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Nonlinear interlayer tunneling in a double-electron-layer structure

S. K. Lyo
Sandia National Laboratories, Albuquerque, New Mexico 87185

~Received 2 August 1999!

We present a theory for nonequilibrium two-dimensional to two-dimensional tunneling between two weakly
tunnel-coupled electron layers when the chemical potentials of the two electron gases are arbitrarily biased. We
first present an intuitive but rigorous second-order perturbation theory based on a transition-rate approach.
Contributions from electron-impurity, interface-roughness, electron-electron, and electron-phonon interactions
are considered. The validity of this result is established using a more general field-theoretic formalism by
expressing the tunneling current as a current-current correlation function which can be evaluated employing a
standard temperature-ordered Green’s function technique and a Feynman-graph expansion. The formalism is
exact to the second order in the tunneling integral and to all orders in the interactions and is useful for studying
higher-order interaction effect. The relevance of the numerical results to recent experimental data from a
GaAs/AlxGa12xAs double-electron-layer tunneling transistor~DELTT! at 77 K are discussed. These data show
a large peak-to-valley ratio of theI -V curve. The room-temperature numerical results for theI -V curve show
a reasonably large peak-to-valley ratio indicating the feasibility of room-temperature DELTT’s.
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I. INTRODUCTION

Currently, there has been an increasing interest in the
neling phenomenon between two quasi-two-dimensio
~2D! layers of electron gases separated by a wide barrie1–7

This phenomenon is not only interesting academically
also offers potentially valuable application to 2D-2D tunn
ing transistors which have sharp current-voltage characte
tics owing to the restricted phase space available for tun
ing compared to the conventional transistors based on 3D
tunneling.8–10 This effect has recently been demonstrated
Simmonset al.11 This paper presents a theory for tunneli
for the double-quantum-well~DQW! 2D-2D tunneling struc-
ture pioneered by Eisenstein, Pfeiffer, and West.3 In this
structure, the two QW’s have independent Ohmic conta
When a bias potentialV is applied between the source an
the drain contacts, the electrons drift into the top Q
~QW1!, tunnel through the wide center barrier into the b
tom QW ~QW2! and flow out of QW2. The two QW’s are
not in equilibrium, with the difference of their chemical po
tentialsm1 andm2 given bym12m25eV(>0). In this pa-
per, we obtain the tunneling current as a function ofeV
assuming that the in-plane conductances of the QW’s
vary large, causing a significant potential drop only over
barrier. The effect of in-plane resistance on the source-d
I -V curve can be studied using theI -V relationship obtained
here and a differential transmission line model.6

The present model is very relevant to th
GaAs/AlxGa12xAs double-electron-layer tunneling transist
~DELTT! recently developed by Simmonset al.11 This struc-
ture is very similar to that studied by Eisensteinet al.4 but
~1! with a much smaller gate size allowing only a sm
potential drop in the QW’s, and~2! with a nonlinear source
drain biasV. The DELTT structure is free from space-char
effects11 because the current exits the second~i.e., drain! QW
immediately after tunneling through the barrier. On the ot
hand, space-charge effects change theI -V characteristics in
PRB 610163-1829/2000/61~12!/8316~10!/$15.00
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3D-2D transistors, where charge can be accumulated in
QW.12

Of particular interest in this paper is the investigation
the maximum possible temperature-dependent peak-to-va
ratio in a given structure in the ideal intrinsic limit, namel
in the limit where the major effect from the static scatteri
centers are eliminated through modulation doping. This
quires a careful microscopic treatment of the level damp
arising from the intrinsic scattering mechanism such
electron-electron and electron-phonon interactions. Li
shape broadening due to extrinsic static scattering suc
impurity or interface-roughness scattering is considered
mally. The effect is sample dependent and will be trea
phonomenologically to compare the theoretical results w
data.

The present paper is structured as follows. We formul
the tunneling current in terms of an intuitive second-ord
transition-rate theory using aT-matrix approach in Sec. II
Contributions from electron-impurity~or-surface roughness!,
electron-electron, and electron-phonon interactions are c
sidered. The validity of the results in Sec. II is examined
Sec. III, where we establish a formal theory of the noneq
librium 2D-2D tunneling current in terms of the curren
current correlation function. This is then evaluated emplo
ing a standard temperature-ordered Green’s func
technique and a graph expansion. The formalism is exac
the second order in the tunneling integralJ and to all orders
in the interactions and is similar to the linear respon
theory. The formalism is valid in the limit whereJ is small
~i.e., ! damping G!, namely, when the tunneling time i
much longer than the scattering time. This limit correspon
to sequential tunneling in the double-barrier tunneling s
tem. This condition is well satisfied in typical tunneling tra
sistors, where the center barrier is wide allowing the char
in the two QW’s to be controlled independently. Numeric
results are given in Sec. IV and compared with recent exp
mental data from GaAs/AlxGa12xAs DELTT available at 77
K. The I -V curve is also evaluated at 300 K in order
8316 ©2000 The American Physical Society
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assess the feasibility of room-temperature DELTT. The
per is concluded in Sec. V with a brief discussion.

