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Transport properties of strongly correlated metals: A dynamical mean-field approach
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The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model
on the hypercubic lattice at half-filling is calculated. Dynamical mean-field theory, which maps the Hubbard
model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit
of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi
liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a
nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in con-
ventional metals. The resistance smoothly increases from a quadratic temperature dependence at low tempera-
tures to large values which can exceed the Mott-loffe-Regel valee? (wherea is a lattice constant
associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical
conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including
transition metal oxides, strontium ruthenates, and organic metals.

I. INTRODUCTION resistivity smoothly increases to large values that suggest a
mean free path smaller than a lattice constant, implying the
The discovery of heavy fermion metals, metal-insulatorbreakdown of a quasiparticle picture.
transitions in transition metal oxides, high-temperature su- Thermopower In conventional metals this is linear in
perconductivity in copper oxides, and colossal magnetoresigemperature, has values much lower thane=87 nV/K,
tance in manganates has stimulated extensive theoreticdld has the same sign as the charge carriers. In strongly
studies of strongly correlated electron modeldn spite of correlated metals it can have a nonmonotonic temperature
intensive research over the past decade the nature of the nféependence, can change sign, and can have values of the
tallic state in strongly correlated materials is still poorly un-orderkg/e.
derstood. This is particularly true of the cuprate supercon- Hall resistance In conventional metals this is weakly
ductors, for which most of the metallic properties cannot beemperature dependent and gives the sign of the charge car-
understood within the Fermi liquid picture that has so suciers. In strongly correlated metals, the Hall resistance can be
cessfully described conventional metaiéet there are also a strongly temperature dependent, change sign, and have the
wide range of materials that have low-temperature propertie8PpPOsite sign to the thermopower.
(e.g., the observation of magnetic oscillations such as the de Optical conductivity In conventional metals, one ob-
Haas—van Alphen effectonsistent with a Fermi liquid but Serves a Drude peak at zero frequency, which broadens but
which at higher temperature are inconsistent with a Fermpersists to high temperatures. The spectral weight of this
liquid. These include transition metal oxidksheavy Peak is comparable to that predicted from the optical sum
fermions®’  strontium  ruthenate®, the quasi-two- rule and the density of charge carridi the plasma fre-
dimensional molecular crystals (BEDT-TTF),X,° and the ~ guency. In contrast, in strongly correlated metals most of
quasi-one-dimensional Bechgaard sdlts(TMTSF),X  the spectral weight is in broad feat.ures at high energies. Fur-
[BEDT-TTF=bis(ethylenedithig-tetrathiafulvalene TMTSF thermore, the Drude peak only exists at low temperatures.
=tetramethyltetraselenafulvaleneln conventional metals
the electronic properties are robust up to temperatures of
some sizable fraction of the Fermi energy. In contrast, in the The main purpose of this paper is to show that transport
above materials the electronic properties change at somgoperties such as those described above are obtained in a
temperature much less than the Fermi energy. dynamical mean-field treatment of the Hubbard model. Over
A brief summary is now given of some of the common the past decade a considerable amount of work has been
differences between the transport properties of strongly cordone using this approximation to understand the Mott-
related metals and the properties of elemental metals. Latédubbard metal-insulator transitidf'? This approximation
in the paper specific references will be given to experimentabecomes exact in the limit of either large lattice connectivity
results on a wide range of materials. or spatial dimensionality. It has been found to give a good
Resistivity Boltzmann transport theory gives an expres-description of three-dimensional transition metal oxides and
sion for the magnitude of the resistivity in terms of bandhas been argued to be relevant to the properties of the
parameters and a mean free path between quasiparticle caprates>'* Whereas most previous studies of transport
lisions. At low temperatures this expression suggests a megroperties® " have focused on doped Mott insulators we
free path that is much larger than a lattice constant, as ieonsider the case where the band is half filled and the Hub-
conventional metals. However, at higher temperatures thbard interactior is less than the minimum value needed for

