Spectroscopic studies of Eu³⁺ and Dy³⁺ centers in ThO₂

M. Yin*

Groupe de Radiochimie, Institut de Physique Nucleaire, Boîte Postale 1, 91406 Orsay Cedex, France and Department of Physics, University of Science and Technology of China, 230026 Hefei, China

J-C. Krupa

Groupe de Radiochimie, Institute de Physique Nucleaire, Boite Postale 1, 91406 Orsay Cedex, France

E. Antic-Fidancev

Laboratoire de Chimie Appliquée de l'Etat Solide-Centre National de la Recherche Scientifique-Unit Mixte de Recherche 7574, Ecole Nationale Supérieure de Chimie de Paris, 11, Rue Pierre et Marie Curie, 75231 Paris Cedex 05, France

A. Lorriaux-Rubbens

Laboratoire de Spectroscopie Infrarouge et Raman, Universite des Sciences et Technologies de Lille,

59655 Villeneuve d'Ascq Cedex, France

(Received 7 October 1999)

Luminescence and excitation spectra of \mathcal{R}^{3^+} -doped thorium oxide (\mathcal{R}^{3^+} =Eu³⁺, Dy³⁺) are reported and analyzed. ThO₂ was synthesized and grown as crystal using the flux technique. Usually, \mathcal{R}^{3^+} ions substitute Th⁴⁺ as a cubic site, but charge compensation often results in the presence of other centers. Doping concentration also has an important effect on the formation of the crystallographic sites. Using selective dye laser excitation at 12 K and selection rules, site symmetries of Eu³⁺ and Dy³⁺ ions in ThO₂ are determined and fluorescence from different centers is isolated. Results show that under conditions investigated, Eu³⁺ ions have O_h and C_{3v} site symmetry in ThO₂ while for Dy³⁺ only C_{3v} exists. Lifetimes were measured and discussed. A crystal-field (cf) calculation has been performed on the reduced 7F_J basis of the ground 7F term of the Eu³⁺ ion. The crystal-field parameter set is then used to calculate Dy³⁺ energy levels in ThO₂ as a test of its consistency.

I. INTRODUCTION

Thorium dioxide is an interesting host matrix for a variety of reasons. It crystallizes in the fluorite structure with a lattice constant of 0.56 nm. The ionic radius of Th^{4+} is 0.104 nm, making the substitution of all of the rare earths possible. The luminescence of Eu³⁺ in thorium dioxide has been studied by several authors. Breysse and Faure¹ and Hubert and co-workers^{2,3} studied powder samples. The former authors concentrated on the influence of preparation condition on luminescence properties, while the latter ones focused on the comparison with Am³⁺ ions. Linares,⁴ in 1966, studied single crystals at low concentration of the activator (0.5%)and x-ray excitation. In all cases, the emission was described as contributions from several sites of different symmetry (cubic and noncubic), but no one gave a detailed study for different sites by using selective excitation at low temperature. In the case of ThO₂:Dy, to our best knowledge, no literature on spectroscopic results can be found.

In this paper we give a detailed study on the spectroscopic properties of Eu³⁺- and Dy³⁺-doped ThO₂ (luminescence spectra, excitation spectra, lifetimes, cross relaxation). The contributions from the cubic symmetry (O_h) and trigonal symmetry (C_{3v}) of Eu³⁺ ion sites in ThO₂ are distinguished by using selective excitation at low temperature. Energy levels and lifetimes of Eu³⁺ and Dy³⁺ ions in the different sites are tabulated and discussed. Semiempirical calculations were performed on the Eu³⁺ ion and the obtained crystal-field parameters were used to reproduce the energy-level diagram of Dy³⁺ in ThO₂ as a test of their validity.

II. EXPERIMENT

The crystals were grown by the flux method and display light yellow (ThO₂:Eu³⁺) and blue (ThO₂:Dy³⁺) color, respectively. For luminescence studies, we used a YAG:Nd³⁺ (where YAG is yttrium aluminum garnet) laser (20W Quantel), a dye laser (coumarin 480, coumarin 500, and rhodamine 610), and a Jobin-Yvon HR-1000 monochromator with a dispersion of 0.8 nm/mm. The samples were placed in a liquid-helium optical cryostat (OXFORD International) with a regulated heated gas system allowing the temperature to be varied between 10–300 K. The photons were detected by a Hamamatsu R374 photomultiplier and the output signals were fed into a Standford SR510 lock-in amplifier. A Lecroy 9350M oscilloscope (500 MHz) interfaced with a computer was used for transient measurements.

