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Scattering of electromagnetic waves by nearly periodic structures
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We present a method, based on the coherent potential approximation, for the treatment of disorder in
photonic crystals. We apply the method to the study of light absorption by a three-dimensional array of plasma
spheres distributed randomly in a host dielectric medium. We find that the effect of disorder on the absorbance
of a thick slab of the material consisting of many layers of spheres is much less pronounced than in the
corresponding case of a single layer of spheres.

[. INTRODUCTION sch and Perssdi,in the limit when the electrostatic approxi-

In recent years, photonic crystals, i.e., composite materimation is valid(the interparticle distance is much smaller
als with a dielectric function that is a periodic function of the than the wavelength of light, and the fractional volume oc-
position, have attracted much interest, mainly because of theupied by the spheres is relatively smalfwo of us® pre-
possibility of frequency gaps in such systems, which in turnsented a CPA treatment of light scattering by a disordered
promises revolutionary applications in optoelectrorics. 2D array of nonoverlapping spheres, which remains valid for
For different reasons there has been for many years a lot &Y frequency of the incident light and for any concentration
interest in the optical properties of energy-absorbing smalPf the spheres. In the present work we extend the method
metallic particles distributed periodically or randomly in a Presented in Ref. 15 to a 3D array of spheres. This is done in
host dielectric medium. Such systems are used, e.g., as comec. Il The_numerlcal implementation of_the formghsm and_
ings for solar energy absorbefd. The theoretical analysis in SOme technical aspects of the computation are discussed in
this second category is essentially the same as for photoni€C- lll. In Sec. IV we use our method to study the absorp-
crystals consisting of dielectric spheres in a medium of dif-tion of light by a finite slab consisting of metallic particles
ferent dielectric function. In either case, the problem is mucHPlasma spheresdistributed randomly in a host dielectric
easier to solve for a periodic than for a non-periodic arrangeMedium. We compare the above quantity with the corre-
ment of spheres. sponding one for a periodic structure. Moreover, we compare

Most of the theoretical analysis relating to photonic crys-the effects of disorder in 3D systems with the effect of the
tals, so far, has been based on the assumption of perfee@me in 2D systems.
periodicity®~*! And yet it is important to know, what the
effect would be of deviation from periodicity on the size of Il. THEORY
frequency gaps and other important parameters, since real
systems are more likely to involve some deviations from
periodicity. The actual amount of disorder would depend of In general, the system we are considering consists of a
course on the type and on the precision of the fabricatiomumber of planes of nonoverlapping spheres parallel to the
technique usedf*Even greater deviations from periodicity xy plane. We refer to it as a slab. The spheres of ite
are evident in systems of small metallic particles in a dielecplane belong to one or the other of a small set of different
tric medium since the size, shape, and the distribution of thepheres denoted by, , B,, I',, etc.. This means that some
particles is usually not uniform** Some attempts to account of the spheres may be larger than the fastlong as they do
for deviations from periodicity in two-dimensionéD)*>®  not overlap or that they are characterized by a different
and three-dimensiongBD) structure$’ have already been (complex dielectric function:e,.aeq, €,.5€0, €tc., wheree,
made but a lot remains to be done. is the permittivity of vacuum. The spheres of a given plane

In the present paper, we develop a formalism for estimatoccupy a fraction of the sites of a 2D space lattice, which is
ing the effect of disorder on the optical properties of a systhe same for all the planes of the slab and is given by
tem that consists of nonoverlapping spheres in a host me-
dium. The formalism is based on the so-called single-site R,=Nn;a;+ Nya, 1)
coherent potential approximatiofCPA), which has been
used extensively in the study of the electronic properties ofvherea; anda, are primitive vectors in thecy plane and
disordered alloy$®=?° and is expected to give reasonably n;,n,=0,=1,+2,+3,.... Wenote, however, that the frac-
good results at least in the case of relatively weak disorder. Aion of the sites that are occupied by one or the other type of
CPA treatment of disorder has been applied to the study afphere may be different for different planes. The medium
the optical properties of randomly distributed spheres in a 2between the spheres in the slab is characterized by a real
lattice by Persson and Liebsétand in 3D lattices by Lieb- dielectric functione(w)e, and may be different from the

