

(2) The exposed vertex is ¥ vertex, and the exposed
line is not crossed by any oth&f lines. These graphs will
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(t+e,1)
(t i
T € h + €
= (t+g,+) & (t,+)
h €

FIG. 17. Summation of Clas&23 graphs, in which the ex-
posedV line ends in the entd segment. The graph shown on the left
is a representative of the series.

(3) The remainder of the nonzero graphs give contribu-

give the Fock mean- fleld contributions to the right-hand sidetions from four-particle correlations. In this class of graphs,

of the equation fop!3). The sum of this class is given by

the exposed/ line is crossed by at least one othérine.

three terms, each of wh|ch corresponds to the sum of a set @ne consequence of the crossing is if that we remove the

graphs in which the exposadline ends in a particular seg-
ment (Figs. 15-17:

Sa2(1,],1) = Sa01+ Sazot Sazss

Sanli,j,)=—+ E [(iK|Venedmmp{R(m,n,t) F{2(j k,1)

+(Kj|Venedmnyp(m,n,t) f2i k,1)],
(15)

Sa22(i 7j ,t) =- ;'7 %n [<In|V6664mk>f(2)(m1n1t)p(l)(k7j ,t)

+(in| Vi mK 2 (m,n, ) pla Lk b1,

Saoglij )= 2<u|veheAmn>p<3a><m,n,t>,

whereS,51, Sao, Sa23 are contributions from Figs. 15, 16,
and 17, respectivehyp(3? is defined by Fig. 17 and denotes

that part ofp{}) that is given by graphs stemming from the
bare graph in Fig. 1@3).

. ' t+)

b
e
FIG. 16. Summation of Clas&22 graphs, in which the ex-
posedV line ends in the middle segment. The graph shown on the
left is a representative of the series.

h+e

€

(t+e+)

h e

exposedV line, the graph is still connected. We further di-
vide the class into four subsets by the particle lateebi( h)

of the exposed vertex and the particle label of the segment
where the exposeW line terminates. Note that, by Rules 7
and 8, the exposeM line in this class can only end in either
of the two middle segments. An example from each subset is
shown in Fig. 18. We will prove the following claim.

Claim. The sum of each subset of graphs under consider-
ation here can be factorized into a product of the expdsed
line, ptb* and B3, the last being th©(E?) contribution
to the nonsymmetrized biexcitonic correlation functicee
Appendix B, Eq.(B2)].

We prove this claim only for the subset represented by
Fig. 18a). The same proof applies for the other three sub-

(%)) . ;

(a) h T = h + e

(o) W

——s £ £5%.5 @

T ]

® h + e  h o+ e

(t+8,+) % (t,+)
RGN

(c) h + e h + €

(t+8,+) % (t’+)
i (t+8,+) g :

(d) h + e h + €

FIG. 18. Representatives of Clags3) graphs.
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1)
e 5 e p--rrX

! S
h + e e W h o+ e
PR ‘ =X = O
(=2 hs L
M .
- , T WD sa (t+e,+)
I I 0 N 0 N A 1 T (50 T S (0
h + e h o+ e h e FIG. 20. A representative of Clagkl) graphs which all vanish.
FIG. 19. Factorization of the graph in Fig. (88 with the ex-

posedV-line removed into a product of graphs £, andp{H* . (2) The exposed vertex is ¥ vertex, and the exposed

line ends on the open chain, not on the I¢B. 21). Again,

sets. We reproduce Fig. @8 in Fig. 19 with the expose by Rule 8, the segment between the end point of the exposed
line removed. The graph has two open particle chains withy jine and the external point is an noninteracting particle
two E vertices and on&™ vertex. Assign théKeldysh time |ine. By our convention of time ordering the external points,
label t, to theE* vertex and the labed, to thee segment only the graphs in which the external line is hrine con-
bounded by th&* vertex and the external point. Then, start- tribute. The result is
ing from the E* vertex along theh segment in the other
direction, label by (', +) the firstV vertex, theV line from
which ends in a segment other thap. Label byh, the o [ N (3b)
segment bounded b, and ¢’,+). According to Rules 6, Sp2(i, ), D=5 % (ii[Venedmnypep”(m,n,t),  (17)
7, and 9,t’<t, and allV lines starting ine, end in the
segment, since allV vertices ine, lie either on the nega-
tive branch of the Keldysh contour or later tharon the Wherepfib) denotes that part qjg%) that is given by graphs
positive branch. Consider theline between (', +) and the  stemming from the bare graph in Fig. (b3 S.,+ Sy gives
next vertex orh, , which we labelt;. By factorizing thish  the complete Fock mean-field contribution to the right-hand
line in the same way as in E¢L1), we see that the graph is side of Eq.(13). Note that since3® +pEP=p3)  Eq.(13)
factorized into aB{J,, graph and a piece that would be a js closed as far as the Fock terms are concerned.
pSH* graph except for a more complicated Keldysh sign  (3) The exposed vertex is ¥ vertex, the expose¥ line
structure. We show in Appendix C that this complication ends on the loop, and it is the only link between the loop and
generates extra terms that eXaCtIy Cancel, as Causality WOU{He open Chain' These graphs give the Hartree mean_field
demand, and the two-point graph in Fig. 19 is indeqd#  contribution to the right hand side of Eq.3). They vanish if
graph. . . . the system is spatially uniform and electrically neutral over-