III. RESULTS AND DISCUSSION

In ThO₂, Th⁴⁺ ions occupy a site of O_h symmetry. Replacing tetravalent ions by trivalent ions will require positive charge compensation to maintain the electrical neutrality. The compensation can be achieved at some distance by Th⁴⁺ interstitial ions. Then several centers are expected in this matrix. Apparently, the doping concentration has a very important role in determining the site symmetry.^{4,5} Linares⁴ studied the problem and came to the conclusion that the cubic sites O_h would be predominated at low rare-earth concentration and the trigonal C_{3v} at high concentration.

8073

FIG. 1. (a) Emission spectra of ThO_2 :Eu under 254-nm excitation at 12 K and RT; (b) excitation spectrum of ThO_2 :Eu at 12 K. Luminescence detected at 630.9 nm.

A. ThO₂: Eu^{3+}

1. Determination of O_h and C_{3v} symmetry

In a first step, a global view of the emission spectra is obtained by excitation in the Eu-O charge-transfer band at

FIG. 2. Emission spectra of ThO_2 :Eu at 12 K under excitation at 580.4 nm, see Fig. 1.

FIG. 3. Excitation spectra for 630.9-nm emission $({}^{5}D_{0} \rightarrow {}^{7}F_{2})$ of Eu³⁺ ions in C_{3v} site in ThO₂. (a) ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ transition region, (b) ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transition region.

254 nm from a mercury lamp [Fig. 1(a)]. The magnetic dipole (MD) transition ${}^5D_0 \rightarrow {}^7F_1$ at 590.6 nm (16932 cm⁻¹) is the main emission line observed at room and low temperature, showing again the typical behavior of Eu³⁺ ions in such a cubic matrix with an inversion center in the symmetry

FIG. 4. (a) Excitation spectra for 590.6-nm emission (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) of O_{h} site of ThO₂:Eu in the ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transition region, (b) ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ transition region. (c) Emission spectrum of the O_{h} site of ThO₂:Eu at 12 K using ${}^{5}D_{1}$ excitation at 525.7 nm.

TABLE I. Transition energies of Eu^{3+} ions in ThO₂ obtained from excitation and emission spectra at 12 K. Energy levels are given at the right column.

