
PHYSICAL REVIEW B 15 MARCH 2000-IIVOLUME 61, NUMBER 12
Plasmonic excitations in noble metals: The case of Ag
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The delicate interplay between plasmonic excitations and interband transitions in noble metals is described
by means ofab initio calculations and a simple model in which the conduction electron plasmon is coupled to
the continuum of electron-hole pairs. Band-structure effects, especially the energy at which the excitation of
thed-like bands takes place, determine the existence of a threshold plasmonic mode, which manifests itself in
Ag as a sharp resonance experimentally observed at 3.8 eV. However, such a resonance does not appear in the
spectra of the other noble metals. Here this different behavior is also analyzed, and an explanation is provided.
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I. INTRODUCTION

In a recent letter,1 Ku and Eguiluz showed that band
structure effects are responsible for the positive dispersio
the plasmon line width in K. Such a behavior was previou
found by vom Felde, Spro¨sser-Prou, and Fink2 in electron-
energy-loss experiments. They interpreted the result as
to short-range electron-electron correlations beyond
random-phase approximation~RPA!. However, Ku and
Eguiluz explained the result within the RPA in terms of t
extra plasmon decay channels provided by a manifold
unoccupiedd-symmetry bands. The effect of these bands
overlooked when treating K as a homogeneous electron
tem in the jellium model. Therefore, band-structure effec
turn out to be decisive in determining not only the existen
of interband transitions, but also the properties of plasmo
excitations. Indeed,ab initio calculations of the dynamica
response have properly described the experimental plas
dispersion in a variety of simple metals.3–6 On the other
hand, thejellium model still provides a qualitative, thoug
not accurate, description of the energy-loss spectrum of th
systems in the long-wavelength limit.

The energy-loss spectrum can be obtained either by
forming electron-energy-loss spectroscopy7 or inelastic scat-
tering of x-ray photons,8 or indirectly by means of optica
measurements.9 In noble metals this spectrum has a comp
cated structure, which bears little resemblance to tha
simple metals. It is known10 that such a structure has to d
with the existence of a manifold ofd-like bands a few eV
below the Fermi level. These lead to important deviatio
from even the crudest predictions for an homogeneous e
tron liquid. Thus, whereas for Ag a narrow resonance is
served at an energy'3.8 eV, no well-defined plasmoni
excitations appear in the spectra of Cu and Au.

The purpose of this paper is to investigate the structur
PRB 610163-1829/2000/61~12!/8033~10!/$15.00
of
y

ue
e

f
s
s-

e
ic

on

se

r-

of

s
c-
-

of

the energy-loss spectrum in the long-wavelength limit, wh
plasmonic excitations are expected to be important. In p
ticular, we have focused on Ag for our study, but some
our conclusions also apply to Cu and Au, and could be
tended to similar metallic compounds with fully occupie
d-like bands close to the Fermi level. The spectrum of
was studied from first principles in a previous work.11 In the
present work, we show that the structure in the energy-l
spectrum of Ag up to;10 eV can be understood in terms
a simple model. In particular, we are concerned with the r
played by the relative values of the Drude plasma freque
and the threshold energy for excitation of thed-like bands.
After clarifying the relevant elements for the existence o
plasmonic excitation around the interband excitation thre
old, numerical experiments in anab initio framework for
calculating the dielectric matrix of Ag are performed to co
firm this picture. Furthermore, a comparison of theab initio
results with experimental data displays good agreement
excitations well above the threshold, being able to reprod
a structure in the loss spectrum up to'30 eV. An underes-
timate of the threshold energy in local-density calculatio
also shows up in our calculations, yielding a lower plas
frequency than the experiments.

The question of how band structure alters the proper
of plasmons in metals was previously addressed by a num
of authors. Wilson12 studied the shift in the Drude plasm
frequency due to the presence of an optical-absorption b
that lies above~below! the free-electron plasma frequenc
He found that the plasma frequency is shifted downwa
~upwards! by the effect of the absorption band. More r
cently, Sturm13 studied, within the RPA, the corrections t
the dielectric function of an homogeneous electron gas
to a weak lattice potential. He showed that the lattice pot
tial can provide the necessary momentum for a plasmon
decay into an electron-hole pair below the Landau cutof14
8033 ©2000 The American Physical Society
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In other words, when taking the lattice structure into acco
by folding the free-electron bands into the first Brillou
zone~BZ!, a plasmonic excitation can decay by producing
interband transition. As a consequence, even in the R
plasmons acquire a finite lifetime. Core polarization effe
on the plasma frequency were investigated by Zaremba
Sturm.15 They treated the core polarizability as a superpo
tion of the polarizability of the isolated lattice ions. The p
larization of core electrons lowers the plasma frequency fr
its Drude value, bringing it closer to the experimental val