II. TRANSITION-RATE FORMALISM

The Hamiltonian is given, in the absence of tunneling,

H5 (
j 51,2

(
k

« jkajk
† ajk1(

sq
\vsq~bsq

† bsq11/2!1H im

1He-ph1He-e , ~1!

where« jk is the electron energy for the wave vectork in the
j th QW, ajk

† (ajk) is the fermion creation~destruction! op-
erator,\vsq is the phonon energy of modes and wave vector
q, andbsq

† (bsq) is the boson creation~destruction! operator.
The rest of the terms in Eq.~1! denote electron interaction
with the impurities, LO phonons, acoustic phonons, a
other electrons. The expressions for these terms will be g
later. The spin sum is suppressed. The total Hamiltonia
the sum ofH and the tunneling HamiltonianH tun:

H tun5t1t†;t5J(
k

a1k
† a2k , ~2!

whereJ is the tunneling integral. The operatort(t†) transfers
an electron from QW2~QW1! to QW1 ~QW2!. While we
concentrate on the ground sublevels of each QW, the re
can be generalized to include tunneling between all the s
levels if the indexk includes the sublevel index implicitly. In
this case,J depends on the sublevel indices.

In general, tunneling cannot occur directly from an init
state u1k& in QW1 to a final stateu2k& in QW2, because
momentum and energy conservation cannot be satisfied
multaneously when the energy dispersions«1k and «2k are
not aligned~i.e., «1kÞ«2k!. Here ujk& is the noninteracting
eigenstate of the first term ofH. We therefore need to con
struct second-order perturbation processes through w
momentum and energy can be dissipated. We use a sec
order perturbation theory which treats the resonance in
intermediate energy denominators rigorously.13 An alternate
more general and formal diagrammatic approach useful f
systematic study of higher-order effects is presented in S
III.

A. Tunneling through electron-impurity scattering

Figure 1 shows second-order perturbation proces
which allow an electron to tunnel from an initial stateu1k& to
a final stateu2k8&. In Fig. 1~a!, the electron is first scattere
~indicated by the black dot! into an intermediate stateu1k8&
and then tunnels intou2k8&. In Fig. 1~b!, the electron first
undergoes virtual tunneling into an intermediate stateu2k&
and then is scattered into the final stateu2k8&. In this elastic
transition, momentum is dissipated through impurity co
sions in QW1@Fig. 1~a!# as well as in QW2@Fig. 1~b!#. The
T matrix for these processes is given by13

T1k→2k8
im

5
J^1k8uH̃ imu1k&

«1k2«1k82 iG1k8~«1k!
1

^2k8uH̃ imu2k&J

«1k2«2k2 iG2k~«1k!
,

~3!
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whereH̃ im is the sum of the screened impurity potentials a
the interface-roughness potentials. In Eq.~3!, intermediate-
state dampingG jk(z) is included for resonant transitions
The argumentz of the dampingG jq(z) for the T matrix in
Eq. ~3! as well as for theT matrices for the electron-phono
and electron-electron processes to be introduced later is
termined from the fact that the denominator in the first a
second term of Eq.~3! is the denominator of the Green’
function of the intermediate statesu jq&5u1k8& and u jq&
5u2k&, respectively, namely Gjq(z2 i0)5@z2« jq
2 iG jq(z)#21, ignoring the energy shift. Hence,z5«1k for
both terms of Eq.~3!. Note that, in the present nonequilib
rium tunneling problem, thez andk dependences ofG jk(z)
are important and make the problem more complicated t
in the linear response case where only the properties on
Fermi surface matter.

The transition rate from QW1 to QW2 is then given by

W1→2
im 5

4p

\ (
kk8

f 1k~12 f 2k8!^uT1k→2k8
im u2& imd~«1k2«2k8!.

~4!

Here, a factor of 2 is included for the spin degeneracy a
^ & im denotes impurity averaging. The back-transition ra
W2→1

im can be found in a similar way. Subtracting the bac
transition rate from Eq.~4!, assuming an in-plane inversio
symmetry~i.e., « j 2k5« jk!, and multiplying the rate by the
electron chargee, we find the tunneling current

I im5
4peJ2

\
F~V!(

kk8
f 1k~12 f 2k8!K U^1k8uH̃ imu1k&

D2 iG1k8

1
^2k8uH̃ imu2k&

2D2 iG2k
U2L

im

d~«1k2«2k8!, ~5!

whereF(V)512exp(2beV), f jk is the Fermi functionf jk
5$exp@b(«jk2mj)#11%21, b5kBT, T is the temperature,D
5«2k2«1k5D02eV and G jk[G jk(« j* k) with the under-
standing 1* [2, and 2* [1. D0 is the difference of the
ground sublevels of the two QW’s in the absence of the b
For zero biasV50, we haveF(V)50, yielding I im50 due

FIG. 1. Second-order two-step processes for tunneling thro
electron-impurity and electron-phonon interactions~black dots!.
Tunneling takes place~a! after and~b! before the interaction.
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8318 PRB 61S. K. LYO
to detailed balance. It turns out that the energy denomina
for the intermediate states in Eq.~5! have the same expres
sion for tunneling through electron-phonon interaction~EPI!
and electron-electron interaction as will be shown later.

B. Tunneling through electron-phonon scattering

Phonon-assisted tunneling is obtained from the same
cesses illustrated in Fig. 1 except that the black dots n
indicate phonon absorption and emission. The initial st
u1k,nsq& consists of an electron inu1k& and phonons in
unsq&. The final state isu2k8,nsq61& depending on whethe
a phonon is emitted~1! or absorbed~2!. In Fig. 1~a!, the
electron is first scattered into an intermediate stateu1k8,nsq
61& through virtual~or real! phonon emission or absorptio
and then tunnels intou2k8&. In Fig. 1~b!, the electron first
undergoes virtual tunneling into an intermediate stateu2k&
and then is scattered into the final stateu2k8,nsq61& emit-
ting or absorbing a phonon of modesq. In this inelastic tran-
sition, energy and momentum are transferred to the pho
bath. TheT matrix equals

T1k→2k8
ph6

~sq!5
J^1k8,nsq61uH̃e-ph

6 u1k,nsq&
«1k2~«1k86\vsq!2 iG1k8~«1k7\vsq!