A. The Model
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dielectric function of the medium on either side of the slab.c denotes the velocity of light in vacuum. We need not write
The idea of the CPA is to replace each plane of spheres, bgown explicitly the magnetic-field component of the EM
effective (frequency-dependenscatterers occupying all the wave.
sites of the lattice given by E@l); the scatterers of a given E(r) is expanded in spherical waves as follows
plane being the same, but possibly different from those of the
other planes of the slab. As shown originally by So¥&m ol
relation to electron scattering by atomic centers, there is a E(r)=|§l m:z_l
way to obtain the effective scatterers so that, scattering by
the effective periodic structurgeriodic in thexy plane in oH- N
our casg produces the best approximation to the given prob- +aim 1(ar) Xm(r)
lem, that can be obtained by a corresponding periodic struc-
ture. Being a single-site approximatiok-independent effec- where X,,,(r) are the usual vector spherical harmonits,
tive scatterey, the method cannot deal with phenomenadenotes the angular variablesrof andj,(qr) is the spheri-
which are associated with large deviations from periodicity,cal Bessel function. The Coefﬁcienaﬁrﬁ’, where P=E,H,
but it can describe satisfactorily phenomena, such as thosge written as
we shall be considering in this paper, which result from a
relatively weak disorder. op op

Our main objective in this section is to obtain the equa- a|m=§i: Aim:i(d) Eo;i(Q), ©)
tions that determine the above-mentioned effective scatter-
ers. Once these have been determined, the calculation of theherei=x,y,z. Explicit relations for the coefficientAf’nﬁ’;i
coefficients of transmission and absorption of light by theare to be found in Ref. 23. In general, when a wave is inci-
slab proceeds as in the case of periodic structures, which weent on a sphere, centered at the origin of coordinates, there
know how to do>*?*=2°In what follows we shall need, results a scattered wave given by
besides the space lattice of E{), the corresponding 2D
reciprocal lattice defined by

i R
g anEV X ji(ar) Xim(r)

®

i R
g aeV X (gr)Xim(r)

£ I
E5°(r)=|21 sz—I

g=m;b; +myb,, (2
wherem; ,m,=0,+1,=2,+3,... andb,,b, are primitive Latrht (an X (f 10
vectors defined by im Ny aAn)Xim(r) |, (10)
bi-aj=2m8;, i,j=12. (3) where h;"(qr) is the spherical Hankel function. The total

wavefield outside the sphere is the sum of the fields given by

Egs.(8) and(10). The coefficientsaf[np of the scattered field

are related to those of the incident wave through the scatter-
We must now introduce a few formulas that we need foring matrix T(w). We have

the development of the CPA method in relation to electro-

magnetic(EM) waves. We recall that a plane EM wave, of at=Ta. (12)

frequencyw and wave vectod, propagating in a homoge- Here and throughout the paper, a matrix notation in the

neous medium chargctc_enzed by a real dlelgctrlc funCtIonrepresentatiorimP is implied. In the case of an ordinary
e(w) €y, has an electric-field component described by

spherical scatterer, thd matrix is diagonal: T, .,
E(r,t)=ReE(r)exp —iwt)] (4 =T].61 Smm Opp but, the CPA effective scattering matrix,
to be introduced in what follows, turns out to be non-

diagonal even for spherical scatterers.

B. General formulas

with

E(r)=Eo(q)expiig-r). (5)

For our purposes it is convenient to write the component of
the wave vector parallel to the plane of spheres as follows

C. The CPA equations

We assume, to begin with, that the¢h plane of spheres
(the nonperiodic array of different spheres described in Sec.
—Kki+q' (6) I A) can be described, in the spirit of the CPA method, by a
a=xr9, C el
periodic array of same spheres centered on the lattice sites
wherek is the reduced wave vector gf lying in the surface  given by Eq.(1); each sphere is represented by an effective
Brillouin zone (SB2) corresponding to the reciprocal lattice matrix (T), to be determined. When the plane wave of Eq.
of Eqg. (2) and g’ the appropriate reciprocal-lattice vector. (4) is incident on this plane of spheres, the wave scattered
Similarly, we write the wave vector of a plane wave of givenfrom the central spher@at n;=n,=0) is given by
frequencyw and a given component parallel to the plane of
spheresg=k;+g, as follows b*=(T),b° (12