Since each graph in the set under consideration can bgy since in this case the momentum transfer along the ex-

factorized in this way, and a graph assembled in the reversgoseqy line must be zero, and this Fourier component of the

. 2 1
manner from & line, anyB &), graph, and anp{* graph — couiomb potential is excluded from the Hamiltonian. They

obviously belongs to this set, the claim is proved. Includinggy, not, however, necessarily vanish in a more general set-

the contributions from the other three subsets, represented ng. The graphs can again be grouped into four subsets by
Fig. 18b-d), we obtain the sum of the whole class as the particle labels of the end points of the exposetine,
and the sum of each subset can be expressed in closed form.

i
Saa(i,j,t)=— > klz [(il[Veeedkm) A representative of each subset is shown in Figa2®).
mn The analytic expression of the sums can be written down by
XS (1,0, B &y k,m,j,n,t) Inspection as

+(il |VenedkmypS* (n,1,0 B, (k,n,j,m,1)

+(I1Vonnd kMG (0,1, B0,k m,t) 4 t+)

+(i1Vhendkm)p&* (1,n,t) BE i m,k,n, )], N " A e
(16) ” ‘ “-"K ]
Class b. One particle chain and one lad¥e divide this + g X
class into four subclasses: t+)
(1) The exposed vertex is af vertex (Fig. 20. In any hy

such graph, the rest of the particle chain is a segment whict (the ) (t+e+)
is connected to the loop by lines. All the graphs are then
zero by Rule 8. FIG. 21. Representatives of Clags?) graphs.
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(c) (d)
FIG. 22. Representatives of Clags3) graphs.

Sys(i.1.0= 5 3 [{inVecebkm {&(m,n, PRk, 0

+(in|Vinnd km) FE2(m,n,t) p&ai k. t)
+(in|Vened km £ (m,n,H) p&(k,j, 1)
+(nj[VenedmK fZ(m,n,t)p{(i k,0)].

(18)

[¢]
a

(e)

FIG. 23. (a)—(d) Representatives of Clagb4) graphs.(e) Fac-
torization of the graph irfa) with the exposed/ line removed into
a product of graphs foB (2}, and p{h* .
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(4) The exposed vertex is ¥ vertex, the exposel line
ends on the loop, but the loop and the open chain are multi-
ply connected. This class gives the correlation contributions,
and its analysis parallels that for the clag8)aabove. The
graphs are again grouped into four subsets, an example of
each is shown in Fig. 23. In Fig. 23, we show how one of
the representative graphs, Fig.(23 is factorized into a
biexcitonic correlation function and p{}* . The analytic
expression for each subset is that of its counterpart in class
a3) with an ‘“exchanged” correlation function:

B (i.j.k1,H) =B (i,j.l,k,t) and an extra minus sign
due to the creation of the particle loop as a result of joining
the three graphical elements. Thus the sum of the contribu-
tions from the present class and clag3)as given by Eq.
(16) with —B), , replaced by the antisymmetrized correla-
tion function b2} ,. For clarity, we record this sum here,
denoting it byS,:

Su(i.1.0= 5 3 [(ilVecebkm)

X p(ejh)*(l ’n’t)b(ze)hf‘(k!mln!] 1t)

+ (il Venedkmyp&* (n,1,)b& i k,n,m,j, t)

+ (1 Vanad kmypE* (n,1, )& i ,n,m,k,t)

+(jl [Vhendkmyp&i* (1,n,)bE) (i,m,n k,0)].
(19)

Summarizing, the equation of motion fot3), Eq. (13),
can be written as

if t|o<3><| 10— 2 [eeli,m) 0+ €n(i,n) 3y m

+ (i} [Venedmn) IS (m,n,t)
= —1R[Sau(1,],1) +Saz(i,],1) +Sapafi] 1)
+Sb3(i !j ,t)+S4(i 1j ,t)],

where the Pauli blocking ternS,; are given by Eqs(14),
the Fock termsS,,1,S,2 by EQ. (15), the Hartree term$,3
by Eq. (18), and the correlation termS, by Eq. (19). Note
that we have moved the exciton interaction teBps+ Sy,
[Egs.(15) and(17)] to the left-hand side. Equatid@0) is the
O(E?®) equation of motion fope, derived in DCT.

