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Scattering of electromagnetic waves by nearly periodic structures
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We present a method, based on the coherent potential approximation, for the treatment of disorder in
photonic crystals. We apply the method to the study of light absorption by a three-dimensional array of plasma
spheres distributed randomly in a host dielectric medium. We find that the effect of disorder on the absorbance
of a thick slab of the material consisting of many layers of spheres is much less pronounced than in the
corresponding case of a single layer of spheres.
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I. INTRODUCTION

In recent years, photonic crystals, i.e., composite mat
als with a dielectric function that is a periodic function of th
position, have attracted much interest, mainly because o
possibility of frequency gaps in such systems, which in tu
promises revolutionary applications in optoelectronics.1–3

For different reasons there has been for many years a lo
interest in the optical properties of energy-absorbing sm
metallic particles distributed periodically or randomly in
host dielectric medium. Such systems are used, e.g., as
ings for solar energy absorbers.4–7 The theoretical analysis in
this second category is essentially the same as for phot
crystals consisting of dielectric spheres in a medium of d
ferent dielectric function. In either case, the problem is mu
easier to solve for a periodic than for a non-periodic arran
ment of spheres.

Most of the theoretical analysis relating to photonic cry
tals, so far, has been based on the assumption of pe
periodicity.8–11 And yet it is important to know, what the
effect would be of deviation from periodicity on the size
frequency gaps and other important parameters, since
systems are more likely to involve some deviations fro
periodicity. The actual amount of disorder would depend
course on the type and on the precision of the fabrica
technique used.12,13 Even greater deviations from periodicit
are evident in systems of small metallic particles in a diel
tric medium since the size, shape, and the distribution of
particles is usually not uniform.5,14 Some attempts to accoun
for deviations from periodicity in two-dimensional~2D!15,16

and three-dimensional~3D! structures17 have already been
made but a lot remains to be done.

In the present paper, we develop a formalism for estim
ing the effect of disorder on the optical properties of a s
tem that consists of nonoverlapping spheres in a host
dium. The formalism is based on the so-called single-
coherent potential approximation~CPA!, which has been
used extensively in the study of the electronic properties
disordered alloys,18–20 and is expected to give reasonab
good results at least in the case of relatively weak disorde
CPA treatment of disorder has been applied to the stud
the optical properties of randomly distributed spheres in a
lattice by Persson and Liebsch21 and in 3D lattices by Lieb-
PRB 610163-1829/2000/61~12!/8099~9!/$15.00
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sch and Persson,22 in the limit when the electrostatic approx
mation is valid ~the interparticle distance is much small
than the wavelength of light, and the fractional volume o
cupied by the spheres is relatively small!. Two of us15 pre-
sented a CPA treatment of light scattering by a disorde
2D array of nonoverlapping spheres, which remains valid
any frequency of the incident light and for any concentrat
of the spheres. In the present work we extend the met
presented in Ref. 15 to a 3D array of spheres. This is don
Sec. II. The numerical implementation of the formalism a
some technical aspects of the computation are discusse
Sec. III. In Sec. IV we use our method to study the abso
tion of light by a finite slab consisting of metallic particle
~plasma spheres! distributed randomly in a host dielectri
medium. We compare the above quantity with the cor
sponding one for a periodic structure. Moreover, we comp
the effects of disorder in 3D systems with the effect of t
same in 2D systems.

II. THEORY

A. The Model

In general, the system we are considering consists o
number of planes of nonoverlapping spheres parallel to
xy plane. We refer to it as a slab. The spheres of thenth
plane belong to one or the other of a small set of differ
spheres denoted byAn , Bn , Gn , etc.. This means that som
of the spheres may be larger than the rest~as long as they do
not overlap! or that they are characterized by a differe
~complex! dielectric function:en;Ae0 , en;Be0, etc., wheree0
is the permittivity of vacuum. The spheres of a given pla
occupy a fraction of the sites of a 2D space lattice, which
the same for all the planes of the slab and is given by

Rn5n1a11n2a2 ~1!

wherea1 and a2 are primitive vectors in thexy plane and
n1 ,n250,61,62,63, . . . . Wenote, however, that the frac
tion of the sites that are occupied by one or the other type
sphere may be different for different planes. The medi
between the spheres in the slab is characterized by a
dielectric functione(v)e0 and may be different from the
8099 ©2000 The American Physical Society
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8100 PRB 61A. MODINOS, V. YANNOPAPAS, AND N. STEFANOU
dielectric function of the medium on either side of the sla
The idea of the CPA is to replace each plane of spheres
effective ~frequency-dependent! scatterers occupying all th
sites of the lattice given by Eq.~1!; the scatterers of a give
plane being the same, but possibly different from those of
other planes of the slab. As shown originally by Soven,18 in
relation to electron scattering by atomic centers, there
way to obtain the effective scatterers so that, scattering
the effective periodic structure~periodic in thexy plane in
our case! produces the best approximation to the given pr
lem, that can be obtained by a corresponding periodic st
ture. Being a single-site approximation (k-independent effec-
tive scatterer!, the method cannot deal with phenome
which are associated with large deviations from periodic
but it can describe satisfactorily phenomena, such as th
we shall be considering in this paper, which result from
relatively weak disorder.