	Observed	lines	Experimental	
		Wave	Energy	
	Wavelength	number	levels	$^{2S+1}L_{J}$
Transitions	(nm)	(cm^{-1})	(cm^{-1})	level
	(a)	C ₂ site		
$^{7}F_{0} \rightarrow {}^{5}D_{2}$	465.7	21 473	21 473	$^{5}D_{2}$
- 0 - 2	467.3	21 400	21 400	- 2
$^{7}F_{0} \rightarrow {}^{5}D_{1}$	526.1	19 008	19 008	${}^{5}D_{1}$
0 1	527.4	18961	18961	1
${}^{5}D_{1} \rightarrow {}^{7}F_{1}$	533.5	18742	219	${}^{7}F_{1}$
1 1	539.6	18 532	429	1
${}^{5}D_{1} \rightarrow {}^{7}F_{2}$	552.9	18 086	875	$^{7}F_{2}$
1 2	568.7	17 584	1377	${}^{7}F_{2}^{2}$
$^{7}F_{0} \rightarrow ^{5}D_{0}$	580.4	17 229	$0 ({}^{7}F_{0})$	$17229({}^{5}D_{0})$
${}^{5}D_{1} \rightarrow {}^{7}F_{3}$	584.6	17 106	1855	$^{7}F_{3}$
1 5	586.4	17 053	1908	9
	587.8	17 013	1948	
	589.2	16972	1989	
${}^{5}D_{0} \rightarrow {}^{7}F_{1}$	587.8	17 013	216	${}^{7}F_{1}$
0	595.3	16 798	431	
${}^{5}D_{0} \rightarrow {}^{7}F_{2}$	611.5	16353	876	${}^{7}F_{2}$
0 2	612.5	16 327	902	-
${}^{5}D_{1} \rightarrow {}^{7}F_{4}$	621.2	16 098	2863	${}^{7}F_{4}$
	626.9	15 952	3009	
${}^5D_0 \rightarrow {}^7F_2$	630.9	15 850	1379	${}^{7}F_{2}$
${}^5D_0 \rightarrow {}^7F_3$	650.4	15 375	1854	${}^{7}F_{3}$
	652.7	15 321	1908	
	654.5	15 279	1950	
	655.4	15 258	1971	
	656.2	15 239	1990	
${}^5D_0 \rightarrow {}^7F_4$	682.5	14 652	2577	${}^{7}F_{4}$
	696.0	14 368	2861	
	708.8	14 108	3121	
	710.9	14 067	3162	
	712.2	14 041	3188	
${}^5D_1(1) \rightarrow {}^7F_5$	668.3	14 963	3998	${}^{7}F_{5}$
	669.7	14 932	4029	
	(b)	O_h site		
$^{7}F_{0} \rightarrow ^{5}D_{2}$	467.0	21 415	21 415	${}^{5}D_{2}$
${}^7F_0 \rightarrow {}^5D_1$	525.7	19 022	19 022	${}^{5}D_{1}$
${}^{5}D_{2} \rightarrow {}^{7}F_{3}$	512.4	19 516	1899	${}^{7}F_{3}$
	516.0	19 380	2035	
${}^{5}D_{1} \rightarrow {}^{7}F_{2}$	547.67	18 259	763	${}^{7}F_{2}$
	568.17	17 600	1422	
${}^7F_0 \rightarrow {}^5D_0$	579.45	17 258	$0 ({}^{7}F_{0})$	$17258~(^5D_0)$
${}^5D_1 \rightarrow {}^7F_3$	588.67	16987	2035	${}^{7}F_{3}$
${}^5D_0 \rightarrow {}^7F_1$	590.6	16932	326	${}^{7}F_{1}$
${}^5D_0 \rightarrow {}^7F_4$	697.34	14 340	2918	${}^{7}F_{4}$

elements. But the appearance of several weaker lines in the spectra in addition to the allowed transitions for O_h symmetry indicates that other Eu³⁺ sites may be coexisting. Among the weaker emission lines in Fig. 1(a), the 630.9 nm (15 850

TABLE II. Lifetimes of ${}^{5}D_{J}$ levels of Eu³⁺ ions in O_{h} and C_{3v} sites in the ThO₂ matrix at room temperature (RT) and 12 K.

	Lifetime (ms)			
Level	RT	12 K		
	(a) C_{3v} site			
${}^{5}D_{0}$	0.84	0.86		
${}^{5}D_{1}$	0.11	0.17		
${}^{5}D_{2}$	0.18	0.25		
	(b) O_h site			
${}^{5}D_{0}$	3.73	5.27		
${}^{5}D_{1}$	0.15	0.25		

cm⁻¹) is the strongest one. Excitation spectrum [Fig. 1(b)] obtained by monitoring at this line gives a sharp absorption peak at 580.4 nm, corresponding to the ${}^7F_0 \rightarrow {}^5D_0$ transition of Eu³⁺ in the site under investigation. In Fig. 2, the emission spectra of ThO₂:Eu³⁺ in this particular site, obtained under 580.4 nm selective excitation at 12 K, are plotted and the transitions assigned. From comparison between Figs. 2 and 1(a) (12 K) the conclusion come out that all the peaks in the range of 600.0–670.0 nm (corresponding to ${}^5D_0 \rightarrow {}^7F_{2,3}$ transitions) in Fig. 1(a) belong to the same site. It suggests that there are only two sites in ThO₂:Eu³⁺, including O_h .

Here again, the Eu³⁺ ion is used as a local crystal-field probe to characterize the site symmetry, as done by different authors previously, e.g., Refs. 6 and 7. Figure 2 tells us that there are two, three, and five peaks which can be attributed respectively to ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions. According to the selection rules, two peaks for ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions is an indication that the point group could be hexagonal, trigonal, or tetragonal. Then, three peaks for ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions further indicates that the symmetry could be S_{4} , C_{3v} , or C_{3} , and at last from the five peaks recorded for ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ transitions we come to the conclusion that the site symmetry is C_{3v} , consistent with our analysis at the beginning of this section.