The behavior of noble metals was considered by Ehre
ich and Phillipp.10 These authors used the data obtained
experimental measurements of the reflectivity from Cu a
Ag16 to obtain the optical and energy-loss spectra. Th
separated the Drude and interband contributions to the o
cal response, thus shedding light on the reason why the
ergy of the plasma resonance in Ag is shifted down in
ergy. In a later work, Cooper, Ehrenreich and Phillipp17

extended this analysis to Au. They touched upon the qu
tion of assigning interband transitions to the most relev
features observed in the optical spectrum. To further cla
this point, Mueller and Phillips18 performed, within the RPA
and based on band structure calculations by Burdick,19 a nu-
merical calculation of the imaginary part of the interba
contribution to the optical response of Cu. Thus they co
give a more correct identification of the interband transitio
that contribute to the optical spectrum at a given ener
Their interpretation is consistent with the optical data o
tained in a number of reflectivity measurements from Ag a
Ag alloys.20,21

Recently, the dielectric matrix as well as the energy-lo
spectrum have been evaluated numerically within a fi
principles framework. To mention a few examples of the
studies, in addition to the work by Ku and Eguiluz1 men-
tioned above, Quong and Eguiluz3 thus investigated the an
isotropy in the plasmon dispersion of aluminum.22 Aryase-
tiawan and Karlsson4 studied the excitations in the energ
loss spectra of alkali metals. The negative dispersion of b
plasmons in Cs was investigated using these methods
Aryasetiawan and Karlsson4 and Fleszaret al.5 In general,
specific features of the band structure such as the presen
flat d-like bands and gaps at the Brillouin-zone boundar
are needed to describe in detail the experimental energy
spectra in simple6,23–27 and noble metals.11 In the case of
noble metals, the energy-loss function of Cu was evalua
from first principles by Campillo, Rubio, and Pitarke.11 An
accurate description of the energy-loss spectrum of Cu
thus attained once the fully occupiedd-like bands are con-
sidered as valence bands. In this work, we obtain the ene
loss spectrum of Ag using the sameab initio techniques, but
this time we focus on understanding the plasmonic exc
tions in noble metals. The appearance of a plasma reson
at '3.8 eV in Ag can also be qualitatively understood w
the help of a simple model, which provides a perspective
how a threshold plasmonic mode can appear, and show
parameters controlling the existence of this type of exc
tions.

The outline of the paper is as follows. In Sec. II we d
cuss a model which provides a qualitative explanation
some features in the energy-loss spectrum up to;10 eV.
The details of theab initio computation of the spectrum ca
t
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be found in Sec. III. A description and discussion of t
results is given in Sec. IV. Finally, the main conclusions
the present paper are summarized in Sec. V. Atomic u
(\5e25me51) are used in all mathematical expressions

II. A SIMPLE MODEL

In order to estimate the plasma frequency in Ag, we c
try to use the classical expression28 vp5A4pn. If we
naı̈vely setn5nc , i.e., the density of those electrons comin
from the atomic 5s orbital, we findvp

c58.98 eV. This esti-
mate sets the energy scale for a collective excitation invo
ing these electrons, which are supposed to be the least tig
bound and to populate the states high in the conduction b
However, the value thus obtained is in clear disagreem
with the experimental observation of a narrow plasma re
nance at 3.8 eV. Including the ten electrons from the ato
4d orbitals worsens the estimate, leading to a value forvp of
32.6 eV, which sets the energy scale for a collective exc
tion involving the electrons in thed-like and conduction
sp-like bands. In this section, we shall develop a model t
applies to the lower-energy scale set byvp

c , and illustrates
how band-structure effects can modify the energy-loss sp
trum of Ag in the long-wavelength limit so that it does n
show the same structure as simple metals.

The usual method to determine the position of plas
resonances in the long-wavelength energy-loss spect
goes as follows. Disregarding crystal local-field effec
~well-defined! plasmonic excitations correspond to zeroes
the macroscopic dielectric function. Foruqu50, we have

e~V!50 ~1!

for some complexV with a small imaginary part. Using the
Sellmeyer-Drude expression29 for e(v), and neglecting
damping effects,

e~v!512
~vp

D!2

v2
1de ( ib)~v!, ~2!

where last term corresponds to the interband contribution

de ( ib)~v!5 (
vn.0

f n

vn
22v2

. ~3!

The condition in Eq.~1! can be written as

V22~vp
D!21V2de ( ib)~V!50. ~4!

