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Two-dimensional electron gas in the random-phase approximation with exchange
and self-energy corrections
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We determine a dynamical field correction of the two-dimensional electron gas, taking into account ex-
change and self-energy contributions to the random-phase approxin{&4). Physical properties like
correlation energy, electron self-energy, effective mass, quasiparticle renormalization factor, and momentum
distribution are computed. With respect to the RPA, we find a substantial reduction of the correlation energy,
whereas the electron effective mass is much less affected.

I. INTRODUCTION the “exchange conjugate” diagrams to the RPA, which in its
simplest form was estimated by Hubbéard
The two-dimensional electron gas has recently gained
much interest mostly because of the advent of higlsuper- 1 q

conductivity. In this article we consider the two-dimensional Gu(a) 2 J2+ K2 2

electron gas in its continuum versigellium mode).’~3The 4T

aim of the present work is in fact rather modest, trying tolt can be seen that for large momenta the interaction is weak-

assess the validity of an approximation proposed long'ago ened by a factor 1/2, accounting for the influence of the Pauli

to treat exchange and self-energy corrections beyond therinciple. Static expressions based on this one have been

standard random-phase approximati®PA). Such simpli- investigated by a number of authdrd® Recently, also the

fying approximations are quite important because even theomplete inclusion of exchange and self-energy parts into

simplest extension of the RPA, namely, the inclusion of exthe RPA by solving the corresponding integral equation has

change and self-energy corrections, leads to a rather inextrbeen presented in the literatdre!?

cable integral equation that will be detailed later. As we will The two-dimensional2D) electron gas can actually be

demonstrate, the proposed approximation turns out to workonsidered as a benchmark system since there exist quantum

very well indeed, reducing the numerical effort drastically toMonte Carlo (QMC) results for various observablé&'®

a (four-dimensional quadrature. We can thus set up theagainst which approximate solutions can be tested. We will

framework for a more exact and elaborate approach beyonghow that our approximation scheme considerably improves

the RPA that we envisage for the futire. the prediction of physical properties like correlation energy
An additional simplification stems from the fact that we and single-particle properties of the system with respect to

will only treat the charge response function, postponing théhe conventional RPA.

spin response to future work. We write the density-density

response function as the formally exact expression Il. FORMALISM

An exact formulation of exchange contributions to the
(1) RPA can be found in Refs. 4 and 11, for example. One writes
(we usefi=1 in the following

B Xo(Q,®)
X9 = TG (q0) Jugro(@ @) |

Wherevq=27-re2/q is the Coulomb potential ang, is the 2

Lindhard function in two dimensions. The unknown is now (q “’)sz d’p f(p,g,®)Do(p,0 @) 3)
the so-called field correctios(q, ). Neglecting it alto- AT (2m)2 TPEIEOIRR

gether leads to the well-known standard RRiag summa-
tion). This field correction becomes increasingly important
for small densities, or largeX1) values of the parameter n(p_)—n(p,)
re=+2me*/ ke with ke the electron Fermi momentum. Of Do(p.0, @)= e(p)—e(p.) + o+ sgrw)ic’
course, just likey, G possesses a well-defined perturbation B "

series in powers of the coupling constaft Our aim here is  where n(k) = (ke —k), e(k)=k?/2m, and we have intro-
to evaluates to lowest order in the coupling constant, and in duced the notatiop. =p=g/2. The vertex functiorf is the
fact it has already a contribution to zeroth order coming fromsolution of the integral equatién’

with the free particle-hole propagator

4
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Hpgo)=1— Se(p-) = 2p(ps) Do) iy L TT X2
& e(p)—e(p)tw CV= 7 ), Jixueosa, -y
ZJ d V(p,k,q)Dg(k f(k
+ @2 (p,k,a)Do(k,q,w)f(k,0, @) p
(5) UpCOSh,— U COSehy 11
with the interaction kernel \/UE+ U — 2UpUCOS b — )
1 1 1 with
V(p,k,q)=2we2(—— 5 —) (6) _
q 2 |p_ k| Dmax T Umax(¢p) Up
and the Fock electron self-energy jp: jo B Jﬂd,max d¢pfumin(¢p) dupxupcos¢p—y’
d?k 2mwe? (12)
3 =—f n(k . 7
F(P) 2m?™ )Ip—kl @) bma=arcsiimin(1/x,1)], (13
Graphical representations of Eq8) and (5) are given in i
Refs. 11 and 12. Physically, the second term on the right- Umax,mirl @) =|XC0s¢= 1 —(x sing)|. (14

hand sidgrhs) of Eq. (5) originates from the Fock correction
to the electron self-energy in the denominator of the particle
hole propagatofsee Eq(4)], whereas the third one includes depends only on the scaled variableandy, and not on the
the vertex correction due to the exchange diagram of th ’

