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Theoretical analysis of energy-dependent hot-electron transport in a magnetic multilayer
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We analyzed the voltage dependence of the magnetoresistdR)eatio of a three-terminal device whose
base consists of a magnetic multilayer. The spin-dependent current density of hot electrons in the base, which
are injected from an emitter by tunneling, were calculated by using the Liouville equation for the spin-
dependent Wigner distribution function. It was found to be necessary to take into account not only the spin
dependence of elastic scattering but also the energy dependence of inelastic scattering and, furthermore, the
forward-focusing effect of the Schottky barrier that exists at a base/collector interface, in order to understand
the large MR ratio observed in this device and its monotonic decrease with increasing applied voltage.

I. INTRODUCTION 1. FORMULATION

A. Modeling of the hot-electron device
Monsma et al! and the present authdrs proposed a 9

three-terminal device where only hot electrons injected from In this 59_020”, we discuss the modeling of the hot-
an emitter into a magnetic multilayer in a base contribute td?lectron devicé.In this device, only electrons with an en-
the collector currenthereafter, for simplicity, we call this a €79y higher than the Schottky barrier height, [~0.85 eV
hot-electron devide In these works, the collector current (Ref. 2] make a contribution to the collector current. In or-
was reported to change more than 200% under application gter to analyze the current-voltage characteristics in the actual
a magnetic field. Moreover, according to the experimentafl€ViCe, it is necessary to take into account the band bending
results in Ref. 2, the magnetoresistafitR) ratio decreases ©f the semiconductor collector, which is calculated by solv-
monotonically over the voltage range from 1 to 1.8V and the"d the transport equations  with Poisson’s ~ equation
voltage dependence does not reflect the density of stat&§!f-consistently” In this paper, to simplify the numerical
(DOS) in thed bands in Fe. These experimental results are of@lculation, we replaced the Schottky barrier at the base/
great interest from both physical and practical points ofcollector interface by a tunneling barrier, as shown in Fig. 1.
view. In the analysis in Ref. 4, we divided tidebands into [N the voltage range abovel.5 V, this model leads to re-
parabolic bandéfree-electron-like bands df,, symmetry at sults that are well fitted to the experimental results in Ref. 2
I') and narrowd bands, and calculated their contributions to @S discussed in Sec. lll. Below1.5 V, in contrast, the re-
the current density. We found that the current-voltage charPlacement of the Schottky barrier by the tunneling barrier
acteristics do not reflect the DOS in tdebands since elec- Ccauses considerable discrepancies between the results of ex-

trons in the narrowd bands in the ferromagnetic layers are P€riment and calculation. This problem can be solved by
very likely to be scattered in the base due to their Iargéak'ng into account, .separately, the forward-focusing effect
effective mass and do not contribute to the current density. 119 the Schottky junction. o _

this paper, we make a more quantitative comparison with the We used the one-dimensional Liouville equation for cal-
experimental results, by taking into account both spin andulating the tunneling through the barrier and the scattering
energy dependences of scatterings for electrons transporting

in the parabolic bands. In order to compute the MR ratio of _
the hot-electron device, it is necessary to take into account Er
the tunneling through the barrier at the emitter/base interface =~ ™% =
as well as the scattering in the base. We use one-dimensional o
Liouville equation for the Wigner distribution functidn
(WDF), which reduces to the Boltzmann equafiol?in the ETE
classical limit ofa— 041112 This formalism has been used

to study the one-dimensional quantum-based devices made
of semiconductor layer$~1” However, we encounter diffi-
culties as discussed below when we apply these WDF meth- Emitter Base Collector

ods straightforwardly to the calculation of the current density £ 1. schematic energy diagram of the model that consists of
in t.he hot-electro_n device. In Sec. |l the reason that thesghe |ayers AGS5 A)//Au(20 A)/Fe(15 A)/Au(15 A)/Fe(15 A)/Au(15
difficulties occur in the numerical calculation by the WDF A)/Fg15 A)/Au(20 A)/Au(55 A). The voltage is applied only
formalism is clarified and a method is proposed to avoidacross the tunneling barrier at the emitter/base interface and hot
these difficulties. In Sec. Ill the calculation results are pre-electrons are injected into a magnetic multilayer in the base. The
sented and the voltage dependence of the MR ratio for theorizontal dashed line in the base shows the bottom of the minority-
hot-electron device is discussed. spin band in Fe.

