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Lattice polaron formation: Effects of nonscreened electron-phonon interaction
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We explore the quasiparticle properties of lattice polarons on the basis of a quite general electron-phonon
Hamiltonian with a long-range displacement-type interaction. To treat the dynamical quantum phonons without
significant loss of accuracy we adapt an exact Lanczos diagonalization method and compute various static and
dynamical quantities, such as the electron-lattice correlation function, the polaron band dispersion, the effective
polaron mass, the kinetic energy, the single-particle spectral function, and the optical conductivity, on finite
one-dimensional lattices for a wide range of model parameters. We compare the results with those obtained for
the standard Holstein model with short-range electron-phonon interaction only.
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I. INTRODUCTION

The classical polaron problem1 has received renewed a
tention on account of the observation of polaronic effects
several important classes of materials, including hig
temperature cuprate superconductors and colossal ma
toresistance manganites.2,3 Remarkably even the much sim
pler case of free electrons interacting with optical phonon
ionic crystals is still not completely understood. From a th
oretical point of view the challenge is to describe the cro
over from an only weakly dressed charge carrier to
strongly mass-enhanced, i.e., less mobile, polaronic qu
particle with increasing electron-lattice coupling streng
Depending on the relative importance of the short- or lo
range electron-phonon~EP! coupling, simplified models of
the Holstein4 or Fröhlich5 type, respectively, have been stu
ied over the last five decades. However, despite exten
analytical work, in the physically most interesting crossov
regime, up to now, the only reliable results came from n
merical studies, such as finite-cluster exact diagonalizat
~ED!,6–11 quantum Monte Carlo~QMC! simulations,12,13

density-matrix renormalization-group approaches,14,15 and
global-local16 or variational methods.17

Recently the formation of small polarons was investiga
by Alexandrov and Kornilovitch18 applying a new path-
integral Monte Carlo algorithm.19,20 These authors intro
duced the following EP Hamiltonian:

H52t (
^ j , j 8&

cj 8
† cj1v0(

l
S bl

†bl1
1

2D
2(

j ,l
f l~ j !cj

†cjx0~bl
†1bl !. ~1!

Herecj
[†] andbj

[†] denote fermionic and bosonic annihilatio
@creation# operators, respectively. Restricting ourselves
the one-dimensional~1D! case,H describes an electron in
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Wannier state on sitej of an infinite chain which interacts
with the vibrations of all ions of another chain via
‘‘density-displacement’’ type long-range EP coupling

f l~ j !5
k

~ u l 2 j u211!3/2
~2!

~cf. Fig. 1 of Ref. 18!. The distanceu l 2 j u is measured in
units of the lattice constant. In Eq.~1!, x05A1/2Mv0, kx0

5A«pv0, and the optical phonons, being polarized in t
direction perpendicular to the chain, are approximated as
dependent Einstein oscillators with bare frequencyv0 (\
51). Physically, this model was proposed to mimic the
teraction of doped holes with apical oxygens in the hig
Tc’s, e.g., in YBa2Cu3O61x , where one can assume that th
coupling is not screened because of a lowc-axis conductivity
and high phonon frequency.18 Methodically, model~1! rep-
resents an extension of the Fro¨hlich model to a discrete ionic
lattice or of the Holstein model including longer ranged E
interactions. Indeed, defining the polaron binding energy

«̃p5
x0

2

v0
(

l
f l

2~0!51.27«p , ~3!

the Holstein model~HM! results by setting

f l~ j !5kd j ,l ,

«̃p→«p . ~4!

Therefore, the model~1! will be subsequently termed th
extended Holstein model~EHM!. In order to parametrize the
EP coupling strength for both the HM and EHM we intr
duce two dimensionless EP coupling constants

l5 «̃p/2t, g25 «̃p /v0 ~5!

~in what follows we measure all energies in units oft).
8016 ©2000 The American Physical Society
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So far, analytical and numerical investigations of t
EHM have been mainly confined to the determination of
effective mass of the polaron, where it was found that
EHM polaron is much lighter than the small Holste
polaron.18 First results for the polaron band dispersion a
density of states were obtained quite recently, however,
QMC method of calculating the ground-state dispersion u
by Kornilovitch20 is limited to the case where the bandwid
is much smaller than the phonon frequency.

In this paper we present a detailed comparative study
the Holstein and extended Holstein models in order to d
cuss the effects of long-range EP forces on the lattice pola
formation. Using exact Lanczos diagonalization supp
mented by a well-controlled phonon Hilbert space truncat
method, we calculate for the first time spectral~optical! prop-
erties of the EHM polaron. As stated above such a numer
investigation is especially valuable in the nonadiaba
intermediate-to-strong-coupling transition region, where
electronic and phononic energy scales are not well separa
i.e., l.v0 /t.1. In the weak- and strong-coupling regim
the numerical work is supplemented by analytical a
proaches outlined in the Appendix.

