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Theoretical analysis of energy-dependent hot-electron transport in a magnetic multilayer

Takashi Yamauchi and Koichi Mizushima
Advanced Materials and Devices Laboratory, Corporate Research and Development Center, Toshiba Corporation, Kawasa

Kanagawa 210, Japan
~Received 14 September 1999!

We analyzed the voltage dependence of the magnetoresistance~MR! ratio of a three-terminal device whose
base consists of a magnetic multilayer. The spin-dependent current density of hot electrons in the base, which
are injected from an emitter by tunneling, were calculated by using the Liouville equation for the spin-
dependent Wigner distribution function. It was found to be necessary to take into account not only the spin
dependence of elastic scattering but also the energy dependence of inelastic scattering and, furthermore, the
forward-focusing effect of the Schottky barrier that exists at a base/collector interface, in order to understand
the large MR ratio observed in this device and its monotonic decrease with increasing applied voltage.
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I. INTRODUCTION

Monsma et al.1 and the present authors2,3 proposed a
three-terminal device where only hot electrons injected fr
an emitter into a magnetic multilayer in a base contribute
the collector current~hereafter, for simplicity, we call this a
hot-electron device!. In these works, the collector curren
was reported to change more than 200% under applicatio
a magnetic field. Moreover, according to the experimen
results in Ref. 2, the magnetoresistance~MR! ratio decreases
monotonically over the voltage range from 1 to 1.8 V and
voltage dependence does not reflect the density of st
~DOS! in thed bands in Fe. These experimental results are
great interest from both physical and practical points
view. In the analysis in Ref. 4, we divided thed bands into
parabolic bands~free-electron-like bands ofT2g symmetry at
G! and narrowd bands, and calculated their contributions
the current density. We found that the current-voltage ch
acteristics do not reflect the DOS in thed bands since elec
trons in the narrowd bands in the ferromagnetic layers a
very likely to be scattered in the base due to their la
effective mass and do not contribute to the current density
this paper, we make a more quantitative comparison with
experimental results, by taking into account both spin a
energy dependences of scatterings for electrons transpo
in the parabolic bands. In order to compute the MR ratio
the hot-electron device, it is necessary to take into acco
the tunneling through the barrier at the emitter/base interf
as well as the scattering in the base. We use one-dimens
Liouville equation for the Wigner distribution function5

~WDF!, which reduces to the Boltzmann equation6–10 in the
classical limit of\→0.4,11,12 This formalism has been use
to study the one-dimensional quantum-based devices m
of semiconductor layers.12–17 However, we encounter diffi-
culties as discussed below when we apply these WDF m
ods straightforwardly to the calculation of the current dens
in the hot-electron device. In Sec. II the reason that th
difficulties occur in the numerical calculation by the WD
formalism is clarified and a method is proposed to av
these difficulties. In Sec. III the calculation results are p
sented and the voltage dependence of the MR ratio for
hot-electron device is discussed.
PRB 610163-1829/2000/61~12!/8242~8!/$15.00
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II. FORMULATION

A. Modeling of the hot-electron device

In this section, we discuss the modeling of the h
electron device.2 In this device, only electrons with an en
ergy higher than the Schottky barrier heighteVb @;0.85 eV
~Ref. 2!# make a contribution to the collector current. In o
der to analyze the current-voltage characteristics in the ac
device, it is necessary to take into account the band ben
of the semiconductor collector, which is calculated by so
ing the transport equations with Poisson’s equat
self-consistently.18 In this paper, to simplify the numerica
calculation, we replaced the Schottky barrier at the ba
collector interface by a tunneling barrier, as shown in Fig.
In the voltage range above;1.5 V, this model leads to re
sults that are well fitted to the experimental results in Re
as discussed in Sec. III. Below;1.5 V, in contrast, the re-
placement of the Schottky barrier by the tunneling barr
causes considerable discrepancies between the results o
periment and calculation. This problem can be solved
taking into account, separately, the forward-focusing eff
of the Schottky junction.

