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Lattice polaron formation: Effects of nonscreened electron-phonon interaction
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We explore the quasiparticle properties of lattice polarons on the basis of a quite general electron-phonon
Hamiltonian with a long-range displacement-type interaction. To treat the dynamical quantum phonons without
significant loss of accuracy we adapt an exact Lanczos diagonalization method and compute various static and
dynamical quantities, such as the electron-lattice correlation function, the polaron band dispersion, the effective
polaron mass, the kinetic energy, the single-particle spectral function, and the optical conductivity, on finite
one-dimensional lattices for a wide range of model parameters. We compare the results with those obtained for
the standard Holstein model with short-range electron-phonon interaction only.

[. INTRODUCTION Wannier state on sitg of an infinite chain which interacts
with the vibrations of all ions of another chain via a
The classical polaron problénmas received renewed at- ‘“density-displacement” type long-range EP coupling

tention on account of the observation of polaronic effects in
several important classes of materials, including high- )
temperature cuprate superconductors and colossal magne- f'(J):m @
toresistance manganités.Remarkably even the much sim- J
pler case of free electrons interacting with optical phonons ir(cf. Fig. 1 of Ref. 18. The distancgl —j| is measured in
ionic crystals is still not completely understood. From a the-units of the lattice constant. In E€L), Xo=V1/2M wg, kXq
oretical point of view the challenge is to describe the cross= /e, w,, and the optical phonons, being polarized in the
over from an only weakly dressed charge carrier to thadirection perpendicular to the chain, are approximated as in-
strongly mass-enhanced, i.e., less mobile, polaronic quasitfependent Einstein oscillators with bare frequensy (%
particle with increasing electron-lattice coupling strength.=1). Physically, this model was proposed to mimic the in-
Depending on the relative importance of the short- or long+teraction of doped holes with apical oxygens in the high-
range electron-phono(EP) coupling, simplified models of T s, e.g., in YBaCu;Og, 4, Where one can assume that the
the Holsteift or Frhlich® type, respectively, have been stud- coupling is not screened because of a taxis conductivity
ied over the last five decades. However, despite extensivgnd high phonon frequené?.Methodically, model(1) rep-
analytical work, in the physically most interesting crossoverresents an extension of the Rtich model to a discrete ionic
regime, up to now, the only reliable results came from nu4attice or of the Holstein model including longer ranged EP

merical studies, such as finite-cluster exact diagonalizationgteractions. Indeed, defining the polaron binding energy as
(ED),*"** quantum Monte Carlo(QMC) simulations'>*3

density-matrix renormalization-group approack®, and ~  Xg )

global-local® or variational method¥’ Ep= - 2 fi(0)=1.27%,, ©)
Recently the formation of small polarons was investigated 0

by Alexandrov and KornilovitcH applying a new path- the Holstein mode{HM) results by setting

integral Monte Carlo algorithi®?° These authors intro- _

duced the following EP Hamiltonian: fi(j)=xé,,

2

1 Eo—ep. 4
H=—t, c?,cj+w0§|: brb'+§ p—&p (4)

(4.i"

Therefore, the mode{l) will be subsequently termed the

extended Holstein mod€dEHM). In order to parametrize the

— > fi(j)cfeixo(bf +by). (1)  EP coupling strength for both the HM and EHM we intro-
Il duce two dimensionless EP coupling constants

Herec!™ andb{" denote fermionic and bosonic annihilation
[creatio] operators, respectively. Restricting ourselves to
the one-dimensiondlLD) case,H describes an electron in a (in what follows we measure all energies in unitst pf

N=¢ey/2t, 9®=¢,/wg (5
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So far, analytical and numerical investigations of the 1 1
EHM have been mainly confined to the determination of the A®(w)=— lim ;lmK‘I’o OTmO“I’oH
effective mass of the polaron, where it was found that the e—0" 0
EHM polaron is much lighter than the small Holstein D-1
polaron’® First results for the polaron band dispersion and = (WO TS w—(En—Eg)], 7
density of states were obtained quite recently, however, the n=0

QMC method of calculating the ground-state dispersion used

by Kornilovitch?® is limited to the case where the bandwidth 'S Much more involved. Her® denotes the matrix represen-
is much smaller than the phonon frequency. tation of a certain operatd®, andH is the very large sparse

In this paper we present a detailed comparative study Olf-|amtilton mr?trri]x, facting in %IH”b?{t space'wi':ht f:xleg_ mo-
the Holstein and extended Holstein models in order to dis™€ntUM, Which, for our probiem, has a typical total dimen-

cuss the effects of long-range EP forces on the lattice polaro©" (P) of about 16-10°. Since it is impossible to deter-
formation. Using exact Lanczos diagonalization supple-Mine all the eigenvalues¥;) and eigenstateg¥'y)) of such
huge Hamilton matrix we combine kernéChebyshey

mented by a well-controlled phonon Hilbert space truncatiorf* X . : AR
method, we calculate for the first time spectitica) prop- polynomial expansion and maximum entropy optimization in

erties of the EHM polaron. As stated above such a numericdlfde" t0 calculaté”(w) in a well-controlled approximation
investigation is especially valuable in the nonadiabaticfor more details see Refs. 21 and)22
intermediate-to-strong-coupling transition region, where the

electronic and phononic energy scales are not well separated, B. Electron lattice correlations