Finally, we note how some well-known angular-
momentum selection rules can be easily deduced from the
structures of the diagrams fpt3) 1”23 We specialize to the
case of one conduction band,E& = 3) and one hole band
(J,= = 32), where the two polarizations, ando_ of the E
field couple two separate sets of spin orbitals. Then we have
the following simple rule which is valid to all orders \hand
E: the polarization labels of all thE(E*) vertices along a
continuous particle chaifopen chain or loopmust be the
same. We illustrate how this rule can be usedd . Since
the V vertices do not change the orbital spins, we only need
to examine the bare graphs in Fig. 13. We can see then that
in each Class a graglfrig. 13a)], all threeE(E*) vertices

(20)
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FIG. 24. (a) The bare graph fob2} ,. (b) Graphs ofg{?), , that
contribute to the source terms in the equationtff, ..

have the same polarization sign. In a Class b grgfb.
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e, i J
+ P + - exchange
h h
l k ! I k l k

FIG. 25. Source terms in the equation fiff),,,, Eq. (22).

graphs with an exposed vertex. The derivation here will be
brief since most of the arguments are repetitions of those in
previous subsections. We first note that,Q¢E?), there is
only one bare graph that is composed of two open chains
with oneE vertex on eacliFig. 24@)]. This bare graph itself
does not contribute tb{2),: its connected dressed versions
do. We also note that if the exposed vertex i€arertex, the
graph is zero by Rule 8.

The source terms of the equation are given by graphs
composed of two density functiors,,, two polarization
functionsG,y,, and aV line linking the two chains. Since we

13(b)], the E-E* vertex pair on the loop must have the sameare con5|der|ngO(E2) graphs, these two-point functions

polarization, which can, however, be different from that onmust beGV(O) and Geh

These graphs are shown in Fig.

the open chain. Take the example of two circularly polarized?4(b) where “exchange” refers to interchanging the orbital

beams with opposite polarizations. Label the two fieids
andE_

and time labels of the hole external points. Apply@g( o to

. Only processes represented by Class b graphs comhe external particle lines of these graphs produces eight

tribute top’3) in this case. For the signal in the direction of source terms which are shown graphically in Fig. 25 and are

E, , corresponding to the combinatiéh, E_E* , E* , and
henceE_, must be put on the loop, leavirfg, to find its
place on the open chain, which tells us thf) has the
polarizationo, . In the four-wave-mixing directions, corre-
sponding toE, E,.E* andE_E_E?%, we see that neither
can satisfy the rule that the* and theE on the loop have

the same polarization sign. So there is no signal in thes

directions in this case.

D. O(E?) biexcitonic correlation graphs

collected below on the right-hand side of Eg1). We next
consider the remaining graphs, each with an external particle
line removed. Suppose the exposédine terminates in a
particle segment labeled, , which may be any one of the
three segments other than the one from where the line origi-
nates. Since the termination point of thidine then carries
the same time label as the external pointQf, by Rule 8

the subsegment between the two points must be a simple
particle I|ne|GVO, which is equal to the identity in the
orbital basis or 0 depending on the time ordering convention
of the external points. If the exposédline is removed, the

In this subsection, we will derive the evolution equation remainder is again a graph contributing h§ e It is then

of the two-electron—two-hole correlation functids{2),,

which appears in the source terms in the equatiorpﬁ)?rln
the prewous subsection. We again apply the mveGQé)

easy to see that all the nonzero graphs under consideration
can be grouped into six terms, each of which is a product of
the exposed/ line andb{®),,, (Fig. 26. The equation of mo-

or Gh(o) to each of the four external lines and classify thetion that results from the foregoing graphical analysis is

d
ih o b(z)hh(l jklt— >
Ij/k/l/

[ea(i,i’)+ €l j")+ en(k,k") +en(k,k )D& (i",j K ,17,1)

—% (i} [VeeedmmbEhim.n.k,1,t) +(ik|VenedmmbEhd m.j,n,1 1) +(il[Venedmmb{hdm.j k.n.t)

+<jk|vehetlmn>b£:2e)hr(i ,m,n,l,t)

=2 [(ij [Veeedmm{p H(m,1,0) pl(n,k,H) — plim,k,t)p{H(n,1,0)}

+ (K| Vipnd my{pC (L, m, ) p& G n,t) — pl,n, ) p& G m, 0} +{(K| Vened mmypll(m, 1)
—(ilVenedmmp&H(m,k, )} p&(G ., t) +{(jl [Venedmnyp&(m,k,t)

—(jk|VenedmmypS(m,1,t)}plHi,n,0)1. (21)
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(2)
2) - —-. —ee
geehh ‘\677\ h g eehh {:P X p-----X -

p - chains p - chains

FIG. 27. An example of a minimdE) order graph for a corre-
i J lation function of an even number of creation operators and an even
e e e number of annihilation operators.

