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Two-dimensional electron gas in the random-phase approximation with exchange
and self-energy corrections
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We determine a dynamical field correction of the two-dimensional electron gas, taking into account ex-
change and self-energy contributions to the random-phase approximation~RPA!. Physical properties like
correlation energy, electron self-energy, effective mass, quasiparticle renormalization factor, and momentum
distribution are computed. With respect to the RPA, we find a substantial reduction of the correlation energy,
whereas the electron effective mass is much less affected.
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I. INTRODUCTION

The two-dimensional electron gas has recently gai
much interest mostly because of the advent of high-Tc super-
conductivity. In this article we consider the two-dimension
electron gas in its continuum version~jellium model!.1–3 The
aim of the present work is in fact rather modest, trying
assess the validity of an approximation proposed long ag4,5

to treat exchange and self-energy corrections beyond
standard random-phase approximation~RPA!. Such simpli-
fying approximations are quite important because even
simplest extension of the RPA, namely, the inclusion of
change and self-energy corrections, leads to a rather ine
cable integral equation that will be detailed later. As we w
demonstrate, the proposed approximation turns out to w
very well indeed, reducing the numerical effort drastically
a ~four-dimensional! quadrature. We can thus set up t
framework for a more exact and elaborate approach bey
the RPA that we envisage for the future.6

An additional simplification stems from the fact that w
will only treat the charge response function, postponing
spin response to future work. We write the density-dens
response function as the formally exact expression

x~q,v!5
x0~q,v!

12@12G~q,v!#vqx0~q,v!
, ~1!

wherevq52pe2/q is the Coulomb potential andx0 is the
Lindhard function in two dimensions. The unknown is no
the so-called field correctionG(q,v). Neglecting it alto-
gether leads to the well-known standard RPA~ring summa-
tion!. This field correction becomes increasingly importa
for small densities, or large (*1) values of the paramete
r s5A2me2/kF with kF the electron Fermi momentum. O
course, just likex, G possesses a well-defined perturbati
series in powers of the coupling constante2. Our aim here is
to evaluateG to lowest order in the coupling constant, and
fact it has already a contribution to zeroth order coming fr
PRB 610163-1829/2000/61~12!/8026~7!/$15.00
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the ‘‘exchange conjugate’’ diagrams to the RPA, which in
simplest form was estimated by Hubbard7:

GH~q!5
1

2

q

Aq21kF
2

. ~2!

It can be seen that for large momenta the interaction is we
ened by a factor 1/2, accounting for the influence of the Pa
principle. Static expressions based on this one have b
investigated by a number of authors.8–10 Recently, also the
complete inclusion of exchange and self-energy parts
the RPA by solving the corresponding integral equation
been presented in the literature.11–13

The two-dimensional~2D! electron gas can actually b
considered as a benchmark system since there exist qua
Monte Carlo ~QMC! results for various observables,14–16

against which approximate solutions can be tested. We
show that our approximation scheme considerably impro
the prediction of physical properties like correlation ener
and single-particle properties of the system with respec
the conventional RPA.

II. FORMALISM

An exact formulation of exchange contributions to t
RPA can be found in Refs. 4 and 11, for example. One wr
~we use\51 in the following!

x~q,v!52E d2p

~2p!2 f ~p,q,v!D0~p,q,v! ~3!

with the free particle-hole propagator

D0~p,q,v!5
n~p2!2n~p1!

e~p2!2e~p1!1v1sgn~v!i e
, ~4!

where n(k)5u(kF2k), e(k)5k2/2m, and we have intro-
duced the notationp65p6q/2. The vertex functionf is the
solution of the integral equation4,17
8026 ©2000 The American Physical Society
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f ~p,q,v!512
SF~p2!2SF~p1!

e~p2!2e~p1!1v
f ~p,q,v!

12E d2k

~2p!2 V~p,k,q!D0~k,q,v! f ~k,q,v!