.., A=wo/t=1. In the weak- and strong-coupling regimes | 3 first step we discuss the different nature of the po-

the numerical work is supplemented by analytical ap-jaronic states in the HM and EHM in terms of static corre-

proaches outlined in the Appendix. lation functions(n;q,) between the electron positigin=0]
and the oscillator displaceme[rm,oc(bfur b))] at sitel,

Il. QUASIPARTICLE PROPERTIES OF LATTICE o
POLARONS X0, ={CoCo(bg+ b))/ N. (8)

A. Numerical methods Xo, indicates the strength of the electron-induced lattice dis-

: P ; ; ,23,17
Before we discuss the various physical quantities let u$ortion at 'T_O and its spatial extert;>*" where A’
briefly sketch our computational scheme. Diagonalizing the= >1{CoCo(Po+1 1 Po+1)) is @ normalization constarjnote

coupled EP systenil) on finite 1D lattices with periodic thatA/=2(s;/wo)(ciCo) holds for the HM.

boundary condition§PBC's), a generak-symmetrized state ~ Figure 1 shows thestatig electron-lattice correlation
S o function (8) in the weak-(a) and intermediate-to-strongb)

: : <M S(M) M, S| 1+ m o\ o

IS given as ||\PK>_ET=?ESZ1CK [Kim,s), where S(m) EP coupling regimes, where we have chosen an intermediate
=(N=1+m)!l/(N-1)!m!. K denotes the total momentum ,h,non frequencyds,=1) in order to include nonadiabatic

of the coupled EP system. Because the phonon Hilbert spacgsects. Clearly for the quantum phonon mod#) the EP

has infinite dimension we apply a truncation procedure rejneraction gives rise to a “dressing” of the charge carrier at

stricting ourselves to phononic states any finite X\, g2. If the EP coupling is weak, however, the
amplitude ofy, is smallV | [in particular smaller than the
N1y 5 guantum-latticgzero-poinj fluctuationg, that means the lat-
Im,s)pn= [T —=mHm 10)pn tice deformation could not trap the charge carrier and a so-
=0 ﬁ called “large” polaron(LP) is formed in both the Holstein

and extended Holstein models. Obviously, the situation is

. oN-1.s. s entirely different in the strong-coupling region. For the HM
with at mostM phonons, wherebyn=2_q n/<M, andn, the EP correlations are almost local indicating the formation

E[Q’m] (cf. Ref. 2]. Th(:f' ground statgWox—o) and all of a “small” polaron (SP. On the other hand, as a result of
excited stateg, ) contain components that correspond t0he nonscreened EP interaction, in the EHM the deformation
m-phonon states in the tensorial product Hilbert space 0}5 spread over many lattice sites, i.e., we found again a LP. It
electronic and phononic states. Accordingly, is worthwhile to point out, however, that the electron and the
phonon cloud are tightly bound. That means the LP of the

S(m) _ EHM as a whole behaves as a well-defined polaronic quasi-
[CT2(M)= 2, |cpSo|? (6)  particle(cf. Sec. Il Q and, in our opinion, it is not possible
s to discuss the size of the electronic wave function and the

size of the lattice distortion separatéfy.
can be taken as a measure of the weight of rthghonon In the insets of Fig. 1 we show the differences between
state in theK=0 ground state. In our ED analysis conver- the phonon distribution functions in the weak- and strong-
gence is assumed to be achieved if the ground-state energgpupling cases, where the ground state is basically a zero-
Eo(M) is determined with a relative error less than'i@nd  phonon and multiphonon state, respectively. With regard to
lcy|2(M)<10"". Afterwards static correlation functions can the discussion of the effective mass in Sec. Il E we would
be obtained easily by calculating ground-state expectatiotike to annotate here, that at sm@éirge) A the EHM polaron
values(¥y(M)| . ..|¥y(M)). The numerical computation contains morgless phonons in its phonon cloud than the
of dynamical properties, i.e., of spectral functions HM polaron. Of course, in the extreme strong-coupling limit,
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“quasiparticle-weight factor.” Since the total integrated area
under the entire spectra is unity, the renormalization factor is
less than unity and, in particulaZx-, is a measure how
4 3 =2 -1 0 1 2 3 4 much the polaronic quasiparticle “deviates” from the free
1 electron Zx-o=1). In accordance with the discussion in the
preceding section, in the weakly interacting EHM we found
coupling (b) cases. ED results are obtained for a finite chain witha strpnger dressing of th? el_ec'[ég,\r)l byHRAhonon_S t_har_] in the
N=8 sites and at most 24 phonons. The insets show the weight g, i-€., @ larger renormalizatiofix—o<Zy =o . This finding
the m-phonon state in the ground state. is corroborated by the the weak-coupling the@CT) out-
lined in the Appendix. Table | demonstrates the good agree-
the usual Poisson distribution with parametgt results, Mment of the theoretical approach, working for the infinite
demonstrating that adjusting the parameters of both modefystem, and finite-cluster diagonalizations, provided that
according to Eqs(3)—(5) is correct. both A and g? are small. Contrary t&@y_,, Which is only
slightly reduced from the free-electron value, the wave-
function renormalization factoZy_ ., is almost zero. The
) ] ) ] ) WCT shows that the state witk =, being energetically
_Next, in order to examine dynamical quasiparticle Prop-separated byo, from the ground-state energy, is predomi-
erties of the HM and EHM polarons, we have evaluated thé aniy a phononic state. At strong EP coupling the polaronic