The oscillator strength,f n in Eq. ~3!, is a measure of the
effective number of electrons that participate in the exc
tion of a given moden, with energyvn . The dominant con-
tribution at frequencies well belowvp

c comes from the exci-
tation of conduction electrons. The Drude plasm
frequency10 vp

D59.2 eV is slightly higher thanvp
c . The ra-

tio of the two plasma frequencies is usually expressed
terms of the ‘‘optical’’ mass,mopt ~recall that me51 in
atomic units!:
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S vp
c

vp
DD 2

5mopt50.95 ~5!

for Ag and mopt51.35 for Cu.10 In the RPA,mopt corre-
sponds to the effective mass of electrons averaged ove
occupied part of the conduction band.

Equation~4! can be read in the following way. We as
sume that the termV2de ( ib)(V) plays the role of a ‘‘self-
energy’’ for the Drude plasmon. In simple metals, this te
is usually small and varies slowly withv. This leads to a
small shift of the Drude frequency. The plasma frequen
also acquires a small imaginary part, which accounts for
fact that the plasmon state is degenerate in energy with o
configurations of the system involving one or several el
trons excited from one band to another. This idea can ea
be realized in a model in which the plasmon is viewed a
boson coupled to an energy continuum. In an independ
electron picture, the continuum corresponds to the spect
of electron-hole pairs. A simple model Hamiltonian that c
be set up to describe this situation is

H5(
q

vp
Dbq

†bq1(
k,q

vk,qmk,q
† mk,q

1(
q,k

gk,q~bq1b2q
† !~mk,q

† 1m2k,2q!. ~6!

In this model, plasmons are presented as a field of oscilla
carrying momentumq. Thus,bq

† andbq are plasmon creation
and annihilation operators, respectively. To keep the mo
as simple as possible while retaining all the important phy
cal effects, the energy continuum is also represented by a
of harmonic oscillators whose quanta are created and a
hilated by the operatorsmk,q

† andmk,q . The labelk stands for
the additional quantum numbers~spin, relative momentum
band indices, etc.! carried by a given continuum mode. Th
operatorm2k,2q (m2k,2q

† ) anhilates~creates! a continuum
mode with all the momentum quantum numbers revers
The assumed interaction between plasmons and the
tinuum conserves the momentumq. Terms connecting plas
mons and continuum modes with momentum differing by
finite reciprocal-lattice vector are therefore neglected. T
approximation amounts to disregarding crystal local-fi
corrections, which in general is a good approximation
metals. Indeed, theab initio calculations for Cu11 and Ag
~see below! show that crystal local-field effects at smallq
amount at most to a ten percent correction in the peak in
sity.

The above model@Eq. ~6!# can be solved exactly.30,31 In-
deed, it is related to the models introduced by Fano32 and
Anderson33 to study the coupling of a discrete state to
continuum. More precisely, the present model can be thou
of as an extension of Gadzuk’s work30 for a localized vibra-
tional mode in an electron liquid. Thus the energies of
plasmonic modes are given by the solutions of the equa

V22~vp
D!212vp

DM ~q,V!50, ~7!

whereM (q,v) is the plasmon self-energy. The real part of
can be obtained from the imaginary part
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Im M ~q,v!5p(
k

ugk,qu2@d~v2vk,q!2d~v1vk,q!#,

~8!

by Kramers-Kroning

ReM ~q,v!5PE dv

p

Im M ~q,v!

v82v
. ~9!

Working in analogy with Eq.~4!, we could tentatively
identify

M ~ uqu→0,v!'
v2

2vp
D

de ( ib)~v! ~10!

for v;vp
c . For arbitraryv, however, it is better to look a

Im M (q,v) as a weighted density of the continuum mod
@cf. Eq. ~8!#, so that the resulting real part ofM (q,v) ac-
counts for the polarization effects associated with the pro
gation of a Drude plasmon. Thus it follows from Eqs.~7!–
~9! that if vp

D lies above ~below! the region where
Im M (q,v) is large@provided ImM (q,vp

D)/vp
D is small#, the

position of plasma resonance will be shifted upwards~down-
wards! in energy. This result is in agreement with the abov
mentioned work by Wilson.12

However, when ImM (q,vp
D)/vp

D is large, we will not
observe a well-defined plasma resonance in the spect
This seems to be the case of noble metals due to the pres
of a manifold of occupiedd-like bands, which gives rise to a
broad band of modes extending from the interband thresh
energyvT'3.9 eV ~for Ag and 2.1 eV for Cu!, to well
above the Drude plasma frequency (9.2 eV for Ag a
9.3 eV for Cu!. If we assume that the onset of interban
transitions in Ag takes place so sharply as to produce a
continuity in the weighted density of continuum modes,

