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Nonlinear interlayer tunneling in a double-electron-layer structure
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(Received 2 August 1999

We present a theory for nonequilibrium two-dimensional to two-dimensional tunneling between two weakly
tunnel-coupled electron layers when the chemical potentials of the two electron gases are arbitrarily biased. We
first present an intuitive but rigorous second-order perturbation theory based on a transition-rate approach.
Contributions from electron-impurity, interface-roughness, electron-electron, and electron-phonon interactions
are considered. The validity of this result is established using a more general field-theoretic formalism by
expressing the tunneling current as a current-current correlation function which can be evaluated employing a
standard temperature-ordered Green’s function technique and a Feynman-graph expansion. The formalism is
exact to the second order in the tunneling integral and to all orders in the interactions and is useful for studying
higher-order interaction effect. The relevance of the numerical results to recent experimental data from a
GaAs/AlLGa _,As double-electron-layer tunneling transistBELTT) at 77 K are discussed. These data show
a large peak-to-valley ratio of tHeV curve. The room-temperature numerical results forlthécurve show
a reasonably large peak-to-valley ratio indicating the feasibility of room-temperature DELTT’s.

I. INTRODUCTION 3D-2D transistors, where charge can be accumulated in the
QW.12
Currently, there has been an increasing interest in the tun- Of particular interest in this paper is the investigation of
neling phenomenon between two quasi-two-dimensionathe maximum possible temperature-dependent peak-to-valley
(2D) layers of electron gases separated by a wide bdftler. ratio in a given structure in the ideal intrinsic limit, namely,
This phenomenon is not only interesting academically butin the limit where the major effect from the static scattering
also offers potentially valuable application to 2D-2D tunnel-centers are eliminated through modulation doping. This re-
ing transistors which have sharp current-voltage characterigiuires a careful microscopic treatment of the level damping
tics owing to the restricted phase space available for tunneRrising from the intrinsic scattering mechanism such as
ing compared to the conventional transistors based on 3D-2glectron-electron and electron-phonon interactions. Line-
tunneling®1° This effect has recently been demonstrated byshape broadening due to extrinsic static scattering such as
Simmonset al* This paper presents a theory for tunneling impurity or mterfaqe—roughness scattering is co_nS|dered for-
for the double-quantum-welDQW) 2D-2D tunneling struc- mally. The effect is sample dependent and will be treated

ture pioneered by Eisenstein, Pfeiffer, and Weé. this phonomenologically to compare the theoretical results with

. . data.
structure, the two QW'’s have independent Ohmic contacts: .
Q P The present paper is structured as follows. We formulate

When a bias potentiaV is applied between the source and h I . ; L d-ord
the drain contacts, the electrons drift into the top QWt N tgpne Ing current |n.terms ot an Intuitive second-order
. o transition-rate theory using &matrix approach in Sec. Il.
(QWY), tunnel through the wide center barrier into t’he bOt'Contributions from electron-impuritgor-surface roughnegs
tom QW (QW2) and flow out of QW2. The two QW'S aré e ron-electron, and electron-phonon interactions are con-
not in equilibrium, with the difference of their chemical po- gjgered. The validity of the results in Sec. Il is examined in
tentials u; and u, given by u;—u,=eV(=0). In this pa-  gec. |11, where we establish a formal theory of the nonequi-
per, we obtain the tunneling current as a functionedf |iprium 2D-2D tunneling current in terms of the current-
assuming that the in-plane conductances of the QW's argurrent correlation function. This is then evaluated employ-
vary large, causing a significant potential drop only over théng a standard temperature-ordered Green’s function
barrier. The effect of in-plane resistance on the source-draitechnique and a graph expansion. The formalism is exact to
[-V curve can be studied using theV relationship obtained the second order in the tunneling integdadnd to all orders
here and a differential transmission line mo%el. in the interactions and is similar to the linear response
The present model is very relevant to thetheory. The formalism is valid in the limit wherkis small
GaAs/ALGa,_,As double-electron-layer tunneling transistor (i.e., < dampingI’), namely, when the tunneling time is
(DELTT) recently developed by Simmoes al!! This struc-  much longer than the scattering time. This limit corresponds
ture is very similar to that studied by Eisensteinal* but  to sequential tunneling in the double-barrier tunneling sys-
(1) with a much smaller gate size allowing only a small tem. This condition is well satisfied in typical tunneling tran-
potential drop in the QW'’s, an(®) with a nonlinear source- sistors, where the center barrier is wide allowing the charges
drain biasv. The DELTT structure is free from space-chargein the two QW'’s to be controlled independently. Numerical
effects! because the current exits the secéirel, drain QW  results are given in Sec. IV and compared with recent experi-
immediately after tunneling through the barrier. On the othemental data from GaAs/4Ga, _,As DELTT available at 77
hand, space-charge effects changelthé characteristics in K. The |-V curve is also evaluated at 300 K in order to
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assess the feasibility of room-temperature DELTT. The pa- J
per is concluded in Sec. V with a brief discussion. 1k ' 1
> —>——>|1k'> ——> 12k'>

Il. TRANSITION-RATE FORMALISM

The Hamiltonian is given, in the absence of tunneling, by (a)