. : . ) . arameter, i.e., on density or in particular on the strength
particle-hole interaction. There is a strong cancellation bebf the interactione.

tween t.he two contributiqns that can be made explicit by This approximation, termedperturbative RPAE in the
combining the two terms in the form following, was first derived in Ref. 4 within a variational
1 f(k) 1 1 approach, and analytical solutions for limiting cases were
considered. The term RPARPA with exchange, see, e.g.,
Ref. 1)) is retained for historical reasons: however, by men-
tioning here and elsewhere the exchange contribution we
, (8)  mean that also the self-energy contributions are included. In
Ref. 18 a closely related approximation was obtained within
where we have defined a perturbative expansion of the proper polarization up to first
order in the coupling constant. In this work we will evaluate
— d?k Eq. (12) numerically by integration in order to compute vari-
% Ef (ZT)z[n(k—)_”(k+)] 9 ous physical quantities. Since the integrands appearing in
that equation are singular, a numerical evaluation is still
and we have not explicitly indicated the dependencémi  delicate® However, for many applications it is sufficient to
(g,w). It can be seen that the singular struct(fog k—p) of  know the field correction for purely imaginary values of the
the kernel in Eqs(5) and(6) is artificial and removed in Eq. energy variable,w=iu. Then the numerical treatment of
(8). The latter variant is therefore more suitable for a numeri£gs. (8) and (10) is more reliable and, in additiorG is

Written in this form, one notes in particular that the approxi-
mate field correctiohas the Hubbard approximation E@)]

f(p)=1—4rrme2r$

( f(k) f(p) )

k~q—mw_ p-q— Mo

qgk-g-mew 2]|p—K

cal treatment. purely real.

Still, the full numerical solution of Eq(8) is a difficult
ta_sk, which _has been attempt_ed in Refs. 11_—13. Here, we IIl. RESULTS
will perform it only for the static case«f=0), in order to _ _
compare with an approximate solution, mentioned in the in- A. Field correction

troduction, that turns out to be very accurate. Expanding Ed. e pegin the discussion of our results with the static case
(1) and iterating Egs(3) and(8) once, one can identify an ,—o. Figure 1 displays the field correcti@ (independent
approximate expression for the field correction that correy ro) and the response functionsfor r<=1 andr,=5. We
sponds 1o its exact result to zeroth order in thecompare with numerical results of the full integral equation
interactior ¢ for r¢=1, which were obtained by discretization and diago-
nalization of Eq.(8) and subsequent numerical integration of
1 < 9« Eq. (3). It can be seen that the approximation EL) is very
[p-q—mw]? % k-g—mw good, apart from a small region aroure-1. Here one ob-
> (100  serves in both cases a peak which is even more pronounced
g 1 for the full solution. It was also noted in Ref. 18, but not in
{Ep pq——mw Refs. 11-13, apparently due to a limited numerical accuracy.
Since in the region arouna=1 the field correction
with e,_,=(p—k)/|p—K|. It is convenient to introduce the reaches values larger than 1, it is clear that for sufficiently
dimensionless variables= q/2k: andy= mw/2k§. Then,G  largerg the response function Eql) develops two singu-
is explicitly given by larities. Usingv yo(x=1y=0)=—r¢/\/2 and our numerical

S
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G(q,0)=
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FIG. 1. The static field correctio®(q,o=0) and the corre-
sponding response functions fog=1 andr =5. (Normalization
n0=kE1277.) The dashed curves denote standard RPA results, th
full curves the results of the approximation E0O), and the solid
markers the exact solutions of E®) for r=1. The values for free
particles, i.e.,x= o, are displayed as dotted lines. We compare
with QMC results of Ref. 14open markers

result for the peak heights(1,0)~ 1.8 (which is in good
agreement with the value 1.803 given in Ref),1tBis hap-
pens forrg=1.76. In the equivalent investigation of Ref. 17
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work® where ground-state correlations smoothed out the oc-
cupation numbers and consequently cusps and singularities
due to the sharp edge of the Fermi sphere were washed out.
In Ref. 17 the problem was tackled in a related way by
introducing(in anad hocmanney Thomas-Fermi screening

of the interaction. The peak is clearly a signal for the need of
setting up an approximation scheme beyond the RPAE,
which we intend to prepare in this article.