Im M ~ uqu→0,v!;u~vT2v!, ~11!

for v;vT , then ReM (qu→0,v) will develop a logarithmic
singularity ;2 log(v2vT) for v,vT , leading to a damp-
ingless solution of Eq.~7! just below the thresholdvT . This
polaroniclike solution34 corresponds to hybrid plasmoni
mode, in which the conduction electrons oscillate coheren
without exciting the electrons in thed-like bands. These are
just polarized by the electric field set up by the plasmon, th
lowering the value of plasma frequency. This point of vie
agrees well with more phenomenological approaches,35,36

which simply assume that the change in the plasma
quency can be accounted for by an effective dielectric fu
tion ed for the electrons in thed-like bands, so thatvp*
5vp

D/Aed'3.8 eV.
Additionally, there is another complex solution of Eq.~7!,

for which the conduction electrons move as an overdam
oscillator, rapidly decaying into a continuum mode~i.e., pro-
ducing an interband transition!. For uqu→0, this excitation
will correspond to an optical interband transition. Two typ
of optical transitions may occur above the threshold,18 two
examples of which have been indicated by arrows in Fig
where we have plotted the calculated local-dens
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approximation~LDA ! band structure of Ag. Type A corre
sponds to the excitation of an electron from one of the
d-like bands to an unoccupied state in the conduction ban
above. The other type~B!, whose onset occurs at approx
mately the same energy in the three noble metals~'4.0 eV!,
corresponds to the excitation from an occupied state in
conduction band~nearL point in the BZ! to the flat part of an
unoccupied band or above. This type of transition seem
be responsible for the damping of the plasmon when thed
electrons are included in the pseudocore, i.e., they are
sidered to be frozen. In Sec. IV, we shall explain this iss
more in detail. These two types of transitions are import
because they often involve flat bands, which may lead to
Hove singularities in the joint density of states.

In the case of Ag, the onsets for the transitions of type
and B nearly overlap in energy. This produces a sharp in
band onset and gives rise to the pronounced peak
Im e(v) exhibits around 4 eV. From Eq.~10!, it follows
that ImM (uqu→0,v) will also have a maximum at the sam
energy. The onset of the interband transitions atvT is not as
sharp as suggested by Eq.~11!. However, it still leads to a
zero of V22(vp

D)212vp
D ReM (uqu→0,V) for a real V,

which occurs below the threshold, where the density of c
tinuum modes is very small. This point is illustrated by F
2, which displays the graphical solution of Eq.~7!. This pro-
vides an explanation for the existence of a threshold pla
resonance in Ag. However, it remains to explain why a sim
lar phenomenon does not take place in the spectra of C
Au. The difference stems from the specific details of t
band structure and, in particular, from the value of t
threshold energy. In Fig. 3, we plot the graphical solution
Eq. ~7! for the case of Cu. The threshold for the interba
excitation occurs this time at a lower energy (2.1 eV), as

FIG. 1. Calculated LDA band structure of Ag. Arrows indica
two examples~A and B! of the types of interband transitions th
couple to the plasmonic excitations in the long-wavelength lim
for energies above the interband excitation threshold. The cry
structure is fcc, with a lattice parametera54.09 Å. The zero en-
ergy corresponds to the Fermi level.
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d-like bands lie closer to the Fermi level. A comparison
Figs. 2 and 3 shows the important role played by the value
the threshold energy in enhancing the maximum
Im M (uqu→0,v) @cf. Eq. ~10!#, and thus in
ReM (uqu→0,v). Therefore, for Cu there exists no zero
Eq. ~7! close to the real axis, i.e., below the threshold, wh
this plasma mode would have a small density of continu
modes to decay. A similar conclusion can be drawn for
case of Au.

,
al

FIG. 2. Graphical solution of Eq.~7! for the threshold plasmonic
modes in Ag. Data forde ( ib)(v) @i.e., for ReM (uqu→0,v)# are
from Ref. 10. The continuous line cuts the dashed line at the p
indicated by the black dot. This point lies just below the thresho
where the density of continuum modes is small. As a conseque
a narrow plasma resonance appears in the spectrum.