J

<

€ e g
@ ) and the particle densities must be calculated by solving a
8eohn 8 eehh dynamical equation, which can be derived diagrammatically

h h h in the form of a Dyson equation. Regrouping the graphs
AN contributing to the interband polarization into a Dyson equa-
/ { k k tion will also provide a proper treatment of dephasing due to
]; ] ! carrier(exciton) -carrier(exciton) scattering. More important
is that the biexcitonic correlations among two electrons and

FIG. 26. Graphs representing interaction terms on the right-hanéwo holes are modified by the presence of other particles
side of Eq.(21). within the correlation range. Heuristically, we expect the
four-body Hamiltonian in the equation of motion fog,,to
be significantly modified by effects such as Pauli blocking,
single-particle energy renormalizatiorigvhich consist of

In this paper, we have examined in details the perturbatartree-Fock and time-nonlocal self-energy contributions
tion series of the nonequilibrium Green's functions for an&nd collisional damping. In NGF, these effects are included
optically excited semiconductor system in the low-intensityPY replacing each free-particle line in the graphs ey

limit. The purpose is to understand the connection betweef€€ Figs. 18—26by a full Green’s function. In doing so,
Green's function theory and the dynamic controlled truncaCar¢ must be taken to avoid double counting of graphs,
hich can be guaranteed by incorporating the biexcitonic

tion scheme for density matrices, which has been SUCCes“;ﬁéﬁorrelations in the self-energy in the Dyson equation for the

in this limit. By exploiting the well-recognized flexibility of < % /7> 0 &~ h.gy . y qh e

the Green’s function formalism, a comprehensive approac pterband polarization. In this regard, we note that the “non-
; L P “crossing” rule(Rule 9 in Sec. Il] leads to a ladder structure

to semiconductor excitation dynamics may be developed i

. : . for the interaction lines connecting the particle lines. Another
the future that incorporates features of DCT and is applicableg|ayant density effect is the screening of the two-particle

to higher excitation intensities. _ interaction by density fluctuations. In NGF, screening is rep-
In the analysis, we have taken advantage of the diagramwsented by a series of bubble diagrams. In the present case,
matic representation of the perturbation series extensivelywo kinds of basic bubbles, namely, density and excitonic
The crucial point is that the assumption of an initial groundpypbles, contribute.
state annihilates a vast class of diagrams. We classified the More generally, to include all the effects listed above, one
nonvanishing diagrams in increasing order of the externaheeds a Dyson equation for the interband polarization whose
field. In each order up to order three, we showed that alkelf-energy, as a functional of the full Green’s functions,
nonvanishing termgto arbitrary order in the two-particle includes the ladderlike graphs induced by the excitonic and
interaction) contributing to the equal-time Green’s functions biexcitonic correlations and the bubble screening graphs. In a
—the density, the polarization, the biexcitonic correlationfuture publication, we plan to make these ideas more explicit
—can be resummed to yield closed equations of motions tha&nd to state detailed diagrammatic rules for them. Together

have been derived within DCT. Corresponding to each ternwith the present paper, we then hope to have laid the foun-
in the y® DCT equations, we have identified a class ofdation for a more general treatment of correlation effects in

It is intended that, in future generalizations to higher in-
tensities and/or nonzero initial densities, all these diagrams ACKNOWLEDGMENTS
contributing to they® DCT will be kept, and selected  The support of JSOP, ARO, NSF, and COEDUhiver-
classes of other diagrams representing relevant high-densigjty of Arizona is gratefully acknowledged.
processes will be added in a “consistent” way. In the re-
mainder of this section, we briefly comment on some direc- APPENDIX A
tions for such generalizations. At higher intensities, the mini- We show in this section that two general factorization
mal order factorization theorems will be less and lessesults on a class of multipoint density matrices, which was
relevant practically. In particular, E¢12) is no longer valid  derived in DCT23 can also be obtained quite easily from our

V. SUMMARY



8354 N. H. KWONG AND R. BINDER PRB 61

graphical considerations. Since the Hamiltonian conserveslaims.
the numbeMN,—Ny,, whereN, (N;) is the number of elec- Claim 1 The lowest-orde(in the external fieltlcontribu-

i i 1 1 i H H T ’ T ’
trons(holes, a density matrix of an odd number of creation/ tions to a density matrix withtM ag(t)’'s, M a(t)’s, N
annihilation operators must vanish. For the density matricea.(t)'s, andN a(t)’s containM E vertices and\ E* verti-
of an even number of operators, we will prove the following ces. To this minimal order, the density matrix factorizes as

<a:£1(i1't)' : 'a,tZM(izM Ba,,, (amen ), (o 1)

=(a11(i1,t)~ : 'aIZM(izm DX@u,, . amen D)y, (amen) 1)) +O(EVTNT2), (A1)

wherev,=e or hfor k=1,...,2M+N).
Claim 2 The lowest-ordefin the external fielil contributions to a density matrix witM + 1 al(t)’s, M aﬁ(t)’s, N+1
ac(t)’s, andN ay(t)’s, containM + 1 E vertices andN+ 1 E* vertices. To this minimal order, the density matrix factorizes as

+

<a11(i1,t>- Ay, tementay, (a2 ) -ay, o (mene) )

:; <a:r/1(i1,t)- : 'a12M+1(i2M+lvt)aE(j D) @02, vz, a2 )+ O(EMNHY),

(A2)

An analogous result holds withandh exchanged.