II. QUASIPARTICLE PROPERTIES OF LATTICE
POLARONS

A. Numerical methods

Before we discuss the various physical quantities let
briefly sketch our computational scheme. Diagonalizing
coupled EP system~1! on finite 1D lattices with periodic
boundary conditions~PBC’s!, a generalK-symmetrized state

is given as uCK&5(m50
M ( s̄51

S̄(m)
cK

m,s̄uK;m,s̄&, where S̄(m)
5(N211m)!/(N21)!m!. K denotes the total momentum
of the coupled EP system. Because the phonon Hilbert sp
has infinite dimension we apply a truncation procedure
stricting ourselves to phononic states

um,s̄&ph5 )
l 50

N21 1

Anl
s̄!

~bl
†!nl

s̄
u0&ph

with at mostM phonons, wherebym5( l 50
N21nl

s̄<M , andnl
s̄

P@0,m# ~cf. Ref. 21!. The ground stateuC0,K50& and all
excited statesuCn,K& contain components that correspond
m-phonon states in the tensorial product Hilbert space
electronic and phononic states. Accordingly,

uc0
mu2~M !5 (

s̄

S̄(m)

ucK50
m,s̄ u2 ~6!

can be taken as a measure of the weight of them-phonon
state in theK50 ground state. In our ED analysis conve
gence is assumed to be achieved if the ground-state en
E0(M ) is determined with a relative error less than 1027 and
uc0

Mu2(M )<1027. Afterwards static correlation functions ca
be obtained easily by calculating ground-state expecta
values ^C0(M )u . . . uC0(M )&. The numerical computation
of dynamical properties, i.e., of spectral functions
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AO~v!52 lim
«→01

1

p
ImF K C0UO†

1

v2H1E01 i«
OUC0L G

5 (
n50

D21

z^CnuO†uC0& z2d@v2~En2E0!#, ~7!

is much more involved. HereO denotes the matrix represen
tation of a certain operatorO, andH is the very large sparse
Hamilton matrix, acting in a Hilbert space with fixed mo
mentum, which, for our problem, has a typical total dime
sion ~D! of about 1082109. Since it is impossible to deter
mine all the eigenvalues (En) and eigenstates (uCn&) of such
a huge Hamilton matrix we combine kernel~Chebyshev!
polynomial expansion and maximum entropy optimization
order to calculateAO(v) in a well-controlled approximation
~for more details see Refs. 21 and 22!.

B. Electron lattice correlations

In a first step we discuss the different nature of the p
laronic states in the HM and EHM in terms of static corr
lation functions^niql& between the electron position@ i 50#
and the oscillator displacement@ql}(bl

†1bl)# at sitel,

x0,l5^c0
†c0~b01 l

† 1b01 l !&/N. ~8!

x0,l indicates the strength of the electron-induced lattice d
tortion at i 50 and its spatial extent,14,23,17 where N
5( l^c0

†c0(b01 l
† 1b01 l)& is a normalization constant@note

that N52(«p /v0)^c0
†c0& holds for the HM#.

Figure 1 shows the~static! electron-lattice correlation
function ~8! in the weak-~a! and intermediate-to-strong-~b!
EP coupling regimes, where we have chosen an intermed
phonon frequency (v051) in order to include nonadiabati
effects. Clearly for the quantum phonon model~1! the EP
interaction gives rise to a ‘‘dressing’’ of the charge carrier
any finite l, g2. If the EP coupling is weak, however, th
amplitude ofx0,l is small; l @in particular smaller than the
quantum-lattice~zero-point! fluctuations#, that means the lat-
tice deformation could not trap the charge carrier and a
called ‘‘large’’ polaron~LP! is formed in both the Holstein
and extended Holstein models. Obviously, the situation
entirely different in the strong-coupling region. For the H
the EP correlations are almost local indicating the format
of a ‘‘small’’ polaron ~SP!. On the other hand, as a result
the nonscreened EP interaction, in the EHM the deforma
is spread over many lattice sites, i.e., we found again a LP
is worthwhile to point out, however, that the electron and
phonon cloud are tightly bound. That means the LP of
EHM as a whole behaves as a well-defined polaronic qu
particle ~cf. Sec. II C! and, in our opinion, it is not possible
to discuss the size of the electronic wave function and
size of the lattice distortion separately.18

In the insets of Fig. 1 we show the differences betwe
the phonon distribution functions in the weak- and stron
coupling cases, where the ground state is basically a z
phonon and multiphonon state, respectively. With regard
the discussion of the effective mass in Sec. II E we wo
like to annotate here, that at small~large! l the EHM polaron
contains more~less! phonons in its phonon cloud than th
HM polaron. Of course, in the extreme strong-coupling lim



de

p
th

ctr
o

on

n

ea
r is

e
e

nd
the

ee-
ite
hat

e-

i-
nic

lat-
e

igs.
se

rong
ive

ith
ht

8018 PRB 61H. FEHSKE, J. LOOS, AND G. WELLEIN
the usual Poisson distribution with parameterg2 results,
demonstrating that adjusting the parameters of both mo
according to Eqs.~3!–~5! is correct.

C. Single-particle spectral function

Next, in order to examine dynamical quasiparticle pro
erties of the HM and EHM polarons, we have evaluated
wave-vector-resolved spectral density function

AK~E!5(
n

z^Cn,KucK
† u0& z2d~E2En,K!. ~9!