A. Dynamical mean-field theory
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FIG. 1. Strong temperature dependence of the spectral density FIG. 2. Dependence of the Fermi liquid quasiparticle weight
of the strongly correlated metallic phase of a Hubbard model ap, the Hupbard interactiob. This paper focuses on the case of
half-filling and in large dlmenS|o_ns. Note that only at the low tem-_ moderate interactions, @U/t} <4, corresponding to effective
peratures does a coherent quasiparticle band form near the Chem'?ﬁhss enhancementsnt/m,=1/Z) of 2—4, as observed in many
potential . The broad features near— u==*U/2 are the lower organic metalgRefs. 9 and 3Band SsRuO, (Ref. 39. Even for
and upper Hubbard bands. The results shown ar&lfeAt] and a g ch moderate interactions the transport properties turn out to be
degree of magnetic frustration 0} =0.37 . For comparison We  gyongly temperature dependent. The curves shown aret’for
also show the noninteracting density of states<0), for which — _q 4+ byt virtually identical results are obtained fgr=0.3% .
the square-root singularity placed at the upper band edge is not
plotted. It is this strong temperature dependence of the spectrr{q_e_, at half-filling. As well as a nearest-neighbor hopping
Qensiyy that Iegds to many of the unconventional transport propery next-nearest-neighbor hoppitgis also included for sev-
ties discussed in this paper. eral reasons. First, this term introduces magnetic frustration

which enhances the stability of the metallic phase by sup-
the formation of the Mott insulating state. This is the situa-pressing the Nal temperature for antiferromagnetic
tion in the metallic phase of the molecular crystalsordering!? Second, in the absence of this term the model has
k-(BEDT-TTF),X.° exact particle-hole symmetry and the thermopower and Hall

Dynamical mean-field theory maps the Hubbard modekonductivity vanish. Third, the model represents a higher-
onto a single impurity Anderson model that must be solveddimensional version of a frustrated Hubbard model that de-
self-consistently. While time-dependent fluctuations are capscribes the organic conductoks (BEDT-TTF),X.° In Sec.
tured by this approximation, spatially dependent fluctuations| B we review how the dynamical mean-field theory reduces
are neglected. Some important physics that eméfgeshat  to an impurity problem. In the infinite-dimensional limit all
there is a low-energy scalg, which is much smaller than the vertex corrections to correlation functions vanish and
the noninteracting half-bandwidf and the Coulomb repul-  transport quantities are determined by the one-electron spec-
sionU. D is of the order of the Fermi energy given by bandtral function. The relevant expressions are presented in Sec.
structure calculations. This energy scdlgis the analog of I C. Section Il D describes how the local impurity problem
the Kondo temperature for the impurity problem and definegs solved at the level of iterated perturbation theory. This
the energy scale of coherent spin excitations. In the metallinethod is known to give reliable results for the impurity
phase the density of statp§w) contains peaks at energies problem up to moderate interactions.
w=-U/2 and +U/2 which correspond to the lower and At low temperatures and low energies the electron self-
upper Hubbard bands, respectively, and involve incohererénergy has a Fermi liquid form and in Sec. Il we present
charge excitations. These peaks are broad and have width ahalytical results for the different transport quantities in this
orderD. At temperatures belowW, a quasiparticle peak with regime. An expression is derived for the Kadowaki-Woods
width of orderT, forms at the Fermi energigee Fig. L The  ratio: the ratio of theT? coefficient of the resistivity to the
quasiparticle band involves coherent excitatigns., they  square of the linear specific heat coefficignt For strong
have a well-defined dispersion relatjothat form a Fermi interactions it is shown to be independent of the band param-
liquid. The spectral weight of this pedkee Fig. 2 vanishes eters and the strength of the interactions. The ratio of the
as the metal-insulator transition is approached. Thus, ththermopower toyT is shown to be independent of the
temperatureT, defines an energy scale at which there is astrength of the interactions.
crossover from Fermi liquid behavior to incoherent excita- The temperature dependence of the different transport
tions. A similar crossover occurs in heavy fermion quantities is presented in Sec. IV. In particular we focus on
materials>™’ the effect of the crossover from coherent to incoherent exci-
tations with increasing temperature. For moderate to strong
interactions the resistivity smoothly increases fromade-
pendence at low temperatures to large values corresponding

In Sec. Il A the model we study is introduced: a Hubbardto mean free paths less than a lattice constant. For strong
model on the hypercubic lattice with one electron per sitéinteractions the resistivity can have a nonmonotonic tem-