Our main objective in this section is to obtain the equ
tions that determine the above-mentioned effective sca
ers. Once these have been determined, the calculation o
coefficients of transmission and absorption of light by t
slab proceeds as in the case of periodic structures, which
know how to do.9,11,23–25 In what follows we shall need
besides the space lattice of Eq.~1!, the corresponding 2D
reciprocal lattice defined by

g5m1b11m2b2 , ~2!

where m1 ,m250,61,62,63, . . . andb1 ,b2 are primitive
vectors defined by

bi•aj52pd i j , i , j 51,2. ~3!

B. General formulas

We must now introduce a few formulas that we need
the development of the CPA method in relation to elect
magnetic~EM! waves. We recall that a plane EM wave,
frequencyv and wave vectorq, propagating in a homoge
neous medium characterized by a real dielectric funct
e(v)e0, has an electric-field component described by

E~r ,t !5Re@E~r !exp~2 ivt !# ~4!

with

E~r !5E0~q!exp~ iq•r !. ~5!

For our purposes it is convenient to write the componen
the wave vector parallel to the plane of spheres as follow

qi5ki1g8, ~6!

whereki is the reduced wave vector ofqi lying in the surface
Brillouin zone ~SBZ! corresponding to the reciprocal lattic
of Eq. ~2! and g8 the appropriate reciprocal-lattice vecto
Similarly, we write the wave vector of a plane wave of giv
frequencyv and a given component parallel to the plane
spheres,qi5ki1g, as follows

Kg
65„ki1g,6@q22~ki1g!2#1/2

…. ~7!

We assume throughout that the relative permeability of
constituent materials equals unity, so thatq5Aev/c, where
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c denotes the velocity of light in vacuum. We need not wr
down explicitly the magnetic-field component of the E
wave.

E(r ) is expanded in spherical waves as follows

E~r !5(
l 51

`

(
m52 l

l F i

q
alm

0E
“3 j l~qr !X lm~ r̂ !

1alm
0H j l~qr !X lm~ r̂ !G ~8!

where X lm( r̂ ) are the usual vector spherical harmonicsr̂
denotes the angular variables ofr , and j l(qr) is the spheri-
cal Bessel function. The coefficientsalm

0P , where P5E,H,
are written as

alm
0P5(

i
Alm; i

0P ~q! E0;i~q!, ~9!

where i 5x,y,z. Explicit relations for the coefficientsAlm; i
0P

are to be found in Ref. 23. In general, when a wave is in
dent on a sphere, centered at the origin of coordinates, t
results a scattered wave given by

Esc~r !5(
l 51

`

(
m52 l

l F i

q
alm

1E
“3hl

1~qr !X lm~ r̂ !

1alm
1Hhl

1~qr !X lm~ r̂ !G , ~10!

where hl
1(qr) is the spherical Hankel function. The tota

wavefield outside the sphere is the sum of the fields given
Eqs.~8! and~10!. The coefficientsalm

1P of the scattered field
are related to those of the incident wave through the sca
ing matrix T(v). We have

a15Ta0. ~11!

Here and throughout the paper, a matrix notation in
representationlmP is implied. In the case of an ordinar

spherical scatterer, theT matrix is diagonal: Tlm; l 8m8
PP8

5Tlm
P d l l 8dmm8dPP8 but, the CPA effective scattering matrix

to be introduced in what follows, turns out to be no
diagonal even for spherical scatterers.

C. The CPA equations

We assume, to begin with, that thenth plane of spheres
~the nonperiodic array of different spheres described in S
II A ! can be described, in the spirit of the CPA method, b
periodic array of same spheres centered on the lattice
given by Eq.~1!; each sphere is represented by an effect
matrix ^T&n to be determined. When the plane wave of E
~4! is incident on this plane of spheres, the wave scatte
from the central sphere~at n15n250) is given by

b15^T&nb0 ~12!

b05~a01b8!, ~13!

where b0 stands for the total wave incident on the cent
sphere;a0 represents the incident plane wave andb8 takes
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PRB 61 8101SCATTERING OF ELECTROMAGNETIC WAVES BY . . .
into account the wave incident on the central sphere, wh
is due to the waves scattered from all the other spheres o
plane. We know that23,24

b85Vb1. ~14!