Kg =(kj+9,£[0* (kj+9)%]"2). (7) b= (a’+b"), (13

We assume throughout that the relative permeability of allvhere b® stands for the total wave incident on the central
constituent materials equals unity, so that \ew/c, where  sphere;a° represents the incident plane wave afdtakes



PRB 61 SCATTERING OF ELECTROMAGNETIC WAVES BY ... 8101

into account the wave incident on the central sphere, whiciThe effective CPA matrice¢T),, v=1,2,... N, are ob-
is due to the waves scattered from all the other spheres of thained, in the manner originally proposed by SoVmy
plane. We know th&#2* demanding that the scattered wave of E20) vanishes on
averaging, i.e., we demand that
b'=Qb". (14

The matrix elements of) depend on the geometry of the C,o(l—AT, 8% 1AT, =0, »=12...N,
plane, on the reduced wave veckgrand on the frequency a ’ ’ '

of the incident wave. They depend also on the dielectric (21
function of the medium surrounding the spheres, but they d
not depend on the scattering properties of the individualL
spheres. We need not give here the explicit expressions for
the matrix elements of2, which can be found in Refs. 23
and 24. By combining Egg12), (13), and(14) one obtains 2 C,.=1. (22

0_ -1,0
b'=[1-(T),]""a". 19 Equation (21) determines uniquely the effective matrices
When the plane of spheres under consideration is one of tr’(e|->w v=1,2,... N, which appear in the propagato@o
planes of a slaba’ includes besides the externally incident (see below. We note that Eq(21) is the extension of the
light, that which is due to the waves scattered by the otheCpA condition, derived earlier, for a single plane of scatter-
planes of the slab. ers[see Eq(12) of Ref. 15. In order to proceed further, we
Let us now replace the scatterdh), at the central sphere oo an explicit expression f@°°. One can see that this

of the vth plane by an actual scatter@;,(a=A,, B,.  gperator can be written as a sum of three terms as follows
I',, ...).Then the scattered wave from this sphere consists

of the term given by Eq(12) and, to begin with, an addi- o _ o
tional term given by GP=D%+ > PO(T), D"+ P, (23
n

here C,., denotes the concentration of the scattener
A,, B,, I',, etc. of thevth plane. Obviously,

AT, .b°, (16) . =nm . .
’ The matrixD" represents all the possible scattering paths

where within the vth plane by which a wave outgoing from theh
sphere of this plane produces an incident wave onntthe

AT, a=Tua=(T)y. (17) sphere of the same plane, after scattering in all possible ways

The wave obtained from Eq16) will be multiply scattered by all the spheres of this plane including the central sphere

by all the spheres in the slalincluding the central sphere of (every sphere represented §F),). D"™ has been discussed

the vth plane(represented byT),), producing a further con- in Ref. 15 and we need not repeat the arguments here. We

tribution to the incident on this sphere wave, which may behave

written as follows

~ 1
GSOATV;abO, (18) ng(w)= g] ,fSBZdZKHquikH. an)DV(kH Tw) (24)

where G%° represents the contribution of all possible paths o _ . _
by which a wave outgoing from the central sphere of ttte D, (ki @) =[1=Q(kj;0)(T(@)),] (K| @), (29)
plane[represented by a set of coefficients in the way that theyhereR,,,=R,— R, S is the area of the SBZ correspond-
wave described by Eq10) is represented by the coefficients jng to Eq.(2), andQ(k; ; ) is the matrix introduced by Eq.
a,}P] produces an incident wave on the same sphipre-  (14).

sented by a set of coefficients in the way that the wave de- The matrixP?" appearing in the second and third terms of
scribed by Eq.(8) is represented by the coefficierag, ], Eq. (23) represents all scattering paths by which an outgoing
after scattering in all possible waysequencesby the scat-  \aye from thenth sphere of thevth planeexits from that
terers(T),, A=1,... N, at all sites of theN planes. Be- pjane to produce an incident wave on the central sphere of
cause of Eq(18), there will be a further contribution to the the same plane after scattering in all possible ways by all the
scattered wave from the central sphere ofttteplane given planes of spheres of the slab, including #th plane. In the

by next section we show how to calcula®@" and G%°.