B. Overview
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perature dependence; at temperatures several times the co- B. Local impurity self-consistent approximation

herence temperature it d_ecr_eases.wnh increasing tempera- |, the |imit of infinite dimensions, mean-field theory of
ture. The thermopower is linear in temperature up 10 pg fy|| interacting lattice problem becomes exact and the
temperature of the order of the coherence temperature af,piem reduces to solving a set of dynamical mean-field
which it decreases. The resulting peak is similar to the pea quations1? Therefore, the original Hubbard model is
that occurs in the electronic specific heat and is associateﬁllapped to an impurity p;roblem in the presence of a bath of
with the thermal destruction of the quasiparticles. For strongy|ecrons which describes the rest of the lattice electrons and
interactions most of the spectral weight in the optical conyhat has to be found self-consistently. More precisely, one

ductivity is associated with transitions frofto) the lower a4 15 solve the associated single impurity Anderson model:
(uppe) Hubbard band. A Drude peak only exists for tem-

peratures less than the coherence temperature.
H=2 (&= #)CkChrt 2 (€a= 1)Nas
II. DYNAMICAL MEAN-FIELD THEORY
A. The model + 2 Vid(Clo ot ClyCao) + Ung Ny, » ()
We consider a Hubbard model with nearest-neighbor hop- “
ping, t;, and next-nearest-neighbor hoppirtg, on a given  \here the parametets, andV,4 describe the bath of elec-

lattice. The Hamiltonian is trons through the hybridization function, which is defined as
: : . V2
H=t12 (CiyCjot H.c.)+t22 (¢i,Cxst+H.C) A(lwn):E - (4)
ij,o ik,o kK lw,— €y
+UZ nmnu—uZ Niy (1) This function represents the amplltude_s for the lattice eI_ec-
i o trons to leave a site and, after wandering around the lattice,

to return. Therefore the problem remains local in space co-
whereU is the Coulomb repulsion between two electrons onordinates but time-dependent correlations are fully taken into
the same site ang is the chemical potential. We will only account. This is because in the large coordination limit, an
consider the case of half-filling, i.e., one electron per siteelectron can only hop once from one site to its nearest neigh-
We treat the case of @dimensional hypercubic lattice with bor. Processes in which an electron can repeat a given path
connectivity z, which hast; hopping to any of the 2(z  from one site to another in the lattice are suppressed as they
=2d) neighbors and, along the diagonals of the elemen- are at least of order d/ Some preliminary work is just
tary unit cell. In order to have a finite kinetic energy in the appearing’, that tries to extend the zero-order expansion to
d— e limit the hoppings are rescaled &= \2zt, andt} include this type of higher-order process.
=2z(z— 1)t,, with z=2d, z being the connectivity of the The bath functiom (i w,,) is determined self-consistently,
lattice. The noninteractingU=0) density of statesD,(e)  from the following condition:
=3,6(e— €, associated with this lattice in the limit of in-
finite dimensions d— ) reads$®!? A(iwp)=iwy=2(iwy) =G Hiwy), 5

where the self-energ¥ (i w,) is determined by solving the
2 2 n
D (6):(3) ! o E(e)ty t1°—E(e) Anderson Hamiltoniari3), which is local in space, i.e., does
0 E(e) 2t§2 4t§2 not depend on momentunG(iw,) is the lattice Green's
(2)  function from which the spectral densities can be obtained,

with E(e) = (t¥2+2t52—22t5 €)Y Dy(€)=0, whenever
E(e) is not real. Note thaD(€) has a finite band edge with

a square-root divergence. We ggt as the unit of energy.
The reason for choosing this lattice is that we can treat a
varying degree of frustration by tuning the ratt§/t] ,
which changes the shape of the bare density of states. Other In the limit of infinite dimensions, transport quantities can
lattices, such as the Bethe lattice with next-nearest neighbe calculated straightforwardly, due to the local nature of the
bors, can also be used, but its density of states remains syrself-energy. For example, the evaluation of the optical con-
metric and therefore is qualitatively the same as its nonfruseductivity simplifies drastically as only the particle-hole
trated counterpart. Before considering how this model can bbubble has to be evaluated in the Kubo formula. Contribu-
studied using dynamical mean-field theory, we note a postions due to higher-order processes included in vertex cor-
sible alternate approach to that used here. If one is interestedctions cancel exactfl. For a more detailed discussion of

in weak to intermediate values bf/t, one can directly start the derivation of the expressions presented here see Refs. 12
from a weak-coupling treatment of the infinite dimensionaland 13.

model. Such an approach was taken in Schweitzer's and Several transport quantities of interest can be obtained
Czycholl's’® treatment of transport properties for the peri- from the spectral density. The real part of the optical con-
odic Anderson model. ductivity in thex direction is given by

1
p(w)z—;lmG(aH-in). (6)

C. Transport quantities
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wherea is the lattice constaniyo=e2#/2#%a, andN is the
total number of sites in the system.