It should be pointed out that in the above discussion, the assumption that the ${}^{5}D_{0} \rightarrow {}^{7}F_{2,4}$ transitions are pure electrical dipole (ED) transitions and ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ pure MD is used. This is widely accepted and being used in publications.^{8,9}

2. Energy levels

From Figs. 1 and 2, the energy of ${}^{5}D_{0}$ and all the ${}^{7}F_{0-4}$ crystal-field levels of Eu³⁺ ions in C_{3v} symmetry were measured (there are five peaks for ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ transitions, but we only marked the two strongest ones for clarity). The excitation spectrum of $\lambda_{em} = 630.9$ -nm emission line in the range of 522–530 nm [Fig. 3(b)] confirmed two peaks for ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ transitions in C_{3v} measured at 19 008 cm⁻¹ (526.1 nm) and 18 961 cm⁻¹ (527.4 nm) and the excitation spectrum in the range 463–473 nm [Fig. 3(a)] gives us the energy of two crystal-field levels of the ${}^{5}D_{2}$ multiplet. According to the selection rules, there should be three peaks for the ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ transition, but the third one may be too weak to be recorded. Selective excitation in these ${}^{5}D_{J}(J=1,2) C_{3v}$ levels at low temperature provides some other peaks and

FIG. 5. Emission spectra of ThO_2 :Dy under 254-nm excitation at 12 K.

consequently more energy levels can be assigned. Table I(a) is a summary of the obtained 22 energy levels of Eu^{3+} ions in C_{3v} symmetry in ThO₂.

As stated before, for Eu^{3+} ions in O_h symmetry offered by the ThO₂ lattice, there is only one strong emission peak at 590.6 nm attributed to ${}^5D_0 \rightarrow {}^7F_1$ transitions under UV ex-

FIG. 6. Excitation spectrum for ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ emission from Dy³⁺ ions in ThO₂ at 12 K.

FIG. 7. Emission spectra of ThO_2 :Dy in the region of 570–590 nm at 12 K using 254 and 474.5 nm (21 074.2 cm⁻¹) excitation, respectively, see Fig. 6.

citation. Then, the key factor to deduce the energy levels of Eu^{3+} ions in O_h symmetry is to determine the position of ${}^{5}D_{0}$ or ${}^{7}F_{1}$ level. In order to get more information, the excitation spectra of 590.6-nm emission were recorded and a ${}^{5}D_{1}$ level at 19022 cm⁻¹ (525.7 nm) [Fig. 4(a)] was first obtained. The excitation spectrum ranging from 579 to 580 nm gave us a very weak and narrow peak at 579.45 nm (17258 cm^{-1}) [Fig. 4(b)] which was assigned to ${}^{7}F_{0}$ $\rightarrow {}^{5}D_{0}$ electronic transition. While pure electronic transitions are forbidden in O_h symmetry, this line cannot be attributed to a vibronic transition because we know from Raman spectrum that there is only one kind of phonon with energy 465 cm^{-1} and if this peak is assigned as a vibronic line, then the pure 0-0 transition will be located at 16793 cm^{-1} , far from all the observed ${}^7F_0 \rightarrow {}^5D_0$ transitions in the full europium nephelauxetic scale.¹⁰ The existence of a pure ${}^7F_0 \rightarrow {}^5D_0$ transition may be due to a small distortion in the cubic site, which can be related to the radius difference between the embedded ion $Eu^{3+}(0.095 \text{ nm})$ and the substituted ion Th⁴⁺ (0.104 nm). Similar phenomena were also observed in other cubic symmetry.⁵

Similarly to C_{3v} symmetry, site selective excitation [Fig. 4(c)] gave information about energy levels of Eu³⁺ in O_h symmetry and Table I(b) summarized the obtained nine level energies.

3. Lifetime measurement and energy transfer

As seen before, Eu^{3+} ions in ThO₂ occupy O_h and C_{3v} sites. One can expect that substitution into the O_h site will give a longer lifetime than substitution into the C_{3v} site of lower symmetry. Table II shows lifetimes of the ⁵D manifold for C_{3v} and O_h symmetries at both 12 K and room temperature. All the values were obtained by exciting the level directly except for the ⁵D₀ level of Eu³⁺ in O_h sym-

TABLE III. Transition energies of Dy^{3+} ions in ThO₂ obtained from excitation and emission spectra at 12 K.