We used the one-dimensional Liouville equation for c
culating the tunneling through the barrier and the scatter

FIG. 1. Schematic energy diagram of the model that consist
the layers Au~55 Å!//Au~20 Å!/Fe~15 Å!/Au~15 Å!/Fe~15 Å!/Au~15
Å!/Fe~15 Å!/Au~20 Å!//Au~55 Å!. The voltage is applied only
across the tunneling barrier at the emitter/base interface and
electrons are injected into a magnetic multilayer in the base.
horizontal dashed line in the base shows the bottom of the mino
spin band in Fe.
8242 ©2000 The American Physical Society
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in the base simultaneously. In the calculation, it was no
that the discretization of the Liouville equation results in t
violation of the principle of detailed balance.13 In other
words, we need to make the mesh spacings much fine
order to calculate the current density for an asymme
structure than for a symmetric structure. Therefore, we p
formed the calculation for the case in which the number
Fe layers in the base is three, as shown in Fig. 1, becaus
structure of this model is symmetric both in the parallel a
in the antiparallel configurations. We took the thickness
the layers as Au~55 Å!//Au~20 Å!/Fe~15 Å!/Au~15 Å!/Fe~15
Å!/Au~15 Å!/Fe~15 Å!/Au~20 Å!//Au ~55 Å!, respectively,
where the double slash represents the tunnel barrier wi
height of 1.5 eV and a width of 10 Å.

By calculating the current densitiesJP andJAP in the par-
allel ~P! and in the antiparallel~AP! configurations respec
tively, we can obtain the MR ratio from the following equ
tion:

MR5
JP2JAP

JAP
3100%. ~1!

Let us take the longitudinal direction as thex axis, and the
Hamiltonian that represents the electron transport of
model in Fig. 1 is written as

H52
\2

2m*
d2

dx2 1v~x!1h~x!s, ~2!

wherev(x) is the bottom of the conduction band andh(x)s
is the exchange energy atx, whereh(x) is the molecular field
in the Fe layer ands ~51 or 0! is the spin operator. This
Hamiltonian is similar to what Slonczewski proposed for d
cussing the spin-polarized tunneling between the ferrom
netic films through a thin insulating barrier.54 Furthermore,
we can take the effective massm* as 1 at every point in the
device, because the free-electron-like bands ofT2g symmetry
at G ~s-like bands! contribute dominantly to the electron con
duction in the ferromagnetic layers.

The Liouville equation can be introduced from th
Hamiltonian as follows:

] f s

]t
52

\kx

m*
] f s

]x
2

1

\ E
2`

` dkx8

2p
V~x,kx2kx8! f s~x,kx8!

[~L•f!s~x,kx!, ~3!

V~x,kx2kx8!52E
0

`

dy@v~x1y/2!1h~x1y/2!s

2v~x2y/2!2h~x2y/2!s#sin@~kx2kx8!y#,

whereL is called the Liouville superoperator.13 We solved
the Liouville equation ~3! numerically, referring to the
literature.13,18 By substituting the WDFf s(x,kx) obtained
from Eq. ~3! into the equations below, we can get the ele
tron density and the current density. The electron den
n(x) and the current densityj (x) that are consistent with th
Liouville equation~3! are represented by

n~x!5(
s

E
2`

` dkx

2p
f s~x,kx!,
d

in
c
r-
f
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d
f

a

e

-
g-

-
ty

j ~x!5(
s

E
2`

` dkx

2p

\kx

m*
f s~x,kx!. ~4!

Here, we adapted the open-system boundary condition13 to
solve Eq.~3!, and it is given by

f s, left
kx.0

5 f 0~kx!,

f s,right
kx,0

5 f 0~kx!,

f 0* ~kx!5
1

4p
~kF

22kx
2! ~ ukxu<kF!, ~5!

where f 0* is the Fermi-Dirac distribution function with the
transverse momentum components integrated out, and in
model, we set the Au layers of the emitter and collector
reservoirs where the Fermi-Dirac distribution function is r
quired.