~5!

with the interaction kernel

V~p,k,q!52pe2S 1

q
2

1

2

1

up2ku D ~6!

and the Fock electron self-energy

SF~p!52E d2k

~2p!2 n~k!
2pe2

up2ku
. ~7!

Graphical representations of Eqs.~3! and ~5! are given in
Refs. 11 and 12. Physically, the second term on the rig
hand side~rhs! of Eq. ~5! originates from the Fock correctio
to the electron self-energy in the denominator of the partic
hole propagator@see Eq.~4!#, whereas the third one include
the vertex correction due to the exchange diagram of
particle-hole interaction. There is a strong cancellation
tween the two contributions that can be made explicit
combining the two terms in the form

f ~p!5124pme2(
k̃

F1

q

f ~k!

k•q2mv
2

1

2

1

up2ku

3S f ~k!

k•q2mv
2

f ~p!

p•q2mv D G , ~8!

where we have defined

(
k̃

[E d2k

~2p!2 @n~k2!2n~k1!# ~9!

and we have not explicitly indicated the dependence off on
(q,v). It can be seen that the singular structure~for k→p) of
the kernel in Eqs.~5! and~6! is artificial and removed in Eq
~8!. The latter variant is therefore more suitable for a nume
cal treatment.

Still, the full numerical solution of Eq.~8! is a difficult
task, which has been attempted in Refs. 11–13. Here,
will perform it only for the static case (v50), in order to
compare with an approximate solution, mentioned in the
troduction, that turns out to be very accurate. Expanding
~1! and iterating Eqs.~3! and ~8! once, one can identify an
approximate expression for the field correction that cor
sponds to its exact result to zeroth order in t
interaction4,5,18:

G~q,v!5

q

2(p̃
F 1

@p•q2mv#2(k̃

q•ep2k

k•q2mvG
F(

p̃

1

p•q2mv
G 2 ~10!

with ep2k5(p2k)/up2ku. It is convenient to introduce the
dimensionless variablesx5q/2kF andy5mv/2kF

2 . Then,G
is explicitly given by
t-

-

e
-

y

i-

e

-
q.

-

G~x,y!5
1

E
p̃

2
E

p̃
E

k̃

x2

xupcosfp2y

3
upcosfp2ukcosfk

Aup
21uk

222upukcos~fp2fk!
~11!

with

E
p̃
5S E

0

fmax
2E

p2fmax

p D dfpE
umin(fp)

umax(fp)

dup

up

xupcosfp2y
,

~12!

fmax5arcsin@min~1/x,1!#, ~13!

umax,min~f!5uxcosf6A12~x sinf!2u. ~14!

Written in this form, one notes in particular that the appro
mate field correction@as the Hubbard approximation Eq.~2!#
depends only on the scaled variablesx andy, and not on the
parameterr s , i.e., on density or in particular on the streng
of the interaction,e.

This approximation, termed~perturbative! RPAE in the
following, was first derived in Ref. 4 within a variationa
approach, and analytical solutions for limiting cases w
considered. The term RPAE~RPA with exchange, see, e.g
Ref. 11! is retained for historical reasons: however, by me
tioning here and elsewhere the exchange contribution
mean that also the self-energy contributions are included
Ref. 18 a closely related approximation was obtained wit
a perturbative expansion of the proper polarization up to fi
order in the coupling constant. In this work we will evalua
Eq. ~11! numerically by integration in order to compute var
ous physical quantities. Since the integrands appearin
that equation are singular, a numerical evaluation is s
delicate.18 However, for many applications it is sufficient t
know the field correction for purely imaginary values of th
energy variable,v5 iu. Then the numerical treatment o
Eqs. ~8! and ~10! is more reliable and, in addition,G is
purely real.