H :]_212 Ek sjka;rkajk—i-g; ha)sq(b;qbsq‘f‘ 1/2)+ Him

J
tHepntHee, @ [1k> —_FL—) 2k> —>—=8 > [2k'>

whereg;y is the electron energy for the wave veckoin the
jth QW, a;rk(ajk) is the fermion creatioridestruction op-
erator,fi wgq is the phonon energy of modeand wave vector (b)
: : ) :
d, andbg, (bsg) is the boson creatiofdestruction operator.
The rest of the terms in Eq¢l) denote electron interactions FIG. 1. Second-order two-step processes for tunneling through
with the impurities, LO phonons, acoustic phonons, ancelectron-impurity and electron-phonon interactiofidack dots.
other electrons. The expressions for these terms will be givefunneling takes plac) after and(b) before the interaction.

later. The spin sum is suppressed. The total Hamiltonian is

the sum ofH and the tunneling HamiltoniaH ,: whereH,, is the sum of the screened impurity potentials and
the interface-roughness potentials. In E8), intermediate-
state dampingl’j(z) is included for resonant transitions.
The argument of the dampingl’j4(z) for the T matrix in
Eq. (3) as well as for thél matrices for the electron-phonon
wherelJ is the tunneling integral. The operatgt™) transfers  and electron-electron processes to be introduced later is de-
an electron from QW2aQW1) to QW1 (QW2). While we termined from the fact that the denominator in the first and
concentrate on the ground sublevels of each QW, the resuliecond term of Eq(3) is the denominator of the Green’s
can be generalized to include tunneling between all the sulfunction of the intermediate statd$q)=|1k’) and |jq)
levels if the indexk includes the sublevel index implicitly. In - =|2k),  respectively, namely Gj,(z—i0)=[z—¢j,
this case,J depends on the sublevel indices. —iqu(z)]*l, ignoring the energy shift. Hence= ¢4 for
In general, tunneling cannot occur directly from an initial both terms of Eq(3). Note that, in the present nonequilib-
state|1k) in QW1 to a final statd2k) in QW2, because rium tunneling problem, the andk dependences dfjk(2)
momentum and energy conservation cannot be satisfied sire important and make the problem more complicated than
multaneously when the energy dispersieng and e, are  in the linear response case where only the properties on the
not aligned(i.e., e, # &). Hereljk) is the noninteracting Fermi surface matter.
eigenstate of the first term ¢f. We therefore need to con- The transition rate from QW1 to QW2 is then given by
struct second-order perturbation processes through which A
momentum and energy can be dissipated. We use a second-, ;,, 47 im 2
order perturbation theory which treats the resonance in thgwlﬂ_f% Fae( L= o) Ty o | DimOe 16— £200).
intermediate energy denominators rigoroushAn alternate (4)
more general and formal diagrammatic approach useful for a o )
systematic study of higher-order effects is presented in Seélere, a factor of 2 is included for the spin degeneracy and
m ()im denotes impurity averaging. The back-transition rate
", can be found in a similar way. Subtracting the back-
transition rate from Eq(4), assuming an in-plane inversion
symmetry(i.e., ;=€ ), and multiplying the rate by the
Figure 1 shows second-order perturbation processeslectron charge, we find the tunneling current
which allow an electron to tunnel from an initial stade) to

Htun:t"‘tT;t:JE aIka2k= 2
K

A. Tunneling through electron-impurity scattering

a final statg2k’). In Fig. 1(a), the electron is first scattered  AqelR (1K' [Him| 1K)
(indicated by the black dpinto an intermediate statdk’) IM=— F(V)2 fa(1—fa0) TASIT.
and then tunnels intg2k’). In Fig. 1(b), the electron first k! 1
undergoes virtual tunneling into an intermediate s{2ie) (2K |Flim] 2K) 2

and then is scattered into the final sti2&’). In this elastic A L > 8(e1k—&oxr), (5)
transition, momentum is dissipated through impurity colli- —A-iT o im

sions in QW1[Fig. 1(a)] as well as in QWZFig. 1(b)]. The

T matrix for these processes is giveriby where F(V)=1—exp(-pgeV), fj is the Fermi functionf

={exdBlex—m)]+1} 1, B=kgT, T is the temperaturel
= i =82k—slk=A0—eV and ijEij(Sj*k) with the under-
om (K |Himl 1K) L (2 | Himl 2k)J standing ¥=2, and 2=1. A, is the difference of the
k=2k" g —e1 00—l (1) €1c—ex—i1To(e1)’ ground sublevels of the two QW's in the absence of the bias.
3 For zero biasv=0, we haveF (V) =0, yielding1™=0 due
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to detailed balance. It turns out that the energy denominators A(0,) e (gt
. . . ph+ 2_ a2 y2 o+ |2 1UHMZ/ C1UM
for the intermediate states in E() have the same expres- I T o (SD* =32V ngq B S
sion for tunneling through electron-phonon interacti&l) 1k
and electron-electron interaction as will be shown later. A,(g,) ex(qp) " Y?
- == Swaq. (10
A+iT 5 I

B. Tunneling through electron-phonon scattering The back current can be found in a similar way:

Phonon-assisted tunneling is obtained from the same pro-
cesses illustrated in Fig. 1 except that the black dots now
indicate phonon absorption and emission. The initial state
|1k,nsg) consists of an electron iflk) and phonons in .
Insg). The final state i$2k’,ns,+ 1) depending on whether X|To0 1 (3?88 o+ hiwgg—eni),  (11)
a phonon is emitted+) or absorbed —). In Fig. 1(a), the