The results are presented in Fig. 2. To visualize the spe
weights of the various excitations, the integrated density
states,

NK~E!5E
2`

E

dE8AK~E8!, ~10!

is also displayed. The weight of the firstd-function peak in
each K sector gives the wave-function renormalizati
factor24

ZK5 z^C0,KucK
† u0& z2, ~11!

whereuC0,K& denotes the single-polaron state with mome
tum K being lowest in energy.ZK50 is usually termed the

FIG. 1. Electron-lattice correlations in the weak-~a! and strong-
coupling ~b! cases. ED results are obtained for a finite chain w
N58 sites and at most 24 phonons. The insets show the weig
the m-phonon state in the ground state.
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‘‘quasiparticle-weight factor.’’ Since the total integrated ar
under the entire spectra is unity, the renormalization facto
less than unity and, in particular,ZK50 is a measure how
much the polaronic quasiparticle ‘‘deviates’’ from the fre
electron (ZK5051). In accordance with the discussion in th
preceding section, in the weakly interacting EHM we fou
a stronger dressing of the electron by phonons than in
HM, i.e., a larger renormalizationZK50

EHM,ZK50
HM . This finding

is corroborated by the the weak-coupling theory~WCT! out-
lined in the Appendix. Table I demonstrates the good agr
ment of the theoretical approach, working for the infin
system, and finite-cluster diagonalizations, provided t
both l and g2 are small. Contrary toZK50, which is only
slightly reduced from the free-electron value, the wav
function renormalization factorZK5p is almost zero. The
WCT shows that the state withK5p, being energetically
separated byv0 from the ground-state energy, is predom
nantly a phononic state. At strong EP coupling the polaro
band is characterized byZK!1 ;K, indicating a strong mix-
ing of electronic and phononic degrees of freedom. Calcu
ing the polaronic quasiparticle weight factor within th
framework of the strong-coupling theory~SCT! developed in
the Appendix@Eq. ~A28!# givesZK50 values which are by a
factor of 3 too small as compared to the exact data of F
2~b! and 2~d!. The differences mainly arise because the
parameters correspond rather to the intermediate-to-st
than to the extreme strong-coupling regime. The qualitat

of

FIG. 2. Single-particle spectral functionAK(E) ~thin lines! and
partial integrated density of statesNK(E) ~thick lines! for the 1D
HM ~a!,~b! and EHM ~c!,~d! with v051.0 (N58, M524). Solid
and dot-dashed lines belong to states with total momentumK50
andK5p, respectively.

TABLE I. Quasiparticle weightZK50 obtained from ED (N
58, M524) and within WCT according to Eq.~A7!.

l50.1, g250.2 l50.5, g251/3
ED WCT ED WCT

HM 0.955 0.946 0.893 0.848
EHM 0.918 0.893 0.857 0.781
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PRB 61 8019LATTICE POLARON FORMATION: EFFECTS OF . . .
behavior of the single-particle spectral functionAK(E), how-
ever, is correctly reproduced by SCT~A27!, which yields,
above the quasiparticle pole, a sequence of excitations s
rated byv0. Apparently the spectral weight of this incohe
ent part increases with increasing EP interaction strength

D. Polaron band structure

Now the so-called ‘‘coherent’’ band dispersion,EK , can
be derived from the first peak ofAK(E). Figure 3 compares
the dispersion of the energy bands for the EHM at differ
EP interactions, corresponding to the weak-, intermedia
and strong-coupling case, where, by going from~a! to ~c!, v0
is increased modeling the adiabatic, intermediate, and a
diabatic regimes.

Starting with the adiabatic weak-coupling case@Fig. 3~a!#,
we found that the band structure is nearly unaffected at sm
momentum, i.e., in the vicinity of the band center. In th
region uC0,K& is a quasi-zero-phonon state.10,26 A different
behavior is observed near the zone boundary. Here the b
structure is flattened. Such a ‘‘flattening’’ has been found
the HM as well and can be attributed to the intersection
the dispersionsless optical phonon branch with the bare e
tronic cosine band25,9,10,26 ~cf. also Fig. 4!. The weak-
coupling calculation ofEK @Appendix; Eq.~A6!# reflects this
behavior. For the HM, e.g., the correction tojK is given by
the integral I (1)(K,0), which is nonzero only for (EK
2v0)2.4t2. The latter condition yields a thresholdK* , at
which the solution of Eq.~A6! jumps to the bare band dis
persionjK . For K.K* , the first excitation inAK(E) is re-
lated to a one-phonon absorption process and as a resu
WCT approximation forEK breaks down. Thus, aboveK* ,
the physical solution is given to lowest order by the dash
line at E01v0.

The flattening considerably weakens and ultimately v
ishes if the EP couplingl increases. This tendency is esp
cially pronounced for the EHM in the nonadiabatic regim

FIG. 3. Band dispersion of the 1D extended Holstein model
low ~a!, intermediate~b!, and high~c! phonon frequencies. Exac
data are extracted from finite-lattice diagonalizations withN58 and
10 sites. In the weak- and strong-coupling regimes ED results
compared with the theoretical predictions.
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As can be seen from Figs. 3~b! and 3~c!, in the strong-
coupling nonadiabatic regime our SCT yields excellent
sults. Most notably we do not observe the same drastic
laronic band collapse as in the HM,10,11 i.e., in the EHM the
coherent bandwidthDE5Ep2E0 becomes much less reno
malized by the EP interaction~e.g., for the HM with l
55.0 andv053.0, we foundDE50.153 19).