We have already proved two special cases of Claim 2: the factorization of the second-order density into two first-order
polarizations in Sec. IV BN =0N=0) and the factorizations shown in Figs. 19 ande23M =0, N=1). To prove Claim
1, we note that the density matrix in question can be written as the equal-time limit of khe- Rlj-point Green’s function

N+,M—
V1 P2(M+N)

E(—i)MJrN(T—[aIZM(izM tom) - - .aj;l(il!tl)]T+[aV2(M+N)(i2(M+N) tomany) ey, (omr1tav+1) 1)

(A3)

(lamny stomanys -« - dl1,t)

Here all the annihilation operators are on thebranch of the  eachp* -chain. Then, by Rule 5 in Sec. lll, the Keldysh signs
Keldysh contour and the creation operators are on-the at all vertices on each such open chain must be the same as
branch. To agree with the operator ordering in the densitghose on the chain’s external points. This implies thatvho
matrix, the time arguments approach the tintethe follow-  lines can connect @ chain to ap* chain: the graph is a

ing orders:tyy>-- >ty and tyys1>- - >tysny . The product_ of two subgraphs, one with all tpechains and.the
Green's function can again be expanded diagrammaticallpther with all thep* chains. The subgraph with tiechains
following the rules in Appendix B and Sec. IIl. Each contrib- IS @ contributing minimal order graph to the factor density

uting graph contain® +N open particle chains and a num- matrix with all annihilation operators in E¢A1), while that
ber of particle loops. The orbital and time labels of the With the p* chains contributes to minimal order to the factor

creation/annihilation operators are assigned to the externglenSIty matrix W'th all crgapon operators. It is clear that the
points of the chains. We only consider the graphs with th roduct of any pair of m'”'ma' _order graphs from the two-
minimal number of (E*) vertices. First, these graphs have actor density matrices is a minimal order graph of the origi
no loops. Each open chain has at least Bri&*) vertex on + + + 4 +
it, and this minimal number is obtained by pairinga{mvith
ana/, or ana, with ana,,, on each open chain. This proves
the minimal contributing order is indeéd + N. Call an open
chain with arrows pointing towards the external poitdsr-
responding to annihilation operatpsp chain, and one with {:' X
arrows pointing away from the external poirit®responding
to creation operatoysa p* chain. Then the above consider-  ¢nnnn
ations show that each minimal order graph, an example of
which is shown in Fig. 27, consists M p chains with posi-
tive Keldysh signs on their external poindé,p* chains with
negative Keldysh signs on their external points, and an arbi- FIG. 28. An example of a minimdE) order graph for a corre-
trary number ofV lines connecting the chains. Furthermore, lation function of an odd number of creation operators and an odd
an E vertex appear on eaghchain, and oné&* vertex on  number of annihilation operators.
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nal product density matrikeft-hand side of Eq(A1)]. Claim 1 is thus proved.
A similar proof applies to Claim 2. Again the density matrix in question can be written as the equal-time limit of the
2(M+N+1)-point Green'’s function

N+1)+,(M+1)— i :
S,lf.,),:(M(+J+l)) (iamen+1) tomens1ys - ol1ste)
=(=OMNNT (Al (awsnstomen) - a) (in,t0)]
XT o[, 02Ny tomanen) -8y (i2v2.tam2) 1) (A4)
|
The time arguments approach the timén the following APPENDIX B: FEYNMAN RULES
orders:tyy 41>+ - >ty andtyy 2> - - >tomans 1y . Here FOR GREEN'S FUNCTIONS

the number of open chainshé+ M+ 1. Again each external For notational clarity, we state the Feynman rules used in

E&;Q:‘tg Vgr]:tlcq))r?g :ggwngglr:@ggiiigogg:ggstﬁ gin :n;'qhd"athis paper for the time-dependent perturbation theory of the
b g P Y an, NGF's on the Keldysh time path. This set of rules is an

negative sign is assigned to each external point away from :
. . - extension to a two-component plasma of the standard one-
which an arrow is directed. To construct a minimal order

raph, we again pair the operators to form as mawjains component set stated in, e.g., Ref. 24. The derivation of these
grap . again pair the op . ”13 . rules follows the general lines of argument for Green’s func-
andp* chains as possible. Aftdfl p chains andN p* chains