« magnetic multilayer —
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in the base simultaneously. In the calculation, it was noted _ = dky ik,

that the discretization of the Liouville equation results in the =2 S e Tk (4)
violation of the principle of detailed balané.In other o Joe el

words, we need to make the mesh spacings much finer inlere, we adapted the open-system boundary conditimn
order to calculate the current density for an asymmetrigolve Eq.(3), and it is given by

structure than for a symmetric structure. Therefore, we per-

formed the calculation for the case in which the number of f';if?:fo(kx),

Fe layers in the base is three, as shown in Fig. 1, because the '

structure of this model is symmetric both in the parallel and F0 _ ¢ (K
o, right oK),

in the antiparallel configurations. We took the thickness of
the layers as A(B5 A)//Au(20 A)/Fe(15 A)/Au(15 A)/Fe15

A AVFe15 A A A i (k)= —— (2= K2

)AuU(15 A)/Fe(15 A)/Au(20 A)//Au (55 A), respect!vely,. o (ky) = 4—(kF—kX) (|ky =<kg), (5)
where the double slash represents the tunnel barrier with a m

height of 1.5 eV and a width of 10 A. where f} is the Fermi-Dirac distribution function with the

By calculating the current densitids andJap in the par-  transverse momentum components integrated out, and in our
allel (P) and in the antiparalle{AP) configurations respec- model, we set the Au layers of the emitter and collector as
tively, we can obtain the MR ratio from the following equa- reservoirs where the Fermi-Dirac distribution function is re-
tion: X

quired.

Jp—J
MR= —P_7AP

X 100%. ) B. Tunneling current through the single barrier

J
AP The WDF formalism has been used in order to calculate

Let us take the longitudinal direction as theaxis, and the the current-voltage characteristics of semiconductor devices,
Hamiltonian that represents the electron transport of théor instance, resonant tunneling diodéRTD’s), and the

model in Fig. 1 is written as methods for the numerical calculation have been studied in
s 0 many papers. However, it is difficult to apply these WDF

He _ h_ d—+v(x)+h(x)a @) methods directly to the numerical calculation of the current

2m* dx? ' density of the hot-electron device, since the metal/insulator/

metal tunnel junction in this device has much larger tunnel
resistance than the semiconductor I/ semiconductor I/
semiconductor | tunnel junction. This problem has been
pointed out by Jensen and Ganguly in their papefSyhere

a detailed comparison of the WDF approach was made with

whereuv (x) is the bottom of the conduction band angk) o

is the exchange energyxatwhereh(x) is the molecular field

in the Fe layer andr (=1 or 0 is the spin operator. This

Hamiltonian is similar to what Slonczewski proposed for dis-

cussing the spm—polarlz.ed. tunnelllng bet\_/veen the ferromagy,o Fowler-Nordheim approatt?? for the field emission

netic films through a thin insulating barrigt.Furthermore, from a metal into the vacuum. We propose a method to im-

we can take the effective mass' as 1 at every pointin the  ,4ve the accuracy of the WDF calculation of the tunneling

device, because the free-electron-like bandBgfsymmetry ¢ rrent through the single barrier at the emitter/base inter-

atI” (slike bands$ contribute dominantly to the electron con- face.

duction in the ferromagnetic layers. . We consider the following sequence of potential barriers
The Liouville equation can be introduced from this .

Hamiltonian as follows: “

2|x|\“
of tk, of ., 1 (= dk; v (x)=—exp{—(—) (a=1), (6)
_s__ X9 - _ —k! ! @ I'li+1/a W
at m* x h f_w 21 VoK k) To(X k) ( )
whereh andW denote the height and the width of the tunnel
=(L-f),(X,ky), 3 barrier at the emitter/base interface, respectively. The coeffi-

cient of the right-hand side of Ed6) is a normalization

, * factor. Figure 2 shows the energy diagrams for applying 1 V
V(x,kx—kx)=2f0 dylv(x+y/2)+h(x+yl2)o across the barriers in the cases for 2, 4, andew, respec-
tively. It can be seen from this figure thai is the form of
—v(X—Yy/2)—h(x—y/2)o]sin (ky—ky)y], the abrupt potential barrier and that makiagsmall corre-

i o sponds to smoothing out the potential barrier. In particular,
wherelL is called the Liouville superoperatbt.We solved whena=2, we can calculate the potential term of the Liou-
the Liouville equation(3) numerically, referring to the ;e equation exactly and it is written as follows:
literature®*8 By substituting the WDFf,(x,k,) obtained
from Eq. (3) into the equations below, we can get the elec- V(XK ):4hWefk§W2/4Sin 2K x @)
tron density and the current density. The electron density x x“

n(x) and the current density(x) that are consistent with the Here, we consider the following scale transformation:
Liouville equation(3) are represented by