The matrix elements ofV depend on the geometry of th
plane, on the reduced wave vectorki and on the frequencyv
of the incident wave. They depend also on the dielec
function of the medium surrounding the spheres, but they
not depend on the scattering properties of the individ
spheres. We need not give here the explicit expressions
the matrix elements ofV, which can be found in Refs. 2
and 24. By combining Eqs.~12!, ~13!, and~14! one obtains

b05@ I2V^T&n#21a0. ~15!

When the plane of spheres under consideration is one o
planes of a slab,a0 includes besides the externally incide
light, that which is due to the waves scattered by the ot
planes of the slab.

Let us now replace the scatterer^T&n at the central sphere
of the nth plane by an actual scattererTn;a (a5An , Bn ,
Gn , . . . ). Then the scattered wave from this sphere cons
of the term given by Eq.~12! and, to begin with, an addi
tional term given by

DTn;ab0, ~16!

where

DTn;a[Tn;a2^T&n . ~17!

The wave obtained from Eq.~16! will be multiply scattered
by all the spheres in the slab, including the central sphere o
thenth plane~represented bŷT&n), producing a further con-
tribution to the incident on this sphere wave, which may
written as follows

G̃n
00DTn;ab0, ~18!

where G̃n
00 represents the contribution of all possible pa

by which a wave outgoing from the central sphere of thenth
plane@represented by a set of coefficients in the way that
wave described by Eq.~10! is represented by the coefficien
alm

1P] produces an incident wave on the same sphere@repre-
sented by a set of coefficients in the way that the wave
scribed by Eq.~8! is represented by the coefficientsalm

0P],
after scattering in all possible ways~sequences! by the scat-
terers^T&l , l51, . . . ,N, at all sites of theN planes. Be-
cause of Eq.~18!, there will be a further contribution to th
scattered wave from the central sphere of thenth plane given
by

DTn;aG̃n
00DTn;ab0. ~19!

The same process is repeated infinitely many times and
leads to the following expression for the scattered wave fr
the central sphere of thenth plane due toDTn;a

~ I1DTn;aG̃n
001DTn;aG̃n

00DTn;aG̃n
001••• !DTn;ab0

5~ I2DTn;aG̃n
00!21DTn;ab0, for n51,2, . . . ,N.

~20!
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The effective CPA matriceŝT&n , n51,2, . . . ,N, are ob-
tained, in the manner originally proposed by Soven,18 by
demanding that the scattered wave of Eq.~20! vanishes on
averaging, i.e., we demand that

(
a

Cn;a~ I2DTn;aG̃n
00!21DTn;a50, n51,2, . . . ,N,

~21!

where Cn;a denotes the concentration of the scatterera
5An , Bn , Gn , etc. of thenth plane. Obviously,

(
a

Cn;a51. ~22!

Equation ~21! determines uniquely the effective matrice

^T&n , n51,2, . . . ,N, which appear in the propagatorsG̃n
00

~see below!. We note that Eq.~21! is the extension of the
CPA condition, derived earlier, for a single plane of scatt
ers@see Eq.~12! of Ref. 15#. In order to proceed further, we
need an explicit expression forG̃n

00 . One can see that thi
operator can be written as a sum of three terms as follow

G̃n
005D̃n

001(
n

P̃n
0n^T&nD̃n

n01P̃n
00. ~23!

The matrix D̃n
nm represents all the possible scattering pa

within thenth plane by which a wave outgoing from themth
sphere of this plane produces an incident wave on thenth
sphere of the same plane, after scattering in all possible w
by all the spheres of this plane including the central sph
~every sphere represented by^T&n). D̃n

nm has been discusse
in Ref. 15 and we need not repeat the arguments here.
have

D̃n
nm~v!5

1

S0
E E

SBZ
d2kiexp~ iki•Rnm!Dn~ki ;v! ~24!

Dn~ki ;v!5@ I2V~ki ;v!^T~v!&n#21V~ki ;v!, ~25!

whereRnm5Rn2Rm , S0 is the area of the SBZ correspond
ing to Eq.~2!, andV(ki ;v) is the matrix introduced by Eq
~14!.