AT, ,GOAT, b°. (19 ~ B
. o _ _ D. Calculation of P>" and G2°
The same process is repeated infinitely many times and this

leads to the following expression for the scattered wave from A Wave outgoing from theth sphere of the'th plane has
the central sphere of theth plane due t&\T,, the form

0 |
~00 ~00 ~00 0
(I +ATV;CZGV +ATV;LYGV ATV:(IGV + . ')ATV;ab ESC(r):Z 2
=1

— b E(n; ) VX (Ar,) Xim(Thy)
m=—1 19

=(1—AT, G2 1AT, b for »=1,2,...N.
(20) +bi ;v () Xim(Toy) | (26)
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wherer,, is the position vector with respect to the cenatr
R,) of the nth sphere of thesith plane. Using the following
identities

" (Arn) Xim( )

1 X o
:gf SBZdeH% Aﬁm(Ka)equKa_rnv)

(27)

i R
aVX " (arn,) Xim(F )

' rnv)

1 o
“of L3 stk

(28)
with

2m(—i)
Al =22
gz

+

Xim(Kg)

(29

+

+ K7 +
Af(Kg) == =X A(Kg),

whereA is the area of the unit cell of the space lattice given

by Eqg.(1), we can expand the wave of E6) into a sum of
plane waves propagating or decaying away from thie
plane as follows. To the right of theth plane we have

1
Eout +(r)= gJ JSBZdzk%: Egut +(kH)

X exp{iKg -[r—A(v)]} (30)
with
Egi " (k) =exp{—ilkj-Ry—Kg - di(»)]}
o |
x> 2 2 ALL(KHObir(n;w),
[=1m=-1 P=EH
(3D)

wherei =x,y,z andA,(v) is a reference point on the right of
the vth plane ad,(v) from its center(see Fig. 1 To the left
of the vth plane we have

1
pout (r)= gJ JSBZdzkzg: Ecg)ut 7(kH)

xexpliKy -[r—A|(v)]} (32
with
Egi' ~(kp=exp[—i[kj- Ry +Kg - di(»)]}

xé})

m=—

> AR (Kb (N ),
I P=EH

(33
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FIG. 1. TheQ matrices appearing in Eq42). The position
vectorsd, , d, of the vth layer along with the corresponding origins
A, A, are also shown.

whereA(v) is a reference point to the left of theh plane
at —d,(v») from its center(see Fig. 1. The plane waves of
Eq. (30) will be multiply reflected between two parts of the
slab, the firstright par) consisting of all planes to the right
of the vth plane, and the secor{teft parp consisting of all
planes to the left of they+ 1)th plane(including the vth
plane, to produce a set of plane waves incident on ttie
plane from the right, which we can write formally as follows

in — _i 2 in —
: (r)_ Sof fSBZd k”EQ Eg (kH)

Xexp(iKy - [r—An(v)]} (34
with
Egi (kp=2 {Q"(»RI[1-Q"(»+1;L)
g'i’
XQ"(riR] Mg Egy (K, (39)

whereQ"(v+1;L) andQ"'(v;R) are the appropriate matri-
ces that determine the reflectigliffraction) of a plane wave
[defined by Eq(7)] by the left and the right parts of the slab
respectively, as defined above. These matrices are shown
schematically in Fig. 1.

Similarly, the plane waves of Eq32) will be multiply
reflected between two parts of the slab, the fitsft par)
consisting of all planes to the left of theth plane and the
second(right par) consisting of all planes to the right of the
(v—1)th plane(including thevth plang, to produce a set of
plane waves incident on theth plane from the left, which
we can write formally as follows

in + _i 2 in +
= (r)_sof LBZd k”EQ Eg (kH)

XexpliKy -[r=A(v)]} (36)
with
Egi (k)= {Q"(mLI-Q"(»—1iR)
g,
XQ"(riL)] Mg Egr (k) (3D
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whereQ"(v;L) andQ" (v—1;R) are again the appropriate Finally, to obtain the wave incident on the central sphere of
matrices, shown schematically in Fig. 1. A more detailedthe vth plane, which derives from the outgoing wave of Eq.
description of these matrices and the way these are calc26), we must add to the waves given by E¢34) and(36)

lated is to be found in section 2.4 of Ref. 23. We note that forthat which is due to the wave scattered from all the other

v=1(N) we have only waves incident from the rigteft).