= dk
n=2 | St (xk),



8244

3.0 T T T T
| ) a=2
B 1 | R =4
o b eeeeresane o=co
g 1.0f .
o
c
2 0.0r 7
°
=]
3 } |
£ 1.0
o 3 .
2.0t >
L 1 " 1
0.0 0.5

10 (10%A)

FIG. 2. Potential diagrams for applgrl V across the barriers
in the cases thar=2,4¢. The interface of the barrier becomes

smoother for smaller values of.

X~ kFX,

F=2E¢ I#. (8)

The Liouville equation(3) and the potential ternt7) are
transformed into

AER wa O KT (XK
T - W X‘ - o Xl E]
at % —% 29 W XX X
V(% Ko) = We WA sin 2k %,
T (%K) =, (XIKe  Keky ) /K2, (9)

and Eqgs.(4) and(5) are also transformed into

- = dke, o
nX)=ke2 | 5T (kk),

o » dke Ak
iR=ke2 | S k), (10
e

=117k (ki=). (1
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FIG. 3. This figure shows the current density through each bar-
rier shown in Fig. 2 against its thickness.

be easily found that this transformatid®) is valid for the
Liouville equation with the general potential term, moreover,
including the collision term.

Next, we discuss the calculation results of the tunneling
current through the single barrier at the emitter/base inter-
face. The mesh spacinyx’ is taken as about a lattice con-
stant(~10 A) in the RTD simulation. Therefore, we deter-
mined the mesh spacingx in our model as 0.41 A
(=Ax"kg /kg), according to the above discussions. We took
the cutoff of the Fourier transform in the Liouville equation
(3) as 2w/ Ax and the number of discretization points in the
longitudinal momentum spad¢, as 300 and calculated the

current density in the steady stat#& (st=0). Shown in Fig.
3 is the current densitytd V against the barrier width. The
dotted line in this figure illustrates the calculation result in
the case fora=c. In this case, we find that the current
density decreases as the barrier width increases and becomes
nearly constant in the range of width larger than about 5 A.
However, the current density is considered to decrease
monotonically even in this range, as shown by the stationary-
state modef>? Therefore, the results by the WDF method
are not reliable in this range. The tunnel resistance of this
insulating barrier can be found from E@®) to correspond to
that of the semiconductor barrier of 100 A thickness. There-
fore, we can consider that the calculation results by the WDF
method are sufficiently reliable for RTD’s with barriers of
30-60 A thickness, even though those barriers are the rect-
angular barriers. In contrast, the calculation is not reliable in
the case of the present device with rectangular barriers of 1.5
eV height and 10 A thickness. One method to settle this
problem may be making the mesh spacixfiner, although
the CPU time is too large.

Alternatively, in this paper, we performed this calculation

These equations imply that if two systems have the samBY Smoothing out the potential barri€tAs seen in Fig. 3,
~ ~ . the current density decreases with the barrier thickness more
values ofh and W, the WDF f ,(x,k,) of each system is -

) T ) sensitively for a smaller value af. Therefore, we took the
obtained from the same function, defined on the phase ynneling barriers both at the emitter/base and at the base/
space k). Roughly speaking, we can consider that sys-collector interfaces as the Gaussian potential barrier of Eq.
tems with the same tunnel resistance are connected via thi%) to improve the reliability of the calculation. The reason
transformation(8). For example, the two systems with pa- why smoothing out the potential barrier is of great advantage
rametersEg=2 eV, m*=1, h=3.5eV, W=10A and with  in the numerical calculation by the WDF formalism can be
those Ef=0.05eV, m*'=0.068, h’= 0.0875 eV, W'  explained as follows. The Fourier transform of the rectangu-
=242 A have the same tunnel resistance. We have discussét potentialy..(x) is written as 2 sinvk/2)/k,W and oscil-
the Liouville equation with the potential ter(@), but it can  lates in the momentum space. Since the oscillation period
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becomes shorter as the barrier width gets larger, we need fore, it is not adequate to determine the mean relaxation time
increase the number of grid points in the momentum spacef injected electrons by using E(L4). Thus, we propose the
intensively. On the other hand, the Fourier transform offollowing equation:

Gaussian potential is ejxp (Wk/2)?], which changes mono-

tonically in momentum space and is much easier to be % _f
handled in the form of a discrete Fourier transfdmithere- T
fore, smoothing out the potential barrier enables us to per-
form a numerical calculation by the WDF formalism within a
shorter CPU time and to make this calculation very stable.
Moreover, we may consider that the potential barrier in the
actual device is nearly Gaussian for the following two rea- =(T)e, (16)
sons: for rounding off the corners of the barrier by the image

charge effect and for the spacial variation of the compositiovhereT(Ey) is the transmission probability through the bar-
x of the AlO, barrier fabricated by the oxidizing Al surface. rier at the emitter/base interface for an electron with energy

Accordingly, we were willing to use this method in the WDF E=Ex+E,, which is calculated by the stationary-state
formalism. model?*?*Since the denominator of E¢L5) is proportional

to the flux of electrons injected into the base from the
emitter>! we can regard®* as the mean relaxation time of

. . ) ) o electrons injected into the base.
The collision term in the one-dimensional Liouville equa-

tion (3) has been discussed in many papgéré®It is usual to
use the collision term in the relaxation-time approximation

dE,T(E,) f “AE (B, + E)fo(ExtEy)
0 0
-1

X (15

f dE,T(E,) f AE,fo(Ext E0)
0 0

C. Collision term

D. Elastic scattering

represented by We may need to take into account a number of spin-
dependent scattering processes for the entire understanding
oty 1 JE(x.Ky) of the voltage dependence of the MR ratio detected in the
at C—T_* S fed X.Ky) fed X k) —F(xko) |, (12) hot-electron devic.n this paper, in particular, we took into

o . . account the elastic scattering by defects and the inelastic
where fo(x,k,) is given by the solution td.-f=0 in the  scattering by the Fermi sea, which were considered to be the
unbiased steady state. This collision term was introduced bygrincipal influences on the electron transport in the base. In

Jensen and Buttfrom the general form the case of the analysis of the CRRirrent perpendicular to
o dK’ plane MR, on the other hand, the effect of the spin-flip
o * UK ) "o ) scatterings on the MR ratio has been studied in many papers,
(at c f_x 2 [Wi i, Ok = Wi i T k) 1, for example, the scattering by an impurity with a local

(13  moment;**~**by a magnori; and by domain wall$® Ac-

_ _ _ -, . cording to the experimental resuftd’*8the spin diffusion
under the assumptions that this equation satisfies the Qeta|IeF gth is about two orders of magnitude larger than the mean
balance condition and that the dependence oWy « IS freq path for elastic scattering by defects and is much larger
sufficiently small. The relaxation-time approximation has thethan the total thickness of the base layers of the hot-electron
advantage of combining some different scattering processegevice. Therefore, we considered that the spin-flip scattering
in one parameter*. Of course, the collision ternil3)  has a small influence on the voltage dependence of the MR
makes it possible for us to calculate the current-voltage charratio at voltages between 1 and 1.8 V in the experiﬁ]and
acteristics by using a more realistic model of random scatneglected the effect of the spin-flip scattering in this work.
tering processes. However, we do not have a general method The interaction with a defect is given by the screened
to obtain the transition ratesVy y from the three- Coulomb interactior??

dimensional transition rate®,, , such that the collision 762 o IrTolise
term (13) does not violate the detailed balance conditidff V(r)=— e
Therefore, we used the collision term in the relaxation-time dmey  |r—rgl

approximation of Eq(12) in this work. The energy depen- wherelg., €5, andZ are the screening length, the permittiv-

dence (_)f relaxation time _cannot t_)e taken into account in thlﬁy of vacuum, and the number of valence electrons in the
term, since we have no information on the energy for a tra-

jectory in the phase space, k). Usually, we use the relax- metal, respectively. The relaxation time for an electron scat-

R . . ered by a defect in a free-electron-like metal is written as
ation time that is averaged with respect to the energy accor ollows:
ing to '

8mh ek’ 1 1

2] L S—S — 2,2 -
w = [ Cae ey EnE) / = R I O S = LS e I

where f, is the Fermi-Dirac distribution functiotf. How- #2K?

ever, in the hot-electron device, only electrons in the narrow E=Sm (17
energy rangé~0.5 eV) near the Fermi level in the emitter

are injected into the base due to the strong energy depemvhereN is the defect concentratio.However, we should
dence of the tunneling probability for the electrons. There-consider that the relaxation time for an electron in the Fe
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layer is spin dependent, according to Mott's transport e? \/; o\ 12

theory?®* That is, electrons transport mainly in the broad ~ o T ar tan —)

bands and the vacant narraivbands act as final states of 3o 32ary) als

scattering of electrons scattered elastically or inelastically. (arg/m)Y2 [(kIkg)2—1]?