III. RESULTS

A. Field correction

We begin the discussion of our results with the static c
v50. Figure 1 displays the field correctionG ~independent
of r s) and the response functionsx for r s51 andr s55. We
compare with numerical results of the full integral equati
for r s51, which were obtained by discretization and diag
nalization of Eq.~8! and subsequent numerical integration
Eq. ~3!. It can be seen that the approximation Eq.~10! is very
good, apart from a small region aroundx51. Here one ob-
serves in both cases a peak which is even more pronou
for the full solution. It was also noted in Ref. 18, but not
Refs. 11–13, apparently due to a limited numerical accura

Since in the region aroundx51 the field correction
reaches values larger than 1, it is clear that for sufficien
large r s the response function Eq.~1! develops two singu-
larities. Usingvx0(x51,y50)52r s /A2 and our numerical
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result for the peak height,G(1,0)'1.8 ~which is in good
agreement with the value 1.803 given in Ref. 18!, this hap-
pens forr s*1.76. In the equivalent investigation of Ref. 1
for the three-dimensional case this fact was interpreted a
instability of the ground state toward formation of charg
density waves. It should be noted here that, taking as c
rion the positiveness of the pair correlation function, t
RPAE breaks down much earlier, namely, atr s'0.7, as
shown in Ref. 18. For the exact solution of the RPAE t
problem is even more severe, since the peak is more
nounced, which renders a precise numerical solution
tremely difficult.17 We have therefore only performed th
comparison atr s51. Results for larger values ofr s were
given in Ref. 11; however, as noted above, the numer
accuracy appears quite limited in that case and the pea
not resolved.

However, we think that this peak can be considered as
artifact of the standard RPA approximation scheme wh
one assumes sharp momentum distribution functions, and
have verified that its influence on bulk properties is ve
small. This conclusion stems from the results of a rec

FIG. 1. The static field correctionG(q,v50) and the corre-
sponding response functions forr s51 and r s55. ~Normalization
n05kF

2/2p.! The dashed curves denote standard RPA results,
full curves the results of the approximation Eq.~10!, and the solid
markers the exact solutions of Eq.~5! for r s51. The values for free
particles, i.e.,x5x0, are displayed as dotted lines. We compa
with QMC results of Ref. 14~open markers!.
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work,6 where ground-state correlations smoothed out the
cupation numbers and consequently cusps and singular
due to the sharp edge of the Fermi sphere were washed
In Ref. 17 the problem was tackled in a related way
introducing~in an ad hocmanner! Thomas-Fermi screening
of the interaction. The peak is clearly a signal for the need
setting up an approximation scheme beyond the RP
which we intend to prepare in this article.

In any case, apart from the regionx'1 the resulting ob-
servables are well behaved, and we give in Fig. 1 a compari-
son with quantum Monte Carlo results.14 Apparently, forq
,2kF the RPAE is in close agreement with the QMC resu
at r s51 andr s55, whereas for larger momenta there see
to be a substantial discrepancy, the QMC calculation pred
ing a nearly linear increase with momentumq. This is indeed
the limiting behavior expected theoretically forq→`.19 In
Ref. 12 a large part of this difference between RPAE a
QMC results was attributed to particle-particle correlatio
by taking into account ladder diagrams of the electro
electron interaction. Unfortunately, at present the accurac
the QMC results is not high enough20 to decide on the be-
havior ~enhancement! nearq52kF .

For nonzero~imaginary! v the variation ofG is smoothed
out and the peak atq52kF disappears. This can be seen
Fig. 2, whereG is shown as function ofx and imaginaryy.
From the expression Eq.~10! one can derive the limiting
values

G~x,y!→H 1/2, x→`

2x/p, x→0, y50

5x/3p, x→0, y→ i`,

~15!

which remain valid for the exact solution of Eq.~8!.4 The
simplest static Hubbard approximation according to Eq.~2!,
which is also displayed in the figure, does not reprodu
either the correct slope for smallx, or the enhancemen
aroundx51.

Having the field correction at our disposal, several phy
cal properties of the electron gas can be calculated.