In the low-frequency limit,y— 0, the Hall conductivity
reduces to

&sk 2
&_kx) pr(w)pr(w+v), (7

= 9f(w) 1 dec\? FPey
UxHy:Ugjimd‘" Jo N & (07—kx) _Z&ky pr(w)*, (8)

where B is an external magnetic field that points in the
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2 % % of
a’xx=%fixdeDo(e) fxdw( - (w)>p(e,w)2

Jw
(14

for the simple hypercubic lattice.

For reasons of simplicity, we will still use the above ex-
pressions in the presence of a nonzgjo This is because
the focus of this paper is on many-body effects and not on
how different band structures may change the results
slightly.

D. Iterative perturbation theory

A wide range of techniques have been used to solve the
Anderson mode(3). An extensive review has been given by

direction andol=27?|e|aB/3%2. From the above equa-

tions we can evaluate the Hall coefficientR., Hewson?* Among them the iterative perturbation theory is

2 : straightforward and at the same time gives a qualitatively
EUXY/(‘_’XXB)' RH can be de”"eF’ from a more general correct description because it recovers exactly the atomic
expressioff which correctly describes the high- and low- (U/D— =) and the noninteractind{= 0) limits. It also pro-

frequency limits. This generalized expression involves intey,iges a fast way of scanning a wide range of parameters in
grations all over the Brillouin zone which, for frequencies ine Anderson model, which, by means of other methods such
v>max(U,1), cannot be written as an integral over the Fermiag exact diagonalization and quantum-Monte Carlo is com-
surface such as the ones that appear in Egsand (8).  pytationally very demanding. Other approximate schemes
Therefore, the Hall coefficient we have computed remaingch as the noncrossing approximation, which takes an infi-
valid only in the low-frequency limit. Calculations within njte resummation of a certain class of perturbative diagrams,

dynamical mean-field theory using iterative perturbationjg |imited in its applicability to high temperaturé.

theory(IPT) for the high-frequency Hall coefficieR};, have
been carried out by Majumdar and Krishnamufthfpr the
doped Mott insulator.

The thermopower is defined as

kg L1
S=———, 9
le[T Ly ©

where the transport integrals reduce in the oo limit to

* af
ij:f_wdw(_ ;(Z))>

j
ok L.

1 E 076k
N & | ok

2
) pi()?

(10

Originally, the iterative perturbation scheme could be ap-
plied only for systems at half-filling and with particle-hole
symmetry. This limitation comes from the fact that the high-
energy behavior of the spectral density is exactly reproduced
for half-filling by accident but this is not true at arbitrary
filling. However, our main interest in this work is to study
frustrated models where the noninteracting density of states
is nonsymmetric and, consequently, particle-hole symmetry
is broken. Recently Kajueter and KotftAhave modified the
standard iterative perturbation theory to treat asymmetric
cases, based on the earlier work of Martin-Rodetral *’ by
which the self-energy is built up as an interpolative solution
that recovers both the strong- and weak-coupling limits and

In the above expressions, a further simplification can beatisifies the Friedel-Langreth sum rule. Other auttidrave
made in the case of a simple hypercubic lattice, as all suméxtended this framework to compute more accurately the
in the momentum reduce to integrations in energy weightednigh-energy features of the spectral densities. Nevertheless,

by the density of states:

1

de\? 2 (=
N% (a_lii) pk(w)2=aJ:xdeDo(6)p(e,w)2, (11

1 (9€k 2 &sz 3
w2 (5l e )

1 0
=—ﬁzf_wdeD0(e)ep(e,w)3, (12
with the spectral densities given by
_ 1 I ! 13
p(e,w)——; m wtpu—e—2(w+in))’ (13

all of them approximately agree with exact diagonalization
calculations when the interactidsh is relatively large.