FIG. 3. Graphical solution of Eq.~7! for the threshold plasmonic
modes in Cu. Data forde ( ib)(v) @i.e., for ReM (uqu→0,v)# are
from Ref. 10. The continuous line does not cut the dashed l
indicating that no threshold plasmonic modes exist in Cu. A sim
situation is expected to hold for Au.
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To sum up, interband transitions modify the origin
Drude plasmon, which turns out to be no longer a we
defined plasmonic excitation. Thus it shows up in the
spectrum as a broad peak with a maximum around 8
Moreover, a combination of a high value forvT along with
the sharp onset of interband transitions produces a na
plasma resonance in Ag. In this respect, our conclusi
agree with those of Ehrenreich and Phillipp.10 Furthermore,
as the spectral weight of this polaroniclike feature in t
spectrum is rather small, it is easily damped. This makes
plasmonic excitation very sensitive to changes in the b
structure, impurities, or defects. This is consistent with
experimental evidence from alloying experiments,9,20,21

which indicates that the plasmon in Ag is strongly damp
by increasing the concentration of the other component in
alloy. Finally, it is worth pointing out that the existence
this resonance also depends on the value of the Dr
plasma frequency. If the value ofvp

D is increased, for ex-
ample, by increasing the electron density in the system,
resonance will weaken and eventually disappear from
spectrum. This prediction is confirmed by ourab initio re-
sults ~shown below! for the energy-loss spectrum of Ag un
der externally applied hydrostatic pressure.

III. DETAILS OF THE AB INITIO CALCULATIONS

By measuring the energy lost by electrons or x-ray p
tons in their interaction with matter, we can access the
namical structure factorS(q,v) of a system. The fluctuation
dissipation theorem37 then relatesS(q,v) to the density
correlation function x(r ,r 8,t2t8), and time-dependen
density-functional theory38 provides us with ana priori exact
integral equation to compute the latter function. Usually, o
has to resort to different approximation schemes in orde
calculatex. In the case of simple1,3 and noble11 metals in the
small-uqu limit, where collective excitations dominate th
energy-loss spectrum, it has been found that the RPA
vides a good description of the energy-loss spectrum. T
approximation involves neglecting short-range exchange
correlation effects, and thereforeS(q,v) can be obtained
from the energy-loss function Im@2e00

21(q,v)#, which fol-
lows from inverting the dielectric matrix,

eGG8~q,v!5dG,G82vG8~q!xGG8
0

~q,v!, ~12!

whereq belongs to the BZ, andG and G8 are reciprocal-
lattice vectors. We use the same notation and definition
in Ref. 11. The function

xGG8
0

~q,v!5
1

V (
kPBZ

(
n,m

f ~«nk!2 f ~«mk1q!

v1«nk2«mk1q1 ih

3^n kue2 i (q1G)•rumk1q&

3^m k1quei (q1G8)•run k&, ~13!

with h→01, is the density correlation function of a syste
of particles moving in the self-consistent LDA~Refs. 39 and
40! potential. The energies«nk and orbitalsun k& are the
corresponding eigenvalues and eigenvectors of the L
l
-

.

w
s

is
d
e

d
e

de

e
e

-
-

e
to

o-
is
d

as

A

Hamiltonian. These states are Bloch states, and we have
a plane-wave basis to expand them. However, as electron
the outer atomic 4d orbitals play an important role in the
response of noble metals, they must treated as a part o
valence electrons. The remaining core electrons are repla
by a frozen pseudocore using a scalar relativistic no
conserving pseudopotential scheme.41 Therefore, these elec
trons will not respond to an external perturbation. This is n
an important drawback as long as the excitation energy
mains below the typical excitation energies of core electr
;100 eV.42

In order to further reduce the numerical dampingh, we
have also computedx0 on the imaginary frequency axis b
making the replacementv1 ih→ in in Eq. ~13!. An analytic
continuation to the real axis has been carried out by usin
Padéapproximant.43 This procedure allows us to use a n
merical damping as small as 0.001 eV. This is to be co
pared with the 0.2-eV value used in the real frequency c
culations also presented in this work. However, we sh
show the results of both types of calculations together,
indicate that one must be very careful with the analytic co
tinuation procedure using Pade´ approximants. Thus the re
sults obtained using this method tend to be smoother t
what is obtained with a calculation with real frequencies a
larger values ofh. Thus it usually happens that some fe
tures of the spectrum, as obtained in a real frequency ca
lation, are completely missing from the analytically conti
ued result~see Sec. IV!. In fact, although we have used th
Lentz algorithm44 to evaluate the corresponding continu
fraction, we have been unable to ensure that the proce
converges by increasing the number of points over the s
interval of n. When fitting the Pade´ approximant45 to the
calculated values ofe00

21(q,in), we have found that the re
sults are unstable with respect to increasing the numbe
points. Thus we have obtained differences of the order
10% when the number of points over the same interval w
simply doubled. Finally, we have decided to use the modu
of the remainder of the truncated continued fraction to e
mate the error, and always compare the outcome with a
frequency calculation prior to considering it as reliable.