. . tions perturbation theory as explained in, e.g., Ref. 16, and
'I' ) ’ H

are assembled, the remaining pgwa[g(t) and a?(t) r_nust will not be given here. References 24 and 16 are the basic

form the last chain, which we will call ae chain, with a

L f | . : h references for this appendix.
minimum of oneE vertex plus oneE™ vertex on It. So the Our system is an electron-hole system governed by the
minimal order for such density matrices \4+N+2. In a

inimal ord h Fig. 2 i directl Hamiltonian Eq.(1). We assume that, at the initial tirmg,
minimal order graph, e.g. Fig. 28, nolines directly connect  yho gystem is prepared in either a correlated, equilibrium

the sets op andp* chains, but both sets may be connectedgase or an arbitrary but uncorrelated state. Wick's theorem is
to thee chain. The(minimal ordej e chain consists of twe 5 jicaple to either cagé.In the case of the initial equilib-
segments separated by hisegment In the m|ddle|_:|g. 29. rium state with finite density, we assume the system has been
By Rules 3b) and Jc), the Keldysh signs at all points on the |0 14 equilibrate a long time befory. We further assume

€ segments are the same as those at the respective exterfs e external field is switched on aftey and that the
points. The Keldysh signs on titesegment depend on the ,isia| state is “normal” in the sense that in the absence of

origins of theV lines that reach this segment. By Ruléd, . PN B .
however, the positive signs and the negative signs must bté‘e external field, i.e., iHex(t)=0, all the “electron-hole-

segregated as shown in Fig. 29. The twsubsegments car- coherent” Green's functions, e.g.Gex(i t,j,t') and
rying opposite Keldysh signs are joined by a noninteradting Gey(i,t,j,t"), vanish. In this regard, we note that the inter-

line, iG, 5y . We can now factorize this line as in Eq.(11),  action terms, in Eq. (1) conserve electron and hole num-
thereby creating twdn external points and factorizing the bers separately. The Keldysh time contour is shown in Fig. 2.
whole graph(Fig. 29. If we choose the time on the created The positive time branch fror, to « is labeledC, , the
external points to approach later than botht,y,; and  negative time branch is label&l , and the entire contour is
tom 12, We see that the factor graphs are minimal-order contabeledC.

tributions to the respective factor density matrices in EQq. The Feynman rules for writing down the contributions, to
(A2). It is clear that any pair of minimal-order graphs from nth order in the two-body interactiovt andmth order in the
the two-factor density matrices assembled in the reversexternal field E, to the two-point Green’s functions
manner will yield a minimal-order graph of the original
product density matrixleft-hand side of Eq(A2)]. Claim 2

e.m h,
is thus proved. , g
) e—> o (1,F) (t',b) }MI\AA{ (t,b)
J e i 7
(t5+) e?’ h’.]
t,+ cYh— e P /
( ‘ ) Gy, (ist, j,1") —é<mn|1/M|i NO(t—1)b8,,
MNANNA (b (t,b)
= X X &l 4> h,j &f —>4<h,j
ANNANS + x x
i .. Pow .,
) £EE,, G, j, 1) - gEeh G, .0
) (t+e,+) t+)

FIG. 30. Graphical elements in the perturbation theory used in
FIG. 29. Factorization of theele) chain in Fig. 28. this paper.
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iG,,(i,t,j,t'), defined in Eq(2), are the following. (t,b) (tb) (tb) (t.b)
(B1) Draw all topologically distinct, connected diagrams —— ‘———“>='il’
with two external pointsn interaction(or V) lines (denoted e, j Gl h, j o
by wavy lines herg m external field(or E) lines(denoted by , . BB e . e
dashed lings and ?+m-+1 particle lines(denoted by di- iG:: @i,t,j,t") iGy, (8,1, J,1")

rected solid lines A V vertex is a vertex from which three
lines emerge, two being particle lines and the third kne.

An E vertex is a vertex from which two particle lines and an ~ (t,b) (t,b) (") (tb)
E line emerge. EaclV line begins and ends at vertices. ——— h'.=)'='<=’,
EachE line enters the diagram at only ofevertex. Each h,j &1 J &
particle line is bounded by vertices or external points at both b e e e ~

ends. These graphical elements are shown in Fig. 30 in iG,, (i, J,1') iG:,f @it 1)

which the labelgof time, orbital, etg. and the corresponding ) . .
analytical expressions, as given by the rules below, are also FIG- 31. Graphical representations of the exact two-point
shown. Green'’s functions.
It is easy to see that in such a diagram the particle lines o
are arranged in a continuous chain running from one externaither vertex, labeled byt, and v,, assign the factor
point to the other and a number of nonoverlapping internal_(i/ﬁ)<ij \Y |mn>§(t_1—t_2), where
particle loops. Two successive lines along the open chain or
a loop are joined by a vertex. In this paper, any continuous o
succession of alternating particle lines and vertices, with o(ty—ty)  if t;,t,eCy
lines at the ends, is called éhain A segmentrefers to a rvrallie .
chain in which all the vertices ai¢ verticgs. Atyi=ta)={ —oli=tz) if ty,t,eC.
(B2) A particle line is labeled by eithes, for electrons, or 0 elsewhere.
h, for holes. An orbital label is assigned to each end of the

line. A time argument i; assigned tQ each vertex, Whichl iS(B7) For eachE vertex, labeled by electron orbital hole
also labeled by the orbital and species labels of the particlg .., i, and time T, assign a factor i(%)E.x(i.j.t)
3 [ e 1)