Therefore, the relaxation time for a minority-spin electron 1+ ar /Tr} Kk ;
S F

reflects the DOS in the minority-spin band and is much
smaller than that given by E@17). 4\ 13

Let these transition rates from sastate to ad state be az(—) , (23
W;_4, and this collision term can be written as 9m

, where e(k’,AE(k')) is the Lindhard dielectric constdnt
(ﬂ) _ fx dky [W. s FOGOKD) andkg, rg, andag are the Fermi wave number, the Wigner-
ot 2 B ATskkd X Seitz radius, and the Bohr radius, respectively. We took the
Wigner-Seitz radiusg in Au as 3, although, strictly speak-
~Ws_ gk k. faOG K, (18 ing, Eq.(22) is justified in the random-phase approximation
(rg=~1). By substituting this value of into Eq. (22), we
wherefy denotes the distribution function of an electron in found that the individual particle collision is dominant for

C

the d bands and the relaxation timé& "% is defined by electrons with energy lower than 2 eV and that E2p) is
approximated by Eq23) in this energy range. Furthermore,
1 we found that the mean free path is 200 A at 1 eV and
F’:Z Ws—>d,kx,k;- (19 reduces to 70 A in going from 1 to 2 eV. Regarding the
kx lifetime of a hot electron transporting in the Fe layer, $he
Here, noting that the energy of an electron is conserved i'IérggfiigOsnc:{tg;%?gitdiT:gosr:)?:tJgggjr:c}ggégawgsr;ﬁgge;Té d
the process of elastic scattering, we may write &) as the relaxation time for inelastic scattering by modifying Eq.
1 1 Dy, (E) (20). Since the final states of inelastic scattering have the

(200 energy range AE [=#/7"S(E)], we averaged
D4,(E)/D4(E) over the rangeAE. Thus, we can write the
relaxation time for inelastic scattering as

75 YE) 75 %(E) DE)

In addition, electrons in the narrow bands, as already
stated, do not contribute to the current. Thus, we can intro-

duce the collision term in the relaxation-time approximation 1 = ! Dy, (E) + 24
- . E S—S D E S—S ’ ( )
for s-d scattering in the Fe layer as follows: mi(E) E)\ Ds(E) [ ¢ 7 (E)
F(X,K) — Fed K,k where(---),g denotes averaging over the energy range of
_ 1 X eq\ iy

, final states of scattering E. The averaging makes the re-
flection of the energy dependence of the DOS in the relax-
ation time smaller, and therefore the spin dependence of in-

N «.sDs elastic scattering becomes weaker than that of elastic

Te =\ Te W : (21) scattering. In fact, the lifetime of hot electrons in fcc cobalt

7' E measured by a two-photon photoemission techriftysieows
weak spin dependenéé.
Here, we should remark that electrons scattered inelasti-

of
at

*
c Te

This collision term(21) represents that assumption that
electrons scattered todastate do not contribute to the cur- cally either to ars state or to al state flow out from the base

rent. Moreover, the mean relaxation timg in this term has due to the reflection at the Schottky barrier at the base/
strong voltage and spin dependences for electrons ranspoljactor interface. Therefore, we need to use the collision
ing in the Fe layer, since it reflects the DOS in theands. term (21) for inelastic scatteriﬁg and it is given by

It is sufficient to take into account onbrd scattering in the
Fe layer, because it causes a much larger reduction of current of £, k) = Fed X, Ky)
density thars-s scattering. Thus, we used the collision term ( ) = < ,
(21) for the elastic scattering in the Fe layer and the collision c

term (12) for that in the Au layer.