B. Tunneling current through the single barrier

The WDF formalism has been used in order to calcul
the current-voltage characteristics of semiconductor devi
for instance, resonant tunneling diodes~RTD’s!, and the
methods for the numerical calculation have been studied
many papers. However, it is difficult to apply these WD
methods directly to the numerical calculation of the curre
density of the hot-electron device, since the metal/insula
metal tunnel junction in this device has much larger tun
resistance than the semiconductor I/ semiconductor
semiconductor I tunnel junction. This problem has be
pointed out by Jensen and Ganguly in their papers,19,20where
a detailed comparison of the WDF approach was made w
the Fowler-Nordheim approach21,22 for the field emission
from a metal into the vacuum. We propose a method to
prove the accuracy of the WDF calculation of the tunneli
current through the single barrier at the emitter/base in
face.

We consider the following sequence of potential barri
va :

va~x!5
h

G~111/a!
expF2S 2uxu

W D aG ~a>1!, ~6!

whereh andW denote the height and the width of the tunn
barrier at the emitter/base interface, respectively. The co
cient of the right-hand side of Eq.~6! is a normalization
factor. Figure 2 shows the energy diagrams for applying 1
across the barriers in the cases fora52, 4, and`, respec-
tively. It can be seen from this figure thatv` is the form of
the abrupt potential barrier and that makinga small corre-
sponds to smoothing out the potential barrier. In particu
whena52, we can calculate the potential term of the Lio
ville equation exactly and it is written as follows:

V~x,kx!54hWe2kx
2W2/4 sin 2kxx. ~7!

Here, we consider the following scale transformation:

t̃ 5 t̃t,

k̃x5kx /kF ,
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x̃5kFx,

h̃54h/EF ,

W̃5kFW/2,

t̃52EF /\. ~8!

The Liouville equation~3! and the potential term~7! are
transformed into

] f̃ s

] t̃
52 k̃x

] f̃ s

] x̃
2h̃E

2`

` dk̃x8

2p
ṼW̃~ x̃,k̃x2 k̃x8! f̃ s~ x̃,k̃x8!,

ṼW̃~ x̃,k̃x!5W̃e2W̃2k̃x
2
sin 2k̃xx̃,

f̃ s~ x̃,k̃x!5 f s~ x̃/kF ,kFk̃x!/kF
2, ~9!

and Eqs.~4! and ~5! are also transformed into

n~ x̃!5kF
3(

s
E

2`

` dk̃x

2p
f̃ s~ x̃,k̃x!,

j ~ x̃!5kF
4(

s
E

2`

` dk̃x

2p

\ k̃x

m*
f̃ s~ x̃,k̃x!, ~10!

f̃ 0* 5
1

4p
~12 k̃x

2! ~ uk̃xu<1!. ~11!

These equations imply that if two systems have the sa
values of h̃ and W̃, the WDF f s(x,kx) of each system is
obtained from the same functionf̃ s defined on the phas
space (x̃,k̃x). Roughly speaking, we can consider that s
tems with the same tunnel resistance are connected via
transformation~8!. For example, the two systems with p
rametersEF52 eV, m* 51, h53.5 eV, W510 Å and with
those EF850.05 eV, m* 850.068, h85 0.0875 eV, W8
5242 Å have the same tunnel resistance. We have discu
the Liouville equation with the potential term~7!, but it can

FIG. 2. Potential diagrams for applying 1 V across the barriers
in the cases thata52,4,̀ . The interface of the barrier become
smoother for smaller values ofa.
e

-
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ed

be easily found that this transformation~8! is valid for the
Liouville equation with the general potential term, moreov
including the collision term.