Each plane wave in Eq§34) and(36) can be expanded in

spherical waves about the central sphere of ttie plane
using Eq. (9). For a plane wavekEy ~(kj)expliKy -[r

—A;(v)]}, incident on thevth plane from the right, the co-

efficients in Eq.(9) are given by

an(Kg ) =exif —iKg - dr (1120 Al (Kg)EG: ™ (k).
(39

And for a plane Wavel,:_‘gn (k) expliKy -[r—A(»)]}, inci-

dent on thevth plane from the left, the coefficients in E®)
are

a?£<K5>:exqug-d|<v>]Z AR (KOED: *(K)).
(39

PP’ .
1_‘Im;l’m’;v(ku ""):2

gi g i’

{exd —i(Kg —Kg)-d(»)]A

spheres of theth plane. The expansion in terms of spherical
waves about the central sphere of #ith plane of the sum of

all these waves has coefficients that are given, in accordance
with Eq. (15), by

BNt (s ) = _ ~10(KS
PO%* (n;v) Sof LBZ% 2 [1-(T),] 71K
(40)

1
) [gf J'snsdek”eXIi 1R
><[|—Q<T>V]_1Fv] b*(n;v), (42)

wherel', (k| ;w) is a matrix defined by

Im;i(K;)

X[Q" (R = Q" (»+1:L) Q" (¥ R)] ™ Hggrir Al i (K ) +exi(Kg =K ) - o (v) JAT (K ()

<[Q"(rL)1 - Q" (1= LRIQ (L) g1 Al i (K-

Therefore,P°" is given by the term in the braces of Eq.

(41). Accordingly the second term in ER3) becomes
> PXT), D
n
1 2 -1
=3 doK{[1 = T),]""T'T),D.},
SBZ
(43)
whereD, (K ; w) is given by Eq.(25). To derive Eq(43) we

substitute on the left of this equatidd’(w) according to
Eqg. (24) and use the relation

1 .
g? exi(kj—k)-Ra]=8(kj—k/). (44)

Finally, the matrixG%, defined by Eq(23), is given by

- 1

X[1-(T),1 "Y1 (45)

(42

Ill. NUMERICAL COMPUTATION OF (T),

The solution of Eqs(21) to obtain the effective matrices
(T),, v=1,2,... N, in the general case when a large num-
ber of scatterers¢=A,, B,, I',, ...) arepresent in the
different planes of the slab, is computationally time consum-
ing. The simplest case arises when the lattice sites of Bq.
of the vth plane are occupied by one or the other of two
scatterersA, or B,. One can show that in this case E(&l)
become

<T>V:C1z;ATv;A+Cv;BTv;B_ATv;AéSOATv;B (46)
with v=1,2, ... N. And we remember thas°° depends on
all (T), matrices.

We solve the above equations iteratively, as follows: we
begin with a reasonable initial input fT),, e.g., the aver-
age T-matrix approximatioff (ATA): C,.aT,.a+C,.5T, 5
on the r.h.s. of Eq(46), to obtain a first approximation to
(T),. The same procedure is repeated a number of times,
using as input at each iteration step a proper mixture of the
output matrices(T), of previous iterations, until conver-
gence is obtained. In order to accelerate the rate of conver-
gence of the iterative procedure we have made use of a spe-
cial iteration scheme, the generalized Anderson method.
The number of iterations needed to achieve convergence de-
pends on the frequenay of the light for which the calcula-
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Absorbance

Energy (eV)

FIG. 2. Absorbance of light incident normally on a slab of an
fcc crystal consisting of plasma spheré&s=(50 A | fiw,=9.2 eV,
fi7 1=0.2 e\) embedded in gelatinesE 2.37) and occupying ran-
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1.0
0.8t

06

Absorbance

4 6
Energy (eV)

FIG. 4. The same as in Fig. 2, except tfiat0.3.

intergrand in Eq.(45 may not be varying smoothly and

domly 75% of the lattice sites. The slab consists of 129 planepther mear® would be necessary for the evaluation of me
parallel to the00) surface of fcc and the volume fraction occupied integration. We hope to deal with this problem, in relation to
by the spheres i5=0.1. The CPA(ATA) results are denoted by the non_absorbing photonic Crysta|s] in another article.

solid (dashedl line. The dotted line refers to the corresponding or-
dered system of the same volume fractfon