TABLE IV. Experimental and calculated energy-level schemes for Eu^{3+} in ThO₂ for the C_{3v} site.

Transitions	Observed lines (cm ⁻¹)	Experimental Energy levels (cm ⁻¹)	$^{2S+1}L_J$ level
$\overline{{}^{6}H_{15/2} \rightarrow {}^{4}F_{0/2}}$	20 916	20.916	${}^{4}F_{0/2}$
15/2 - 9/2	20 925	20 925	- 9/2
	21 074	21 074	
	21 148	21 148	
${}^{6}H_{15/2} \rightarrow {}^{4}I_{15/2}$	21 929	21 929	${}^{4}I_{15/2}$
10/2 10/2	21 986	21 986	15/2
	22 050	22 050	
	22 259	22 259	
	22 342	22 342	
	22 354	22 354	
	22 366	22 366	
	22 388	22 388	
${}^4F_{9/2} \rightarrow {}^6H_{15/2}$	20 933	0	${}^{6}H_{15/2}$
	20 897	36	
	20 845	88	
	20 780	153	
	20 649	284	
	20 4 10	523	
	20 359	574	
${}^4F_{9/2} \rightarrow {}^6H_{13/2}$	17 371	3562	⁶ H _{13/2}
	17 341	3592	
	17 299	3634	
	17 162	3771	
	17 103	3830	
4	17 064	3869	6
${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$	14 970	5963	${}^{6}H_{11/2}$
	14 948	5985	
	14 914	6019	
	14 855	6078	
	14 796	6137	
$4\mathbf{E}$ $6\mathbf{E} \pm 6\mathbf{U}$	14 752	0201	$6_{\boldsymbol{E}} \perp 6_{\boldsymbol{U}}$
$\Gamma_{9/2} \rightarrow \Gamma_{11/2} + \Pi_{9/2}$	13 249	7603	$\Gamma_{11/2} + \Pi_{9/2}$
	13 240	7023	
	13 205	7728	
	13 196	7737	
	13 150	7776	
	13 148	7785	
	13 106	7827	
	13 052	7881	
	13 028	7905	
	12 949	7984	
${}^{4}F_{9/2} \rightarrow {}^{6}F_{9/2} + {}^{6}H_{7/2}$	11 902	9031	${}^{6}F_{9/2} + {}^{6}H_{7/2}$
	11 893	9040	
	11 880	9053	
	11 871	9062	
	11 812	9121	
	11 802	9131	
	11 686	9247	
	11 673	9260	
	11 616	9317	
	11 561	9372	

$^{2S+1}L_J$ level	$E \text{ expt.} (\text{cm}^{-1})$	E calc. (cm ⁻¹)	Irreducible representation
${}^{7}F_{0}$	0	0	A_1
${}^{7}F_{1}$	216	218	A_2
	431	430	Ε
${}^{7}F_{2}$	876	892	A_1
	902	900	Ε
	1379	1373	Ε
${}^{7}F_{3}$	1854	1857	E
	1908	1911	A_1
	1950	1943	A_2
	1971	1970	Ε
	(1990)	2138	A_2
${}^{7}F_{4}$	2577	2572	A_1
	2861	2848	E
	3009	3001	A_2
	3121	3126	Ē
	3162	3172	A_1
	3188	3198	Ē

TABLE V. Crystal-field parameters for Eu^{3+} in ThO₂ for C_{3v} site symmetry.

Parameter	Value (cm ⁻¹)		
B_0^2	-661		
B_0^4	843		
B_3^4	-1709		
B_0^6	799		
B_3^6	299		
$B_6^{\check{6}}$	1028		
n levels	16		
residue	868		
σ	9.3		

TABLE	VI.	Exper	imental	and	calculated	energy-level	schemes
for Eu ³⁺ in	Th	D_2 for	the O_h	site.			

$^{2S+1}L_J$ level	$E \text{ expt.} (\text{cm}^{-1})$	E calc. (cm ⁻¹)	Irreducible representation
${}^{7}F_{0}$	0	0	A_1
${}^{7}F_{1}$	326	326	Т
${}^{7}F_{2}$	763	763	Т
	1422	1422	Ε
${}^{7}F_{3}$		1858	Т
	2035	2035	Т
		2251	A_2
${}^{7}F_{4}$		2290	A_1
	2918	2918	Т
		3147	Т
	3290	3290	Ε

CFP's from Table V.