The matrixP̃n
0n appearing in the second and third terms

Eq. ~23! represents all scattering paths by which an outgo
wave from thenth sphere of thenth planeexits from that
plane to produce an incident wave on the central spher
the same plane after scattering in all possible ways by all
planes of spheres of the slab, including thenth plane. In the
next section we show how to calculateP̃n

0n andG̃n
00.

D. Calculation of P̃n
0n and G̃n

00

A wave outgoing from thenth sphere of thenth plane has
the form

Esc~r !5(
l 51

`

(
m52 l

l F i

q
blm

1E~n;n!“3hl
1~qrnn!X lm~ r̂nn!

1blm
1H~n;n!hl

1~qrnn!X lm~ r̂nn!G , ~26!
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wherernn is the position vector with respect to the center~at
Rn) of the nth sphere of thenth plane. Using the following
identities

hl
1~qrnn!X lm~ r̂nn!

5
1

S0
E E

SBZ
d2ki(

g
Dłm

H ~Kg
6!exp~ iKg

6
•rnn!

~27!

i

q
“3hl

1~qrnn!X lm~ r̂nn!

5
1

S0
E E

SBZ
d2ki(

g
Dlm

E ~Kg
6!exp~ iKg

6
•rnn!

~28!

with

Dlm
H ~Kg

6!5
2p~2 i! l

qA0Kgz
1

X lm~K̂ g
6!

~29!

Dlm
E ~Kg

6!52
Kg

6

q
3Dlm

H ~Kg
6!,

whereA0 is the area of the unit cell of the space lattice giv
by Eq.~1!, we can expand the wave of Eq.~26! into a sum of
plane waves propagating or decaying away from thenth
plane as follows. To the right of thenth plane we have

Eout 1~r !5
1

S0
E E

SBZ
d2ki(

g
Eg

out 1~ki!

3exp$ iKg
1
•@r2Ar~n!#% ~30!

with

Eg; i
out 1~ki!5exp$2 i@ki•Rn2Kg

1
•dr~n!#%

3(
l 51

`

(
m52 l

l

(
P5E,H

D lm; i
P ~Kg

1!blm
1P~n;n!,

~31!

wherei 5x,y,z andAr(n) is a reference point on the right o
thenth plane atdr(n) from its center~see Fig. 1!. To the left
of the nth plane we have

Eout 2~r !5
1

S0
E E

SBZ
d2ki(

g
Eg

out 2~ki!

3exp$ iKg
2
•@r2A l~n!#% ~32!

with

Eg; i
out 2~ki!5exp$2 i@ki•Rn1Kg

2
•dl~n!#%

3(
l 51

`

(
m52 l

l

(
P5E,H

D lm; i
P ~Kg

2!blm
1P~n;n!,

~33!
whereA l(n) is a reference point to the left of thenth plane
at 2dl(n) from its center~see Fig. 1!. The plane waves of
Eq. ~30! will be multiply reflected between two parts of th
slab, the first~right part! consisting of all planes to the righ
of the nth plane, and the second~left part! consisting of all
planes to the left of the (n11)th plane~including thenth
plane!, to produce a set of plane waves incident on thenth
plane from the right, which we can write formally as follow

Ein 2~r !5
1

S0
E E

SBZ
d2ki(

g
Eg

in 2~ki!

3exp$ iKg
2
•@r2Ar~n!#% ~34!

with

Eg; i
in 2~ki!5 (

g8,i 8
$QIII ~n;R!@ I2QII~n11;L !

3QIII ~n;R!#21%gi ;g8 i 8Eg8; i 8
out 1

~ki!, ~35!

whereQII(n11;L) andQIII (n;R) are the appropriate matri
ces that determine the reflection~diffraction! of a plane wave
@defined by Eq.~7!# by the left and the right parts of the sla
respectively, as defined above. These matrices are sh
schematically in Fig. 1.

Similarly, the plane waves of Eq.~32! will be multiply
reflected between two parts of the slab, the first~left part!
consisting of all planes to the left of thenth plane and the
second~right part! consisting of all planes to the right of th
(n21)th plane~including thenth plane!, to produce a set of
plane waves incident on thenth plane from the left, which
we can write formally as follows

Ein 1~r !5
1

S0
E E

SBZ
d2ki(

g
Eg

in 1~ki!

3exp$ iKg
1
•@r2A l~n!#% ~36!

with

Eg; i
in 1~ki!5 (

g8,i 8
$QII~n;L !@ I2QIII ~n21;R!

3QII~n;L !#21%gi ;g8 i 8Eg8; i 8
out 2

~ki! ~37!