E. Effective mass

Another important question is the change in the pola
effective mass induced by the EP coupling. In general i
difficult to compute the mass enhancement, which is defi
as an inverse second derivative of the band energy with
spect to quasimomentum at the band minimum,m* /m
}@]2E(K)/]K2uK50#21, using finite-lattice diagonalizations
becauseE(K) is known at multiples of 2p/N only rather
than at anyK, making the limiting procedureK→0 ill posed.
On the other hand, the mass enhancement factorm* /m is
also related to the quasiparticle weight factorZK50.24 For the
HM, we are able to prove the relation

m/mHM* 5ZK50
HM ~12!

in the weak-coupling limit@see the Appendix, Eqs.~A7!–
~A9!#, i.e., atl!1 the polaron effective mass can be read
from the first step in the integrated spectral weight funct
depicted in Fig. 2. PlottingZK50

HM as a function ofl in Fig. 5
and comparing the effective mass determined in this w
with the QMC masses, obtained fromm/m* 5]2EK /]K2

without any systematic finite-size errors,27,18,20the ~perhaps!
surprising finding is that Eq.~12! holds for thewhole cou-
pling region. That means, in the Holstein model, we c
determine the effective polaron mass simply by calculat
the quasiparticle weight factor. In previous ED studies of
Holstein polaron problem this fact has been ignored so f

Unfortunately no such simple relation exists for the EHM
This is shown more explicitly in the Appendix, where a
proximative expressions form/m* were derived in the weak
and strong-coupling limits. Note that our analytical wea
and strong-coupling approaches confirm the unexpected

r

re

FIG. 4. Flattening of the polaron band dispersion in the
Holstein model ~weak-coupling case!. Long- and short-dashed
curves denote the solution of Eq.~A6! and the bare phonon fre
quencyv051.0, respectively. The agreement of ED and WCT g
better asl decreases.
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8020 PRB 61H. FEHSKE, J. LOOS, AND G. WELLEIN
monotonic dependence onl of mEHM* /mHM* , which was
found numerically by Alexandrov and Kornilovitch18 ~see
inset!. In the light of the results presented in the previo
sections, it becomes clear that at small EP couplings
EHM LP has to drag a larger phonon cloud coheren
through the lattice than the HM LP and therefore acquire
larger effective mass. Further numerical data show that
effect becomes negligible in the weak-coupling antiadiab
regime, where the phonons can follow the electron insta
neously~cf. also Fig. 3 of Ref. 18!. As a matter of course, in
the strong-coupling limit the EHM LP is much lighter tha
the HM SP due to the weaker band renormalization cau
by the extended form of the lattice distortion.

F. Optical conductivity

In this section we compare the optical response of H
and EHM polarons. The real part of the optical conductivi

Res~v!5Dd~v!1s reg~v!, ~13!

can be decomposed into the Drude term (}D) at v50 and a
regular contribution forv.0, which, in linear-response
theory, for the~extended! Holstein model is given by

s reg~v!5
s0

N (
nÞ0

ZK C0U i t(
j

~cj
†cj 112cj 11

† cj !UCnL Z2
En2E0

3d@v2~En2E0!# ~14!

with s05pe2 (T50, K50 sector!. Again we introduce a
v-integrated spectral weight function,

S reg~v!5E
0

v

dv8s reg~v8!, ~15!

in order to visualize the intensity of the various excitatio
more clearly.

Figure 6 shows the optical conductivity obtained atv0
51.0 for the HM and EHM on an eight-site lattice usin
PBC. For the 1D HM the optical absorption spectrum h
been discussed in detail in previous work.23 If the energy to

FIG. 5. Inverse effective polaron mass for the 1D~extended!
Holstein model atv051.0. The QMC data are taken from Ref. 1
The ratio of the effective masses of the EHM and HM polarons
displaced in the inset.
s
e

y
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s

excite one phonon lies inside the bare tight-binding band
found, at weak EP coupling, the first transitions by add
phonons with opposite momentum to only slightly renorm
ized electronic states~in order to reach theK50 sector of
the ground state!. However, since the ground state is a
proximately a zero-phonon state@cf. inset of Fig. 1~a!#, the
spectral weight of optical transitions involving larger numb
of phonons is reduced drastically. Of course, the absorp
threshold isv0 for the infinite system; the shift observed
Fig. 6~a! simply results from the discreteK mesh of our finite
system. The situation changes by increasing the EP coup
when in the HM the SP formation takes place. Now t
phonon distribution function in the ground state is broaden
and in the optical response the overlap with excited m
tiphonon states is enlarged. As a result the famous SP
sorption maximum develops aroundv.4l52«̃p for large
couplings.