Once the effective matrice€T),, v=1,2,... N, have

been determined, and put in place at the lattice sites defined

by Eq. (1) of the corresponding\ planes that make up the

tion is done. On the average, 300 iterations gave good corsiab, the calculation of the reflection transmission, and ab-
vergence(an accuracy of 10°) for the cases examined in sorption coefficients of light incident on the slab can be cal-
Sec. IV. The angular momentum space is truncated by introculated in the manner described in Ref. 23. We need not say
ducing an angular momentum cut-off numbegr,,. Simi- anything more here.
larly, we limit the number of reciprocal-lattice vectors to be
included in the calculation, to thg,,, vectors with magni-
tude less than a certain number. For the cases considered in
Sec. IV we obtain an accurate description of the EM field We used the method described in the previous sections to
(and of the relevant matrices in the spherical and plane-wavealculate the absorbance of a slab consisting of nonoverlap-
representationsby puttingl,.,=4 andgma,= 13. ping metallic spheres occupying randomly the sites of an fcc

The evaluation of% requires a numerical integration !attice viewed as a succession @01 planes. We consid-
over the entire SBZsee Eq.(45)]. Using symmetry to re- ered a relatively thick slab consisting of 129 lay@kanes of

duce the area of integration to a part of SBZ is not profitabIeSpherG}s which a”OV_VS us to d|s_regard end effects: we as-
in the present case. However, when one deals with "ght_sume that the effective matr{X') is the same for every layer

absorbing sphere@lescribed by a complex dielectric func- and the same with that obtained for a layer O.f a_n_infinitely
tion), as ?n t?]e c?agle under coﬁsiderati?)n in Sec. IV. the inthICk slab. We have further assumed that the individual me-

IV. RESULTS AND DISCUSSION

tallic sphere is a plasma sphere, described by a Drude dielec-

tergrand in Eq.(45) is a relatively smooth function df,

and the integration can be performed without much difficulty

by subdividing the SBZ(a square in our examplesnto
small squares, within which a nine-point integration
formula?® is very efficient. We have also tried other integra-

tion techniques based on sets of special points with corre-

sponding weightd%3° but, in our case, the nine-point inte-
gration formula proved the more efficient. Using this formula

the SBZ. We note, however, that in a case involving nonab

tric function
e
o(w+ir ) ’

(47)

e(w)=1—

wherew,, stands for the bulk plasma frequency of the metal
andr is the relaxation time of the conduction band electrons.

Ve compare the absorbance of the above disordered slab

with that of a slab of perfect periodicity containing the same
total mass of plasma spheres, so that the fractional vofume

sorbing spheretdescribed by a real dielectric functiothe occupied by the spheres is the same in both cases. This

means that the lattice constant of the fcc lattice for the or-
dered slaf a,,q= S(167/3f)¥3, whereSis the radius of the
sphere$ is larger than that of the disordered slala
=S(167C/3f)Y3, where C is the concentration of the
sphereg We remember that for an fcc lattidéully occu-
pied of touching sphere$=0.74. In every case the spheres
are embedded in a dielectric medium=2.37, correspond-
ing to gelating, and we assume that the same medium ex-
tends in all space to the left and right of the slab.

The results shown in Figs. 2—4 were obtained for light
incident normally on a slab consisting of plasma spheres
occupying 75% of an fcc lattice. In every case the spheres
are all the same, with a radil=50 A, and we have as-

1.0

0.8r

061

04r

Absorbance

0.2

0.0

4 6
Energy (eV)

FIG. 3. The same as in Fig. 2, except tliat0.2.
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sumed, following Ref. 32, a resonance enetigy,=9.2 eV 1.0
and A7 '=0.2 eV. The volume fraction occupied by the

. ; ) 0.8}
spheres is:f=0.1 (corresponding to a lattice constaat @
=250.44 A in Fig. 2; f=0.2(@=198.78 A in Fig. 3, and % 06l
f=0.3(@=173.65 A in Fig. 4. The absorbance of the dis- £
ordered slab calculated in the manner we have described §°-4'
(CPA methodlis shown by a solid line; the absorbance of the < ool
corresponding ordered slab is shown by the dotted line; the v
broken line is obtained using the so-called averagmaatrix 0.0
approximation(ATA), according to which the randomly oc- 2 4 6 8
cupied lattice is replaced by one fully occupied by spheres Energy (eV)