4
WET =—— >0 D fo(1—fyy)
how sa

electron is first scattered into an intermediate stat€,ng, with
+1) through virtual(or rea) phonon emission or absorption - _[A(qy)eq(g)
and then tunnels int¢2k’). In Fig. 1(b), the electron first |Tgkl1k(SQ)|2:JZV§qns+qW
undergoes virtual tunneling into an intermediate st2ie) 1K
and then is scattered into the final stb:tck’,nsqt 1) emit- Ay(q,)ex(qp) 12
ting or absorbing a phonon of modeg In this inelastic tran- T AT, | Skk=ap (12)
sition, energy and momentum are transferred to the phonon 2k
bath. TheT matrix equals Note that the order fot- and— is reversed in th& matrix in
Egs.(11) and(12).
J(lk’,nsqillﬁéphllk,nsq> The phonon-assisted current is obtained by subtracting

Ed. (11 from Eg.(9) and exploiting the nonequilibrium ver-
sion of detailed balancd'.lk(l—f2k,)n§q—f2k,(1—f1k)n;q

~ _ _ =+ _ A= BeWn.
<2k/,nsqi 1|H:-ph|2k1nsq>‘1 _flk(l kar)nsq(l e Be )
4

'I'phi , = B
1k—2k (Sq) glK—(alkriﬁa)sq)_|F1kf(81,<:hwsq)

- (6)
€1 &k 1 2k(€1) 4re
IPM=——J2F(V) 2 2 fu(1=fa)
where ng,=[exp(Bfiws)—1]"" is the boson function. The kk' sd=
arguments of the damping in E(f) are determined accord- A Yeu(a) ™t Ax(Q,)en(q) Y2
ing to the method discussed following E@). In Eq. (6), ><n§qv§q 1(§Z_ill~(q” 2(22+ izifq”
’H;ph is the phonon emissiofi+) and absorptiori—) part of 1k 2K
the screened EPI:H¢ y=H{ +H_ ; and X881 Fhwsq 1) O k' =g (13
- The cross terms in E13) yield the interference effect. This
(jk"ngq® 1H ol ik, N term is negligible for the phonon modes localized in one of
12 . the QW’s. Short-wavelength phonong,{>1) do not con-
=Vsdsq &j(d)~"Aj(dz) Sk =g, (7)) tribute to this term even for the extended bulk phonons. This

point is easily seen for identical confinement wave functions,
Here ng,=ngq+ 1/2+1/2, q=(q;.9,), £;(q;) is the dielec- for example, fromA(q,)* A5(d,) =|A1(q,)|€"% (d is the
tric screening constant, well-to-well separation The summation oy, cancels out
for g, d>1. Also, the factorsA;(q,) are small forg,b>1
whereb(>d) is the QW width. The cross term can introduce
Aj(qz):f $i(2)*sq(2)dz (8)  a destructive interference for long-wavelength phonons
(g,d<1) away from the resonance, namely, faf>T, for

is the momentum conservation factaf,(z) is the confine- identical QW's[i.e., €1(q))=€5(q;)]. In this case, the two
ment wave function, anl¥s is the strength of the EPI. We terms in Eq.(13) cancel out, yielding a negligible off-
consider only the bulk phonon mode,(z)=e€'%2 For the esonance tunneling current. This effect arises from the fact
optical phonons, we consider only the LO phonon interactiorjat long-wavelength phonons modulate the energies of the
and suppress the indesdrom A (c,)= A (q) for simplic- W0 QW's in phase and do not contribute to inelastic tunnel-
ity. ing.

The phonon-assisted transition rate is then given by

C. Tunneling through electron-electron scattering

ho AT The electrons can relax their energy and momentum by
W’LZ__E E Fa(1—=fa) colliding with other electrons before or after tunneling as
illustrated by two-step processes in Fig. 2. The initial state
X T L (SO 28(e 0 thwsg—e1).  (9) |1k, jka)=|1k)|jks) represents a two-particle state with an
electron in|1k) and the other ifjk,) in the jth OW. The
The expression in Ed6) is simplified using the energy con- final state is|2k’,jk;). In Fig. 2a), the electron in1k) is
servation in Eq(9) to first scattered into an intermediate stit&’) while kicking

o s
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J )
F--(q)=f J $i(2)°¢;(z')%e 4 Idz dzZ, (16
k> —> >|1k'>—_FI—_—> 12k'> ! .
q=1|k’—k|,€; is the dielectric screening constanmt,is the
lik = like'> bulk dielectric constant, and is the area of the QW'’s.
K1>—> > 1K1 The back current can be found similarly by reversing the
direction of the arrows in Fig. 2, yielding
(a)
5o1= % kEk |T2k'Jk'a1k1k1| fa fiw;
1
J X(1=f)(1—TFj ) Sleact €k, — 820 — €51,
k> —F—> 12k> —> > |2K'> a7
where
lik1>— > liky"> o "
J 1 Tee _ <1ka]k1|Hee| 1k’kal>
2k’ jky— 1k jky A—iT
(b)  (@ilalfed2i |
FIG. 2. Second-order two-step processes for tunneling through —A=ily
electron-electron interactiomviggly vertical lines. Tunneling takes . . . . .
place () after and(b) before the interaction. The T matrices in Eqs(14) and(18) are identical in view of