0.0

FIG. 1. Electron-lattice correlations in the wedk} and strong-

C. Single-particle spectral function

wave-vector-resolved spectral density function band is characterized B <1 VK, indicating a strong mix-
ing of electronic and phononic degrees of freedom. Calculat-
AK(E)ZZ |<‘I’n,K|C;2|0>|25(E— Enk)- 9) ing the polaronic quasiparticle weight factor within the
n framework of the strong-coupling theo($CT) developed in

The results are presented in Fig. 2. To visualize the spectrdf'® APPeNdiXEq. (A28)] givesZ -, values which are by a

weights of the various excitations, the integrated density of2ctor of 3 too small as compared to the exact data of Figs.
states, 2(b) and 2d). The differences mainly arise because these

parameters correspond rather to the intermediate-to-strong
E than to the extreme strong-coupling regime. The qualitative
NK(E)=J' dE'AK(E"), (10
TABLE |. Quasiparticle weightZyx_, obtained from ED K
is also displayed. The weight of the firétfunction peak in =8, M=24) and within WCT according to EGA7).
each K sector gives the wave-function renormalization

factor? A=0.1,92=0.2 A=0.5,g2=1/3
ED WCT ED WCT
Z=[(Woxlckl0)P, (11
HM 0.955 0.946 0.893 0.848
where| ¥, ) denotes the single-polaron state with momen-gm 0.918 0.893 0.857 0.781

tum K being lowest in energyZg—_o is usually termed the



PRB 61 LATTICE POLARON FORMATION: EFFECTS ®... 8019

06 I Oa=05ED ©,=0.5 I @ 20 I I I ]
OM=1OED  ~——-—------=- = Ty ’:@_“_‘_‘:f—‘—‘f e h— ~
04 - m=15ED 7 /Q'/O O,»'”:g o --m ®--¢)=0.5ED ///
s wlk — A=0.5 WCT e |
b /
v
=) L 4
g 00 ///
> ]
[JIJ 1.0 g /‘/
s = _10 - ! 1
) 0.5 10 R
. U SR SRR
0.0 e 7 e
20 +-- PR B
4.0 T T —ar-
OA=0.5 ED _ ¢ —-"-® =
OA=30ED ©,=3.0 _—ampEtes ©_ » ®,=1.0
o [ WASOED /{64——'@ 1 30 ‘ . . .
O asoswer =" e 0.0 0.2 04 06 038 1.0
—a=soscT =D e K [n]
0.0 @——== == . . o
0.0 02 0.4 0.6 0.8 1.0 FIG. 4. Flattening of the polaron band dispersion in the 1D
K [n] Holstein model (weak-coupling cage Long- and short-dashed

curves denote the solution of E¢A6) and the bare phonon fre-

FIG. 3 Band Qispersion of Fhe 1D extended Holste.in model forquencywozl.o, respectively. The agreement of ED and WCT gets
low (a), intermediate(b), and high(c) phonon frequencies. Exact patter as\ decreases.

data are extracted from finite-lattice diagonalizations With8 and

10 sites. In t.he weak- and. strong-gogpling regimes ED results a5 can be seen from Figs.(l® and 3c), in the strong-
compared with the theoretical predictions. coupling nonadiabatic regime our SCT yields excellent re-
sults. Most notably we do not observe the same drastic po-
behavior of the single-particle spectral functidp(E), how-  |aronic band collapse as in the H\}!i.e., in the EHM the
ever, is correctly reproduced by SGA27), which yields,  coherent bandwidth E=E,— E, becomes much less renor-
above the quasiparticle pole, a sequence of excitations separalized by the EP interactiofe.g., for the HM with \
rated byw,. Apparently the spectral weight of this incoher- =5.0 andw,=23.0, we foundAE=0.15319).
ent part increases with increasing EP interaction strength.