In any case, apart from the regiar=1 the resulting ob-
servables are well behaved, and we give in Big compari-
son with quantum Monte Carlo resultsApparently, forg
<2k the RPAE is in close agreement with the QMC results
atr,=1 andr =5, whereas for larger momenta there seems
to be a substantial discrepancy, the QMC calculation predict-
ing a nearly linear increase with momentgprhis is indeed
the limiting behavior expected theoretically fqr—.1° In
Ref. 12 a large part of this difference between RPAE and
QMC results was attributed to particle-particle correlations
by taking into account ladder diagrams of the electron-
electron interaction. Unfortunately, at present the accuracy of
the QMC results is not high enoufhto decide on the be-
havior (enhancemehtearq= 2k .

For nonzerdimaginary o the variation ofG is smoothed
out and the peak aj=2kg disappears. This can be seen in
Fig. 2, whereG is shown as function ok and imaginaryy.
From the expression Eq10) one can derive the limiting
values

1/2, X— 0
G(x,y)— 2xlmw, x—0, y=0 (15
5x/3w, x—0, y—io»,

which remain valid for the exact solution of E).* The
simplest static Hubbard approximation according to &4,
\évhich is also displayed in the figure, does not reproduce
€ither the correct slope for smak, or the enhancement
aroundx=1.

Having the field correction at our disposal, several physi-

cal properties of the electron gas can be calculated.

B. Correlation energy

for the three-dimensional case this fact was interpreted as an

instability of the ground state toward formation of charge-

density waves. It should be noted here that, taking as crite-

rion the positiveness of the pair correlation function, the
RPAE breaks down much earlier, namely, rat=0.7, as
shown in Ref. 18. For the exact solution of the RPAE the

We begin with the correlation enerdy®*-2°
16 (= o
Ec= Rm—zf dxxf dy
mrgJo 0
1-G +UXO (ley)a (16)

problem is even more severe, since the peak is more pro- _
nounced, which renders a precise numerical solution exwhere R.,=13.606 eV is the Rydberg energy and the

tremely difficult!” We have therefore only performed the
comparison atr,=1. Results for larger values of; were

given in Ref. 11; however, as noted above, the numerical

accuracy appears quite limited in that case and the peak
not resolved.
However, we think that this peak can be considered as a

Lindhard functiony, for imaginary energy is given

. _ I,‘S 1 2 _y
is UXo(X,IY)——E<1—;Re\/Z -1, z—|; X.
(17

n

artifact of the standard RPA approximation scheme wherdote that in order to arrive at the expression Etf), an
one assumes sharp momentum distribution functions, and wiategration over the strength of the interaction was per-
have verified that its influence on bulk properties is veryformed (charging proceduje+?’21%This is only possible if
small. This conclusion stems from the results of a recenthe field correction does not depend @ras in our approxi-
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G(x,iy)

FIG. 2. The field correctiorG as a function of momentunx
=q/2ke, and imaginary energyy=mw/2kZ (top panel. The
lower panel shows the results for selected valueg-90,1,10. For
comparison the result of the Hubbard approximation, &, is
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mation. It is important to point out that E¢16) cannot be
used with the solution of the full equatidb), since thenG
contains all powers of the interaction and consequently de-
pends on the coupling constant.

Our results(RPAE) are given in Table | and compared
with those of the standard RPA, the simplest Hubbard ap-
proximation, Eq.(2), and QMC results of Ref. 15. We find
that the exchange contributions reduce significatitymag-
nitude the correlation energy, bringing it close to the QMC
results. This reduction is due to the effective weakening of
the bare interaction by the exchange effect, and we find a
stronger reduction than with the Hubbard approximation,
consistent with the fact that the exact calculation yields an
overall larger field correctiofsee Fig. 2 In Ref. 13 an even
stronger reduction of the correlation energy was reported
with the full solution of the integral equatiaf®). However,
in that reference the expression Efj6) was used in spite of
the remarks made above.

C. Effective mass

A quantity of central interest is the electron self-energy.
Here, one obtains after a Wick rotation to the imaginary
axis the well-known expressiéh?®-28

U
S V(.8 q— @) O(er— e o)

k’ J——
S (k,€) % >

+edu  V4(q,iu)
—o(e~Cg) It fﬂc 27 iu+te—eq|

(18

where the screened interactigpis given by the prescription
of Rice???%consistent with the expression for the correlation

energy, Eq(16):

Ug Ug
e(d,w) 1-[1-G(q,0)]vgxo(d, @)
(19

Vy(q,w)=

The second term on the rhs in E(@L8) requires the
knowledge ofeg for real values of the energy variable.
However, it vanishes foe=eg. In particular, one obtains
for the on-shell self-energy on the Fermi liffe,

TABLE I. Properties of the two-dimensional electron gas as a function of the density parameRiPA denotes standard RPA results,
RPAH the Hubbard approximation according to E2), RPAE the approximation Eq10), and QMC the results of Ref. 15.