TABLE VII. Crystal-field parameters for Eu^{3+} in ThO₂ for O_h site symmetry.

Parameter	Value (cm ⁻¹)		
B_0^2	0		
B_0^4	-2247		
B_4^4	-1342		
B_{0}^{6}	1079		
B_{4}^{6}	-2022		
n levels	7		
residue	0.7		
σ	0.3		

metry, where the nearest level of the D_1 multiplet was excited. The lifetime enhancement for O_h symmetry was approximately six times over the C_{3v} one and the largest difference is for the ${}^{5}D_{0}$ level at low temperature. The table also shows that ${}^{5}D_{1}$ and ${}^{5}D_{2}$ levels have as expected a shorter lifetime than ${}^{5}D_{0}$ accordingly to the energy gaps between close levels. It is interesting to notice that for the ${}^{5}D_{1}(C_{3v})$ emitting level, the decay time decreases rapidly as the temperature increases, from 0.17 ms at 12 K to 0.11 ms at 300 K, while for ${}^{5}D_{0}(C_{3v})$ the lifetime nearly remains constant for different temperatures. This is due to an enhanced energy transfer from 5D_1 to 5D_0 at higher temperatures.¹¹ Indeed, Fig. 1(a) (normalized for the 590.6-nm line) clearly shows the phenomena. The sequence of the relative intensity of 533.6- and 580.4-nm emission lines, which correspond to the ${}^5D_1 \rightarrow {}^7F_1$ and ${}^5D_0 \rightarrow {}^7F_0$ transition of Eu^{3+} ions in C_{3v} sites, respectively, is varying from 300 to 12 K. The enhanced energy transfer

$${}^{5}D_{1} + {}^{7}F_{0} \rightarrow {}^{5}D_{0} + {}^{7}F_{3}$$

at room temperature results in the quenching of the ${}^{5}D_{1}$ level emission in favor of the lower ${}^{5}D_{0}$ energy-level emission, and consequently contributes to a shorter lifetime for the ${}^{5}D_{1}$ emitting level when the temperature increases.

B. ThO₂:Dy³⁺

Differently from Eu^{3+} , Dy^{3+} in ThO₂ has only one emitting level of ${}^{4}F_{9/2}$ in the visible range.¹² Figure 5 is the emission spectra of $ThO_2:Dy^{3+}$ in the region of 11 500-21 250 cm⁻¹ under 254-nm excitation at 12 K. The spectra consist of five line groups, corresponding to ${}^{4}F_{9/2} \rightarrow {}^{6}F_{9/2}$ $+{}^{6}H_{7/2}$, ${}^{4}F_{9/2} \rightarrow {}^{6}F_{11/2} + {}^{6}H_{9/2}$, ${}^{4}F_{9/2} \rightarrow {}^{6}H_{11/2}$, ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$, and ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transitions, respectively. Following the spectroscopic studies of Eu^{3+} ions in ThO₂, there are two sites of O_h and C_{3v} symmetry available for the trivalent rare-earth ions. In order to know the symmetry properties of the crystal field acting on Dy^{3+} ions in the matrix, the excitation spectrum of ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ emissions for Dy³⁺ ions in ThO₂ was measured (Fig. 6). The strongest excitation is located at 21 074.2 cm⁻¹ (474.5 nm). Selective excitation at 474.5 nm gives exactly the same emission spectrum as nonselective excitation at 254 nm (Fig. 7). This result suggests that there is only one site for $D\bar{y^{3+}}$ ions in $ThO_2.$

We are thinking that the site symmetry is C_{3v} rather than O_h . Indeed, Fig. 6(b) shows that ${}^4I_{15/2}$ has eight crystal-field