1
^2k8,nsq61uH̃e-ph

6 u2k,nsq&J

«1k2«2k2 iG2k~«1k!
, ~6!

where nsq5@exp(b\vsq)21#21 is the boson function. The
arguments of the damping in Eq.~6! are determined accord
ing to the method discussed following Eq.~3!. In Eq. ~6!,
H̃e-ph

6 is the phonon emission~1! and absorption~2! part of

the screened EPI:H̃e-ph5H̃e-ph
1 1H̃e-ph

2 and

^ jk8,nsq61uH̃e-ph
6 u jk,nsq&

5Vsqnsq
61/2

« j~qi!
21D j~qz!dk,k86qi

. ~7!

Here nsq
6 5nsq11/261/2, q5(qi ,qz), « j (qi) is the dielec-

tric screening constant,

D j~qz!5E f j~z!2wsq~z!dz ~8!

is the momentum conservation factor,f j (z) is the confine-
ment wave function, andVsq is the strength of the EPI. We
consider only the bulk phonon modewsq(z)5eiqzz. For the
optical phonons, we consider only the LO phonon interact
and suppress the indexs from Ds j(qz)5D j (qz) for simplic-
ity.

The phonon-assisted transition rate is then given by

W1→2
ph 5

4p

\ (
kk8

(
sq6

f 1k~12 f 2k8!

3uT1k→2k8
ph6

~sq!u2d~«2k86\vsq2«1k!. ~9!

The expression in Eq.~6! is simplified using the energy con
servation in Eq.~9! to
rs

o-
w
te

on

n

uT1k→2k8
ph6

~sq!u25J2Vsq
2 nsq

6UD1~qz!e1~qi!
21

D2 iG1k8

2
D2~qz!e2~qi!

21

D1 iG2k
U2

dk,k86qi
. ~10!

The back current can be found in a similar way:

W2→1
ph 5

4p

\ (
kk8

(
sq6

f 2k8~12 f 1k!

3uT2k8→1k
ph7

~sq!u2d~«2k86\vsq2«1k!, ~11!

with

uT2k8→1k
ph7

~sq!u25J2Vsq
2 nsq

7UD1~qz!«1~qi!
21

D2 iG1k8

2
D2~qz!«2~qi!

21

D1 iG2k
U2

dk,k86qi
. ~12!

Note that the order for1 and2 is reversed in theT matrix in
Eqs.~11! and ~12!.

The phonon-assisted current is obtained by subtrac
Eq. ~11! from Eq.~9! and exploiting the nonequilibrium ver
sion of detailed balance:f 1k(12 f 2k8)nsq

6 2 f 2k8(12 f 1k)nsq
7

5 f 1k(12 f 2k8)nsq
6 (12e2beV):

I ph5
4pe

\
J2F~V!(

kk8
(
sq6

f 1k~12 f 2k8!

3nsq
6 Vsq

2 UD1~qz!e1~qi!
21

D2 iG1k8
2

D2~qz!e2~qi!
21

D1 iG2k
U2

3d~«2k86\vsq2«1k!dk,k86qi
. ~13!

The cross terms in Eq.~13! yield the interference effect. This
term is negligible for the phonon modes localized in one
the QW’s. Short-wavelength phonons (qzd@1) do not con-
tribute to this term even for the extended bulk phonons. T
point is easily seen for identical confinement wave functio
for example, fromD1(qz)* D2(qz)5uD1(qz)u2eiqzd ~d is the
well-to-well separation!. The summation onqz cancels out
for qzd@1. Also, the factorsD j (qz) are small forqzb@1
whereb(.d) is the QW width. The cross term can introduc
a destructive interference for long-wavelength phono
(qzd!1) away from the resonance, namely, foruDu@G jk for
identical QW’s @i.e., e1(qi)5e2(qi)#. In this case, the two
terms in Eq. ~13! cancel out, yielding a negligible off-
resonance tunneling current. This effect arises from the
that long-wavelength phonons modulate the energies of
two QW’s in phase and do not contribute to inelastic tunn
ing.

C. Tunneling through electron-electron scattering

The electrons can relax their energy and momentum
colliding with other electrons before or after tunneling
illustrated by two-step processes in Fig. 2. The initial st
u1k, jk1&5u1k&u jk1& represents a two-particle state with a
electron inu1k& and the other inu jk1& in the j th OW. The
final state isu2k8, jk18&. In Fig. 2~a!, the electron inu1k& is
first scattered into an intermediate stateu1k8& while kicking
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the other electron intou jk18&. It then tunnels intou2k8&. The
exchange effect will be discussed later. The two steps
reversed in Fig. 1~b!. In this inelastic transition, energy an
momentum are transferred through an Auger-like proce
The T matrix for these processes is given by

T1k, jk1→2k8, jk
18

ee
5

J^1k8, jk18uH̃eeu1k, jk1&
« j2«1k82 iG1k8~« j !

1
^2k8, jk18uH̃eeu2k, jk1&J

«1k2«2k2 iG2k~«1k!
, ~14!

where the quantity« j in the first denominator is given b
« j5«1k1« jk1

2« jk
18
5«2k8 with the last equality arising from

the energy conservation between the final and initial s
@see Eq.~15!#. The first and second denominator in Eq.~14!
then simplifies toD2 iG1k8 and2D2 iG2k , respectively, as
in the phonon-assisted case.