Eg. (16) and the discussion following Eq14). The energy

the other electron intdjk}). It then tunnels intd2k’). The ~ Conservation condition in Eq.(17) yields fafji;(1
exchange effect will be discussed later. The two steps are f1id (1~ fj) = faifji (1= Fae) (1 )e” pev,

reversed in Fig. (b). In this inelastic transition, energy and  The tunneling current is then the dlfference between the
momentum are transferred through an Auger-like procesSorward current and the back current:

The T matrix for these processes is given by

Tee _J<lk,,]k1|ﬁee|lkyjkl> :_F(V)%, E |le]k 2k’ lkr| f:l_kfjkl
lk,jk1~>2k’,jki_ gj—slkr—irlkr(&}') : kl

<2kr iK1 Fiod 2K, k1) X(l_f2k’)(l_fjki)5(81k+8jk1_32k’_8jk£)-
g1~ & 1 o(e1,) (14 (19

where the quantity; in the first denominator is given by In the above treatment, we have assumed that the two-

ej= et e~ Ejk| =€k with the last equality arising from particle wave function is a product of the single-particle

the energy conservation between the final and initial stat#ave functionslik,jky)=|ik)|jky). To account for the ex-

[see Eq(15)]. The first and second denominator in Etid) ~ change effect, we symmetrize and antisymmetfikejk ;)

then simplifies taA —iT';,, and—A—iT,,, respectively, as for the spin-singlet and spin-triplet states, respectively. This

in the phonon-assisted case. procedure is straightforward. We write down the result only

The tunneling rate from QW1 to QW2 equals for the most practical case where the Coulomb interaction as

well as the wave function overlap between the two QW'’s is
negligible. The net result is to replace thematrix in Eq.

l~>2 2 2 | 1k]k — 2k’ ,jk! |2f1kfjk1 (19) by
Jkk’ kikq
5 |2
X(1=Fo ) (1= TFjr) 8(erct i, — 82— &jk)). 1k, jky— 2K jk!
(15) ’ 2 1 2 ’
: . : Una(k' k) "= 5 Un(k" = k)Ups(k; —k)

where the factor 8 includes spin sums. The matrix elements 2
. : =] S
in Eq. (14) are given by A%+ Flk’ I

Lo L . . 27Tez ’ 2 1 ’ ’

(ik ka1|HeeI|kakl>:mFij(Q)ékJrkl,kUrki Uza(k' —K)" = 5 Uga(k' —K) U2 ky —k)

i AT T iz
=Uij(Q) Sk k7 +ks (16a 2k

where X Bictkey K+ (20
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The second terms in the numerators of E2f)) represent the
exchange correction.
D. Damping of the electronic states
The tunneling current studied above is a skewed Lorent-1k 2k
zian inV with the width determined by the damping of the _@_
intermediate states. Note that the current is not merely a sun
() (d)

of the Lorentzian functions because the phase space for tur
neling increases with the bias potenthl until the Fermi (a) (b) c
level of QW2 aligns with the ground sublevel of QW1. Con-

tnbutlons to the damplng of the |ntermed|ate states are g|ven FIG. 3. Major contributions to the current correlation function.
by Refs. 14-16. (a) Bubble diagram(b) one-impurity-rung diagrantdashed hori-
zontal line with a cross (c) one-phonon-rungwavy horizontal
m T line) diagram, andd) electron-electron self-energy part. The wig-
ij(z)zﬂ'E <|<Jk’|Him|Jk>| >im5(8jk’_z)v (219 gly curves represent screened electron-electron interaction in the
K’ random phase approximation.

rﬂf(z)zwz > [ifl-k,+n;][vquj(qz)/gj(q“)]2 where Im means the imaginary part of the quantity that fol-
k' sa* lows and the angular brackets denote the thermodynamic av-
. e, , erage. The energy parameter=2ri 8~ 1 is on the imagi-
Xz h0sq™ 8 jkr) Sk 2y (210 nary axis and is to be analytically continued to slightly above

and the real axis: 0 +i0 andr is an integer.
F}eke(z)zzﬂ.E 2 Ujj(k_k')zfjkl(l—fjk')(l— fiki) B. Tunneling current
k" kiky In this section, we evaluate the leading terms in &9

using a standard diagrammatic perturbation thédfy.The
most important contribution comes from the basic bubble
diagram shown in Fig. 3):

X[l+ei'B(zi’U‘J‘)]5(Z+8jkl_Sjk/_Sjki). (21C)

A systematic formal justification of the expressions for the
tunneling current in this section as well as a formalism for

higher-order corrections is given in the next section. Flo,)=—32"1> Gu({i+ p1)Gon({+ pat ),
Kl

Ill. FIELD-THEORETIC FORMALISM (24)

In this section, we give a general formalism for the tun-Whereg;=(2l+1)mip !, I'is an integer,
neling current which includes the interactions to all orders
and allows a systematic evaluation of higher-order effects for G (&)=
the current. We then evaluate the basic lowest-order effect )
and rederive the results of Sec. Il.