each of which is characterized by an effective scattering ma-

trix FIG. 5. Absorbance of light incident normally on a slab consist-

ing of plasma spherdshe same as in Fig2)] occupying 50% of
_ the sites of an fcc latticef=0.1 (a=154.71 A.
<T>ATA CT! (48)

whereC denotes the concentration of the spheresBrile  the degeneracy between dipolar terms of differentsee
scattering matrix of the actual spheres. We see that the rdelow). The ripples appearing in the low- and high-
sults for the disordered slab obtained by the ATA are pracfrequency tails of the absorbance curve are due to the finite
tically identical with those of the corresponding ordered slabsize of the slab, which gives rise to Fabry-Perot type oscil-
We can understand why the ATA results coincide with thosdations.

of the ordered structure, at least in the electrostatic limit, by One observes, also, with increasify@ slight shift of the

using the Maxwell GarnetfMG) equation lower-frequency peak to lower frequencies, and a corre-
_ sponding small shift of the high-frequency peak to higher
e—e 4 frequencies. But we do not find a dramatic shift in either of
Tt o =3z mna (49 these peaks, in contrast to what might be expected from the

B work of Liebsch and Perssdfln order to further clarify this
wheren=3f/47S?; € is the dielectric function of the effec- point, we calculated the absorbance of a slab consisting of
tive medium, € is that of the host medium and is the plasma sphereéthe same as in Figs. 2)-4ccupying ran-

polarizability of a single sphere in the host medium given bydomly 50%(instead of 75%of the sites of an fcc latticé&he
same lattice as in Fig. 2, except that in the present case the

es(w)—€ lattice constant is changed éo=154.71 A, so thaf =0.1 as
es(w)+2¢€’ GBI Fig. 2. The results, shown in Fig. 5, again show no dra-
] o ~ matic difference between the ordered and disordered slabs
The ATA, in the electrostatic limit, replaces the random dis-gxcept in one respect: there appears an additional peak in the
tribution of the partly empty lattice by a lattice fully occu- gpsorbance curve in the region of the dip of the curve. In
pied by same spheres with polarizabil@y(w), whereCis  contrast to the peaks in the dips of the curves of Figs. 3 and
the concentration of the spheres, and gpp_hes to the Iat_ter the which mirror multipole peaks of the ordered case, the peak
MG formula [Eq. (49)]. However, multiplying the polariz- iy question is dipolar in origin. In order to clarify this point
ability «(w) by Cis equivalent to multiplying the volume of \ye calculated the absorbance of a single CPA scatterer. The
the spheres by [see Eq(50)], which tells us that the r.h.s. energy absorbed per unit time by a scatterer of spherical
of Eq. (49 and, therefores, does not change in this approxi- shape is given by the negative integral of the Poynting vector
mation. over the surface of the sphere. We denote the average of this
The CPA gives nearly the same results for the disorderegyantity over a period =2/ by w. Using the multipole
as those obtained for the ordered slab fer0.1, but asf  expansiong¢8) and (10) of the EM field we obtain
increases differences between the two do appear. The main
difference relates to the dip between the two peaks in the __ c3ep . .
absorbance curve which is due to a frequency gap of the EM W= — TRGE 2 aﬁp(aﬂﬁ +a|JFnP ).
field in the corresponding infinite crystéh slab extending 20 \/; 1=1m=-1 P=EH
from z=—o to z=+x). The physical origin of this gap (51)
which is moderated by the presence of absorption is disOur results are shown in Fig. 6, together with the corre-
cussed in Ref. 32; it is shown there that this gap is the resukponding ATA results for comparison. In both approxima-
of hybridization between a narrow band of interacting dipoletions the absorbance is essentially determined by the dipole
resonances centered on the spheres and a wide band of freédyms. However, while the ATA scatterer is characterized by
propagating waves in an effective host medium. Evidentlya diagonal matriXT) with the same matrix elements for all
disorder reduces further the effect of the above-mentionedalues ofm of given| (—I<m=l), this is not the case for
frequency gap on the absorbance curve. The structurdhe CPA scatterer. As shown by our calculation, the non-
(peaks in the absorbance curve in the region of the dip,diagonal elements of the CP@A) matrix do not contribute
derives mainly from higher-multipolel 1) bands, in the significantly to absorption. However, the diagonal elements
manner explained in Ref. 32. Again, it does appear that disef the CPA(T) matrix, of givenl, are different for the dif-
order amplifies the effect of these higher-multipole resoferent values ofn, as demonstrated in Fig. 7. It is seen in this
nances. Some structure may also arise from the removal digure that thelm=11 element of the CPAT) matrix ex-