FIG. 1. The Q matrices appearing in Eq.~42!. The position
vectorsdl , dr of thenth layer along with the corresponding origin
A l , Ar are also shown.
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whereQII(n;L) andQIII (n21;R) are again the appropriat
matrices, shown schematically in Fig. 1. A more detai
description of these matrices and the way these are ca
lated is to be found in section 2.4 of Ref. 23. We note that
n51(N) we have only waves incident from the right~left!.

Each plane wave in Eqs.~34! and~36! can be expanded in
spherical waves about the central sphere of thenth plane
using Eq. ~9!. For a plane waveEg

in 2(ki)exp$iKg
2
•@r

2Ar(n)#%, incident on thenth plane from the right, the co
efficients in Eq.~9! are given by

alm
0P~Kg

2!5exp@2 iKg
2
•dr~n!#(

i
Alm; i

0P ~Kg
2!Eg; i

in 2~ki!.

~38!

And for a plane wave,Eg
in 1(ki)exp$iKg

1
•@r2A l(n)#%, inci-

dent on thenth plane from the left, the coefficients in Eq.~9!
are

alm
0P~Kg

1!5exp@ iKg
1
•dl~n!#(

i
Alm; i

0P ~Kg
1!Eg; i

in 1~ki!.

~39!
q.
d
u-
r

Finally, to obtain the wave incident on the central sphere
the nth plane, which derives from the outgoing wave of E
~26!, we must add to the waves given by Eqs.~34! and~36!
that which is due to the wave scattered from all the ot
spheres of thenth plane. The expansion in terms of spheric
waves about the central sphere of thenth plane of the sum of
all these waves has coefficients that are given, in accorda
with Eq. ~15!, by

P̃n
0nb1~n;n!5

1

S0
E E

SBZ
(

g
(

s56
@ I2V^T&n#21a0~Kg

s!

~40!

5H 1

S0
E E

SBZ
d2kiexp~2 iki•Rn!

3@ I2V^T&n#21GnJ b1~n;n!, ~41!

whereGn(ki ;v) is a matrix defined by
G lm; l 8m8;n
PP8 ~ki ;v!5(

g,i
(
g8,i 8

$exp@2 i~Kg
22Kg8

1
!•dr~n!#Alm; i

0P ~Kg
2!

3†QIII ~n;R!@ I2QII~n11;L !QIII ~n;R!#21
‡gi ;g8 i 8D l 8m8; i 8

P8 ~Kg8
1

!1exp@ i~Kg
12Kg8

2
!•dl~n!#Alm; i

0P ~Kg
1!

3†QII~n;L !@ I2QIII ~n21;R!QII~n;L !#21
‡gi ;g8 i 8D l 8m8; i 8

P8 ~Kg8
2

!%. ~42!
s
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Therefore,P̃n
0n is given by the term in the braces of E

~41!. Accordingly the second term in Eq.~23! becomes

(
n

P̃n
0n^T&n D̃n

n0

5
1

S0
E E

SBZ
d2ki$@ I2V^T&n#21Gn^T&nDn%,

~43!

whereDn(ki ;v) is given by Eq.~25!. To derive Eq.~43! we
substitute on the left of this equationD̃n

n0(v) according to
Eq. ~24! and use the relation

1

S0
(

n
exp@ i~ki2ki8!•Rn#5d~ki2ki8!. ~44!

Finally, the matrixG̃n
00, defined by Eq.~23!, is given by

G̃n
005

1

S0
E E

SBZ
d2ki$@ I2V^T&n#21

†V1Gn~ I1^T&n

3@ I2V^T&n#21V!‡%. ~45!
III. NUMERICAL COMPUTATION OF ŠT‹n

The solution of Eqs.~21! to obtain the effective matrice
^T&n , n51,2, . . . ,N, in the general case when a large num
ber of scatterers (a5An , Bn , Gn , . . . ) arepresent in the
different planes of the slab, is computationally time consu
ing. The simplest case arises when the lattice sites of Eq~1!
of the nth plane are occupied by one or the other of tw
scatterers:An or Bn . One can show that in this case Eqs.~21!
become

^T&n5Cn;ATn;A1Cn;BTn;B2DTn;AG̃n
00DTn;B ~46!

with n51,2, . . . ,N. And we remember thatG̃n
00 depends on

all ^T&n matrices.
We solve the above equations iteratively, as follows:

begin with a reasonable initial input for^T&n , e.g., the aver-
age T-matrix approximation26 ~ATA !: Cn;ATn;A1Cn;BTn;B
on the r.h.s. of Eq.~46!, to obtain a first approximation to
^T&n . The same procedure is repeated a number of tim
using as input at each iteration step a proper mixture of
output matriceŝ T&n of previous iterations, until conver
gence is obtained. In order to accelerate the rate of con
gence of the iterative procedure we have made use of a
cial iteration scheme, the generalized Anderson metho27