B. Correlation energy

We begin with the correlation energy,7,13,21–25

Ec5R`

16

pr s
2E0

`

dxxE
0

`

dy

3F ln@12~12G!vx0#

12G
1vx0G~x,iy !, ~16!

where R`513.606 eV is the Rydberg energy and th
Lindhard functionx0 for imaginary energy is given by26

vx0~x,iy !52
r s

A2x
S 12

1

x
ReAz221D , z5 i

y

x
2x.

~17!

Note that in order to arrive at the expression Eq.~16!, an
integration over the strength of the interaction was p
formed~charging procedure!.1,2,7,21,23This is only possible if
the field correction does not depend one, as in our approxi-

e
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FIG. 2. The field correctionG as a function of momentum,x
5q/2kF , and imaginary energy,y5mv/2kF

2 ~top panel!. The
lower panel shows the results for selected values ofy50,1,10. For
comparison the result of the Hubbard approximation, Eq.~2!, is
shown as a dashed curve.
mation. It is important to point out that Eq.~16! cannot be
used with the solution of the full equation~5!, since thenG
contains all powers of the interaction and consequently
pends on the coupling constant.

Our results~RPAE! are given in Table I and compare
with those of the standard RPA, the simplest Hubbard
proximation, Eq.~2!, and QMC results of Ref. 15. We find
that the exchange contributions reduce significantly~in mag-
nitude! the correlation energy, bringing it close to the QM
results. This reduction is due to the effective weakening
the bare interaction by the exchange effect, and we fin
stronger reduction than with the Hubbard approximatio
consistent with the fact that the exact calculation yields
overall larger field correction~see Fig. 2!. In Ref. 13 an even
stronger reduction of the correlation energy was repor
with the full solution of the integral equation~5!. However,
in that reference the expression Eq.~16! was used in spite of
the remarks made above.

C. Effective mass

A quantity of central interest is the electron self-energ
Here, one obtains after a Wick rotation to the imaginaryv
axis the well-known expression22,26–28

S~k,e!52(
q

Fvq

2
1Vs~q,ek1q2e!@u~eF2ek1q!

2u~e2ek1q!#1E
2`

1` du

2p

Vs~q,iu !

iu1e2ek1q
G ,

~18!

where the screened interactionVs is given by the prescription
of Rice,22,29consistent with the expression for the correlati
energy, Eq.~16!:

Vs~q,v!5
vq

es~q,v!
5

vq

12@12G~q,v!#vqx0~q,v!
.

~19!

The second term on the rhs in Eq.~18! requires the
knowledge ofes for real values of the energy variablev.
However, it vanishes fore5eF . In particular, one obtains
for the on-shell self-energy on the Fermi line,26
s,

E

0.799
0.683
0.548
0.468
0.414
0.374
0.299
0.268
TABLE I. Properties of the two-dimensional electron gas as a function of the density parameterr s . RPA denotes standard RPA result
RPAH the Hubbard approximation according to Eq.~2!, RPAE the approximation Eq.~10!, and QMC the results of Ref. 15.

2Ec (eV) 2Sc (eV) 2]S/]e m/kF]S/]k (m* /m)pert. (m* /m)s.c. Z

r s RPA RPAH RPAE QMC RPA RPAE RPA RPAE RPA RPAE RPA RPAE RPA RPAE RPA RPA

0.5 6.27 4.19 3.83 3.64 6.84 3.61 0.27 0.25 0.30 0.29 0.977 0.964 0.981 0.971 0.786
1.0 5.39 3.65 3.32 2.98 6.07 3.28 0.51 0.46 0.48 0.46 1.030 1.006 1.020 1.003 0.662
2.0 4.41 3.05 2.76 2.26 5.13 2.87 0.93 0.83 0.79 0.71 1.163 1.126 1.078 1.065 0.519
3.0 3.83 2.68 2.43 1.84 4.54 2.61 1.29 1.14 1.05 0.92 1.315 1.276 1.117 1.112 0.437
4.0 3.43 2.42 2.20 1.55 4.11 2.42 1.61 1.42 1.28 1.11 1.485 1.452 1.143 1.148 0.383
5.0 3.13 2.23 2.03 1.35 3.79 2.27 1.91 1.67 1.50 1.28 1.682 1.661 1.162 1.175 0.344
8.0 2.54 1.84 1.68 0.98 3.13 1.96 2.70 2.34 2.09 1.73 2.537 2.620 1.196 1.227 0.270