Let us now discuss the optical response in the EHM.
course, there is little change in the weak-coupling region.
large EP coupling, however, the optical absorption poi
toward a completely different nature of the polaronic sta
in the Holstein and extended Holstein models. The EH
polaron clearly shows all the LP signatures but compared
the weak-coupling case and, what is more important, a
compared to the HM SP, the optical conductivity is strong
enhanced by multiphonon absorptions processes. The ph
cal reason lies in the nonscreened EP interaction leadin

e

FIG. 6. Optical absorption in the 1D Holstein and extend
Holstein models. The regular part of the conductivitys reg ~thin
lines! and integrated spectral weightS reg ~thick lines! are shown in
the weak-~a! and strong-coupling~b! regimes.
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PRB 61 8021LATTICE POLARON FORMATION: EFFECTS OF . . .
the form of the lattice distortion depicted in Fig. 1~b!. Taking
into account the internal structure of the EHM LP it is obv
ous that the lattice distortion undergoes less relative chan
when the charge carrier hops incoherently to neighbor
sites accompanied by phonon absorption or emission.18

G. Kinetic energy

Integrating Eq.~13! with respect tov, the familiarf-sum
rule

2
Ekin

2
5

S tot

s0
5

D
2s0

1
S reg

s0
, ~16!

can be derived, whereS reg5S reg(`). Equation~16! relates
optical response and kinetic energy.Ekin measures the mo
bility of the charge carrier.

To elucidate the different nature of HM and EHM p
larons in more detail, in Fig. 7 we have displayed the kine
energy (}S tot), renormalized to its value atl50, together
with S reg. Since the kinetic energy contains contributio
from both ‘‘coherent’’ (}D) and ‘‘incoherent’’ (}S reg)
hopping processes, the Drude part can be directly read
from the difference between the filled and open symbols
fixed l. In agreement with previous numerical results, in t
HM we found a continuous transition from a LP to a le
mobile SP as the EP interacting increases.12,23,14 The de-
crease ofStot in the crossover region, being much more pr
nounced in the adiabatic regime23 ~as well as for higher
dimensions12,11!, is driven by the sharp drop of the Drud
weight.28 By contrast, in the EHM the kinetic energy de
creases very gradually with increasingl and we observe a
substantial Drude contribution even at large EP couplin
This is in accord with the moderate renormalization of t
polaronic bandwidth and the minor effective mass~cf. Sec. II
D and Sec. II E!. In addition, as already stressed in Sec. II
the optical absorption due to inelastic scattering proces
described by the regular part of the optical conductivi
gives a large contribution. This can be easily understo
within second-order perturbation theory~note that one has to
go beyond the lowest order of approximation to obtain re
able results for the kinetic energy;29,9,11 cf. the Appendix!:
during a second-order hopping process of the EHM LP

FIG. 7. Renormalized kinetic energy (Stot) and contribution of
s reg to the f-sum rule (Sreg) as a function of EP coupling (l) at
v051.0.
es
g

c

ff
t

-

s.

,
s,

,
d

-

e

lattice distortion of the intermediate state with the char
carrier on a nearest-neighbor site of the initial site fits mu
better to the polaronic quasiparticle than in the case of
HM SP. The difference between the numerical and theor
cal results at larger EP couplings originates from the neg
of longer-ranged hopping processes in our theoretical
proach. Of course, such transitions are much more impor
in the EHM. In addition, let us emphasize thatSEHM

tot .SHM
tot

holds also in the weak-coupling limit~see inset!. That means
the stronger reduction of the coherent Drude part, co
sponding to the stronger mass enhancement in the wea
coupled EHM (mEHM* /mHM* .1, cf. inset Fig. 5!, is overcom-
pensated by the incoherent part.

III. CONCLUSIONS

In summary, we have performed an extensive compa
tive numerical study of polaron formation in the Holstein a
extended Holstein models, supplemented by a theore
analysis of the weak- and strong-coupling limits. The emp
sis was on the new effects induced by a nonscree
electron-phonon interaction. The main characteristics of
new polaronic state formed in the EHM are the following

~i! By its nature the EHM polaron is a large polaron in t
whole EP coupling region. That is, the lattice distortion
spread over large distances even if the EP is extrem
strong, In this regime a small polaron is formed in the H
stein model.

~ii ! For strong EP interactions the EHM polaron prop
gates in a relatively weakly renormalized band as compa
to the HM. Accordingly the effective mass of the large EH
polaron is much smaller than that of the small Holstein p
laron with the same polaron binding energy.

~iii ! A surprise finding is that the effective mass of th
EHM polaron, describing a ‘‘coherent’’ band motion,
larger than the effective mass of the HM polaron at weak
couplings, in particular in the adiabatic case. We have s
that this effect can be attributed to the larger number
phonons the charge carrier has to drag through the lattic
the weak EP interaction is nonscreened.

~iv! From the calculation of theK-resolved single-particle
spectral function a wave-vector renormalization factorZK
can be extracted, which indicates, in accordance with~i! and
~ii !, at weak~strong! EP couplings a stronger~weaker! renor-
malization of the band states in the EHM than in the HM

~v! While in the HM the inverse polaron effective mass
directly given by the quasiparticle weight factor,ZK50, the
relation is more complicated for the EHM. In the wea
coupling limit this has been corroborated analytically.