	E expt.	E calc
$^{2S+1}L_J$ level	(cm^{-1})	(cm^{-1})
⁶ H _{15/2}	0	-2
13/2	26	40
	88	107
	153	218
	284	347
	523	551
	574	600
		624
${}^{6}H_{13/2}$	3562	3585
	3592	3600
	3634	3618
	3772	3771
	3830	3855
	3869	3864
		3907
${}^{6}H_{11/2}$	5963	5968
	5985	5977
	6019	5983
	6078	6079
	6138	6111
	6201	6185
${}^{6}H_{9/2} + {}^{6}F_{11/2}$	7684	7625
	7693-7701	7688
	7728-7737	7711
	7776–7785	7804
	7827	7856
	7881	7912
	7905	7928
	7984	8020
		8056
		8210
		8276
${}^{6}H_{7/2} + {}^{6}F_{9/2}$	9031-9040	9023
	9053-9062	9060
	9121-9131	9111
	9247	9306
	9260	9328
	9317	9354
	9732	9412
		9463
4 5	20.016 20.025	9680
$F_{9/2}$	20916-20925	20.927
	21 0/4	21 019
	21 146	21 080
		21 208
4 r	21.020	21 307
I 15/2	21 929	21 899
	21 900	21 737
	22 050	22 018
	22 239	22 230
	22 342	22 333
	22 334	22 373
	22 300	22 413
	22 388	22 44 3

TABLE VIII. Experimental and calculated energy-level schemes for Dy^{3+} in ThO₂. Free ion parameters from Table IX and

TABLE IX. Free ion parameters for Dy^{3+} in ThO₂: values taken from Ref. 18.

Parameter	Value (cm ⁻¹)	
E^0	55 395	
E^1	6158.06	
E^2	30.43	
E^3	622.75	
α	17.92	
β	-612.15	
γ	1679.85	
T^2	339.14	
T^3	74.13	
T^4	49.74	
T^6	-316.25	
T^7	366.15	
T^8	362.65	
\$	1914	

sublevels. This ruled out the possibility of O_h symmetry for which the maximum splitting multiplicity of ${}^4I_{15/2}$ is 6. According to the results obtained for ThO₂:Eu³⁺, it is reasonable to attribute the site symmetry as C_{3v} . Experimental results supported the argument. For example, the selection rules and the splitting number of the ${}^6H_{13/2}$ level in C_{3v} symmetry agrees well with the seven peaks observed for the transitions of ${}^4F_{9/2} \rightarrow {}^6H_{13/2}$ (Fig. 7). The only C_{3v} symmetry observed for Dy³⁺ in ThO₂ results from the higher doping concentration. Table III summarized the experimental transition lines at 12 K and the deduced energy levels of Dy³⁺ in ThO₂.

The lifetime of the ${}^{4}F_{9/2}$ level of Dy³⁺ in ThO₂ (0.40 ms) does not change with temperature. The phenomenon can be explained by the large energy gap (about 6000 cm⁻¹) between the ${}^{4}F_{9/2}$ and ${}^{6}F_{1/2}$ levels as well as by nonefficient cross relaxation occurring among levels.

C. Crystal field

The usual way to fit the energy levels of a given rare-earth ion embedded in a crystalline medium is to treat different interactions simultaneously. The basis of these procedures is given by Judd¹³ and Wybourne,¹⁴ respectively. In this work we consider only the crystal-field contribution which is expressed as a sum of tensorial operators:

$$H_{cf} = \sum_{k,q,i} B_q^k(C_q^k).$$

 B_q^k are the phenomenological crystal-field parameters (CFP) and their number depends on the local point site symmetry of

- ¹M. Breysse and L. Faure, J. Lumin. **26**, 107 (1981).
- ²S. Hubert and P. Thouvenot, J. Alloys Compd. 180, 193 (1992).
- ³S. Hubert, P. Thouvenot, and N. Edelstein, Phys. Rev. B **48**, 5751 (1993).
- ⁴R. C. Linares, J. Opt. Soc. Am. 56, 1700 (1966).

the rare-earth ion. The potential for the C_{3v} site symmetry is described by six nonzero coefficients, B_q^k CFP's, and nine C_q^k operators, ^{16,17}

$$\begin{split} H_{C_{3v}} &= B_0^2(C_0^2) + B_0^4(C_0^4) + B_3^4(C_{-3}^4 - C_3^4) + B_0^6(C_0^6) \\ &\quad + B_3^6(C_{-3}^6 + C_3^6) + B_6^6(C_{-6}^6 + C_6^6). \end{split}$$

In the case of the O_h site symmetry, considering the fourfold axis, five nonzero coefficients, B_q^k CFP's, and six C_q^k tensorial operators exist,

$$\begin{split} H_{C_{4v}} = B_0^2(C_0^2) + B_0^4(C_0^4) + B_4^4(C_{-4}^4 + C_4^4) + B_0^6(C_0^6) \\ &+ B_4^6(C_{-4}^6 + C_4^6) \end{split}$$

with $B_0^4/B_4^4 = \sqrt{14}/\sqrt{5}$ and $B_0^6/B_4^6 = -\sqrt{2}/\sqrt{7}$ with respect to the cubic ratio.