—E. (eV) -3 (eV) —d2lde mkgd%/ ok (M*/m) pert. (m*/m)g z
r« RPA RPAH RPAE QMC RPA RPAE RPA RPAE RPA RPAE RPA RPAE RPA RPAE RPA RPAE
05 6.27 4.19 383 364 684 361 027 025 030 029 00977 0964 0981 0.971 0.786 0.799
1.0 539 365 3.32 298 6.07 328 051 046 048 046 1030 1.006 1.020 1.003 0.662 0.683
20 441 3.05 2.76 226 513 287 093 083 079 0.71 1163 1.126 1.078 1.065 0.519 0.548
3.0 3.83 268 2.43 184 454 261 129 114 105 092 1315 1.276 1.117 1.112 0.437 0.468
4.0 343 242 2.20 155 411 242 161 142 128 111 1485 1.452 1.143 1.148 0.383 0.414
50 313 223 2.03 135 379 227 191 167 150 128 1682 1.661 1.162 1.175 0.344 0.374
80 254 184 1.68 098 313 196 270 234 209 173 2537 2620 1.196 1.227 0.270 0.299
100 229 1.67 1.53 083 284 181 317 274 245 200 3573 3.855 1.209 1.247 0.240 0.268
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* >d 1
Z(k,:,e,:)=2,:(k,:) 1+J0 deO Ty(m—l>

5

1 2

XRe —— (20 o

e( Jzz—lﬂ o

Ll'_lo

EzF"_Eca (21)

where z was given in Eq. (17, Z2=3g(kgp) o b
= —R.4\/2/mr4 is the Fock part of the electron self-energy L 3%
[see Eq(7)], and we have defined the correlation part on the 15 b — m/k ook

Fermi line,X..
In a similar manner one can calculate the quantities

&E(k =+ re xdxfocdy
- ,e — - - -
oe PR 7T\/§ o XJo X

Rl b
8 6S(X!iy)_€s(x,o))R (22_1)3/2 !
(229
rs (>dx(=dy
Sah
Z+2X

1
x es(x,iy)Re( (22— 1)3’2> (220

which serve to determine the effective mass of the elec-

m 92 " B
k_pﬁ( Fi€F)=—
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trons. However, on this topic there exists in the literature a

long-standing discussiéi®?°**whetherm* should be de-
termined from the Dyson equation,
Ex=et2(k,e), (23

in a “perturbative” (e=e,) or “self-consistent” =E,)

FIG. 3. Various quantities as a function of the density parameter
rs. The standard RPA results are plotted using thin lines; the RPAE
results with thick lines. Top panel: Correlation eneigyand cor-
relation part of the electron self-energy at the Fermi khe Cen-
tral panel:k ande derivatives of the electron self-energy, and qua-
siparticle renormalization factoZ. Bottom panel: The electron

fashion. Since this question can ultimately be resolved onlyffective massm* in two different approximations, according to

by calculating explicitly the relevant contributions o be-

yond the RPA, we present in the following results for both

prescriptions, namely,

m* 1
<W) pert.: 1+ 9%/de+(m/kg)(d%/K)’ (243
™) - R T
m/ o Z 1+ (mike) (92 3k) =150
(24b

in the perturbative and in the self-consistent scheme, respec-

tively.

Eq. (24).

consistent determination of the effective mass is slightly re-
duced in the RPAE. However, it is still quite large and in-
creases with decreasing density. This variance is due to the
magnitude of the quasiparticle renormalization factor
which decreases rapidly with increasing attaining values
below 0.4 atr;=5. This points to the importance of includ-
ing into the formalism in a consistent manner the modifica-
tion of the momentum distribution as suggested in Ref. 6.