IV. RESULTS

In Fig. 1 we plot the band structure of Ag as calculat
within the LDA. Two examples of the main types of inte
band transitions~A and B! which couple to plasmons at en
ergiesv;vp

D are indicated by arrows. In the LDA, we ob
tain a threshold energy for type-A transitions'3.0 eV,
whereas experimentally it is found to be'4.0 eV.10 Since
LDA eigenvalues enter the expression forx0, this turns out
to be the reason to underestimate the threshold freque
vT , as shown in Figs. 4 and 5. An underestimate of this k
was already observed for Cu, wherevT'1.5 eV, in contrast
with the experimental value of 2.1 eV.10 The source of such
an underestimate may be either a failure of the LDA or
indication that a frequency-dependent and perhaps nonl
Kxc may be required to account fully for the experimen
value ofvT . In our opinion, however, it is related to a fai
ure of the LDA, which may not be taking into account th
strong correlations occurring among the electrons in the
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FIG. 4. Energy-loss spectrum of Ag forq5(0.05,0,0)(2p/a),
anduqu57.731022 Å 21. The continuous line is the imaginary pa
of G5G850 element of the inverse dielectric matrix, namely, t
energy-loss function Im@2e00

21(q,v)#, whereas the dashed line co
responds to~the imaginary part of! one over theG5G850 element
of the dielectric matrix Im@21/e00(q,v)#. Differences between
them are due to crystal local-field effects. Dots are the experime
data from Ref. 47. As they were obtained from optical data and
not include crystal local-field corrections, they must be compare
the dashed line.

FIG. 5. Energy-loss spectrum of Ag forq5(0.05 00)(2p/a),
and uqu57.731022 Å 21. The continuous line is a calculation fo
real frequencies withh50.2 eV, cf. Eq.~13!. The dot-dashed line
however, is obtained by analytically continuing an imaginary f
quency calculation to the real axis, using a Pade´ approximant. As
can be seen, the results obtained by analytical continuation ca
reproduce all the features in the spectrum obtained using a rev
~with a higher numerical dampingh). The dashed line is a calcu
lation of the loss function including the 4d electrons of Ag in the
frozen pseudocore that replaces the true ionic core. These elec
cannot be excited, thus showing the important role that they a
ally play in modifying the spectrum. Notice that the intensity of th
peak is five times what is represented here.
d-like bands of Ag. Therefore, a more detailed description
correlation within thed-like bands seems to be required.46

Figure 4 presents our results for the energy-loss func
for q5(0.05,0,0)(2p/a) as obtained from the LDA band
structure. Since our interest is focused on the plasmonic
citations, which occur for smallq, we need not exactly con
sider theuqu50 limit. Thus, for the smallq considered, the
theory developed in Sec. II still applies. The continuous l
in this figure corresponds to Im@2e00

21(q,v)#, whereas the
dashed line corresponds to Im@21/e00(q,v)#, i.e., with and
without including crystal local-field effects, respectively. A
we already stated in Sec. II, crystal local-field effects are
most a correction;10% in the frequency range considere
Dots are the experimental data47 obtained by means of opti
cal measurements~i.e., for uqu→0), and should be compare
with the dashed line. As a consequence of the LDA und
estimate ofvT , the plasmon peak appears at a lower ene
'3.1 eV than observed experimentally10 '3.8 eV. This
peak also appears more damped both because of the
value of the numerical damping employed in the calculat
and because of the LDA underestimate ofvT .

From Figs. 4 and 5 we can conclude the following:
~i! The Drude plasmon becomes so broadened by its c

pling to interband transitions that we can no longer speak
a well-defined excitation. The high-energy tail of this bro
feature around 8 eV is more strongly affected by crys
local-field effects. This seems to indicate that these de
processes involve the excitation of an electron in a m
localized state, probably lying deeper in thed-like band. The
important role played by thed-like bands in destroying the
Drude plasmon can be seen in Fig. 5, where the dashed
corresponds to a calculation of the energy-loss function
cluding the ten 4d electrons of atomic Ag in the frozen
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FIG. 6. Dielectric functione00(q,v) of Ag for q5(0.05,0,0)
3(2p/a) and uqu57.731022 Å 21. The continuous line corre-
sponds to the imaginary part as obtained by analytically continu
an imaginary frequency calculation, using a Pade´ approximant. The
dashed line is the real part obtained by the same method.
checked that the results are consistent with a real frequency ca
lation ~not showed here for clarity!. Full circles ~imaginary part!
and open squares~real part! correspond to experimental data fro
Ref. 47.
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pseudocore. In this case, the Landau damping of the Dr
plasmon is only due to transitions of type B, which have
much smaller spectral weight than those of type A. Furth
more, the plasma frequency is pushed upwards by this c
tinuum of modes, which mainly lies belowvp