The tunneling rate from QW1 to QW2 equals

W1→2
ee 5

8p

\ (
jkk8

(
k1k18

uT1k, jk1→2k8, jk
18

ee u2f 1kf jk1

3~12 f 2k8!~12 f jk
18
!d~«1k1« jk1

2«2k82« jk
18
!,

~15!

where the factor 8 includes spin sums. The matrix eleme
in Eq. ~14! are given by

^ ik8, jk18uH̃eeu ik, jk1&5
2pe2

Akq« i j ~q!
Fi j ~q!dk1k1 ,k81k

18

[Ui j ~q!dk1k1 ,k81k
18
, ~16a!

where

FIG. 2. Second-order two-step processes for tunneling thro
electron-electron interaction~wiggly vertical lines!. Tunneling takes
place~a! after and~b! before the interaction.
re

s.

te

ts

Fi j ~q!5E E f i~z!2f j~z8!2e2quz2z8udz dz8, ~16b!

q5uk82ku,e i j is the dielectric screening constant,k is the
bulk dielectric constant, andA is the area of the QW’s.

The back current can be found similarly by reversing t
direction of the arrows in Fig. 2, yielding

W2→1
ee 5

8p

\ (
jkk8

(
k1k18

uT2k8, jk
18→1k, jk1

ee u2f 2k8 f jk
18

3~12 f 1k!~12 f jk1
!d~«1k1« jk1

2«2k82« jk
18
!,

~17!

where

T2k8, jk
18→1k, jk1

ee
5JS ^1k, jk1uH̃eeu1k8, jk18&

D2 iG1k8

1
^2k, jk1uH̃eeu2k8, jk18&

2D2 iG2k
D . ~18!

TheT matrices in Eqs.~14! and~18! are identical in view of
Eq. ~16! and the discussion following Eq.~14!. The energy
conservation condition in Eq.~17! yields f 2k8 f jk

18
(1

2 f 1k)(12 f jk1
)5 f 1kf jk1

(12 f 2k8)(12 f jk
18
)e2beV.

The tunneling current is then the difference between
forward current and the back current:

I ee5
8p

\
F~V!(

jkk8
(
k1k18

uT1k, jk1→2k8, jk
18

ee u2f 1kf jk1

3~12 f 2k8!~12 f jk
18
!d~«1k1« jk1

2«2k82« jk
18
!.

~19!

In the above treatment, we have assumed that the t
particle wave function is a product of the single-partic
wave functions:u ik, jk1&5u ik&u jk1&. To account for the ex-
change effect, we symmetrize and antisymmetrizeu ik, jk1&
for the spin-singlet and spin-triplet states, respectively. T
procedure is straightforward. We write down the result on
for the most practical case where the Coulomb interaction
well as the wave function overlap between the two QW’s
negligible. The net result is to replace theT matrix in Eq.
~19! by

uT1k, jk1→2k8, jk
18

ee u2

5J2S U11~k82k!22
1

2
U11~k82k!U11~k182k!

D21G1k8
2 d j ,1

1

U22~k82k!22
1

2
U22~k82k!U22~k182k!

D21G2k
2 d j ,2

D
3dk1k1 ,k81k

18
. ~20!

h
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The second terms in the numerators of Eq.~20! represent the
exchange correction.

D. Damping of the electronic states

The tunneling current studied above is a skewed Lore
zian in V with the width determined by the damping of th
intermediate states. Note that the current is not merely a
of the Lorentzian functions because the phase space for
neling increases with the bias potentialV until the Fermi
level of QW2 aligns with the ground sublevel of QW1. Co
tributions to the damping of the intermediate states are gi
by Refs. 14–16.

G jk
im~z!5p(

k8
^u^ jk8uH̃ imu jk&u2& imd~« jk82z!, ~21a!

G jk
ph~z!5p(

k8
(
sq6

@6 f jk81nsq
7 #@VsqD j~qz!/« j~qi!#

2

3d~z6\vsq2« jk8!dk,k86qi
, ~21b!

and

G jk
ee~z!52p(

k8
(
k1k18

U j j ~k2k8!2f jk1
~12 f jk8!~12 f jk

18
!

3@11e2b~z2m j !#d~z1« jk1
2« jk82« jk

18
!. ~21c!

A systematic formal justification of the expressions for t
tunneling current in this section as well as a formalism
higher-order corrections is given in the next section.

III. FIELD-THEORETIC FORMALISM

In this section, we give a general formalism for the tu
neling current which includes the interactions to all ord
and allows a systematic evaluation of higher-order effects
the current. We then evaluate the basic lowest-order ef
and rederive the results of Sec. II.

A. Current-current correlation function

It is convenient to replacee jk in Eq. ~1! by e jk2m j for the
following analysis. The tunneling current is given by th
golden rule to the second order inJ in terms of the tunneling
ratesW1→2 andW2→1 and equals

I 5e~W1→22W2→1!5
4pe

\Z (
nm

@e2bEnu^mut†un&u2

2e2bEmu^nutum&u2#d~En2Em1V!,

~22!

whereEn,un&, andZ are the eigenvalues, eigenstates, and
distribution function ofH and V5m12m25eV. The spin
degeneracy factor 2 is included in Eq.~22!. The expression
in Eq. ~22! can be recast into a standard current-current c
relation functionF(v r)

I 5
4e

\
Im F~v r→V1 i0!:F~v r !5E

0

b

evru^euHte2uHt†&du,

~23!
t-

m
n-

n

r

-
s
r
ct

e

r-

where Im means the imaginary part of the quantity that f
lows and the angular brackets denote the thermodynamic
erage. The energy parameterv r52pri b21 is on the imagi-
nary axis and is to be analytically continued to slightly abo
the real axis: V1 i0 andr is an integer.