The number of iterations needed to achieve convergence
pends on the frequencyv of the light for which the calcula-
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tion is done. On the average, 300 iterations gave good c
vergence~an accuracy of 1026) for the cases examined i
Sec. IV. The angular momentum space is truncated by in
ducing an angular momentum cut-off numberl max. Simi-
larly, we limit the number of reciprocal-lattice vectors to b
included in the calculation, to thegmax vectors with magni-
tude less than a certain number. For the cases consider
Sec. IV we obtain an accurate description of the EM fie
~and of the relevant matrices in the spherical and plane-w
representations! by putting l max54 andgmax513.

The evaluation ofG̃n
00 requires a numerical integratio

over the entire SBZ@see Eq.~45!#. Using symmetry to re-
duce the area of integration to a part of SBZ is not profita
in the present case. However, when one deals with lig
absorbing spheres~described by a complex dielectric func
tion!, as in the case under consideration in Sec. IV, the
tergrand in Eq.~45! is a relatively smooth function ofki ,
and the integration can be performed without much difficu
by subdividing the SBZ~a square in our examples! into
small squares, within which a nine-point integratio
formula28 is very efficient. We have also tried other integr
tion techniques based on sets of special points with co
sponding weights,29,30 but, in our case, the nine-point inte
gration formula proved the more efficient. Using this formu
we managed good convergence with a total of 81 points
the SBZ. We note, however, that in a case involving non
sorbing spheres~described by a real dielectric function! the

FIG. 2. Absorbance of light incident normally on a slab of
fcc crystal consisting of plasma spheres (S550 Å , \vp59.2 eV,
\t2150.2 eV! embedded in gelatine (e52.37) and occupying ran
domly 75% of the lattice sites. The slab consists of 129 pla
parallel to the~001! surface of fcc and the volume fraction occupie
by the spheres isf 50.1. The CPA~ATA ! results are denoted by th
solid ~dashed! line. The dotted line refers to the corresponding o
dered system of the same volume fractionf.

FIG. 3. The same as in Fig. 2, except thatf 50.2.
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intergrand in Eq.~45! may not be varying smoothly an
other means31 would be necessary for the evaluation of theki
integration. We hope to deal with this problem, in relation
non-absorbing photonic crystals, in another article.

Once the effective matriceŝT&n , n51,2, . . . ,N, have
been determined, and put in place at the lattice sites defi
by Eq. ~1! of the correspondingN planes that make up th
slab, the calculation of the reflection transmission, and
sorption coefficients of light incident on the slab can be c
culated in the manner described in Ref. 23. We need not
anything more here.

IV. RESULTS AND DISCUSSION

We used the method described in the previous section
calculate the absorbance of a slab consisting of nonover
ping metallic spheres occupying randomly the sites of an
lattice viewed as a succession of~001! planes. We consid-
ered a relatively thick slab consisting of 129 layers~planes of
spheres!, which allows us to disregard end effects: we a
sume that the effective matrix̂T& is the same for every laye
and the same with that obtained for a layer of an infinite
thick slab. We have further assumed that the individual m
tallic sphere is a plasma sphere, described by a Drude die
tric function

eS~v!512
vp

2

v~v1 it21!
, ~47!

wherevp stands for the bulk plasma frequency of the me
andt is the relaxation time of the conduction band electro
We compare the absorbance of the above disordered
with that of a slab of perfect periodicity containing the sam
total mass of plasma spheres, so that the fractional volumf
occupied by the spheres is the same in both cases.
means that the lattice constant of the fcc lattice for the
dered slab@aord5S(16p/3f )1/3, whereS is the radius of the
spheres# is larger than that of the disordered slab@a
5S(16pC/3f )1/3, where C is the concentration of the
spheres#. We remember that for an fcc lattice~fully occu-
pied! of touching spheresf 50.74. In every case the sphere
are embedded in a dielectric medium (e52.37, correspond-
ing to gelatine!, and we assume that the same medium
tends in all space to the left and right of the slab.