E. Effective mass

D. Polaron band structure Another important question is the change in the polaron
effective mass induced by the EP coupling. In general it is
difficult to compute the mass enhancement, which is defined

be derived from the first peak & (E). Figure 3 compares X d derivati f the band ith
the dispersion of the energy bands for the EHM at differenf'S 8N INVErse second derivative ot the band energy with re-
spect to quasimomentum at the band minimumy/m

EP interactions, corresponding to the weak-, intermediate=,"" > 5 IR o L
and strong-coupling case, where, by going fr@to (c), wq [ g°E(K)/oK _|K:0] , using fln!te-lattlce diagonalizations,
is increased modeling the adiabatic, intermediate, and antié)_ecauseE(K) IS kpown a.t m_ultlples of &/N only rather
diabatic regimes. than at anyK, making the limiting procedurk — 0 ill pose_d.
Starting with the adiabatic weak-coupling c4sey. 3a)],  ©On the other hand, the mass enhancement fg}ﬂf“"“ IS
we found that the band structure is nearly unaffected at smaft'SC related to the quasiparticle weight fadgro.”" For the
momentum, i.e., in the vicinity of the band center. In this iM we are able to prove the relation
region | W) is a quasi-zero-phonon stdf&?® A different
behavior is observed near the zone boundary. Here the band
structure is flattened. Such a “flattening” has been found forin the weak-coupling limifsee the Appendix, Eq3A7)—
the HM as well and can be attributed to the intersection of A9)], i.e., ath\ <1 the polaron effective mass can be read off
the dispersionsless optical phonon branch with the bare eleérom the first step in the integrated spectral weight function
tronic cosine barfd®!%% (cf. also Fig. 4. The weak- depicted in Fig. 2. Plotting{™ as a function of in Fig. 5
coupling calculation oy [Appendix; Eq.(A6)] reflects this  and comparing the effective mass determined in this way
behavior. For the HM, e.g., the correctiongg is given by  with the QMC masses, obtained from/m* = §?Ey /JK?
the integral Z()(K,0), which is nonzero only for Bx  without any systematic finite-size errérs®?°the (perhaps
— wo)?>4t2. The latter condition yields a threshok*, at  surprising finding is that Eq(12) holds for thewhole cou-
which the solution of Eq(A6) jumps to the bare band dis- pling region. That means, in the Holstein model, we can
persionéy . For K>K*, the first excitation inA¢(E) is re-  determine the effective polaron mass simply by calculating
lated to a one-phonon absorption process and as a result ttiee quasiparticle weight factor. In previous ED studies of the

Now the so-called “coherent” band dispersidg, , can

m/mﬁM:ZE'\jo (12)

WCT approximation folEx breaks down. Thus, aboue*, Holstein polaron problem this fact has been ignored so far.
the physical solution is given to lowest order by the dashed Unfortunately no such simple relation exists for the EHM.
line atEy+ wg. This is shown more explicitly in the Appendix, where ap-

The flattening considerably weakens and ultimately vanjproximative expressions fan/m* were derived in the weak-
ishes if the EP coupling increases. This tendency is espe-and strong-coupling limits. Note that our analytical weak-
cially pronounced for the EHM in the nonadiabatic regime.and strong-coupling approaches confirm the unexpected non-
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The ratio of the effective masses of the EHM and HM polarons are }‘

=
<

|

displaced in the inset. 08 }} o
- :‘ — HM §™
. " % . L 06 - I ——- EHM 5™ |

monotonic dependence ol of mgy,/Mmyy . which was 3 ¥ Y 275 ool
found numerically by Alexandrov and Kornilovitth (see g Lo .
insed. In the light of the results presented in the previous F04r | ;};:,_, .~
sections, it becomes clear that at small EP couplings the ;{3’ : W

i

!

|

EHM LP has to drag a larger phonon cloud coherently

I |

- [ I
through the lattice than the HM LP and therefore acquires a ' }i ;‘M\;‘UE :
larger effective mass. Further numerical data show that this L"Wﬂ]’ L il .
effect becomes negligible in the weak-coupling antiadiabatic . 5.0 10.0 15.0
regime, where the phonons can follow the electron instanta- o
neously(cf. also Fig. 3 of Ref. 18 As a matter of course, in ) o )
the strong-coupling limit the EHM LP is much lighter than FIG. 6. Optical absorption in the 1D Holstein and extended

the HM SP due to the weaker band renormalization causeﬁOIStEin models. The regular part of the conductivit{’® (thin
by the extended form of the lattice distortion ines) and integrated spectral weight€? (thick lines are shown in

the weak-(a) and strong-couplingb) regimes.