D . However,
when electrons from thed-like bands are considered as a
tive, the effect goes in the opposite direction thus shifting
maximum of the Drude peak to'7.5 eV. ~ii ! In agreement
with the experiments, a double hump structure in the reg
between 15 and 30 eV is found. This is a band-struct
effect, which turns out to be a general feature in the no
metal systems.11 As can be seen in Fig. 5, although the c
culation using a Pade´ approximant~dot-dashed line! gives a
reliable description of the low-frequency part, it fails to r
produce the double-hump structure. This seems to be a ra
general feature of analytic continuation by Pade´ approxi-
mants. Whenever the function to be continued presents
poles close to each other and having a large imaginary p
the values for the function on the real axis correspond to
average of the two poles, and a single broad peak show
in the outcome of the analytical continuation.~iii ! Alto-
gether, theab initio LDA calculations presented here provid
a good description of the high-energy features~i.e., above
vp

D) of the energy-loss spectrum of Ag. These include
Landau damping of the Drude plasmon and the double-hu
structure mentioned above. This could be expected on
basis that the spectral weight in the high-energy region of
spectrum comes, to a large extent, from the excitation
electrons to bands well above the Fermi level, which
expected to be more accurately reproduced by the LDA, a
is an approximation suitable for an homogeneous elec
system. However, the LDA underestimate of the thresh
energy is responsible for failing to reproduce the low-ene
structure. This issue is investigated further below.

In Fig. 6, we show the results for the real and imagina
parts of e00(q,v) for q5(0.05,0,0)(2p/a). The same re-
marks made above apply in this case as well. The experim
tal results, full circles for the imaginary part and op
squares for the real part, are from Ref. 47. In this figure
can see more easily that the onset for the excitation of in
band transitions not only occurs, at a lower energy, but th
is less sharp as well. As remarked in Sec. III this leads t
more damped plasmonic mode below the threshold.

In order to investigate the influence of the interba
threshold energy on the existence of a threshold plasma r
nance, we have performed a series of numerical ‘‘exp
ments.’’ The motivation of these experiments is to und
stand why Ag presents a narrow plasma resonance in
energy-loss spectrum, while Cu~or Au! does not, despite the
similarity of their band structures. To modify the thresho
energy vT without opening unphysical gaps in the ba
structure, we have scaled by a factora the separation be
tween the Fermi energy («F) and the LDA eigenvalues o
the occupied states:

«nk8 5«F1a~«nk2«F!. ~14!

Using this new set of eigenvalues, we have calculatedx0,
and hence obtained the energy-loss function. This rathead
hoc procedure does not modify the wave functions acco
de
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ingly. Furthermore, it introduces a discontinuity of¹k«nk8 at
the Fermi surface, so that it might lead to unphysical resu
However, as shown in Fig. 7, this seems not to be the cas
least for v;vT and q finite. As predicted in Sec. II, the
threshold plasmon peak is enhanced and shifts up in en
asvT increases. In this figure, continuous lines correspond
calculations with real frequencies forh50.2 eV, while
dashed lines correspond to the analytic continuation usin
Padéapproximant from the results obtained on the imagin
frequency axis. Both calculations show the same tende

FIG. 7. Results of the scaling procedure described in Sec.
The continuous lines are the results as calculated for realv with
h50.2 eV, while the dashed lines are obtained by analytical c
tinuation using Pade´ approximants. When the occupied bands a
scaled so that the interband threshold energy increases, the th
old plasmon appears more defined. However, when the thres
energy is decreased the plasmon disappears from the energy
spectrum.

FIG. 8. Energy-loss spectrum of Ag forq5(0.05,0,0)(2p/ap)
(uqu58.531022 Å 21) with ap53.7 Å, which corresponds to an
externally applied hydrostatic pressure of 63 GPa. The continu
line is a calculation for real frequencies withh50.2 eV, @cf. Eq.
~13!#. The dashed line, however, is obtained by analytically co
tinuing to the real axis an imaginary frequency calculation, usin
Padéapproximant.
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On the other hand, when the threshold energy is further
creased, from its LDA value'3.0 eV tovT'1.5 eV, the
plasma resonance disappears and the spectrum bec
more ‘‘Cu like.’’

Finally, in Fig. 8 we show the energy-loss spectrum of
under an external pressure of 63 GPa. As in previous ca
the continuous line corresponds to a calculation using
frequencies while the dashed line is the result of an analyt
continuation using a Pade´ approximant. Notice that in this
case the lattice constant isap53.7 Å, so that nowq
5(0.05,0,0)(2p/ap), corresponds to a slightly larger mo
mentum (uqpu58.531022 Å21 vs uqu57.731022 Å21).