Next, we discuss the calculation results of the tunnel
current through the single barrier at the emitter/base in
face. The mesh spacingDx8 is taken as about a lattice con
stant~;10 Å! in the RTD simulation. Therefore, we dete
mined the mesh spacingDx in our model as 0.41 Å
(5Dx8kF /kF8 ), according to the above discussions. We to
the cutoff of the Fourier transform in the Liouville equatio
~3! as 2p/Dx and the number of discretization points in th
longitudinal momentum spaceNkx

as 300 and calculated th

current density in the steady state (] f /]t50). Shown in Fig.
3 is the current density at 1 V against the barrier width. The
dotted line in this figure illustrates the calculation result
the case fora5`. In this case, we find that the curren
density decreases as the barrier width increases and bec
nearly constant in the range of width larger than about 5
However, the current density is considered to decre
monotonically even in this range, as shown by the stationa
state model.23,24 Therefore, the results by the WDF metho
are not reliable in this range. The tunnel resistance of
insulating barrier can be found from Eq.~8! to correspond to
that of the semiconductor barrier of 100 Å thickness. The
fore, we can consider that the calculation results by the W
method are sufficiently reliable for RTD’s with barriers o
30–60 Å thickness, even though those barriers are the r
angular barriers. In contrast, the calculation is not reliable
the case of the present device with rectangular barriers of
eV height and 10 Å thickness. One method to settle t
problem may be making the mesh spacingDx finer, although
the CPU time is too large.

Alternatively, in this paper, we performed this calculatio
by smoothing out the potential barrier.19 As seen in Fig. 3,
the current density decreases with the barrier thickness m
sensitively for a smaller value ofa. Therefore, we took the
tunneling barriers both at the emitter/base and at the b
collector interfaces as the Gaussian potential barrier of
~7! to improve the reliability of the calculation. The reaso
why smoothing out the potential barrier is of great advanta
in the numerical calculation by the WDF formalism can
explained as follows. The Fourier transform of the rectan
lar potentialv`(x) is written as 2 sin(Wkx/2)/kxW and oscil-
lates in the momentum space. Since the oscillation pe

FIG. 3. This figure shows the current density through each b
rier shown in Fig. 2 against its thickness.
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becomes shorter as the barrier width gets larger, we nee
increase the number of grid points in the momentum sp
intensively. On the other hand, the Fourier transform
Gaussian potential is exp@2(Wkx/2)2#, which changes mono
tonically in momentum space and is much easier to
handled in the form of a discrete Fourier transform.25 There-
fore, smoothing out the potential barrier enables us to p
form a numerical calculation by the WDF formalism within
shorter CPU time and to make this calculation very stab
Moreover, we may consider that the potential barrier in
actual device is nearly Gaussian for the following two re
sons: for rounding off the corners of the barrier by the ima
charge effect and for the spacial variation of the composit
x of the AlOx barrier fabricated by the oxidizing Al surface
Accordingly, we were willing to use this method in the WD
formalism.

C. Collision term

The collision term in the one-dimensional Liouville equ
tion ~3! has been discussed in many papers.26–29It is usual to
use the collision term in the relaxation-time approximati
represented by

S ] f

]t D
C

5
1

t* S * f ~x,kx!

* f eq~x,kx!
f eq~x,kx!2 f ~x,kx! D , ~12!

where f eq(x,kx) is given by the solution toL•f50 in the
unbiased steady state. This collision term was introduced
Jensen and Buot27 from the general form

S ] f

]t D
C

5E
2`

` dkx8

2p
@Wk

x8 ,kx
f ~x,kx8!2Wkx ,k

x8
f ~x,kx!#,

~13!

under the assumptions that this equation satisfies the det
balance condition and that thekx dependence ofWk

x8 ,kx
is

sufficiently small. The relaxation-time approximation has t
advantage of combining some different scattering proce
in one parametert* . Of course, the collision term~13!
makes it possible for us to calculate the current-voltage c
acteristics by using a more realistic model of random sc
tering processes. However, we do not have a general me
to obtain the transition ratesWk

x8 ,kx
from the three-

dimensional transition ratesWk8,k such that the collision
term ~13! does not violate the detailed balance condition.26,28