D. Momentum distribution

As a first step toward such an extension we compute the

Our results for the various quantities are shown in Table Imomentum distribution within an approach that was first ap-

and Fig. 3. One notes that tleeand k derivatives of the

plied to the three-dimensional case in Ref. 32. It has the

self-energy are both large and strongly compensate eackdvantage that it requires, like the quantities considered so
other for the physical effective mass. In the RPAE both confar, the polarization function and field correction only for
tributions are reduced in size, but their sum is much lesgurely imaginary energies.

affected and the effective mass remains therefore nearly the The method consists in considering a fictive Hamiltonian
same as in the standard RPA. Our results are in qualitativerith a modified kinetic term:

agreement with those of Refs. 10,29-31, whereas QMC
calulationg® predict much smaller effective masses close to
unity. The difference between the perturbative and self-

2

p ~ N
ﬁ+)\5(|p|_k) np"’Hint- (25

H=2>,
p
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The shift of the energy per electron caused by(thénitesi- 1

mal) additional term is thereforeEk(k)=)\(2k/k§)n(k), - \ r =1
wheren(k) is the momentum distribution of the interacting 08 | s
system. On the other hand in the RPAE this shift can be [

computed explicitly from Eq(16) by inserting the modified 06 - — RPA

single-particle energy in the denominator of E4). and sub- - . — RPAE

sequently expanding E@3) for xq (i.e., settingf=1) and 04 b

Eq. (16) for E. to first order in\. In this way one obtains for
the momentum distribution

r °° dx (=d 1
nk)—1= — f f Y
(

\/5772;(2 l—/<)/27 0 x es(X,iy)

XREF(a,2/k)] (k<kg), (263

% rs J(K+1)/2dx =dy 1
nk)= ——— — | = -
V222 (e-1)2 X Jo X €g(X,iy) <
04

XRF(a,zlk)—F(m,zIk)] (k>kg) (26b

with k=k/kg, 02
1—4x%— «? ol 1
. arcco%T» X<(1+x)/2 @7 0 0.5 1 15 2

T, x> (14 k)/2, Kike

and FIG. 4. Momentum distributions in RP&hin lineg and RPAE

(thick lines for rg=1,2.

_ 2
z—cos¢) one notes that our approach works very well at higher den-
" _ . .
- ] N sities (rs=1), greatly improving the standard RPA.
=, arcta —tan ) ! ! 5
(22-1) z-1 2 missed; also the RPA-like formalism becomes problematic
due to the appearance of singularities in the response func-
217 cosa’ @8 : :
exchange approach. In this respect it has recently been
shown that the so-called self-consistent RPA can give inter-
N n(kF+|O): —aE/h&eék_F ’eFI).(’j as %:vern n EfQ(ZZ?' Con-b version, the so-called renormalized RPA, where only the oc-
sequently the method is valid in the fimit of weak pertur a'cupation numbers are calculated self-consistently using the
Flgu.re 4 Sh_O\ivs tgez “jf“'?s Vr:'th ang w'lthouft ﬁxc.hangebyson equation, seems particularly promising in the present
correctlor? ars= han : 'gallndt g ;/vez ening o t”e mdter- context and will be studied in future work. As a first step, we
action when exchange Is included leads to a smaller devigs e qanteq the occupation numbers of the 2D electron gas in
tion from the undisturbed Fermi distribution than in the stan-ihq RPAE). For the future we envisage establishing a self-
tribution for the computation of a more realistic Lindhardt
V. CONCLUSIONS function and the quantities that are based on it.
change corrections to the standard R@iAg summatioifor the electron effective mass is quite insensitive to the inclu-
ge co , ARG sum sion of exchange. A fundamental problem persists in the cor-
the two-dimensional electron gas in the jellium model. A
explicitly. We considered the charge response function ani\ﬂwth the smallness of the quasiparticle renormalization fac-
renormalization of the direct interaction term. We found that'exchange approach.
for not too small densityr<1) at least, on the one hand
act treatment of exchange very well, and on the other hand it
brings the solution much closer to the exact values known We acknowledge helpful discussions with M. Baldo, E.

a 1
F(a,2)= f dp——"—>
o
Clearly at lower densities still some correlations are
1 sine tion. All this hints of the necessity of going beyond the RPA
In the limit k—Kk one obtains in this approaaf(k:—0) esting results(See Ref. 6 and works cited theré simpler
i it a4 -1 . . . .
tion, namely, ifZ=(1-g2/de) *~1+dx/de. RPA screened exchange potential in the single-particle
dard RPA case. consistent scheme by utilizing the corrected momentum dis-
In this work we have considered self-energy and ex- Concerning the single-particle properties, we found that
strong mutual cancellation of the two effects was pointed oufect manner of evaluating the effective mass, which, together
treated the exchange terms approximately by a systematic points again to the necessity of going beyond the RPA
our approach for the response function approximates the ex- ACKNOWLEDGMENTS
from recent QMC results. Also, for the correlation energiesLipparini, and T. Takayanagi.
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