The crystal-field analysis is performed for the Eu³⁺ ion embedded in ThO₂ and the set of the CFP's obtained is then used to simulate the Dy³⁺ ion behavior. The total degeneracy of the $4f^6$ configuration (Eu³⁺ ion) is high, 3003, and the calculation of the CFP's can be done on the strongly reduced 7F_J basis of the ground 7F term. For more details see Ref. 15.

Experimental and calculated energy-level schemes for the Eu^{3+} ion in the two different sites C_{3v} and O_h are given in Tables IV and VI and the phenomenological crystal-field parameters are listed in Tables V and VII. It should be mentioned that the level located at the 1990 cm⁻¹, C_{3v} site, was not used in the fit. This line, appearing as very weak in the emission spectrum, is suspicious because from the 7F_3 multiplet barycenter position, the highest 7F_3 component is calculated to be located at about 2140 cm⁻¹.

The CFP set from Table V is used to calculate the Dy^{3+} ion in the ThO₂ matrix as a test of its reliability. The free ion parameters are from DyOF data.¹⁸ The fit which is obtained without trying to adjust the parameter values is quite good, giving some consistency to the parameter set (see Tables VIII and IX).

IV. CONCLUSION

We have carried out a detailed luminescence study of Eu^{3+} and Dy^{3+} in ThO₂. All the assignments are based on the selective excitation and emission spectra at low temperature. Eu^{3+} occupies the cubic (O_h) and trigonal (C_{3v}) sites in ThO₂. The former predominates at low concentration, while the more heavily doped Dy^{3+} only C_{3v} site has been detected. The energy levels and lifetimes of Eu^{3+} and Dy^{3+} ions in different sites are tabulated and discussed.

ACKNOWLEDGMENT

This work was partly supported by the National Natural Science Foundation of China (No. 19774052).

- ⁵J. P. Jouart, C. Bissieux, M. Egee, G. Mary, and M. de Murcia, J. Phys. C 14, 4923 (1981).
- ⁶S. P. Sinha and E. Butter, Mol. Phys. 16, 285 (1969).
- ⁷N. Mercier, E. Antic-Fidancev, M. Lemaitre-Blaise, and M. Leblanc, J. Solid State Chem. **132**, 33 (1997).
- ⁸G. Blasse and A. Bril, J. Chem. Phys. **45**, 3327 (1966).

^{*}Electronic address: yinmin@ustc.edu.cn

- ⁹C. Gorller-Walrand and K. Binnemans, *Rationalization of Crystal-Field Parametrization*, edited by K. A. Gschneidner, Jr. and L. Eyring in Handbook on the Physics and Chemistry of Rare Earths Vol. 23 (Elsevier, Amsterdam, 1996).
- ¹⁰E. Antic-Fidancev, J. Alloys Compds. (to be published).
- ¹¹G. Blasse and B. C. Grabmaier, *Luminescent Materials* (Springer-Verlag, Berlin, 1994).
- ¹²D. R. Foster and F. S. Richardson, J. Chem. Phys. 82, 1085 (1985).
- ¹³B. R. Judd, Phys. Rev. **141**, 4 (1966).

- ¹⁴B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).
- ¹⁵G. Corbel, M. Leblanc, E. Antic-Fidancev, and M. Lemaitre-Blaise, J. Solid State Chem. 144, 35 (1999).
- ¹⁶J. L. Prather, *Atomic Energy Levels in Crystals*, Natt. Bur. Stand. (U.S.) Monograph No. 19 (U.S. GPO, Washington, D.C., 1961).
- ¹⁷P. Caro, Structure *Electronique des Elements de Transition* (Presses Universitaires de France, Paris, 1976).
- ¹⁸J. Holsa, E. Kestila, R. Saez-Puche, P. Deren, W. Strek, and P. Porcher, J. Phys.: Condens. Matter 8, 1575 (1996).