1

_— 25
Li—ej—Si() 9

is the dressed fermion propagator shown by the solid lines,
and S (¢)) is the self-energy part. Carrying out thesum-
mation in Eq.(24) and inserting the result in Eq23), we

It is convenient to replacey in Eq. (1) by €jy— u; for the  find
following analysis. The tunneling current is given by the

A. Current-current correlation function

golden rule to the second orderJdrin terms of the tunneling , Ame %
ratesW; ., andW,_; and equals "= TJZ _m[fl(z)_fZ(Z)]; pu2)pa2)dz,
(26)
4re
| =e(Waop=Wouy)= 52 2, [e™PSrl(mit'|n)? where
—e FEn|(n|t|m)|?]8(E,— En+ ), 1 Tik(2)

pik(2)= (27

(22 7 [Z— e~ M(2)*+T(2)*
whereE,,|n), andZ are the eigenvalues, eigenstates, and th@ndek(z),rjk(z) are the real and imaginary part 8f(z).
distribution function ofH and Q= u;—pu,=eV. The spin  The damping parf’j(z) is the sum of the three contribu-
degeneracy factor 2 is included in E@2). The expression tions in Eq.(21). The real partM;(z) renormalizes the
in Eq. (22) can be recast into a standard current-current corsingle-particle energy and will not be considered in this pa-
relation functionF (w,) per. The Fermi functions in Eq26) are given byf;(z)
5 z{ex;:[,B(z—,uj)]Jrl}*l. Expressions similar to that in Eq.
Im F(wr~>9+i0):|:(wr):f evrt(gUHte~uHtHdu, (26) hay_e peen obtained earller by employ[ng Keldysh’'s
0 nonequilibrium Green’s function methbtd in metal-
(23 insulator-metal single-barrier tunneling structut®s.

4e

=%
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The compact result in Eq26) is more formal than the 8me , (= _
perturbation results obtained in Sec. II, although the latter 1 in=—7—J j [f1(2)—f2(2)]1> ((1K'|Hip| 1K)
contain one-rung corrections that are absent from(Eg). as o kk'

will be shown below. Unfortunately, the expression in Eq. ><(2k|ﬁ- 12k'));
(26) cannot be evaluated within a reasonable computing time m m
for realistic I'j(z) unless a quasiparticle approximation is X p1(Z2) porr (Z)RE Gy (z—10) Gy (z+i0)}dz

made to the initial and final states, which yielded the main
part of the results in Sec. Il. In the following, we study the
contributions to the current in Eq26) from the impurity,
electron-phonon, and electron-electron scattering, examin€his result reduces to the cross terms in E5j.in the limit
the validity of the results in Sec. Il and proceed to investigatep(z) = 8(e1x—2) and py/(2) = 8(eo—2). These terms

(31)

the higher-order effect. contribute only when the impurities reside in the center bar-
The contribution to tunneling from impurity scattering is rier.
obtained by expanding p1(z)pak(2)=[T'1k(2)|G1(z The contribution from the phonon-assisted tunneling

~10)[2p24(2) + T5(2)|Go(z—10)?pry(2)]m "o the first to  Eq. (26 is  obtained by  expanding
order in ¢ in Eg. (26). Using the expressions for p1(2) p2r(2) = [TER(2) |G 1k(z—10)*pai(2) + T5(2) |G (2

™(2),I'M(2) in Eq. (218 and the identityfy(2)—fo(z)  —i0)*pu(@)]7 " to the first order irl’ f in Eq.(26). Using
=f1(2)[1-f,(2)]JF(V) and approximatingpx(z) = 5(e;x the expressions fdrfe(z),I'5:(2) in Eqg. (21b) and the iden-
—2), the impurity part of Eq(26) yields tity ifjk,+n;q=fjk,n§qu(z)‘1 and approximatingo;.(z)
=d(gj—2), we find
47e
lin=—7—JF(V) 2 fa(1—fa) 4me

= = SPF(V) 2 fa(1=fa0)

~ _ Kk’
X[[(1K'[Him| 1K) Gy (820 —10)|?

- /2 . 2
+[(2K' [Finl 2K) Go(£ 16— 10) 2], (29 quzt NsqVst|A1(d2) G (e —10)/ €x(q)

o ) R ) +|A2(0,)Ga(e1k—i0)/ ex(q) |}
which is identical to the two termsc|(jk’|Him|jk)|? in
Eq. (5). X 8(&ok — 81k hwsg) Ok + - (32

The one-impurity-rung diagram shown in FigbByields

This contribution is to be identified with the two direct terms

8re " in Eq. (13).
|i’;n:_32J [fl(Z)—fz(Z)]E I kr Rk (2) p1x(2) The cross terms in Eq13) arise from the one-phonon-
h - Kk rung diagram shown in Fig.(8) which reads
X[p2k(2)Rox: (2) + por (2)Rak(2) 1dz, (29
VZAL(d0)A
- th(wr)=—jzﬂ_22 E sq 1(QZ) i(qz)
where R~jk(z) is tr~1e real part of Gj(z) and Iy wen sa €1(ap) ex(d[hrwsqt (L= &1)]
=((1k'|Himn| 1k){2k|Him|2k"))im. To proceed further, we
apféroxiLné?(L 2| Hin|2KDim P X Ga( &+ p1)Gak(§1+ pat o)
X G (Lt p1)Gawr (&1 + mot ) b k-
Re[Gy(z+i10)Gy(z+i0)} <R Gy (zF10)Gy(z£i0)}. (33
(30)