Ilne(;;n}er]rgl?vg\;/(jrg)r(r:el;thal points of the diagram are labeled_ (/) den(i ,j)~[E(t)/2]e*"”0t_ i bOt*h particle lines are ex-

by the time and orbital arguments of the Green’s function.'tIng the \{ertex and a faCtOF('/h)Ee*? if both pgrtlc!e Imgs

The arrow on the particle line connected to an external poin re entering the vertex. Note the difference in signs n the

is directed towardgaway fron the point if the point is as- wo cases. From here on, we call a.vertex corr*espondmg to

sociated with an annihilatioricreatior) operator. For ex- Een anE vertex, and oné correspo_ndmgligh ank vertex._
(B8) Sum over all internal particle orbital labels, and in-

ample, n ad'agr_aﬁ‘ contributing @ee("tjj_’,t ). th? arrow tegrate over all internal time variables along the Keldysh
points towards i(t) and away from [,t"), while for  contour. The time integral is performed as a sum of the in-

Geh(i,t,j,t,), the arrow is directed towards the external tegra's on each branch of the Contouﬁ"CdT:f;:;dt+

point at both ends. o . . .
(B4) The arrow preserves its direction in successive par- f‘odt* » Wheret.. is the time variable on the brane. .

ticle lines until it meets af vertex, where it switches to the  (B9) Attach a sign factor of ¢ 1)™ whereN, is the num-
opposite direction. The value of the particle labebr h, is ~ ber of particle loops in the diagram. .
also preserved in successive particle lines until it meet& an  The exact Green’s functions are denoted by double solid

ViVaViVa

vertex, where it switches to the other value. lines (Fig. 31), which are labeled at both ends by time, spe-
We note that this rule is a result of our excluding thecies, and orbital arguments. _ _
electron-hole pair creating or annihilating terfitsg. 4(b)] Each Green’s function may alternatively be written as a

four-component functiorfor 2X2 matrix labeled by two

from our interaction Hamiltoniarh:lz. Including these pro- “Keldvsh sians” and d di g di i
cesses would invalidate the rule. Some important conse- eldysh signs” and depending on two time ordinary time

quences of the Feynman RulB4) are stated, as Rules 1-3, variables: e.0.62 (i,t,j,t'),b,b’=* andt,t'e C, . This
and proved in Sec. lIl. Also, it is obvious that all the particle change in convention leads to some slight modifications of
lines in a segment, as defined below the Feynman il the above rules. Each particle line is now labeled by a time

have the same arrow direction and species label. Keldysh sign pair {;b) at each end, and so are a vertex and
For a given diagram, the analytic expression of the conan _exter_r]al point. The factor associated witkl ine is now
tribution is given by the following rules: = ((1R)CHi IV vy, M) 8(t1 — 15) D1 8y 1, the notations be-

(B5) For each particle line with particle label and the ing those in the Feynman Ru(86) above. At each internal
arrow leading from a time-orbital label ot4,j) to (t,,i),  vertex, labeled by the orbital labels, ), the time argument
write down a factoriGV(o)(i,t_l,j ,t_z), where G, is the t, and Kelciysh sigrb; perform the following sums and in-
noninteracting Green’s function. tegral: X; [ Zp by - -.

(B6) For eachV line, with orbitalsm andi entering and The perturbation series for the four-point function
exiting, respectively, a vertex labeled by tirheand particle  Ggeni(i, t,j,t’ .k, t”,1,t”) can be written down by the above
v4, and orbitals andj entering and exiting, respectively, the Feynman rules with the following differences:
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(t.+) C,

—

(t-) C.

1o

+ < (t+)
(ty,b) (twbn) } (tn-1,50-1) FIG. 33. Keldysh contours showing respective time integration
(e 1 1) ranges for the graphs in Figs. 10 and 32.
n+1:Vn+1