~vi! The EHM polaron band dispersion is noncosine
model parameters corresponding to the~adiabatic! weak-to-
intermediate coupling regime. In particular, in the weak
coupled EHM, a flattening of the band structure at the zo
boundary is definitely observed just as in the HM, but t
effect is much less pronounced. Furthermore the flatten
rapidly vanishes with increasing EP coupling strength a
phonon frequency. In the strong-coupling limit, the EH
exhibits a free-particle-like band dispersion with a bandwid
which, although renormalized, is approximately one or t
orders of magnitudes larger than in the HM.

~vii ! While in the HM the transition from large to sma
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polarons is accompanied by significant changes in the op
response, the optical absorption in the EHM shows la
polaron characteristics for all EP interaction strengths. M
notably the extended form of the the lattice distortion in t
EHM gives rise to a large amount of ‘‘incoherent’’ hoppin
processes contributing to the regular part of the optical c
ductivity. As a result the regular contribution to thef-sum
rule is always bigger than in the HM.

~viii ! If one takes the averaged kinetic energy as a m
sure for the mobility of a charge carrier, the EHM polaron
more mobile than the HM polaron, independently of t
magnitude of the EP coupling strength. In particular the d
matic kinetic energy loss during the self-trapping transit
of the Holstein small polaron is absent in the EHM. On t
contrary, one observes a very gradual decrease of the kin
energy with increasing EP interaction and a substan
Drude contribution even for large EP couplings.

Finally, we would like to stress that the above propert
of the EHM large polaron are generic and not an artifact
our 1D system. The relative mass enhancementmEHM* /mHM*
at weak EP interactions, e.g., seems to be even more
nounced in 2D.18
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APPENDIX: ANALYTICAL APPROACHES

Following the previous consideration of the HM,11 the
Hamiltonian for treating the EHM at anyl may be written as

H52h(
j

cj
†cj2(

j , j 8
C j 8 j cj 8

† cj1v0(
l

S bl
†bl1

1

2D ,

~A1!

whereh is ac number andC j 8 j are generally functions of the
phonon operatorsbl

† , bl . Using the formalism of general
ized Matsubara Green’s functions, the polaron self-energS
corresponding to Eq.~A1! in the second step of iteration i
given by

S~ j 1t1 ; j 2t2!52^Cj 1 j 2
&d~t12t2!1(

j 8 j 9
G~ j 8t1 ; j 9t2!

3@^TtCj 1 j 8~t1!C j 9 j 2
~t2!&2^Cj 1 j 8&^C j 9 j 2

&#,

~A2!

whereG( j 8t1 ; j 9t2) means the polaron Green’s function
the first approximation~see Refs. 30–32 for details!. In the
subsequent calculations, the latter equation will be taken
starting point for the treatment of EHM in the weak- (l
!1) and strong- (l@1) coupling regimes; in addition, th
al
e
st

-

a-

-

tic
al

s
f

ro-

.

r-

s-
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a

low-temperature approximation~LTA ! defined bybv0@1,
and the small carrier-concentration limit (x→0) will be as-
sumed.

1. Weak-coupling regime

In this case, the functionsC j 8 j are defined by the first and
third terms of the Hamiltonian~1!, andh is put equal to the
chemical potentialm. Applying the Fourier transformation to
both sides of Eq.~A2! and carrying out the standard summ
tion over the phonon Matsubara frequencies,24,11 the polaron
self-energy

SK~v̄ !5jK1v0 (
d52`

`

«̃p~d!cos~Kd!

3E
2p

p dK8

2p

cos~K8d!

v̄1m2v02jK8

~A3!

is obtained after analytical continuation to the real frequ
ciesv under assumption of LTA and smallx. In writing Eq.
~A3!, the definition

«̃p~d!5 «̃p(
l

f l~0! f l~d!/(
l

f l
2~0!, ~A4!

jK522t cosK, and v̄5v1 i01 were used. The HM limit
results from Eq.~A3! by setting

«̃p~d!5«pdd,0 . ~A5!

In view of Eq. ~A3!, the polaron band energies EK are
solutions of the following equation:

EK5jK1v0 (
d52`

`

«̃p~d!cos~Kd!I (1)~K,d!, ~A6!

and the renormalization factor of the spectral function,24

ZK5@12(]/]v)ReSK(v)#v5EK2m
21 , is determined by

ZK
21511v0 (

d52`

`

«̃p~d!cos~Kd!I (2)~K,d!, ~A7!

where

I (n)~K,d!5E
2p

p dK8

2p

cos~K8d!

~EK2v02jK8!
n

. ~A8!

The relation between theeffective polaron mass m* and
the bare electron massm @being equal to (2t)21 in 1D# is
deduced according tom/m* 5@]EK /]«K#u«K→0 with «K

5tK2:24

m

m*
5ZK50F12

v0

2t (
d52`

`

«̃p~d!d2I (1)~0,d!G . ~A9!