The quantityﬁk/,;<+qH here can be replaced Waquu due to
This relationship means that, when the quantities in(B0.  the in-plane inversion symmetry. An inversion symmetry in
are multiplied by a slowly varying function oy and  the growth directionp;(z)?= ¢;(—2)? simplifies A;(q,) to
summed ore,, the left-hand sidéLHS) gives a negligible
contribution compared to the right-hand si@®RHS). The ba-
sic reason is that any contribution, to be significant, should =,
arise from the region near the poleg,=z*il';y, ex=2 Aj(9z)= fﬁquj(z)cos{qzz)dz. (34)
*il'y (assuming a constarty). For the quantity on the
LHS, the integration contour can be closed on the complex
plane to enclose zero poles, yielding a vanishing contributiomhel| andl’ summations in Eq(33) are converted into con-
since the poles are on the same side. This is not possible féour integrations on the complex plane. These integrations
the RHS, which has a sharp Lorentzian resonance when tlgenerate many terms which contain the factors shown in Eq.
two QW sublevels align. An alternate perturbative argument30). After a lengthy calculation and employing the approxi-
was given earliet? With this approximation, Eq29) yields  mation given in Eq(30), we obtain,
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8me * =
@ —%LJZFODJ:wd;ﬁﬂpXfﬂzﬂl—fﬂxﬂ

x> Plk(z)pZK’(X)S; NsgVaq
Kk’ =

A1(0,)A5(qy) _ |
(@) el (G (XT10)Gx(zHI0))

X(‘)‘(X—Zihwsq)ﬁk’k/iq”. (35)

Combining Eqgs(32) and(35), we find

4me

= JZF(V)f:dzf:dxfl(z)[l—fz(x)]

oh
x> Plk(z)sz'(X)g n;:qvgq|Al(qz)
4 =
X Gy (Xx—10)/e(qy) +Ax(0,) Go(z+i0)/e5(q))|?

X5(X—Ziﬁwsq)5k'k,iq”. (36)

This result is identical to the phonon-assisted tunneling cur-

rent obtained in Eq(13) in the limit p4(2) = 8(z—&4,) and
pak(2) = 6(z— ).
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Also, the impurity-rung correction can be important only
when the impurities are in the center barrier close to the
wave functions in both wells.

IV. NUMERICAL EVALUATION

In this section, we evaluate the tunneling current in
GaAs/Al Ga, ASDQW'’s with 120-A-wide QW’s separated
by a 125-A-wide center barrier and compare with recent
datal! The electron densities of the QW’s aly=8 and
N,=2x10"cm 2, vyielding the Fermi energiese; ¢
=28.7meV,e,r=7.2meV, andA=21.5meV at zero bias
for an effective massn* =0.067 (in units of free electron
mass$ in the wells. The dimension of the geometric tunneling
area of the sample is,=0.02cm,L,=0.05cm. The center
barrier is dopant free, yielding a negligible contribution from
the cross term in Eq5) and

fi(en)(1—f )FR(Szk)
e — —
1\e2k 2k ﬁ2 rlk

- 4eF
IM=——F(V)>
k

T'i(e 1)

+flk(1_f2(81k))—2_A2+F | (39
2

Here, damping“}’l?(z) in the numerators was defined in Eq.

The contribution from electron-electron scattering to Eq.(218 and is an impurity part of j in the denominators. The

(26) is obtained by expanding

Plk(Z)sz(Z):[FiE(ZHle(Z_i0)|2P2k(Z)
+T58(2)|Ga(z—10)|%pp(2) 7t
to the first order il"i¢ in Eq. (26). Using the expressions for

I'fi(2).T'5:(z) in Eq. (219 and approximating pjc(z)
:5(8“(_2), we find

8me
lem— PFW) X 2 i (1= Fae) (1= i)

Ik s

X 8(e 1t ejk, ~ ok~ Ejk)

X[[U1y(k' = K)Gyyr (00 —10)[?6; 1
+|U22(k'_k)sz(Slk_io)|25j,ﬂ- (37

This contribution is to be identified with the direct terms in
Egs. (19) and (20). The rung correction to Eq.37) arises
from inter-QW Coulomb interaction and is small. The
electron-electron self-energy part in Eg10 is given by the
upper part of Fig. @) where the wiggly curve denotes a

dressed electron-electron interaction. The lower part of Fig.

3(d) can be included in Eq37) by replacingU;;(k’ —k)?
—Uji(k" =k)?=Uj; (k' — k) Uji(ki—k) /2.

quantityl“}r,?(z) follows from summing on one of the dummy
wave numbers in Eq5). The Fermi functiorf;(z) was de-
fined following Eq.(27).

For a numerical evaluation, we ignore the momentum de-
pendence of the impurity scatteritigelevant for short-range
scattering and approximatel'ji'(z) as a constanij}(z)
=TI'{" above the band bottom and zero otherwise. This ap-
proximation as well as neglecting the cross term in G8)
is also valid for interface-roughness scattering. Therefore,
F}m contains the contribution from interface-roughness scat-
tering. The quantitiesl“}m depend on the doping configura-
tion and the sample quality. Since the doping configuration
and the degree of interface roughness is not well known for
our sample, these quantities are taken as adjustable param-
eters for comparison with the data. HowevEL' and I'}"
will be scaled inversely with the mobilities of QW1 and
QW?2, respectively, thereby leaving only one adjustable pa-
rameter. Other damping parameterslif, from electron-
electron and electron-phonon scattering are calculated micro-
scopically without any adjustable parameters.