t+) o

) ) difference, that the two series yield the same analytical ex-
(1)'2'6' 32. A graph that differs from a representative graph for, assion order by order iN. The plausibility of this claim
Pe” Of the same order iV only by the Keldysh signs at the end 5 e seen by a heuristic causality argument. The difference
points. between the two graphs in question is a difference in the
_ _ . integration ranges over the Keldysh contdkig. 33. For
(B10) A graph to orden in V and ordemin E (E*) has  the graph in Fig. 32, the integration range starts at § and
2n+m+2 particle lines, which are arranged into two OpeNgoes aloncC . to « and then back along_ to t,, while for
chains and a number of internal IOOpS. The two open Chainﬁ‘]e Corresponding graph in F|g 107 the integration goes from
need not be connected to each other, but an internal |OOR’—) to to. Since events happening to the system at times
must be connected to at least one of the two chains. later thant should not affect the correlation functionstaive
(B11) With the above ordering of the orbital labels expect the net contribution from the part of the contour be-
(i,j,k,I) for the external points, an extra minus sign is as-tween ¢,+) and ¢,—) to vanish. In the following, we give
signed to a graph in whichandk are the external points of a formal proof of the claim.
one chain, ang andl are those of the other. We can write the expression corresponding to the graph
One can isolate those graphs that are factorizable intthat ends att(+) in the form[cf. Eq. (7)]
products of twoG.'s and write .
L P o j dtdt; .. .dt,,10(tty, ...t )F(Lty, oo thee),
Geeni,t,j,t" Kt 1,t")=Gep(i,t,1,t")Gen(j,t' Kk, t") o0
= == where 6(t,t4, . ..t 1) contains a sum of products of step
~Genli, 1.k 1) Gen(j, t7,1,t") functions in time corresponding to various combinations of
== T, Keldysh signs, and=(t,t;, ... t,1) contains factors of
T Geend !, L1, K 1Y), —je~(/Me(t=t) andV and is free of Kelysh signs. To figure
(B1)  out the form of (t,ty, ... ths1), We note that by Rule
5(d), in each allowed combination, the positive signs and the
a$gative sighs must be segregated. We show a particular
combination in Fig. 34, in which the sign switches from
positive att,, to negative at, ;. This gives rise to a factor
6f (=D)AL~ 1)t~ th) - Ot~ tm-1) Otm1
—tmio) - 0(t,—th+1). Summing over all allowed combi-
nations, we can write the result compactly as

wheregeenn the correlated part 0Ggenn, IS composed of
graphs in which the open chains are also connected to ea
other. The antisymmetry aje.n,under electron or hole ex-
change is obvious from the graphical expansion. As a resul
we can writegeennin terms of a nonsymmetrized function:

Jeent(i, 6], t K" 1 t") = Goendi, 1., K, t",1,t")

n+1
~Geend 1, 1,], 1,17k, t"), Otty, o tae)= 2 (-
=0
(82) o
where Geepi,t,j,t",k,t",1,t”) is the sum of all those < [T 6ti—te 1)
graphsE]geem(i,t,j_,t’,k,t”,l,tD in which (i,t) is paired k=1
with (1,t"”), and (,t") with (k,t”), in the open chains. In

n
the equal-time limitg..h; ™ and G o © define the anti- x 1 ) o(ti—tj.1),  (C
j=m+

symmetrized correlation functidn, ., and nonsymmetrized
correlation functionBgenp, respectively.

APPENDIX C

In this appendix, we prove that the sum of all two-point
graphs, each carrying orfe* vertex and Keldysh-time as-
signment ¢, +) at both ends, is equal f})* , as is claimed
in Sec. IV C. We show a representative of the graphs, with &+ P
V lines, in Fig. 32. Comparing this graph with Fig. 10, we (D) (rt) (s 1°) i(t,,,-)
see that it the same as the graph frp§y* with the same (o)
number ofV lines except that in Fig. 32, the Keldysh signs at "
the two end points are-, and a sum is performed over the  FIG. 34. A particular combination of Keldysh signs for the in-
Keldysh signs at thé&/ vertices. The claim is, despite this termediate vertices in Fig. 32.

)
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wheret has been relabeleg. Any product in Eq(C1) is set We separate out them=0 term and make the substitutions
equal to 1 if the lower limit exceeds the upper lifhit.g., m’'=m—-1, k'=k—1, j’=j—1 to turn the expression into
H;‘,mﬂa(t 5+1)=1 if m+1>n]. The expression for the

graph fromp{}* can also be written in the same form with Tl el m’
the sameF(t,ty, ... ty+1) but with 6(t,ty, ... t,,q) re- —to) 2 (1) H Oty 41— tr)
placed by m’
N N+1
" 2
(=" T ot—t;.0) (2 x H 9<t1'+1—ty+z)+(—1)N+ J1:[1 O(t;—tj 1)
; IR R -~y
j=0

The claim is thus reduced to the statement that Eg$). and €9
(C2) are equal. We see that the first term, without the factft, —t;), is just
We will prove the claim by induction. First it is easy to the right-hand side of EqC3) if we replacet,, by t,,; and
check that the claim is true for=1 andn=2. Suppose the tj: by tj._;. Since Eq.(C3) is a formal identity for the set
claim is true forn=N, i.e., (to,tq, ... tns1), it is also wvalid for the set
(t1,t5, ... tn+1). Thus Eq.(C5) can be written as

N+1 m N
> (DN ottt TT 0 oct—tj,0) N1
o - jeme ot —to) (=DM T ot + (-2
i=1
=(—=DNT ot —t10). (C3) N+ 1
1=0 XH 9(t ]+1
Consider the case=N+ 1. The right-hand side is
N+2
N+2 N+1
=(—=DN2[] oct;—t;4y). (CO)

2 (—pNTE mH O(t—ty_1) H O(tj—tj11). e T

(C9 Thus the claim is true for afh.
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