Therefore, we used the collision term in the relaxation-ti
approximation of Eq.~12! in this work. The energy depen
dence of relaxation time cannot be taken into account in
term, since we have no information on the energy for a
jectory in the phase space (x,kx). Usually, we use the relax
ation time that is averaged with respect to the energy acc
ing to

t* 5E
0

`

dE E3/2f 0~E!t~E!Y E
0

`

dE E3/2f 0~E!, ~14!

where f 0 is the Fermi-Dirac distribution function.30 How-
ever, in the hot-electron device, only electrons in the narr
energy range~;0.5 eV! near the Fermi level in the emitte
are injected into the base due to the strong energy de
dence of the tunneling probability for the electrons. The
to
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fore, it is not adequate to determine the mean relaxation t
of injected electrons by using Eq.~14!. Thus, we propose the
following equation:

t* 5E
0

`

dExT~Ex!E
0

`

dEtt~Ex1Et! f 0~Ex1Et!

3S E
0

`

dExT~Ex!E
0

`

dEt f 0~Ex1Et! D 21

~15!

[^T&E , ~16!

whereT(Ex) is the transmission probability through the ba
rier at the emitter/base interface for an electron with ene
E5Ex1Et , which is calculated by the stationary-sta
model.23,24Since the denominator of Eq.~15! is proportional
to the flux of electrons injected into the base from t
emitter,31 we can regardt* as the mean relaxation time o
electrons injected into the base.

D. Elastic scattering

We may need to take into account a number of sp
dependent scattering processes for the entire understan
of the voltage dependence of the MR ratio detected in
hot-electron device.2 In this paper, in particular, we took into
account the elastic scattering by defects and the inela
scattering by the Fermi sea, which were considered to be
principal influences on the electron transport in the base
the case of the analysis of the CPP~current perpendicular to
plane! MR, on the other hand, the effect of the spin-fl
scatterings on the MR ratio has been studied in many pap
for example, the scattering by an impurity with a loc
moment,4,32–34 by a magnon,35 and by domain walls.36 Ac-
cording to the experimental results,3,37,38 the spin diffusion
length is about two orders of magnitude larger than the m
free path for elastic scattering by defects and is much lar
than the total thickness of the base layers of the hot-elec
device. Therefore, we considered that the spin-flip scatte
has a small influence on the voltage dependence of the
ratio at voltages between 1 and 1.8 V in the experiment2 and
neglected the effect of the spin-flip scattering in this work

The interaction with a defect is given by the screen
Coulomb interaction:39

V~r !5
2Ze2

4pe0

e2ur2r0u/lsc

ur2r0u
,

wherelsc, e0 , andZ are the screening length, the permitti
ity of vacuum, and the number of valence electrons in
metal, respectively. The relaxation time for an electron sc
tered by a defect in a free-electron-like metal is written
follows:

te
s→s~E!5

8p\3e0
2k3

Ne4m* Z2 F ln~114lsc
2 k2!2

1

11~4lsc
2 k2!21G21

,

E5
\2k2

2m*
, ~17!

whereN is the defect concentration.30 However, we should
consider that the relaxation time for an electron in the
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layer is spin dependent, according to Mott’s transp
theory.40,41 That is, electrons transport mainly in the bro
bands and the vacant narrowd bands act as final states o
scattering of electrons scattered elastically or inelastica
Therefore, the relaxation time for a minority-spin electr
reflects the DOS in the minority-spin band and is mu
smaller than that given by Eq.~17!.

Let these transition rates from as state to ad state be
Ws→d , and this collision term can be written as

S ] f

]t D
C

5E
2`

` dkx8

2p
@Wd→s,k

x8 ,kx
f ~x,kx8!

2Ws→d,kx ,k
x8
f d~x,kx!#, ~18!

where f d denotes the distribution function of an electron
the d bands and the relaxation timete

s→d is defined by

1

te
s→d 5(

kx8
Ws→d,kx ,k

x8
. ~19!