The EPI with the LO phonons are given by

5/2 32
4mnh> wg

1/2
Quolqz\/zm*) ,

Vg.10= (39

The phonon rung in the present tunneling problem gives dVhere€l,q is the sample volume and=0.0§ is the dimen-
relatively smaller correction compared with the single-QwsSionless coupling parameter for GaAs QW's. The dispersion
or bulk transport problem, because each of the two EPI verof the optical phonon frequency will be ignorediw,

tices originate from different QW'’s, yielding
A1(9,)*A5(a,) =]A1(9),)|%€'9%. A significant amount of

contribution from theq, integration arises only from a re-
stricted regionq,<1/d as discussed already in Sec. Il. In
view of the fact thatd is large in tunneling structures, suc-

cessive rung diagrams are expected to converge rapidly.

=hw,=36.2meV. The electrons interact with the acoustic
phonons through screened deformation potential scattering
and piezoelectric scattering with the parameters given in Ref.
19. The dielectric screening constant is approximated by

Ej(Qn):(1+SQ|\_lFij(Q||)[1_97T1F/T])711 (40)
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FIG. 4. Tunneling current as a function of the voltage drop  FIG. 6. Tunneling current as a function of the voltage drop
between the layers at 0 K. between the layers at 300 K.

where T;e is the Fermi temperatures= 2e’m* [ kh? is the  tight-binding estimate ofl based on a simple flat-band po-
screening constant, and=13. tential yields J=0.002meV for the sample, twice thé
The |-V curves are calculated using the results in Sec. II=0.001 meV employed. A self-consistent Hartree calcula-
and employing an adjustable parameier0.001 meV,l"ilm tion which includes band bending pulls the confinement
=4 meV, andl'M=12meV. The ratio of '™ andT"\" here ~ Wave functions in QW1 and QW2 away from each other and
equals the measured ratio of the low-temperature mobilitie’s €xpected to reducé Also, the actual tunneling area may
tto/ 111 of the sample. The calculateddV curves are dis- be smaller than the geometric area0.02x0.05cnt em-
played in Figs. 4—7 as a function of the voltage dkgy ployed for the calculatl_oﬁzln a more realistic calculation
across the barrier fof =0, 77, and 300 K. Thd-Vpq,  With @ known dopant distribution for the sample, ¥gow
curve at 77 K in Fig. 5 is similar to the experimentally ob- dependend can be calculated using a self-consistent density

servedl -Vgp, curve in shape and magnitudexcept that the ~ functional theory.
experimental -V, curve is skewed slightly toward the right ~ Figure 4 shows thé-Vpq,, curve at 0 K. The current
due to the fact thatl) Vgp is the sum ofVpoy and the — arises primarily from impurity scatteringlotted curve The