B. Tunneling current

In this section, we evaluate the leading terms in Eq.~23!
using a standard diagrammatic perturbation theory.14,15 The
most important contribution comes from the basic bub
diagram shown in Fig. 3~a!:

F~v r !52J2b21(
kl

G1k~z l1m1!G2k~z l1m21v r !,

~24!

wherez l5(2l 11)p ib21, l is an integer,

Gjk~z l !5
1

z l2« jk2Sjk~z l !
~25!

is the dressed fermion propagator shown by the solid lin
and Sjk(z l) is the self-energy part. Carrying out thel sum-
mation in Eq.~24! and inserting the result in Eq.~23!, we
find

I 85
4pe

\
J2E

2`

`

@ f 1~z!2 f 2~z!#(
k

r1k~z!r2k~z!dz,

~26!

where

r jk~z!5
1

p

G jk~z!

@z2« jk2M jk~z!#21G jk~z!2 , ~27!

andM jk(z),G jk(z) are the real and imaginary part ofSjk(z).
The damping partG jk(z) is the sum of the three contribu
tions in Eq. ~21!. The real partM jk(z) renormalizes the
single-particle energy and will not be considered in this p
per. The Fermi functions in Eq.~26! are given by f j (z)
5$exp@b(z2mj)#11%21. Expressions similar to that in Eq
~26! have been obtained earlier by employing Keldysh
nonequilibrium Green’s function method17 in metal-
insulator-metal single-barrier tunneling structures.18

FIG. 3. Major contributions to the current correlation functio
~a! Bubble diagram,~b! one-impurity-rung diagram~dashed hori-
zontal line with a cross!, ~c! one-phonon-rung~wavy horizontal
line! diagram, and~d! electron-electron self-energy part. The wig
gly curves represent screened electron-electron interaction in
random phase approximation.
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The compact result in Eq.~26! is more formal than the
perturbation results obtained in Sec. II, although the la
contain one-rung corrections that are absent from Eq.~26! as
will be shown below. Unfortunately, the expression in E
~26! cannot be evaluated within a reasonable computing t
for realistic G jk(z) unless a quasiparticle approximation
made to the initial and final states, which yielded the m
part of the results in Sec. II. In the following, we study th
contributions to the current in Eq.~26! from the impurity,
electron-phonon, and electron-electron scattering, exam
the validity of the results in Sec. II and proceed to investig
the higher-order effect.

The contribution to tunneling from impurity scattering
obtained by expanding r1k(z)r2k(z).@G1k

im(z)uG1k(z
2 i0)u2r2k(z)1G2k

im(z)uG2k(z2 i0)u2r1k(z)#p21 to the first
order in G jk

im in Eq. ~26!. Using the expressions fo
G1k

im(z),G2k
im(z) in Eq. ~21a! and the identityf 1(z)2 f 2(z)

5 f 1(z)@12 f 2(z)#F(V) and approximatingr jk(z)5d(e jk
2z), the impurity part of Eq.~26! yields

I im8 5
4pe

\
J2F~V!(

kk8
f 1k~12 f 2k8!

3@ u^1k8uH̃ imu1k&G1k8~«2k82 i0!u2

1u^2k8uH̃ imu2k&G2k~«1k2 i0!u2#, ~28!

which is identical to the two terms}u^ jk8uH̃ imu jk&u2 in
Eq. ~5!.

The one-impurity-rung diagram shown in Fig. 3~b! yields

I im9 5
8pe

\
J2E

2`

`

@ f 1~z!2 f 2~z!#(
kk8

I k,k8R1k8~z!r1k~z!

3@r2k~z!R2k8~z!1r2k8~z!R2k~z!#dz, ~29!

where Rjk(z) is the real part of Gjk(z) and I k,k8
[^^1k8uH̃ imu1k&^2kuH̃ imu2k8&& im . To proceed further, we
approximate

Re$G1k~z6 i0!G2k~z6 i0!%!Re$G1k~z7 i0!G2k~z6 i0!%.
~30!

This relationship means that, when the quantities in Eq.~30!
are multiplied by a slowly varying function of«k and
summed on«k , the left-hand side~LHS! gives a negligible
contribution compared to the right-hand side~RHS!. The ba-
sic reason is that any contribution, to be significant, sho
arise from the region near the poles«1k5z6 iG1k , «2k5z
6 iG2k ~assuming a constantG jk!. For the quantity on the
LHS, the integration contour can be closed on the comp
plane to enclose zero poles, yielding a vanishing contribu
since the poles are on the same side. This is not possibl
the RHS, which has a sharp Lorentzian resonance when
two QW sublevels align. An alternate perturbative argum
was given earlier.14 With this approximation, Eq.~29! yields
r

.
e

n

ne
e

d

x
n
for
he
t

I im9 5
8pe

\
J2E

2`

`

@ f 1~z!2 f 2~z!#(
kk8

^^1k8uH̃ imu1k&

3^2kuH̃ imu2k8&& im

3r1k~z!r2k8~z!Re$G1k8~z2 i0!G2k~z1 i0!%dz.

~31!

This result reduces to the cross terms in Eq.~5! in the limit
r1k(z)5d(«1k2z) and r2k8(z)5d(«2k82z). These terms
contribute only when the impurities reside in the center b
rier.