Here, noting that the energy of an electron is conserved
the process of elastic scattering, we may write Eq.~19! as

1

te
s→d~E!

;
1

te
s→s~E!

Dds~E!

Ds~E!
. ~20!

In addition, electrons in the narrowd bands, as already
stated, do not contribute to the current. Thus, we can in
duce the collision term in the relaxation-time approximati
for s-d scattering in the Fe layer as follows:

S ] f

]t D
C

5
f ~x,kx!2 f eq~k,kx!

te*
,

te* 5 K te
s→s Ds

Dds
L

E

. ~21!

This collision term~21! represents that assumption th
electrons scattered to ad state do not contribute to the cu
rent. Moreover, the mean relaxation timete* in this term has
strong voltage and spin dependences for electrons trans
ing in the Fe layer, since it reflects the DOS in thed bands.
It is sufficient to take into account onlys-d scattering in the
Fe layer, because it causes a much larger reduction of cu
density thans-s scattering. Thus, we used the collision ter
~21! for the elastic scattering in the Fe layer and the collis
term ~12! for that in the Au layer.

E. Inelastic scattering

We refer to the calculation results by Quinn a
co-workers42–44 regarding the relaxation time for inelast
scattering. They had derived the following formula from t
imaginary part of the self-energy of an excited electron:

1

t i
s→s~E!

5
e2

\p2 E
EF,E~k2k8!,E~k!

d3k8

k82

Im@e~k8,DE!~k8!#

ue„k8,DE~k8!…u2

~22!
t

y.

in

-

rt-

nt

n

'
e2

\a0

Ap

32~ar s!
1/2F tan21S p

ar s
D 1/2

1
~ar s /p!1/2

11ar s /p G @~k/kF!221#2

k/kF
,

a[S 4

9p D 1/3

, ~23!

where e„k8,DE(k8)… is the Lindhard dielectric constant45

andkF , r s , anda0 are the Fermi wave number, the Wigne
Seitz radius, and the Bohr radius, respectively. We took
Wigner-Seitz radiusr s in Au as 3, although, strictly speak
ing, Eq. ~22! is justified in the random-phase approximatio
(r s'1). By substituting this value ofr s into Eq. ~22!, we
found that the individual particle collision is dominant fo
electrons with energy lower than 2 eV and that Eq.~22! is
approximated by Eq.~23! in this energy range. Furthermore
we found that the mean free path is 200 Å at 1 eV a
reduces to 70 Å in going from 1 to 2 eV. Regarding t
lifetime of a hot electron transporting in the Fe layer, thes-d
transition is the most important factor that causes strong
elastic scattering and its spin dependence. We represe
the relaxation time for inelastic scattering by modifying E
~20!. Since the final states of inelastic scattering have
energy range DE @.\/t i

s→s(E)#, we averaged
Dds(E)/Ds(E) over the rangeDE. Thus, we can write the
relaxation time for inelastic scattering as

1

t i~E!
5

1

t i
s→s~E! K Dds~E!

Ds~E! L
DE

1
1

t i
s→s~E!

, ~24!

where ^¯&DE denotes averaging over the energy range
final states of scatteringDE. The averaging makes the re
flection of the energy dependence of the DOS in the rel
ation time smaller, and therefore the spin dependence o
elastic scattering becomes weaker than that of ela
scattering. In fact, the lifetime of hot electrons in fcc cob
measured by a two-photon photoemission technique46 shows
weak spin dependence.47

Here, we should remark that electrons scattered inela
cally either to ans state or to ad state flow out from the base
due to the reflection at the Schottky barrier at the ba
collector interface. Therefore, we need to use the collis
term ~21! for inelastic scattering and it is given by

S ] f

]t D
C

5
f ~x,kx!2 f eq~x,kx!

t i*
,

t i* 5^t i&E . ~25!