Note that only for the Holstein model (d50) the effective
mass is given by the inverse spectral weight factormHM* /m
5(ZK50

HM )21. Using Eq.~A6!, thepolaron kinetic energyre-
sults from the relationEkin5t] tEKuK→0 as
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Ekin522tZK50F11v0 (
d52`

`

«̃p~d!

3E
2p

p dK8

2p

cosK8cos~K8d!

~E02v02jK8!
2G . ~A10!

2. Strong-coupling regime

In order to generalize the strong-coupling approach,
veloped in Ref. 11 for the HM, to the EHM case, the lon
range interaction of Hamiltonian~1! is eliminated by a non-
local Lang-Firsov transformation

U5)
l

expH x0

v0
(

j
f l~ j !cj

†cj~bl
†2bl !J . ~A11!

Clearly, the theory based on Eq.~A11! turns into the theory
for the HM if the condition~4! is inserted. The canonica
transformation~A11! applied to Eq.~1! leads to the polaron
binding energy~3! and to the emergence of the multiphon
processes connected with the electron hopping from the
j to the nearest-neighbor sitesj 1h (h being the elementary
translation in units of the lattice constant!.

Treating the dynamical EP interaction of the transform
Hamiltonian by means of the formalism outlined in Ref. 1
the polaron self-energy represented in the space of Brillo
zone K vectors and Matsubara frequenciesivn5 i (2n
11)p/b is obtained to the second order as

SK~ ivn!52t(
h

^F j , j 1h&e
iKh1 (

j 8, j 9
j 22 j 1

eiK ( j 22 j 1)

3
1

N (
K8,z

eiK 8( j 82 j 9)
1

bE0

b

dtei (vn2vz)t

3t2
„^F j 1 , j 8~t!F j 9, j 2

~0!&2^F j 1 , j 8&

3^F j 9, j 2
&…GK8~ ivz!. ~A12!

The multiphonon operator

F j , j 1h5 expH x0

v0
(

l
@ f l~ j 1h!2 f l~ j !#~bl

†2bl !J
~A13!

occurring in the transformed hopping term of Eq.~A1! in-
duces the polaron band narrowing in the first order, nam

t̃[t^F j , j 1h&5t exp$2g2D~1!coth~bv0/2!%, ~A14!

where

D~1!512(
l

f l~0! f l~1!/(
l

f l
2~0!. ~A15!

In the LTA bv0@1, we have t̃ .t exp$2g2D(1)%, j̃K5

22 t̃ cosK, and
-
-

ite

d
,
-

y,

SK~ ivn!5 j̃K1 (
j 8, j 9

j 22 j 1

eiK ( j 22 j 1)
1

N (
K8,z

eiK 8( j 82 j 9)

3 t̃ 2(
s>1

¸s

s!

1

b

2sv0

~sv0!21~vz2vn!2
GK8~ ivz!.

~A16!

The parameteŗ [¸(d,d1 ,d2) is given by

¸5
x0

2

v0
2 (

l
f l~0!@ f l~d!1 f l~d1d22d1!2 f l~d2d1!

2 f l~d1d2!#. ~A17!

Hered5 j 22 j 1 , d15 j 82 j 1 andd25 j 92 j 2 are elementary
translations. The summation overz is now evaluated using
the lowest-order approximation for the Green’s functi
GK( ivz) corresponding to a quasiparticle energy spectrum
the form j̃K2 «̃p . After carrying out this summation in LTA
and for small carrier concentration, the wave-vector a
frequency-dependent polaron self-energy is obtained fr
Eq. ~A16! by the analytical continuationivn→v̄ as

SK~v̄ !5 j̃K1 t̃ 2 (
d,d1 ,d2

eiKd
1

N (
K8

3(
s>1

¸s

s!
e2 iK 8(d1d22d1)

1

v̄2 j̃K81 «̃p1m2sv0

.

~A18!

If we neglectj̃K8 on the right-hand side~rhs! of Eq. ~A18!,
in the strong-coupling limit, thepolaron band dispersion EK
can be easily determined from

EK5 j̃K22 t̃ 2(
s>1

„2g2D~1!…s

s!

1

sv02EK

1 t̃ j̃2K(
s>1

@g2D~2!#s

s!

1

sv02EK
, ~A19!

where

D~2!512

2(
l

f l~0! f l~1!2(
l

f l~0! f l~2!

(
l

f l
2~0!

. ~A20!

On the basis of Eq.~A19!, thepolaron mass enhancemen
can be calculated from

m/m* 5e2g2D(1)@]EK /]«̃K#u «̃K→0 , ~A21!

where«̃K5 t̃ K2. Substituting, forK→0, j̃K522 t̃ 1 «̃K and
t̃ j̃2K522 t̃ ( t̃ 22«̃K), we find
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m

m*
5e2g2D(1)Z E0

21

3F114teg2[D(2)2D(1)]K 1

sv02E0
L

g2D(2)
G

~A22!

with

ZEK
5F112t2S K 1

~sv02EK!2L
2g2D(1)

1eg2[D(2)22D(1)]K 1

~sv02EK!2L
g2D(2)

cos 2K D G .

~A23!

Here ^ . . . &% denotes the average overs>1 with respect to
the Poisson distribution with the parameter%.