E Tj

7 ={1)e. (25
E. Inelastic scattering
We refer to the calculation results by Quinn and IIl. RESULTS AND DISCUSSIONS
co-worker§?=#* regarding the relaxation time for inelastic
scattering. They had derived the following formula from the

imaginary part of the self-energy of an excited electron: We analytically represented thf;' DOS in theands in Fe
(Ref. 48 by using the Lorentzidl?* as follows:

A. The mean relaxation time

! ! ! 5 A
c<E(k—Kk)<Ek) K'? ek’ ,AE(K"))|? Dd,,(E)Z—a— (26)

(22) ma® (E—E,)2+ A2

1 e? J d3k’ Im[e(k’,AE)(k")]
E
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FIG. 4. The voltage dependence of the mean relaxation time of FIG. 5. This figure shows the current density through the model

electrons injected from the emitter and transporting in the Fe IayerE’)howrl1 in Fig. 1dal vV as a;uncﬂon of dﬁfeCt .con.centratlr?n in tr;)el
1 and ] show the spin directions of a majority- and minority-spin PasedaAysr;T an ihmean t”elsarge a$t osl,le Im F'?.' 4. T. € Symbols
electron, respectively. tivz:; enote the parallel and antiparallel configurations, respec-

whereE;, E,, Eg, ho, andA are 1.2, 1.4, 2.5, and 0.4 eV,
respectively, the number of atoms in the unit celis 2 for

bce, and the lattice constaais 2.867 A. The DOS in Au for
energyE, taking it as a free-electron-like metal, is written as

conclude that inelastic scattering affects the voltage depen-
dence of the MR ratio considerably at voltages above 1.5 V.
At voltages below 1.5 V, however, the MR ratio increases
monotonically with the voltage, and this result is different

3a \E from the experimental resultThis discrepancy is caused by
D«(E)= = = =op. (27 the forward-focusing effect of the Schottky barrier, which
2a’ Ep has not been taken into account in our calculation as dis-
whereEg is 2 eV, « is 4 for fcc, anda is 4.079 A. cussed below.

In Fig. 4 the mean relaxation time* for an electron
transporting in the Fe layer is shown as a function of bias C. Forward-focusing effect of the Schottky barrier
volta_ge _applylng between the emitter 3”0' the base_. The dot- For a hot electron to flow into the collector its energy
ted line indicates the mean relaxation time for elastic scatterr—nust be aboveeV,, and thereby its trajectory is limited to

ing with 0.5% defect and the dashed line indicates the tota\IN. : " o
. i _ ithin the critical angled, to the normal of the Au/Si inter-
relaxation timer} = (1/7% +1/7) ! (Matthiesen’s rul&). g\

v R X face, as discussed in Ref. 2. Therefore, hot electrons scat-
We found from this figure that reflects the DOS inthé  (greq in the base are unlikely to flow into the collector. In
bands and that a minimum exists for a minority-spin electron,iher words, we can consider that the scattering in the base is
at the voltage(~1.5 V) corresponding to the peak of the gnnanced by the forward-focusing effect of the Schottky bar-
minority-spin bands in Fe. However, including the inelasticyier at the base/collector interface and the mean relaxation
scattering, this minimum does not appear clearly, becausgmes should be shorter than those calculated by (E§).
the inelastic scattering with a weak spin dependence is domirpjs critical angled, is estimated to be 15° for an electron
nant in the higher-voltage region. with energy 1 eV and naturally 0° for an electron with en-
ergy lower than the Schottky barrier height. It is necessary to
B. Calculation results of the MR ratio use the three-dimensional model in order to discuss this ef-
Next, we calculated the MR ratio of the model in Fig. 1. féct rigidly. In this work, we propose a simple method to
We took Ni as 360 for solving the Liouville equatiof8). take into account this effect in the one-dimensional transport

) - . _
First, we studied the dependence of the current density on tthOdel' That is, we took(E,+ &) as 0 forE,<eV, in Eq

strength of elastic scattering that was changed by the uniform

concentration in the base layers. The results of these calcu- 300} ' ' i
lation are shown in Fig. 5. As the defect concentration in- 3

creases, the difference between configurations was found to e 200}

become large. Taking the defect concentration as 0.5%, we &

calculated the voltage dependence of the MR ratio. As illus- o 100}

trated by the dotted line in Fig. 6, the voltage dependence of = I

the MR ratio reflects the DOS in thitbands in the Fe layers, ok===—t "

and a maximum exists at about 1.5 V corresponding to the 08 1.0

peak in the minority-spin band. As shown by the dashed line,
the inclusion of inelastic scattering smooths out this peak and
the MR ratio decreases slowly with voltage in a range higher FIG. 6. The voltage dependence of the MR ratio. The data plot-
than 1.5 V. This voltage dependence is ascribed to that of thed in each line were calculated by using the mean relaxation times
mean relaxation time shown in Fig. 4. Therefore, we carshown by the same line in Fig. 4.