III. RESULTS AND DISCUSSIONS

A. The mean relaxation time

We analytically represented the DOS in thed bands in Fe
~Ref. 48! by using the Lorentzian4,34 as follows:

Dds~E!5
5a

pa3

D

~E2Ēs!21D2
, ~26!
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whereĒ↑ , Ē↓ , EF , hs, andD are 1.2, 1.4, 2.5, and 0.4 eV
respectively, the number of atoms in the unit cella is 2 for
bcc, and the lattice constanta is 2.867 Å. The DOS in Au for
energyE, taking it as a free-electron-like metal, is written

Ds~E!5
3

2

a

a3

AE

EF
2/3, ~27!

whereEF is 2 eV,a is 4 for fcc, anda is 4.079 Å.
In Fig. 4 the mean relaxation timet* for an electron

transporting in the Fe layer is shown as a function of b
voltage applying between the emitter and the base. The
ted line indicates the mean relaxation time for elastic scat
ing with 0.5% defect and the dashed line indicates the t
relaxation timet t* 5(1/te* 11/t i* )21 ~Matthiesen’s rule30!.
We found from this figure thatte* reflects the DOS in thed
bands and that a minimum exists for a minority-spin elect
at the voltage~;1.5 V! corresponding to the peak of th
minority-spin bands in Fe. However, including the inelas
scattering, this minimum does not appear clearly, beca
the inelastic scattering with a weak spin dependence is do
nant in the higher-voltage region.

B. Calculation results of the MR ratio

Next, we calculated the MR ratio of the model in Fig.
We took Nkx

as 360 for solving the Liouville equation~3!.
First, we studied the dependence of the current density on
strength of elastic scattering that was changed by the unif
concentration in the base layers. The results of these ca
lation are shown in Fig. 5. As the defect concentration
creases, the difference between configurations was foun
become large. Taking the defect concentration as 0.5%
calculated the voltage dependence of the MR ratio. As ill
trated by the dotted line in Fig. 6, the voltage dependenc
the MR ratio reflects the DOS in thed bands in the Fe layers
and a maximum exists at about 1.5 V corresponding to
peak in the minority-spin band. As shown by the dashed l
the inclusion of inelastic scattering smooths out this peak
the MR ratio decreases slowly with voltage in a range hig
than 1.5 V. This voltage dependence is ascribed to that of
mean relaxation time shown in Fig. 4. Therefore, we c

FIG. 4. The voltage dependence of the mean relaxation tim
electrons injected from the emitter and transporting in the Fe la
↑ and↓ show the spin directions of a majority- and minority-sp
electron, respectively.
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conclude that inelastic scattering affects the voltage dep
dence of the MR ratio considerably at voltages above 1.5
At voltages below 1.5 V, however, the MR ratio increas
monotonically with the voltage, and this result is differe
from the experimental result.2 This discrepancy is caused b
the forward-focusing effect of the Schottky barrier, whic
has not been taken into account in our calculation as
cussed below.

C. Forward-focusing effect of the Schottky barrier

For a hot electron to flow into the collector its energ
must be aboveeVb and thereby its trajectory is limited to
within the critical angleuc to the normal of the Au/Si inter-
face, as discussed in Ref. 2. Therefore, hot electrons s
tered in the base are unlikely to flow into the collector.
other words, we can consider that the scattering in the ba
enhanced by the forward-focusing effect of the Schottky b
rier at the base/collector interface and the mean relaxa
times should be shorter than those calculated by Eq.~15!.
This critical angleuc is estimated to be 15° for an electro
with energy 1 eV and naturally 0° for an electron with e
ergy lower than the Schottky barrier height. It is necessary
use the three-dimensional model in order to discuss this
fect rigidly. In this work, we propose a simple method
take into account this effect in the one-dimensional transp
model. That is, we tookt(Ex1Et) as 0 forEx<eVb in Eq.

of
r.

FIG. 5. This figure shows the current density through the mo
shown in Fig. 1 at 1 V as afunction of defect concentration in th
base layers.↑ and↓ mean the same as those in Fig. 4. The symb
P and AP denote the parallel and antiparallel configurations, res
tively.