The contribution from the phonon-assisted tunneli
to Eq. ~26! is obtained by expanding
r1k(z)r2k(z)5@G1k

ph(z)uG1k(z2 i0)u2r2k(z)1G2k
ph(z)uG2k(z

2 i0)u2r1k(z)#p21 to the first order inG jk
ph in Eq. ~26!. Using

the expressions forG1k
ph(z),G2k

ph(z) in Eq. ~21b! and the iden-
tity 6 f jk81nsq

7 5 f jk8nsq
6 f j (z)21 and approximatingr jk(z)

5d(« jk2z), we find

I ph8 5
4pe

\
J2F~V!(

kk8
f 1k~12 f 2k8!

3(
sq6

nsq
6 Vsq

2 $uD1~qz!G1k8~«2k82 i0!/e1~qi!
2

1uD2~qz!G2k~«1k2 i0!/e2~qi!u2%

3d~«2k82«1k6\vsq!dk,k86qi
. ~32!

This contribution is to be identified with the two direct term
in Eq. ~13!.

The cross terms in Eq.~13! arise from the one-phonon
rung diagram shown in Fig. 3~c! which reads

Fph9 ~v r !52 j 2b22 (
kk8 l l 8

(
sq6

Vsq
2 D1~q2!D2~qz!

e1~qi!e2~qi!@\vsq6~z l2z l 8!#

3G1k~z l1m1!G2k~z l1m21v r !

3G1k8~z l 81m1!G2k8~z l 81m21v r !dk8,k1qi
.

~33!

The quantitydk8,k1qi
here can be replaced bydk8,k2qi

due to
the in-plane inversion symmetry. An inversion symmetry
the growth directionf j (z)25f j (2z)2 simplifiesD j (qz) to

D j~qz!5E
2`

`

f j
2~z!cos~qzz!dz. ~34!

The l and l 8 summations in Eq.~33! are converted into con
tour integrations on the complex plane. These integrati
generate many terms which contain the factors shown in
~30!. After a lengthy calculation and employing the approx
mation given in Eq.~30!, we obtain,
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I ph9 5
8pe

\
J2F~V!E

2`

`

dzE
2`

`

dx f1~z!@12 f 2~x!#

3(
kk8

r1k~z!r2k8~x!(
sq6

nsq
6 Vsq

2

3
D1~qz!D2~qz!

e1~qi!e2~qi!
Re$G1k8~x2 i0!G2k~z1 i0!%

3d~x2z6\vsq!dk,k86qi
. ~35!

Combining Eqs.~32! and ~35!, we find

I ph8 5
4pe

\
J2F~V!E

2`

`

dzE
2`

`

dx f1~z!@12 f 2~x!#

3(
kk8

r1k~z!r2k8~x!(
sq6

nsq
6 Vsq

2 uD1~qz!

3G1k8~x2 i0!/« l~qi!1D2~qz!G2k~z1 i0!/«2~qi!u2

3d~x2z6\vsq!dk,k86qi
. ~36!

This result is identical to the phonon-assisted tunneling c
rent obtained in Eq.~13! in the limit r1k(z)5d(z2«1k) and
r2k8(z)5d(z2«2k8).

The contribution from electron-electron scattering to E
~26! is obtained by expanding

r1k~z!r2k~z!5@G1k
ee~z!uG1k~z2 i0!u2r2k~z!

1G2k
ee~z!uG2k~z2 i0!u2r1k~z!#p21

to the first order inG jk
ee in Eq. ~26!. Using the expressions fo

G1k
ee(z),G2k

ee(z) in Eq. ~21c! and approximatingr jk(z)
5d(« jk2z), we find

I ee8 5
8pe

\
J2F~V!(

jkk1
(
k8k18

f 1kf jk1
~12 f 2k8!~12 f jk

18
!

3d~«1k8 1« jk1
2«2k82« jk

18
!

3@ uU11~k82k!G1k8~«2k82 i0!u2d j ,1

1uU22~k82k!G2k~«1k2 i0!u2d j ,2#. ~37!

This contribution is to be identified with the direct terms
Eqs. ~19! and ~20!. The rung correction to Eq.~37! arises
from inter-QW Coulomb interaction and is small. Th
electron-electron self-energy part in Eq.~21c! is given by the
upper part of Fig. 3~d! where the wiggly curve denotes
dressed electron-electron interaction. The lower part of F
3~d! can be included in Eq.~37! by replacingU j j (k82k)2

→U j j (k82k)22U j j (k82k)U j j (k182k)/2.
The phonon rung in the present tunneling problem give

relatively smaller correction compared with the single-Q
or bulk transport problem, because each of the two EPI v
tices originate from different QW’s, yielding
D1(qz)* D2(qz)5uD1(q)z)u2eiqzd. A significant amount of
contribution from theqz integration arises only from a re
stricted regionqz!1/d as discussed already in Sec. II.
view of the fact thatd is large in tunneling structures, suc
cessive rung diagrams are expected to converge rap
r-

.

.

a

r-

ly.

Also, the impurity-rung correction can be important on
when the impurities are in the center barrier close to
wave functions in both wells.

IV. NUMERICAL EVALUATION

In this section, we evaluate the tunneling current
GaAs/Al0.3Ga0.7AsDQW’s with 120-Å-wide QW’s separated
by a 125-Å-wide center barrier and compare with rec
data.11 The electron densities of the QW’s areN158 and
N25231011cm22, yielding the Fermi energies«1F
528.7 meV,«2F57.2 meV, andD521.5 meV at zero bias
for an effective massm* 50.067 ~in units of free electron
mass! in the wells. The dimension of the geometric tunneli
area of the sample isLx50.02 cm,Ly50.05 cm. The center
barrier is dopant free, yielding a negligible contribution fro
the cross term in Eq.~5! and

I im5
4eJ2

\
F~V!(

k
F f 1~«2k!~12 f 2k!