Decreasing the lattice constant changes the width of
bands so that they disperse more rapidly withk ~i.e., the
band width becomes larger!. Furthermore, electronic densit
also increases. This shifts the maximum previously atvmax

'7.5 eV tovpress
max '8.8 eV. Since this maximum is relate

to the Drude plasmon, whosebare frequency scales with the
lattice parameter asa23/2, we could understand the shift~ne-
glecting the change in the optical mass! as due to the in-
crease in the electronic density. Indeed, this argument w
reasonably well as (ap /a)23/251.16, and vpress

max /vmax

'1.17. Moreover, as the bands become wider, espec
those corresponding to excited states, more oscilla
strength is transferred to higher energies. This decrease
density of modes at the Drude frequency, and thus the
responding peak is now less broad. What is more, in
spectrum the threshold plasmon is no longer present. Ag
this is due to the increased electronic density, which yield
higher value for the Drude plasma frequency so that Eq.~7!
has no longer a solution close to the real axis. The beha
under pressure predicted here remains to be confirmed
experiments.

The existence of large band gaps in the band structur
Ag seems to point out that the threshold excitation obser
in Ag corresponds to the zone boundary collective st
~ZBCS! first described by Foo and Hopfield,23 and studied
with great detail by Sturm and Oliveira in the case of Al24

Na,25 and Li.25,27 In these systems, the existence of a gap
the BZ boundary produces sharp variation of the density
modes, thus leading to an excitation of the kind describ
here. In the present case, however, the sharpness of th
terband onset has a different origin, related to the presenc
a set ofd-like bands, with different symmetry compared
the unoccupied states in the conduction band. As a co
quence, the appearance of the threshold plasmon doe
depend on the direction ofq as in the ZBCS case.48 More-
over, it seems difficult to understand the result of the num
cal experiments shown in Figs. 7 and 8 in terms of a ‘‘sta
dard’’ ZBCS. Finally, as predicted24,25 and also found in
recentab initio calculations,27 the spectral weight of a ZBCS
increases withuqu along the direction where the band ga
exists. However, Fig. 9 shows that the corresponding pea
Ag rapidly fades away asuqu is increased.

V. CONCLUSIONS

We have shown that a first-principles calculation of t
energy-loss spectrum is able to reproduce, within the R
the high-energy structure in the spectrum of Ag. Howev
since the LDA underestimates the interband energy thre
e-
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old, the agreement is not as good as for the high-ene
region around 4 eV. For example, the plasma resonance
served experimentally at 3.8 eV appears as a more dam
peak at'3.1 eV. In our opinion, this underestimate may
related to a failure of the LDA to account for electron co
relation effects that take place in the flatd-like bands of Ag.
In fact, anad hocscaling of the occupied bands, so that t
threshold energy is brought closer to the experimental va
gives rise to a better defined threshold plasmonic excitat
We have also shown the important role played
d-symmetry bands in determining the existence of plas
resonance at 3.8 eV, just below the interband excitat
threshold. By using a simple model, it is shown that t
appearance of this excitation can be related to a sharp in
band onset and the relative values of the threshold ene
and the Drude plasma frequency. Since it contains very li
oscillator strength, it is very sensitive to impurities, defec
and changes in the band structure. Thus we have dem
strated, by performing numerical experiments, that its pr
ence depends on the value of the threshold energy. Fin
we have also computed the energy-loss spectrum of Ag
der pressure, and found that its features can also be un
stood in terms of the simple model presented here. We st
that the analysis carried out in this work is not specific to A
and could be readily extended to other metallic compou
with fully occupied d-symmetry bands close to the Ferm
level.

Note added in proof.After the manuscript was accepte
several works have been brought to our attention concern
the convergence of the analytic continuation method us
Padéapproximants. Although it has been recently point
out49 that analytical continuation ofeGG8(q,in) before in-
verting it gives better results, it has also been argued50 that
the scheme used here and in Ref. 49, based on Thiele’s
ciprocal difference method, seems to be rather unstable
respect to error propagation. Moreover, as shown in Ref.
in order to obtain reliable results using Pade´ approximants a

FIG. 9. Dispersion of the threshold plasmon in Ag along t
(1,0,0) direction. The peak rapidly disperses upward in energy,
damps down.
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high numerical accuracy~requiring symbolic computation al
gorithms! is needed. These authors also demonstrate tha
conventional criterion of stability with respect to increasi
the number of input points is not reliable. In general, ins
bility with respect to noise seems to be a rather comm
feature of the analytic continuation methods.51 As we com-
pare the results obtained by analytical continuation with r
frequency calculations, these instabilities do not affect
conclusions of this work.
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