(=4
[\S)

F. Optical conductivity excite one phonon lies inside the bare tight-binding band we

In this section we compare the optical response of HMfound, at weak EP coupling, the first transitions by adding
and EHM polarons. The real part of the optical conductivity,phonons with opposite momentum to only slightly renormal-
ized electronic state€n order to reach th& =0 sector of
Reo(w)=Dd(w)+ 0" w), (13)  the ground staje However, since the ground state is ap-
proximately a zero-phonon stafef. inset of Fig. 1a)], the
spectral weight of optical transitions involving larger number
of phonons is reduced drastically. Of course, the absorption
threshold isw for the infinite system; the shift observed in
2 Fig. 6(a) simply results from the discret€ mesh of our finite
system. The situation changes by increasing the EP coupling

can be decomposed into the Drude temT}) atw=0 and a
regular contribution forw>0, which, in linear-response
theory, for the(extended Holstein model is given by

g2 ¥,)

; T T
|t2 (CjCj+1—Cj41C))
i

Ureg(w):@ when in the HM the SP formation takes place. Now the
N 5o E,—Ep phonon distribution function in the ground state is broadened
and in the optical response the overlap with excited mul-
X o= (Ey—Ep)] (14 tiphonon states is enlarged. As a result the famous SP ab-
with o=me? (T=0, K=0 secto). Again we introduce a Sorption maximum develops aroung=4\ =2z, for large
w-integrated spectral weight function, couplings.

Let us now discuss the optical response in the EHM. Of

vear v [“ o regs s course, there is little change in the weak-coupling region. At

S (w)= 0 do’o™(w"), (19 large EP coupling, however, the optical absorption points

toward a completely different nature of the polaronic states

in order to visualize the intensity of the various excitationsin the Holstein and extended Holstein models. The EHM
more clearly. polaron clearly shows all the LP signatures but compared to
Figure 6 shows the optical conductivity obtained«f  the weak-coupling case and, what is more important, also

=1.0 for the HM and EHM on an eight-site lattice using compared to the HM SP, the optical conductivity is strongly
PBC. For the 1D HM the optical absorption spectrum hasnhanced by multiphonon absorptions processes. The physi-
been discussed in detail in previous wétKf the energy to  cal reason lies in the nonscreened EP interaction leading to
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1.5

lattice distortion of the intermediate state with the charge
carrier on a nearest-neighbor site of the initial site fits much
. —wer better to the polaronic quasiparticle than in the case of the
> HM SP. The difference between the numerical and theoreti-
cal results at larger EP couplings originates from the neglect
of longer-ranged hopping processes in our theoretical ap-
proach. Of course, such transitions are much more important
in the EHM. In addition, let us emphasize trgf},,> S\,
holds also in the weak-coupling limisee inset That means
the stronger reduction of the coherent Drude part, corre-
sponding to the stronger mass enhancement in the weakly-
0.0 ‘ ‘ ‘ coupled EHM Mg,/ miw=>1, cf. inset Fig. 5, is overcom-
0.0 1.0 2.0 3.0 4.0 pensated by the incoherent part.

T
OHM S™ ED
LIEHM 8" ED

@HMS™ ED *ED
WEHMS” ED

1.0e

S'Eg

0.5

FIG. 7. Renormalized kinetic energ'¢") and contribution of IIl. CONCLUSIONS
o9 to thef-sum rule §€9) as a function of EP coupling\( at .
wo=1.0. In summary, we have performed an extensive compara-

tive numerical study of polaron formation in the Holstein and
the form of the lattice distortion depicted in Fighl Taking  extended Holstein models, supplemented by a theoretical
into account the internal structure of the EHM LP it is obvi- analysis of the weak- and strong-coupling limits. The empha-
ous that the lattice distortion undergoes less relative chang&s was on the new effects induced by a nonscreened
when the charge carrier hops incoherently to neighboringlectron-phonon interaction. The main characteristics of the
sites accompanied by phonon absorption or emision. new polaronic state formed in the EHM are the foIIowing.

(i) By its nature the EHM polaron is a large polaron in the
whole EP coupling region. That is, the lattice distortion is
spread over large distances even if the EP is extremely
Integrating Eq(13) with respect tow, the familiarf-sum  strong, In this regime a small polaron is formed in the Hol-

G. Kinetic energy

rule stein model.
(i) For strong EP interactions the EHM polaron propa-
Exin S D 8™ gates in a relatively weakly renormalized band as compared
2 o, E+ oo 18 5 the HM. Accordingly the effective mass of the large EHM

polaron is much smaller than that of the small Holstein po-

can be derived, wher§'¢9=S"®9(). Equation(16) relates laron with the same polaron binding energy.
optical response and kinetic enerds;,, measures the mo- (iii) A surprise finding is that the effective mass of the
bility of the charge carrier. EHM polaron, describing a “coherent” band motion, is