a(w)=5°

L |
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FIG. 6. Absorbance of light by a single CP&olid line) and Q
ATA (dashed ling effective scatterer for the system described in

the caption of Fig. 5. (b) O —/) Q

hibits an additional resonance atv=4.13 eV, which does ___, ___) Q
not occur in the ATA(T) matrix. This resonance gives the -
second peak in the CPA absorbance curve of Fig. 6, which is FiG. 8. Induced dipoles, indicated by arrows, in a partly occu-
also manifested in the absorbance of the disordered(st pied lattice. The empty circles denote nonoccupied sites.
Fig. 5 as calculated by the CPA, and which is not obtained
by the ATA. uniquely determined quantity. In the ATA method the effect
In this respect the results for the thick slab we are considalso disappears because we force the averaging on the sys-
ering here, differ markedly from those we obtained for a verytem (see above In the CPA treatment the effect is not av-
thin slab consisting of a single layer of Drude spheres raneraged out, because of the way tHd) matrix is
domly distributed on a square lattit®ln that case, we have constructed® Now it appears that in the thick slab, the pres-
found that disorder produces a considerable shift and broagnce of the layers above and below a given layer, renders the
ening of the resonanc@nd therefore of the corresponding distinction between the cases of FigaBand Fig. 8b) un-
absorbance pealexcited by an electric-field component par- profitable, in the sense that both are likely to occur simulta-
allel to the plane of spheres. The reason for this differenc@eously in the partly occupied 3D lattice producing a local
between the single layer of spheres and a slab of many layefteld at a given site which is more or less the same as that of
of spheres appears to be the following. In the case of a single fully occupied lattice. This interpretation accords with the
layer of spheres occupying a fraction of the sites of a 2Dfact that the MG formuldEq. (49)] produces practically the
lattice, a dipole(say at the origin of coordinatesscillating  same results with the exact calculation for small volume
in the direction of the fieldsay thex direction interacts with ~ fractions[in which case higher-multipolel 1) bands are
neighboring dipoles also oscillating in thedirection, which  not important. In this respect our results appear to confirm
may be centered along thedirection[as in Fig. )], or  an assumption made by several autidr>but criticized by
normal to it, along they direction [as in Fig. 80)]. The  others?” namely that the MG equation describes reasonably
coupling between the dipoles in the first caféy. 8@a)] is  well periodic and nearly periodic structures.
different from that in the second caggig. 8b)], and this Finally, we must say something about the relation of the
leads to a considerable shift and broadening of the peak fabove model results to actual experiments. A metallic par-
the partly occupied 2D array of spheres. In contrast, in thdicle is not accurately described by a plasma sphere, its di-
fully occupied 2D lattice the local field at the given site is a electric function will in general be more complicated than
that of Eq.(47). By choosing appropriately the parameters
wp, and 7 in Eq. (47), one should be able to reproduce the
lower-frequency peak of the absorbance curve, but the re-

0.01

0.00 maining peakgwhether dipolar or multipolar in originwill
0.01 depend to a lesser or greater degree on the details of the
dielectric function. The shape, or rather the distribution of
£ 002 sizes and shapes of the metallic particles in a given system
T 0,01 will also affect the details of the absorbance curve. One must
f also remember that the absorption versus frequency curve,
k= 000 for light incident on a slab of the material depends, in gen-
0.01 eral, on the thickness of the slabee Fig. 7 of Ref. 32 In
particular: one must not assume, as it is often done, that a
-0.02 peak in the absorbance curve coincides with a corresponding
2 P s 2 peak in the absorption coefficient defined b§(w)
Energy (eV) =2(w/c)Imye(w). This may or may not be the case. In

summary, while our results support the view that disorder

FIG. 7. Elements of théT) matrix corresponding to a CPA does not greatly affect the absorbance of a thick slab, in

(solid lineg and an ATA(dashed lineseffective scatterer for the contrast to the situation of a very thin slab, they cannot be
system described in the caption of Fig. 5. compared directly with any set of experimental data.
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