Voltage (V)
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2.0 . - » - the tunneling through the barriers for a hot electron, includ-
ing the scattering events in the base, we used the WDF for-
malism. Based on the calculation results in the previous
papert we postulated the Liouville equation for an electron
transporting in the free-electron-like bands in the base layers.
Namely, electrons in the narrovbands do not contribute to

Current Density (10’A/cm?)

10 the electron conduction in the Fe layer in our model. How-
ever, the vacant narroalbands act as final states of scatter-
- ing in the ferromagnetic layer, according to the Mott’s trans-
port theory*®*! Taking this effect into account, we studied
the electron transport in the base. In particular, we pointed
0.0

08 1.0 ' 1:5 ' 20 out the importance of both the elastic scattering by defects
and the inelastic scattering in the Fe layer. From the calcu-
lation results of the voltage dependence of the MR ratio, we
FIG. 7. The current-voltage characteristics obtained from the2fived at the following two conclusions:
Liouville equation with the collision term including® . The sym- (1) The spin dependence of the total relaxation time be-
bols P and AP mean the same as those in Fig. 5. comes weak in the region of voltage over 1.5 V, since the
influence of inelastic scattering becomes strong. This leads to
(15 with the meaning that hot electrons with enerfy the result that the voltage dependence of the MR ratio does
(=E,+E,) cannot flow into the collector if they reach the not reflect the DOS in Fe.
base/collector interface  outside the  angled, (2) Particular importance should be accorded to electron
=tan ! J(E—eV,)/eV, to the normal of the base/collector refraction with a small critical angléforward-focusing ef-
interface. The calculation results of the mean relaxation timdect at the base/collector interface. The elastic scattering en-
7% by using this method are indicated by the solid line in hanced by this effect produces a large MR ratio detected at
Fig. 4. As seen in this figurer; is smaller thanr{ at the the voltage around 1 V.~ .
voltages below 1.5 V, and this difference betwegnand r* We succeeded in explaining the experimental results by

is larger as the voltage is lower. The voltage dependence (;[?kmg into account both spin and energy dependences of

S P Scatterings in the base of our model. However, for better
gLer rgﬂnlf-\zgrtlgg;(sa Icnhd;r::é?griggctsh?nslgigd |7m\?VIF? fglt?ﬁ defzjnrg 't:r:g fitting, it may be necessary to discuss the relaxation time for
. . . “'thes-d scattering in the ferromagnetic layer more rigorously.
6 thg? the forward-focusing effect of the SCh.OIFky barrlerFor example, if %ve use the selfg-]consistgnt Born agproxim);-
modifies the voltage-dependence of the MR ratio in the range | i s c;ilculation,A in the form of the DOS in thel
e oo Msssem o g R 1 pancs, Eq(25, may be found o be lagercue 0t
current increases almost linearly with voltage between 1. nce of inelastic scattering. This effect can also contribute to

; . . he monotonic decrease of the MR ratio.
and 1.5V, as is observed in the experiment. Although we did not discuss the tunnel magnetoresistance

(TMR) in ferromagnetic junctioi®*® which has also at-
IV. CONCLUSIONS tracted much interest since the discovery of the quite large

The authors reported on the voltage dependence of th-g'le’Sl'52 our formalism can be applied to the callculat|or_1.
MR ratio of the hot-electron deviceThe following two re- Many m(_)dels have already bee%r;_ps)goposed to Obta.m physwal
sults in this experiment should be noted. The first is that aﬁnslghts into this phenomend but our formalism in
MR ratio several times larger than the CPP MR was ob-thIS work may also be_useful for the study_of the TMR de-
served at voltages around 1 V. The second is that the MK!'CE; for example, .the influences of scattering by a magnon
ratio decreased monotonically over the voltage range in th@"d diffuse scattering on the TMR.
experiment and that no anomaly was observed at the voltage
(~1.5 V) corresponding to the peak in the DOS of the
minority-spin bands in Fe. The purpose of this work is to  One of the authorgT.Y.) would like to thank Dr. K.
explain these experimental results theoretically by using th&atoh of Medical Systems Company, Toshiba Corporation
model shown in Fig. 1. Since we need to take into accounfor fruitful discussions.

Voltage (V)
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