FIG. 6. The voltage dependence of the MR ratio. The data p
ted in each line were calculated by using the mean relaxation ti
shown by the same line in Fig. 4.
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~15! with the meaning that hot electrons with energyE
(5Ex1Et) cannot flow into the collector if they reach th
base/collector interface outside the angleuc

5tan21A(E2eVb)/eVb to the normal of the base/collecto
interface. The calculation results of the mean relaxation t
ts* by using this method are indicated by the solid line
Fig. 4. As seen in this figure,ts* is smaller thant t* at the
voltages below 1.5 V, and this difference betweents* andt t*
is larger as the voltage is lower. The voltage dependenc
the MR ratio is indicated by the solid line in Fig. 6 and th
current-voltage characteristics in Fig. 7. We found from F
6 that the forward-focusing effect of the Schottky barr
modifies the voltage-dependence of the MR ratio in the ra
lower than 1.5 V and can account for the large MR ra
observed in this region. Moreover, as seen in Fig. 7,
current increases almost linearly with voltage between
and 1.5 V, as is observed in the experiment.2

IV. CONCLUSIONS

The authors reported on the voltage dependence of
MR ratio of the hot-electron device.2 The following two re-
sults in this experiment should be noted. The first is that
MR ratio several times larger than the CPP MR was
served at voltages around 1 V. The second is that the
ratio decreased monotonically over the voltage range in
experiment and that no anomaly was observed at the vol
~;1.5 V! corresponding to the peak in the DOS of t
minority-spin bands in Fe. The purpose of this work is
explain these experimental results theoretically by using
model shown in Fig. 1. Since we need to take into acco

FIG. 7. The current-voltage characteristics obtained from
Liouville equation with the collision term includingts* . The sym-
bols P and AP mean the same as those in Fig. 5.
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the tunneling through the barriers for a hot electron, inclu
ing the scattering events in the base, we used the WDF
malism. Based on the calculation results in the previo
paper,4 we postulated the Liouville equation for an electro
transporting in the free-electron-like bands in the base lay
Namely, electrons in the narrowd bands do not contribute to
the electron conduction in the Fe layer in our model. Ho
ever, the vacant narrowd bands act as final states of scatte
ing in the ferromagnetic layer, according to the Mott’s tran
port theory.40,41 Taking this effect into account, we studie
the electron transport in the base. In particular, we poin
out the importance of both the elastic scattering by defe
and the inelastic scattering in the Fe layer. From the ca
lation results of the voltage dependence of the MR ratio,
arrived at the following two conclusions:

~1! The spin dependence of the total relaxation time
comes weak in the region of voltage over 1.5 V, since
influence of inelastic scattering becomes strong. This lead
the result that the voltage dependence of the MR ratio d
not reflect the DOS in Fe.

~2! Particular importance should be accorded to elect
refraction with a small critical angle~forward-focusing ef-
fect! at the base/collector interface. The elastic scattering
hanced by this effect produces a large MR ratio detecte
the voltage around 1 V.

We succeeded in explaining the experimental results
taking into account both spin and energy dependence
scatterings in the base of our model. However, for be
fitting, it may be necessary to discuss the relaxation time
thes-d scattering in the ferromagnetic layer more rigorous
For example, if we use the self-consistent Born approxim
tion in this calculation,D in the form of the DOS in thed
bands, Eq.~26!, may be found to be larger due to the influ
ence of inelastic scattering. This effect can also contribute
the monotonic decrease of the MR ratio.

Although we did not discuss the tunnel magnetoresista
~TMR! in ferromagnetic junction,49,50 which has also at-
tracted much interest since the discovery of the quite la
TMR,51,52 our formalism can be applied to the calculatio
Many models have already been proposed to obtain phys
insights into this phenomenon,49,53–55but our formalism in
this work may also be useful for the study of the TMR d
vice, for example, the influences of scattering by a magn
and diffuse scattering on the TMR.
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