in-plane voltage dropV, in the QW'’s, neglected in the

present treatment, an@) V, is larger for a larger current. A
200 - Total current
60
with impurity int.:
~~~~~~ - 0K
. ~ ---- 77K
%0 T=77K g e --=- 300K
40 E w/o impurity int.:
z —— Total 2 4004 — 300K
= T Impurity 3
o i 3 ---- LO-phonon
5 30 ---- EE-interaction
£ ; )
(&)
20
10+ T T T
RO N 80 100 120
". \\ ....................
0 A Emm L EER " Y oaw (meV)

FIG. 7. Total tunneling current as a function of the voltage
between the layers dt=0, 77, and 300 K. The solid curve repre-
sents the intrinsic total current at 300 K in the absence of impurity

FIG. 5. Tunneling current as a function of the voltage drop scattering and includes tunneling from the ground sublevel of QW1
between the layers at 77 K. to the second sublevel of QW2.

Vg (mev)
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peak occurs slightly aboveVpow=e1r—e2r=21.5meV  curve represents the current from tunneling between the
where the two QW ground sublevels align. It is interesting toground sublevel of QW1 and the second sublevel of QW2,
note that electron-electron scatterifsh-dotted curyealso ~ Using the samd value for comparison with the first reso--
contributes significantly. The small LO-phonon contribution "@nce current. The actual tunneling integral for this case is
(dashed curveincreases until the Fermi level of QW2 is expected to be larger th_an that between the grounql su_blevels.
about# w,=36.2meV below the bottom of the QW1 band We_ now study_ the_ interface roughr)ess co_ntrlbutlon to
(i.e.,eV=rhw,+e1=64.9 meV, where all the electrons in damping. For an infinitely deep Q\.N with a V.‘“dth . the
QW1 can tunnel into QW2 by emitting one LO phonon. Theground-sublgvgl-energy f',‘jcgua“o“ in {té QWis given by
acoustic-phonon contribution, included in the total current, igOF;(r) = — m"A%dby(r)/ (m*bj), where dby(r) is the fluc-
the least important for the nonequilibrium tunneling currenttuatlon ofb; at positionr. Defining the, ccirelatlozn Iength,,—
at all temperatures and is not indicated separately, althoughtiwogghz the average(épj(r)ébj(r ))=(3by) exp§—|r
is more important than the LO-phonon contribution at Iow_r| /A}) (Ref. 21 and using the golden rule, we find
temperatures in the linear regime. A similar result was ob-

tained earlier for double-barrier tunnelifig. I (=72 ((i.K'[5E;(N]j.K)?)8(ej—2)
At 77 K, thel-Vpqy curve is broader and the peak cur- K
rent is much smaller than a=0 K as shown in Fig. 5. The 2rde L 9.2
. . . . . =T, _e*(k —k) Aj/4 (41)
LO-phonon scattering contribution is larger tha®& but is rj 2 '

still smaller than the contributions from impurity and

electron-electron scattering. At 300 K, the LO-phonon andvhere ¢ is the angle ofk’, I'y;=m>(f2/2m*b?)(b;/
electron-electron contribution have increased considerablp;)*(A;/b))?, ey =%/?k?/2m*, ande =& +A. The ori-
relative to the impurity contribution as seen in Fig. 6. It is gin of the energy is ak=0, namely, at the bottom of
interesting to note that the electron-electron contribution iQW1,e1,=0. For QW1['},(2) in Eq. (41) vanishes forz
larger than the LO-phonon contribution. This is not surpris-<0 andk’ is fixed by%2k’?/2m* =z. For QW2I'%(2) in
ing because electron-electron scattering can cause a signifq. (41) vanishes forz<A andk’ is fixed by #2k’2/2m*
cant quasihole lifetime broadenin@f the order of a few =z—A. For a two-layer fluctuatiorb‘bjzloA out of b
meV) deep under the Fermi level in QW’s where the elec-=120A we estimatd’,;=8.40(A;/b;)*meV. The quanti-
trons are confined in a narrow spééeThis broadening be- ties of interest ard’}, (e,,) andT'h,(eq,) in the numerators
comes small near the Fermi level in a single QW due to thef Eq. (38). We now estimate these quantities near the reso-

limited phase space imposed by simultaneous energy angance(i.e., A=0) where the most important contribution to
momentum Conserva“dﬁ.HOWeVer, It remains |arge at the the current arises. Fd?;_k(SZK)’ the Fermi functions there

Fermi level in our tunneling problem, because an electron afastrict the contribution t0 € puy<z= ey = &1, < 1.
the Fermi level can excite other electrons above the Fermipgrefore |k|,|k’|<k,r=0.0224 A1 in Eq. (41) for our
level and can still conserve the energy by tunneling i”tosample densityN; =8x 10t cm2. For theses values ok|
QW2 with a lower Fermi level. In contrast, electron-electronand|k,|, the integral in Eq(41) is unity, the upper limit for

scattering does_, not affect t_he mobility directly unlike LO- A,=89A. The same result is obtained B, (&), yield-
phonon scattering because it conserves the momentum, as, (620 =8.40(A,/b)2meV  and Tl (e
well known. The electron densiti){; in the top QW(i.e. Lk\&2i) = O vt 2148 1)

. . ' =8.40(A,/by)’meV for A;,A;<=89A. These quantities
QW1) can be varied through changing the top—control-gateare to be added t&™ and '™ For A.=10A. we find
bias in DELTT while keepingN, nearly unchanget!: The . R 2 J '

peak position of thd-V curve eV=A, is proportional to "€9ligible dampingl’j,=0.058 meV, while a Iarge_corrrela—
N,—N, and increases with;. Also, the relative contribu- ton _length Ai:_SOA yields significant  dampingl’j,

tion from electron-electron scattering to the current and thé=1-5meV. The interface-roughness contribution therefore
width increases. depends omb;, by, andA; .

The impurity contribution is large in Fig. 6 because of the
large impurity dampind”{"=4 meV andl'}"=12 meV cho-
sen to simulate the 77 K eXperimental data in Ref. 11. This We presented a theory for nonequ”ibrium 2D-2D tunnel-
kind of large impurity damping is readily caused by chargeding between double electron layers separated by a wide bar-
impurities in modulation doped QW's which can yield large rier when the chemical potentials of the two electron gases
photoluminescence linewidtS.For rough interfaces, the are arbitrarily biased. Initially, an intuitive but rigorous
contribution from roughness scattering can also contributgecond-order perturbation theory was established based on a
significantly tol';" as will be shown later. transition-rate approach. The result was used for a numerical

The current becomes much sharper as a function afid  evaluation of thel-V relationship. Contributions from
increases in magnitude without impurity scattering as showrlectron-impurity, electron-electron, and electron-phonon in-
by the fine-dotted curve in Fig. 6. The temperature depenteractions have been considered. The validity of this treat-
dence of the total tunneling current is plotted in Fig. 7. Thement was examined using a field-theoretic formalism by ex-
solid curve shows the total current at 300 K in the intrinsicpressing the tunneling current as a velocity-velocity
limit, namely, in the absence of impurity scatterifige.,  correlation function. The correlation function was then
I'"=T3"=0). This curve is much above the dash-dottedevaluated employing a standard temperature-ordered Green'’s
curve which includes the contribution from impurity scatter-function technique. The formalism is exact to the second
ing. The resonance at about 90 mV for the intrinki&/  order in the tunneling integral and to all orders in the inter-

V. CONCLUSIONS
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actions. It is similar to that of a linear response theory and ACKNOWLEDGMENTS
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