10.0 2.29 1.67 1.53 0.83 2.84 1.81 3.17 2.74 2.45 2.00 3.573 3.855 1.209 1.247 0.240
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S~kF ,eF!5SF~kF!F11E
0

`

dxE
0

`dy

x S 1

es~x,iy !
21D

3ReS 1

Az221
D G ~20!

[SF1Sc , ~21!

where z was given in Eq. ~17!, SF[SF(kF)
52R`4A2/pr s is the Fock part of the electron self-energ
@see Eq.~7!#, and we have defined the correlation part on
Fermi line,Sc .

In a similar manner one can calculate the quantities

]S

]e
~kF ,eF!51

r s

pA2
E

0

`dx

x E
0

`dy

x

3S 1

es~x,iy !
2

1

es~x,0! DReS z

~z221!3/2D ,

~22a!

m

kF

]S

]k
~kF ,eF!52

r s

pA2
E

0

`dx

x E
0

`dy

x

3
1

es~x,iy !
ReS z12x

~z221!3/2D , ~22b!

which serve to determine the effective massm* of the elec-
trons. However, on this topic there exists in the literatur
long-standing discussion3,22,29,30whetherm* should be de-
termined from the Dyson equation,

Ek5ek1S~k,e!, ~23!

in a ‘‘perturbative’’ (e5ek) or ‘‘self-consistent’’ (e5Ek)
fashion. Since this question can ultimately be resolved o
by calculating explicitly the relevant contributions toS be-
yond the RPA, we present in the following results for bo
prescriptions, namely,

S m*

m D
pert.

5
1

11]S/]e1~m/kF!~]S/]k!
, ~24a!

S m*

m D
s.c.

5
1

Z

1

11~m/kF!~]S/]k!
, Z5

1

12]S/]e
,

~24b!

in the perturbative and in the self-consistent scheme, res
tively.

Our results for the various quantities are shown in Tab
and Fig. 3. One notes that thee and k derivatives of the
self-energy are both large and strongly compensate e
other for the physical effective mass. In the RPAE both c
tributions are reduced in size, but their sum is much l
affected and the effective mass remains therefore nearly
same as in the standard RPA. Our results are in qualita
agreement with those of Refs. 10,29–31, whereas Q
calulations16 predict much smaller effective masses close
unity. The difference between the perturbative and s
e

a

ly

c-

I

ch
-
s
he
ve
C
o
f-

consistent determination of the effective mass is slightly
duced in the RPAE. However, it is still quite large and i
creases with decreasing density. This variance is due to
magnitude of the quasiparticle renormalization factorZ
which decreases rapidly with increasingr s , attaining values
below 0.4 atr s55. This points to the importance of includ
ing into the formalism in a consistent manner the modific
tion of the momentum distribution as suggested in Ref. 6

D. Momentum distribution

As a first step toward such an extension we compute
momentum distribution within an approach that was first a
plied to the three-dimensional case in Ref. 32. It has
advantage that it requires, like the quantities considered
far, the polarization function and field correction only fo
purely imaginary energies.

The method consists in considering a fictive Hamiltoni
with a modified kinetic term:

Ĥ52(
p

F p2

2m
1ld~ upu2k!G n̂p1Ĥ int . ~25!