G1k
im~«2k!

D21G1k
2

1 f 1k„12 f 2~«1k!…
G2k

im~«1k!

D21G2k
2 G . ~38!

Here, dampingG jk
im(z) in the numerators was defined in E

~21a! and is an impurity part ofG jk in the denominators. The
quantityG jk

im(z) follows from summing on one of the dumm
wave numbers in Eq.~5!. The Fermi functionf j (z) was de-
fined following Eq.~27!.

For a numerical evaluation, we ignore the momentum
pendence of the impurity scattering~relevant for short-range
scattering! and approximateG jk

im(z) as a constantG jk
im(z)

.G j
im above the band bottom and zero otherwise. This

proximation as well as neglecting the cross term in Eq.~38!
is also valid for interface-roughness scattering. Therefo
G j

im contains the contribution from interface-roughness sc
tering. The quantitiesG j

im depend on the doping configura
tion and the sample quality. Since the doping configurat
and the degree of interface roughness is not well known
our sample, these quantities are taken as adjustable pa
eters for comparison with the data. However,G1

im and G2
im

will be scaled inversely with the mobilities of QW1 an
QW2, respectively, thereby leaving only one adjustable
rameter. Other damping parameters inG jk from electron-
electron and electron-phonon scattering are calculated mi
scopically without any adjustable parameters.

The EPI with the LO phonons are given by

Vq.LO5S 4ph\5/2vq
3/2

Vvolq
2A2m*

D 1/2

, ~39!

whereVvol is the sample volume andh50.06 is the dimen-
sionless coupling parameter for GaAs QW’s. The dispers
of the optical phonon frequency will be ignored:\vq
[\vo536.2 meV. The electrons interact with the acous
phonons through screened deformation potential scatte
and piezoelectric scattering with the parameters given in R
19. The dielectric screening constant is approximated by

e j~qi!5~11sqi
21Fi j ~qi!@12e2TjF /T# !21, ~40!
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whereTjF is the Fermi temperature,s52e2m* /k\2 is the
screening constant, andk513.

The I-V curves are calculated using the results in Sec
and employing an adjustable parameterJ50.001 meV,G1

im

54 meV, andG2
im512 meV. The ratio ofG1

im andG2
im here

equals the measured ratio of the low-temperature mobili
m2 /m1 of the sample. The calculatedI -V curves are dis-
played in Figs. 4–7 as a function of the voltage dropVDQW
across the barrier forT50, 77, and 300 K. TheI -VDQW
curve at 77 K in Fig. 5 is similar to the experimentally o
servedI -VSD curve in shape and magnitude11 except that the
experimentalI -VSD curve is skewed slightly toward the righ
due to the fact that~1! VSD is the sum ofVDQW and the
in-plane voltage dropVi in the QW’s, neglected in the
present treatment, and~2! Vi is larger for a larger current. A

FIG. 4. Tunneling current as a function of the voltage dr
between the layers at 0 K.

FIG. 5. Tunneling current as a function of the voltage dr
between the layers at 77 K.
II

s

tight-binding estimate ofJ based on a simple flat-band po
tential yields J50.002 meV for the sample, twice theJ
50.001 meV employed. A self-consistent Hartree calcu
tion which includes band bending pulls the confineme
wave functions in QW1 and QW2 away from each other a
is expected to reduceJ. Also, the actual tunneling area ma
be smaller than the geometric area50.0230.05 cm2 em-
ployed for the calculation.6 In a more realistic calculation
with a known dopant distribution for the sample, theVDQW
dependentJ can be calculated using a self-consistent den
functional theory.

Figure 4 shows theI -VDQW curve at 0 K. The current
arises primarily from impurity scattering~dotted curve!. The

FIG. 6. Tunneling current as a function of the voltage dr
between the layers at 300 K.

FIG. 7. Total tunneling current as a function of the volta
between the layers atT50, 77, and 300 K. The solid curve repre
sents the intrinsic total current at 300 K in the absence of impu
scattering and includes tunneling from the ground sublevel of Q
to the second sublevel of QW2.
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peak occurs slightly aboveeVDQW5«1F2«2F521.5 meV
where the two QW ground sublevels align. It is interesting
note that electron-electron scattering~dash-dotted curve! also
contributes significantly. The small LO-phonon contributi
~dashed curve! increases until the Fermi level of QW2
about\vo536.2 meV below the bottom of the QW1 ban
~i.e., eV5\vo1«1F564.9 meV!, where all the electrons in
QW1 can tunnel into QW2 by emitting one LO phonon. T
acoustic-phonon contribution, included in the total current
the least important for the nonequilibrium tunneling curre
at all temperatures and is not indicated separately, althou
is more important than the LO-phonon contribution at lo
temperatures in the linear regime. A similar result was
tained earlier for double-barrier tunneling.9