To elucidate the different nature of HM and EHM po- larger than the effective mass of the HM polaron at weak EP
larons in more detail, in Fig. 7 we have displayed the kineticcouplings, in particular in the adiabatic case. We have seen
energy (S, renormalized to its value at=0, together that this effect can be attributed to the larger number of
with S"9. Since the kinetic energy contains contributionsphonons the charge carrier has to drag through the lattice if
from both “coherent” (D) and “incoherent” (xS™Y  the weak EP interaction is nonscreened.
hopping processes, the Drude part can be directly read off (iv) From the calculation of th&-resolved single-particle
from the difference between the filled and open symbols aspectral function a wave-vector renormalization facZer
fixed \. In agreement with previous numerical results, in thecan be extracted, which indicates, in accordance @jtand
HM we found a continuous transition from a LP to a less(ii), at weak(strong EP couplings a strongéweakej renor-
mobile SP as the EP interacting increa¥eS:™ The de-  malization of the band states in the EHM than in the HM.
crease 05! in the crossover region, being much more pro-  (v) While in the HM the inverse polaron effective mass is
nounced in the adiabatic regiffe(as well as for higher directly given by the quasiparticle weight factaty _o, the
dimension1Y, is driven by the sharp drop of the Drude relation is more complicated for the EHM. In the weak-
weight?® By contrast, in the EHM the kinetic energy de- coupling limit this has been corroborated analytically.
creases very gradually with increasingand we observe a (vi) The EHM polaron band dispersion is noncosine for
substantial Drude contribution even at large EP couplingsmodel parameters corresponding to thdiabati¢ weak-to-
This is in accord with the moderate renormalization of theintermediate coupling regime. In particular, in the weakly
polaronic bandwidth and the minor effective mésfs Sec. Il coupled EHM, a flattening of the band structure at the zone
D and Sec. Il E In addition, as already stressed in Sec. Il E,boundary is definitely observed just as in the HM, but the
the optical absorption due to inelastic scattering processesffect is much less pronounced. Furthermore the flattening
described by the regular part of the optical conductivity,rapidly vanishes with increasing EP coupling strength and
gives a large contribution. This can be easily understooghhonon frequency. In the strong-coupling limit, the EHM
within second-order perturbation thedinyote that one has to exhibits a free-particle-like band dispersion with a bandwidth
go beyond the lowest order of approximation to obtain reli-which, although renormalized, is approximately one or two
able results for the kinetic energy®!cf. the Appendix.  orders of magnitudes larger than in the HM.
during a second-order hopping process of the EHM LP the (vii) While in the HM the transition from large to small
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polarons is accompanied by significant changes in the opticdbw-temperature approximatioft TA) defined byBwy>1,

response, the optical absorption in the EHM shows largand the small carrier-concentration limi-0) will be as-

polaron characteristics for all EP interaction strengths. Mossumed.

notably the extended form of the the lattice distortion in the

EHM gives rise to a large amount of “incoherent” hopping 1. Weak-coupling regime

processes contributing to the regular part of the optical con- i i i i

ductivity. As a result the regular contribution to tfisum In this case, the functiong;; are defined by the first and

rule is always bigger than in the HM. third t'erms of th'e Ham|lton|a(11), andn' is put equal tq the
(viii) If one takes the averaged kinetic energy as a mea@hemlpal potential. Applying the Fourier transformation to

sure for the mobility of a charge carrier, the EHM polaron isPOth sides of Eq(A2) and carrying out the standard summa-

more mobile than the HM polaron, independently of thetion over the phonon Matsubara frequendi&t the polaron

magnitude of the EP coupling strength. In particular the draSelf-energy

matic kinetic energy loss during the self-trapping transition o

of the Holstein small polaron is absent in the EHM. On the —_ ~

contrary, one observes a very gradual decrease of the kinetic Fl@)=dct wod;w sp(d)cosKd)

energy with increasing EP interaction and a substantial

Drude contribution even for large EP couplings. = dK’  cogK'd)
Finally, we would like to stress that the above properties Xf

of the EHM large polaron are generic and not an artifact of

our 1D system. The relative mass enhancemnat,,/my,,  is obtained after analytical continuation to the real frequen-

at weak EP interactions, e.g., seems to be even more préiesw under assumption of LTA and smadl In writing Eq.

nounced in 203 (A3), the definition

e (A3)
27wt p—wo—
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APPENDIX: ANALYTICAL APPROACHES Ex=éxtwo D sp(d)cogKd)ZTM(K,d),  (A6)
d=—=

Following the previous consideration of the Hi¥the o _
Hamiltonian for treating the EHM at any may be written as  @nd therenormalization factor of the spectral functigh
Zx=[1— (9l dw)Re3(w)],2 is determined by

w:EK—M’

1
b|Tb|+§),

H=— 772 C]TCJ._Z_/ erjCJT,Cj'f'wozl
)] (A]_)