The results shown in Figs. 2–4 were obtained for lig
incident normally on a slab consisting of plasma sphe
occupying 75% of an fcc lattice. In every case the sphe
are all the same, with a radiusS550 Å, and we have as

s

FIG. 4. The same as in Fig. 2, except thatf 50.3.
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sumed, following Ref. 32, a resonance energy\vp59.2 eV
and \t2150.2 eV. The volume fraction occupied by th
spheres is:f 50.1 ~corresponding to a lattice constanta
5250.44 Å! in Fig. 2; f 50.2 (a5198.78 Å! in Fig. 3, and
f 50.3 (a5173.65 Å! in Fig. 4. The absorbance of the di
ordered slab calculated in the manner we have descr
~CPA method! is shown by a solid line; the absorbance of t
corresponding ordered slab is shown by the dotted line;
broken line is obtained using the so-called averageT-matrix
approximation~ATA !, according to which the randomly oc
cupied lattice is replaced by one fully occupied by sphe
each of which is characterized by an effective scattering
trix

^T&ATA5CT, ~48!

whereC denotes the concentration of the spheres andT the
scattering matrix of the actual spheres. We see that the
sults for the disordered slab obtained by the ATA are pr
tically identical with those of the corresponding ordered sl
We can understand why the ATA results coincide with tho
of the ordered structure, at least in the electrostatic limit,
using the Maxwell Garnett~MG! equation

ē2e

ē12e
5

4

3
pna ~49!

wheren53 f /4pS3; ē is the dielectric function of the effec
tive medium,e is that of the host medium anda is the
polarizability of a single sphere in the host medium given

a~v!5S3
eS~v!2e

eS~v!12e
. ~50!

The ATA, in the electrostatic limit, replaces the random d
tribution of the partly empty lattice by a lattice fully occu
pied by same spheres with polarizabilityCa(v), whereC is
the concentration of the spheres, and applies to the latte
MG formula @Eq. ~49!#. However, multiplying the polariz-
ability a(v) by C is equivalent to multiplying the volume o
the spheres byC @see Eq.~50!#, which tells us that the r.h.s
of Eq. ~49! and, thereforeē, does not change in this approx
mation.

The CPA gives nearly the same results for the disorde
as those obtained for the ordered slab forf 50.1, but asf
increases differences between the two do appear. The m
difference relates to the dip between the two peaks in
absorbance curve which is due to a frequency gap of the
field in the corresponding infinite crystal~a slab extending
from z52` to z51`). The physical origin of this gap
which is moderated by the presence of absorption is
cussed in Ref. 32; it is shown there that this gap is the re
of hybridization between a narrow band of interacting dip
resonances centered on the spheres and a wide band of
propagating waves in an effective host medium. Eviden
disorder reduces further the effect of the above-mentio
frequency gap on the absorbance curve. The struc
~peaks! in the absorbance curve in the region of the d
derives mainly from higher-multipole (l .1) bands, in the
manner explained in Ref. 32. Again, it does appear that
order amplifies the effect of these higher-multipole re
nances. Some structure may also arise from the remova
ed
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the degeneracy between dipolar terms of differentm ~see
below!. The ripples appearing in the low- and high
frequency tails of the absorbance curve are due to the fi
size of the slab, which gives rise to Fabry-Perot type os
lations.

One observes, also, with increasingf, a slight shift of the
lower-frequency peak to lower frequencies, and a cor
sponding small shift of the high-frequency peak to high
frequencies. But we do not find a dramatic shift in either
these peaks, in contrast to what might be expected from
work of Liebsch and Persson.22 In order to further clarify this
point, we calculated the absorbance of a slab consisting
plasma spheres~the same as in Figs. 2–4! occupying ran-
domly 50%~instead of 75%! of the sites of an fcc lattice~the
same lattice as in Fig. 2, except that in the present case
lattice constant is changed toa5154.71 Å , so thatf 50.1 as
in Fig. 2!. The results, shown in Fig. 5, again show no d
matic difference between the ordered and disordered s
except in one respect: there appears an additional peak in
absorbance curve in the region of the dip of the curve.
contrast to the peaks in the dips of the curves of Figs. 3
4, which mirror multipole peaks of the ordered case, the p
in question is dipolar in origin. In order to clarify this poin
we calculated the absorbance of a single CPA scatterer.
energy absorbed per unit time by a scatterer of spher
shape is given by the negative integral of the Poynting vec
over the surface of the sphere. We denote the average of
quantity over a periodT52p/v by w̄. Using the multipole
expansions~8! and ~10! of the EM field we obtain

w̄52
c3e0

2v2Ae
Re(

l 51

`

(
m52 l

l

(
P5E,H

alm
1P~alm

0P* 1alm
1P* !.

~51!