At 77 K, the I -VDQW curve is broader and the peak cu
rent is much smaller than atT50 K as shown in Fig. 5. The
LO-phonon scattering contribution is larger than at 0 K but is
still smaller than the contributions from impurity an
electron-electron scattering. At 300 K, the LO-phonon a
electron-electron contribution have increased considera
relative to the impurity contribution as seen in Fig. 6. It
interesting to note that the electron-electron contribution
larger than the LO-phonon contribution. This is not surpr
ing because electron-electron scattering can cause a sig
cant quasihole lifetime broadening~of the order of a few
meV! deep under the Fermi level in QW’s where the ele
trons are confined in a narrow space.16 This broadening be-
comes small near the Fermi level in a single QW due to
limited phase space imposed by simultaneous energy
momentum conservation.16 However, it remains large at th
Fermi level in our tunneling problem, because an electro
the Fermi level can excite other electrons above the Fe
level and can still conserve the energy by tunneling i
QW2 with a lower Fermi level. In contrast, electron-electr
scattering does not affect the mobility directly unlike LO
phonon scattering because it conserves the momentum,
well known. The electron densityN1 in the top QW~i.e.,
QW1! can be varied through changing the top-control-g
bias in DELTT while keepingN2 nearly unchanged.11 The
peak position of theI -V curve eV5Do is proportional to
N12N2 and increases withN1 . Also, the relative contribu-
tion from electron-electron scattering to the current and
width increases.

The impurity contribution is large in Fig. 6 because of t
large impurity dampingG1

im54 meV andG2
im512 meV cho-

sen to simulate the 77 K experimental data in Ref. 11. T
kind of large impurity damping is readily caused by charg
impurities in modulation doped QW’s which can yield larg
photoluminescence linewidths.20 For rough interfaces, the
contribution from roughness scattering can also contrib
significantly toG1

im as will be shown later.
The current becomes much sharper as a function ofV and

increases in magnitude without impurity scattering as sho
by the fine-dotted curve in Fig. 6. The temperature dep
dence of the total tunneling current is plotted in Fig. 7. T
solid curve shows the total current at 300 K in the intrin
limit, namely, in the absence of impurity scattering~i.e.,
G1

im5G2
im50!. This curve is much above the dash-dott

curve which includes the contribution from impurity scatte
ing. The resonance at about 90 mV for the intrinsicI -V
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curve represents the current from tunneling between
ground sublevel of QW1 and the second sublevel of QW
using the sameJ value for comparison with the first reso
nance current. The actual tunneling integral for this cas
expected to be larger than that between the ground suble

We now study the interface roughness contribution
damping. For an infinitely deep QW with a widthbj , the
ground-sublevel-energy fluctuation in thej th QW is given by
dEj (r )52p2\2dbj (r )/(m* bj

3), wheredbj (r ) is the fluc-
tuation ofbj at positionr . Defining the correlation lengthL j
through the average^dbj (r )dbj (r 8)&5(dbj )

2 exp(2ur 8
2r u2 /L j

2) ~Ref. 21! and using the golden rule, we find

G jk
r ~z!5p(

k8
^u^ j ,k8udEj~r !u j ,k&u2&d~« jk82z!

5G r j E
0

2p df

2p
e2~k82k!2L j

2/4, ~41!

where f is the angle of k8, G r j 5p5(\2/2m* bj
2)(dbj /

bj )
2(L j /bj )

2, «1k5\2k2/2m* , and «2k5«1k1D. The ori-
gin of the energy is atk50, namely, at the bottom o
QW1,«1k50. For QW1,G1k

r (z) in Eq. ~41! vanishes forz
,0 andk8 is fixed by \2k82/2m* 5z. For QW2,G2k

r (z) in
Eq. ~41! vanishes forz,D and k8 is fixed by \2k82/2m*
5z2D. For a two-layer fluctuationdbj510 Å out of bj
5120 Å we estimateG r j 58.40(L j /bj )

2 meV. The quanti-
ties of interest areG1k

r («2k) andG2k
r («1k) in the numerators

of Eq. ~38!. We now estimate these quantities near the re
nance~i.e., D50! where the most important contribution t
the current arises. ForG1k

r («2k), the Fermi functions there
restrict the contribution to 0,m2,z5«2k5«1k,m1 .
Therefore uku,uk8u,k1F50.0224 Å21 in Eq. ~41! for our
sample densityN15831011cm22. For theses values ofuku
anduk8u, the integral in Eq.~41! is unity, the upper limit for
L1&89 Å. The same result is obtained forG2k

r («1k), yield-
ing G1k

r («2k)58.40(L1 /b1)2 meV and G2k
r («1k)

58.40(L2 /b2)2 meV for L1 ,L1&89 Å. These quantities
are to be added toG1

im and G2
im . For L j510 Å, we find

negligible dampingG jk
r 50.058 meV, while a large correla

tion length L j550 Å yields significant dampingG jk
r

51.5 meV. The interface-roughness contribution theref
depends ondbj , bj , andL j .

V. CONCLUSIONS

We presented a theory for nonequilibrium 2D-2D tunn
ing between double electron layers separated by a wide
rier when the chemical potentials of the two electron ga
are arbitrarily biased. Initially, an intuitive but rigorou
second-order perturbation theory was established based
transition-rate approach. The result was used for a nume
evaluation of the I -V relationship. Contributions from
electron-impurity, electron-electron, and electron-phonon
teractions have been considered. The validity of this tre
ment was examined using a field-theoretic formalism by
pressing the tunneling current as a velocity-veloc
correlation function. The correlation function was the
evaluated employing a standard temperature-ordered Gre
function technique. The formalism is exact to the seco
order in the tunneling integral and to all orders in the int
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actions. It is similar to that of a linear response theory a
useful for a systematic study of higher-order effects. T
numerical results were compared with recent experime
data from GaAs/AlxGa12xAs double quantum wells at 77 K
These data show a large peak-to-valley ratio in theI -V
curve, yielding a demonstration of a DELTT at 77 K. N
merically, a large peak-to-valley ratio was obtained at 300
predicting the feasibility of room-temperature DELTT’s.
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