Zil=14og 3 F(d)cosKATAK,D), (A7

where is ac number and’;,; are generally functions of the where
phonon operatorb,*, b,. Using the formalism of general-

ized Matsubara Green’s functions, the polaron self-en&rgy ") _ (7 dK"  cogK'd)
) . . L 7W(K,d)= _—— (A8)
corresponding to EqAL) in the second step of iteration is —7 2T (Eg— wo— &))"
given by
The relation between theffective polaron mass fnand
S o the bare electron mass [being equal to (2~ in 1D] is
2(]17'1,]27'2):_<leiz>5(71_72)+j% 9(j" 131" 72) deduced according ton/m* =[dEx/dek]|,, .o With ex
=tK?:24
X[<IZ'TCJ'1J"(T]-)CJ'"]2(T2)>_<lej/><cj//j2>]'
m ~
(A2) —=zK_O[1—@ S E(dd2zM0d)|. (A9
m* 2t d=—

whereG(j’' r,;j"m,) means the polaron Green’s function in

the first approximatiorisee Refs. 30—32 for detalldn the ~ Note that only for the Holstein modet0) the effective
subsequent calculations, the latter equation will be taken asmass is given by the inverse spectral weight factdg,/m
starting point for the treatment of EHM in the weakx ( =(ZE'\:"O)*1. Using Eq.(A6), the polaron kinetic energye-
<1) and strong- X>1) coupling regimes; in addition, the sults from the relatiorE,;,=td;Ex|«_o as
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” | .
Ekin:_2t2K=0 1+(Do E Ep(d) K(Iw ) §K+ 2 IK(JZ_II)N 2 elK (] J )
d=—o r /r K’,g
Jz 11
— — — ' - Yk .
(Eo—wo—ék/) s18!' B (Sa)o)z-f-(wg—w,,)z « ¢
2. Strong-coupling regime (A16)
In order to generalize the strong-coupling approach, deThe parameter= x(d,d;,d,) is given by
veloped in Ref. 11 for the HM, to the EHM case, the long-
range interaction of Hamiltoniafl) is eliminated by a non- X(Z)
local Lang-Firsov transformation n=— §|: fi(0)[f(d)+f(d+d,—dq)—f(d—dy)
Wo
%o - —fi(d+dy)].
u=]_|[ exp{w—0 2 fi(i)cfei(bf—b)f.  (AL1) fi(d+dy)] (A17)
Hered=j,—j., d;=]'—j; andd,=]"—], are elementary

Clearly, the theory based on E@11) turns into the theory translations. The summation ovéris now evaluated using
for the HM if the condition(4) is inserted. The canonical the lowest-order approximation for the Green’s function
transformation(A11) applied to Eq(1) leads to the polaron Gk(iw,) corresponding to a quasiparticle energy spectrum of
binding energy(3) and to the emergence of the multiphonon the formé, —,,. After carrying out this summation in LTA
processes connected with the electron hopping from the sitend for small carrier concentration, the wave-vector and
j to the nearest-neighbor sitgs h (h being the elementary frequency-dependent polaron self-energy is obtained from

translation in units of the lattice constant Eq. (A16) by the analytical continuationw,— o as
Treating the dynamical EP interaction of the transformed
Hamiltonian by means of the formalism outlined in Ref. 11, 1
the polaron self-energy represented in the space of Brillouin- 5 (w) E 12 2 elkd — 2
zone K vectors and Matsubara frequenciés,=i(2v d.dp,dp N7
+1)#/ B is obtained to the second order as s
x> X K/ (d+dy—dy) _ 1
=1 8! w— & t+eptu— Swg

Sliw,)=— tZ (D j+nyeN+ > ekl2miD
i’ (A18)

J2=i1
1 1B If we neglecté,, on the right-hand sidérhs) of Eq. (A18),
XN > ekl )—f drel(@v=e)7 in the strong-coupling limit, th@olaron band dispersion £
K’ ,8 0 > -
£ can be easily determined from

X2 @), j (N Pjr ,(0)=(Pj, 1) (Zng(l))S .

. 12
X<(Dj//‘j2>)gK/(|(1)§). (AlZ) EK §K 2t 321 sl SwO_EK
The multiphonon operator [QZA(Z)]S 1
P P T, ., (A19
s=1 Sa)o EK
Xo . .
c1>j,,-+h=exp[w—02| [f.<1+h>—f|u>]<br—bo} where
(A13)
occurring in the transformed hopping term of H#1) in- 22 f|(0)f|(1)—§|: fi(0)f,(2)
duces the polaron band narrowing in the first order, namely, A(2)=1— . (A20)
. > (0)
t=t(®; .y =texp—g>A(1)coth Bwy/2)}, (Al4) !
where On the basis of EqQA19), thepolaron mass enhancement
can be calculated from
1 _ 2
AD=1-2 O/ ff(0). (A5 i —e OB, Gl o (A2D)
In the LTA Bwo>1, we havet=texp{—g?A(1)}, €=  wherezy=tK2 Substituting, folk —0, &€= — 2t +zx and