FIG. 3. Various quantities as a function of the density parame
r s . The standard RPA results are plotted using thin lines; the RP
results with thick lines. Top panel: Correlation energyEc and cor-
relation part of the electron self-energy at the Fermi lineSc . Cen-
tral panel:k ande derivatives of the electron self-energy, and qu
siparticle renormalization factorZ. Bottom panel: The electron
effective massm* in two different approximations, according t
Eq. ~24!.
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The shift of the energy per electron caused by the~infinitesi-
mal! additional term is thereforeEl(k)5l(2k/kF

2)n(k),
wheren(k) is the momentum distribution of the interactin
system. On the other hand in the RPAE this shift can
computed explicitly from Eq.~16! by inserting the modified
single-particle energy in the denominator of Eq.~4! and sub-
sequently expanding Eq.~3! for x0 ~i.e., settingf 51) and
Eq. ~16! for Ec to first order inl. In this way one obtains for
the momentum distribution

n~k!215
r s

A2p2k2E(12k)/2

` dx

x E
0

`dy

x

1

es~x,iy !

3Re@F~a,z/k!# ~k,kF!, ~26a!

n~k!5
r s

A2p2k2E(k21)/2

(k11)/2dx

x E
0

`dy

x

1

es~x,iy !

3Re@F~a,z/k!2F~p,z/k!# ~k.kF! ~26b!

with k5k/kF ,

a5H arccosS 124x22k2

4xk D , x,~11k!/2

p, x.~11k!/2,

~27!

and

F~a,z!5E
0

a

df
1

~z2cosf!2

5
2z

~z221!3/2
arctanSAz11

z21
tan

a

2 D
1

1

z221

sina

z2cosa
. ~28!

In the limit k→kF one obtains in this approachn(kF20)
2n(kF10)52]S/]e(kF ,eF), as given in Eq.~22a!. Con-
sequently the method is valid in the limit of weak perturb
tion, namely, ifZ5(12]S/]e)21'11]S/]e.

Figure 4 shows the results with and without exchan
correction atr s51 and 2. Again the weakening of the inte
action when exchange is included leads to a smaller de
tion from the undisturbed Fermi distribution than in the sta
dard RPA case.

IV. CONCLUSIONS

In this work we have considered self-energy and
change corrections to the standard RPA~ring summation! for
the two-dimensional electron gas in the jellium model.
strong mutual cancellation of the two effects was pointed
explicitly. We considered the charge response function
treated the exchange terms approximately by a system
renormalization of the direct interaction term. We found th
for not too small density (r s&1) at least, on the one han
our approach for the response function approximates the
act treatment of exchange very well, and on the other han
brings the solution much closer to the exact values kno
from recent QMC results. Also, for the correlation energ
e

-

e

a-
-

-

t
d
tic
,

x-
it
n
s

one notes that our approach works very well at higher d
sities (r s&1), greatly improving the standard RPA.

Clearly at lower densities still some correlations a
missed; also the RPA-like formalism becomes problema
due to the appearance of singularities in the response f
tion. All this hints of the necessity of going beyond the RP
1 exchange approach. In this respect it has recently b
shown that the so-called self-consistent RPA can give in
esting results.~See Ref. 6 and works cited there.! A simpler
version, the so-called renormalized RPA, where only the
cupation numbers are calculated self-consistently using
RPA screened exchange potential in the single-part
Dyson equation, seems particularly promising in the pres
context and will be studied in future work. As a first step, w
presented the occupation numbers of the 2D electron ga
the RPA~E!. For the future we envisage establishing a se
consistent scheme by utilizing the corrected momentum
tribution for the computation of a more realistic Lindhar
function and the quantities that are based on it.

Concerning the single-particle properties, we found t
the electron effective mass is quite insensitive to the inc
sion of exchange. A fundamental problem persists in the c
rect manner of evaluating the effective mass, which, toge
with the smallness of the quasiparticle renormalization f
tor, points again to the necessity of going beyond the RPA1
exchange approach.
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FIG. 4. Momentum distributions in RPA~thin lines! and RPAE
~thick lines! for r s51,2.
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