Accordingly, thepolaron kinetic energytakes the form

Ekin522tZ E0

21Fe2g2D(1)12t K 1

sv02E0
L

2g2D(1)

12teg2[D(2)22D(1)]K 1

sv02E0
L

g2D(2)
G . ~A24!

Finally, in order to discuss qualitatively the behavior
the single-particle spectral function reported in Sec. II C,
calculateAK(v) in the strong-coupling limit. Applying the
transformation~A11!, the electron operators are transform
into

c̃ j
(†)5 expH ~2 !

x0

v0
(

l
f l~ j !~bl

†2bl !J cj
† . ~A25!

Consequently, the spectral function is determined by
imaginary part of the retarded Green’s functionG̃R(K,v) of
the operatorsc̃K , c̃K

† . Owing to the relation between th
time-ordered products of operators and the retarded Gre
functions of the same operators33 we consider the time-
ordered product̂ Ttc̃K(t) c̃K

† (0)& and perform a decouple
average over the phonon and charge variables. In the l
T→0 we get

^Ttc̃K~ t !c̃K
† ~0!&5e2g2F ^TtcK~ t !cK

† ~0!&

1
1

N (
K8

(
d

(
s>1

1

s!
S «̃p~d!

v0
D s

3e2 isv0tei (K2K8)d

3^TtcK8~ t !cK8
†

~0!&G . ~A26!

The relation between the imaginary parts of retarded Gre
functions G̃R(K,v) and G R(K,v) of operatorsc̃K and cK ,
e

e

’s

it

’s

respectively, is obtained from the Fourier transformation
Eq. ~A26!. As a result, the spectral function

ÃK~v!522 Im G̃K
R~v!5e2g2ZEK

212pd~v2@EK2«p2m#!

1e2g2

(
d

(
s>1

1

N (
K8

1

s!
S «̃p~d!

v0
D s

cos@~K2K8!d#

3ZEK8

21 2pd~v2@EK81sv02«p2m#! ~A27!

is determined by the spectral functionsAK8(v2rv0) with
r>0 corresponding toGK8

R (v2rv0), i.e., using the self-
energySK8(v8) derived in this section. The energiesEK8 on
the rhs of Eq.~A27! are solutions of Eq.~A19! and the fac-
torsZEK8

are given by Eq.~A23!. The first term on the rhs o
Eq. ~A27! describes the quasiparticle of momentumK and
the second term, being a sum over the entire polaron b
corresponds to the incoherent part of the spectral funct
Inserting the condition~A5! into Eq. ~A27!, the spectral
function of the Holstein model is obtained, which differs b
the self-consistently determinedEK8 and ZEK8

from the re-
sult of Alexandrov and Ranninger.34

In particular, atK50, r 50, thequasiparticle weight fac-
tor results as

ZK505e2g2ZE0

21. ~A28!

Here it is necessary to point out the different level of a
proximation we used in deriving Eqs.~A22! and ~A28!.
Therefore, it is not possible to verify the HM relation~12! by
the above strong-coupling calculation ofZK50. The leading
exponential dependence of Eqs.~A22! and ~A28!, however,
is found to be the same~not the same! for the HM ~EHM!, in
good agreement with the numerical results of Figs. 2 and

We recently had a valuable discussion with A. S. Alexa
drov and P. Kornilovitch,35 which forces us to motivate ou
teminology ‘‘large EHM polaron’’ in some more detail in
order to avoid confusion of people outside the polaron co
munity. Alexandrov and Kornilovitch used in their study o
the model~1! with ~2! the notation ‘‘small Fro¨hlich polaron’’
to characterize the polaronic state in the strong-coup
regime,18 mainly because the polaron mass increases ex
nentially with coupling as in the standards SP theory, alb
with a somewhat reduced exponent.35 However, while for the
usual 1D HM~1! with ~4!, there is a one-to-one correspo
dence between weak-coupling~strong-coupling! situation
and LP~SP! formation, the interrelation is more complex i
the EHM. Indeed, in the strong-coupling limit of the EHM
the polaronic quasiparticle, consisting of the electron and
concomitant phonon cloud, is definitelyextendedalthough
its mass becomes exponentially large. Thus, follow
Holstein’s4 distinction between SP and LP according to t
spatial extent of the lattice distortion caused by the cha
carrier, we specified the polaron in the EHM as ‘‘large’’ an
used in addition the term ‘‘Holstein’’ instead of ‘‘Fro¨hlich’’
to discriminate our ‘‘lattice’’ polaron from the ‘‘continuum’’
~Fröhlich! polaron. Moreover, besides this rather ‘‘static
characteristic there is another much more profound ‘‘d
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namical’’ aspect: the well-known SP absorption maximum
v;2«̃p is missing for polarons in the EHM, irrespective
the coupling strength. On the contrary, appreciable phon
assisted absorption occurs at lower frequencies, owing to
te

P

B

tte

ys
t

n-
he

extended lattice deformation, which makes the lattice ad
tation during the carrier hopping easier. This clearly dem
strates the different nature of the ‘‘small’’ HM polaron an
the ‘‘large’’ EHm in the large EP interaction limit.
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