— 2t cosK, and Té=—21(t—2s), we find
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respectively, is obtained from the Fourier transformation of

m 2 ;
—=e9 A(l)Zgol Eq. (A26). As a result, the spectral function
m
1 ~ ~
X 1+4te92m<2>“1”<—> Ac(w)=—2ImGR(w)=e ¢ Z 278w —[Ex—ep—u])
SwO—EO ng(Z) K
1o 1(z,d))°
(A22) e S Y oY —l( ot )) cog (K—K")d]
W|th d s=1 N K’ S! (OFs)
XZEKl,ZaTﬁ(w—[EK,+Swo—sp—ﬂ]) (A27)
Zg =|1+2t <—2>
(500~ Ew)™/ 2g201) is determined by the spectral functioAg.(w—rwg) with

1 r=0 corresponding t@E,(w—rwo), i.e., using the self-
+e92[A(2)—2A(1)]< —> cos 2<) . energy2«:(w’) derived in this section. The energigg: on
(swo—Ex)? ?A(2) the rhs of Eq(A27) are solutions of Eq(A19) and the fac-
(A23) tors Zg , are given by Eq(A23). The first term on the rhs of
Eq. (A27) describes the quasiparticle of momentihand
Here( . ..), denotes the average ove® 1 with respect to  the second term, being a sum over the entire polaron band,
the Poisson distribution with the parameger corresponds to the incoherent part of the spectral function.
Accordingly, thepolaron kinetic energyakes the form  |nserting the condition(A5) into Eq. (A27), the spectral
function of the Holstein model is obtained, which differs by
> the self-consistently determindgl, and Z¢ , from the re-
Swo~Eo/ 52 (1) sult of Alexandrov and Ranningét.
In particular, alk =0, r =0, thequasiparticle weight fac-
+2te92[A(2)—2A(1)1< 1 > . (A24) tor results as
Swo~Eof g25z)

Exin=— 2tzg01 SCEION 2t<

Zy_o=e 921, (A28)
Finally, in order to discuss qualitatively the behavior of 0
the single-particle spectral function reported in Sec. Il C, we o _ )
calculateAx () in the strong-coupling limit. Applying the Here it is necessary to point out the different level of ap-

transformation(A11), the electron operators are transformedProximation we used in deriving EqsA22) and (A28).
into Therefore, it is not possible to verify the HM relati¢h?) by

the above strong-coupling calculation Bf _,. The leading
~t Xo - : exponential dependence of Eq422) and (A28), however,
CJ( )= exp{(—)w— > fi(i)(b _bl)}Cj . (A25) s found to be the sam@ot the samgfor the HM (EHM), in
0! good agreement with the numerical results of Figs. 2 and 5.
Consequently, the spectral function is determined by the We recently had a valuable discussion with A. S. Alexan-

_ . . 5 . .
imaginary part of the retarded Green’s functi@'?‘(K,w) of drov and P. Kornilovitci® which forces us to motivate our

~ o~ ) ) teminology “large EHM polaron” in some more detail in
the operatorsc, cx. Owing to the relation between the order to avoid confusion of people outside the polaron com-
time-ordered products of operators and the retarded Greengnity. Alexandrov and Kornilovitch used in their study of

functions of the s~ame~operat6?swe consider the time- 1o model(1) with (2) the notation “small Frblich polaron”
ordered product Zck(t)ck(0)) and perform a decoupled to characterize the polaronic state in the strong-coupling
average over the phonon and charge variables. In the limitegime!® mainly because the polaron mass increases expo-
T—0 we get nentially with coupling as in the standards SP theory, albeit
with a somewhat reduced exponéhtiowever, while for the

~ et o t usual 1D HM(1) with (4), there is a one-to-one correspon-
(Tiek(tek(0)) =e™ 9] (Tiek(t) ek (0)) dence between weak-couplingtrong-coupling situation
and LP(SP formation, the interrelation is more complex in
1 1 (7. (d) s the EHM. Indeed, in the strong-coupling limit of the EHM,
+— 2 _( P ) the polaronic quasiparticle, consisting of the electron and its
N7 @ =18t wo concomitant phonon cloud, is definitegxtendedalthough

its mass becomes exponentially large. Thus, following

Holstein’¢' distinction between SP and LP according to the

spatial extent of the lattice distortion caused by the charge
_ (A26)  carrier, we specified the polaron in the EHM as “large” and

used in addition the term “Holstein” instead of “Fntich”

to discriminate our “lattice” polaron from the “continuum”
The relation between the imaginary parts of retarded Green’g=rohlich) polaron. Moreover, besides this rather “static”
functions GR(K,») and GR(K,w) of operatorsck and cy, characteristic there is another much more profound “dy-

x @~ swotgi(K—K')d

X (Tick (t)cy,(0))
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namical” aspect: the well-known SP absorption maximum atextended lattice deformation, which makes the lattice adap-
w~25p is missing for polarons in the EHM, irrespective of tation during the carrier hopping easier. This clearly demon-
the coupling strength. On the contrary, appreciable phonorstrates the different nature of the “small” HM polaron and
assisted absorption occurs at lower frequencies, owing to ththe “large” EHm in the large EP interaction limit.
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