Our results are shown in Fig. 6, together with the cor
sponding ATA results for comparison. In both approxim
tions the absorbance is essentially determined by the di
terms. However, while the ATA scatterer is characterized
a diagonal matrix̂ T& with the same matrix elements for a
values ofm of given l (2 l<m< l ), this is not the case for
the CPA scatterer. As shown by our calculation, the n
diagonal elements of the CPÂT& matrix do not contribute
significantly to absorption. However, the diagonal eleme
of the CPA^T& matrix, of givenl, are different for the dif-
ferent values ofm, as demonstrated in Fig. 7. It is seen in th
figure that thelm511 element of the CPÂT& matrix ex-

FIG. 5. Absorbance of light incident normally on a slab consi
ing of plasma spheres@the same as in Fig.~2!# occupying 50% of
the sites of an fcc lattice;f 50.1 (a5154.71 Å!.
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8106 PRB 61A. MODINOS, V. YANNOPAPAS, AND N. STEFANOU
hibits an additional resonance at\v>4.13 eV, which does
not occur in the ATA^T& matrix. This resonance gives th
second peak in the CPA absorbance curve of Fig. 6, whic
also manifested in the absorbance of the disordered slab~see
Fig. 5! as calculated by the CPA, and which is not obtain
by the ATA.

In this respect the results for the thick slab we are con
ering here, differ markedly from those we obtained for a ve
thin slab consisting of a single layer of Drude spheres r
domly distributed on a square lattice.15 In that case, we have
found that disorder produces a considerable shift and bro
ening of the resonance~and therefore of the correspondin
absorbance peak! excited by an electric-field component pa
allel to the plane of spheres. The reason for this differe
between the single layer of spheres and a slab of many la
of spheres appears to be the following. In the case of a si
layer of spheres occupying a fraction of the sites of a
lattice, a dipole~say at the origin of coordinates! oscillating
in the direction of the field~say thex direction! interacts with
neighboring dipoles also oscillating in thex direction, which
may be centered along thex direction @as in Fig. 8~a!#, or
normal to it, along they direction @as in Fig. 8~b!#. The
coupling between the dipoles in the first case@Fig. 8~a!# is
different from that in the second case@Fig. 8~b!#, and this
leads to a considerable shift and broadening of the peak
the partly occupied 2D array of spheres. In contrast, in
fully occupied 2D lattice the local field at the given site is

FIG. 6. Absorbance of light by a single CPA~solid line! and
ATA ~dashed line! effective scatterer for the system described
the caption of Fig. 5.

FIG. 7. Elements of thêT& matrix corresponding to a CPA
~solid lines! and an ATA~dashed lines! effective scatterer for the
system described in the caption of Fig. 5.
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uniquely determined quantity. In the ATA method the effe
also disappears because we force the averaging on the
tem ~see above!. In the CPA treatment the effect is not av
eraged out, because of the way the^T& matrix is
constructed.18 Now it appears that in the thick slab, the pre
ence of the layers above and below a given layer, renders
distinction between the cases of Fig. 8~a! and Fig. 8~b! un-
profitable, in the sense that both are likely to occur simu
neously in the partly occupied 3D lattice producing a loc
field at a given site which is more or less the same as tha
a fully occupied lattice. This interpretation accords with t
fact that the MG formula@Eq. ~49!# produces practically the
same results with the exact calculation for small volum
fractions @in which case higher-multipole (l .1) bands are
not important#. In this respect our results appear to confir
an assumption made by several authors,33–35but criticized by
others,22 namely that the MG equation describes reasona
well periodic and nearly periodic structures.

Finally, we must say something about the relation of t
above model results to actual experiments. A metallic p
ticle is not accurately described by a plasma sphere, its
electric function will in general be more complicated th
that of Eq. ~47!. By choosing appropriately the paramete
vp and t in Eq. ~47!, one should be able to reproduce th
lower-frequency peak of the absorbance curve, but the
maining peaks~whether dipolar or multipolar in origin! will
depend to a lesser or greater degree on the details of
dielectric function. The shape, or rather the distribution
sizes and shapes of the metallic particles in a given sys
will also affect the details of the absorbance curve. One m
also remember that the absorption versus frequency cu
for light incident on a slab of the material depends, in ge
eral, on the thickness of the slab~see Fig. 7 of Ref. 32!. In
particular: one must not assume, as it is often done, th
peak in the absorbance curve coincides with a correspon
peak in the absorption coefficient defined byb(v)
52(v/c)ImAe(v). This may or may not be the case.
summary, while our results support the view that disord
does not greatly affect the absorbance of a thick slab
contrast to the situation of a very thin slab, they cannot
compared directly with any set of experimental data.

FIG. 8. Induced dipoles, indicated by arrows, in a partly occ
pied lattice. The empty circles denote nonoccupied sites.
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