Our present work analyzes the transport properties of met-
als that are strongly correlated but sufficiently away from the
Mott transition so that well-defined quasiparticles exist at
low temperatures. This means that we are always in the me-
tallic side of the Mott transition but not too close to the
critical point at which the quasiparticle weight vanishes.
Some controversy has arisen recefitlgn the reliability of
IPT even for moderate couplings of the interaction.
Mdller-Hartmari® and also Schweitzer and Czychédlhad
earlier shown that a second-order expansion in terms of the
skeleton diagrams which depend on the interacting Green’s
function, G (i w,,) instead ofG%(i w,,), does not reproduce the
upper and lower Hubbard bands: only a Fermi liquid type
peak is found in the spectral density. The skeleton diagrams

We will use this simplification in order to avoid the cumber- enter the expansion of the Luttinger-Ward functional and are
some sums over momentum. In particular the dc conductivitghe ones that collapse into a local form @és-, giving a

reduces to the following expression:

local self-energy!!? However, Yamad¥ has shown that
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when taking into account all the fourth order terms, the upper @ Do(€)de
and lower Hubbard bands are reproduced, in agreement with G(i w,)=>, G(iwy, ,k)=f
the IPT results. This means that an expansion up to second .
order in the interacting Green’s functions is insufficient to
grasp the correct behavior of the spectral density. Moreover
recent nonperturbative calculations done by Bulla, Hewso
and Pruschké® using the numerical renormalization group
for the Hubbard model in infinite dimensions, clearly show n=—-G(r=0")=0.5
the formation of the upper and lower Hubbard bands. There- ’
fore, we believe that the method used here can be safely
applied, giving a qualitative description of strongly corre-
lated metals. . _ The last condition, originally introduced by Martin-Rodero
~ We use the finite-temperature version of the formalismet 127 together with the expressions for the interpolative
instead of the one used by Kajueter and KoﬁPa_lr/,alld at  self-energy(16) and (17), is nearly equivalent to the Lut-
T=0, as we are interested in the thermodynamic propertiefinger condition or the Friedel-Langreth sum ritend fixes
of correlated metals over a wide range of temperatures.  the correct low-energy behavior of the self-energy. Numeri-
We briefly outline the method used and refer the reader tally this condition is much easier and faster to handle than
the more detailed work recently publishg&d*?® the Luttinger one. Results from both of these conditions
(i) Guess of an effective hybridization functiah(iw,)  agree equally well with results from exact diagonalization of
and input of the chemical potential of the systgntogether  finjte cluster® Finding (uq,u) takes around four to six
with the chemical potential of the effective bm We fix iterations using Broyden’s methaa
the population per site of the interacting lattice to be (v) The final step is the requirement that the lattice
=(n,)=0.5, and it is kept fixed along the rest of the steps.Green’s funtionG(iw,) coincide with the Green’s function
(if) Computation of the Green’s function of the effective of the associated impurity problem given by the Anderson
bath Hamiltonian. This condition is expressed in Ef).
The above step@)—(v) are repeated until a self-consistent
1 (15) bath function is obtained. Note that the calculations are kept
on the imaginary frequency axis: this makes the computation
much faster and more efficient with the use of fast Fourier
and computation of the population of the bath=(n,,) transform algorithms. Analytical continuation to the real fre-

—wiwpgtu—e—2(iw,)’
(20

' The free parametersug, ), can be now fixed from the
r‘following set of equations:

n=n,. (21)

Collon) = o A liwy)

=—Gp(7=07). quency axis is needed in order to compute the spectral den-
(iii) Ansatz for the self-energy, which is given by sities entering the different transport quantities. This continu-
ation is §r71umerically implemented  using  Pade
_ ASC)(iw,) approximants.
E(lwn)—UnwL—th_B2 Gon) (16
Ill. FERMI LIQUID BEHAVIOR
with A andB defined as AT LOW TEMPERATURES
For temperatures and frequencies much less than the
n(l—n Ul—n)—pu+t+
A= ( ) B= ( 5 ) K MO_ (17) Kondo temperature the self-ener@yw) of the Anderson
No(1—no) Uno(1-no) model has the Fermi liquid fortf

The second-order self-ener@ (i w,) is computed from 1
the imaginary time-dependent Green’s function of the bath S(w,T)= w( 1— o

—iC[w?+ (mkgT)?], (22)

S@(iw,) = fﬂdTeiwnfg(T) (18  whereZ is the quasiparticle weight ard is a positive con-
0 stant. At sufficiently low temperatures and energies the
o0 0 0 imaginary part becomes much smaller than the bandwidth
whereX(7)=—-U*G"(7)G (7)G (7). We use fast Fou- ang the spectral functiofl3) will have well-defined peaks
rier transforms to go b_ack and_ forth from time to energywhen w=ZE,, whereE, is the band dispersion relation in
variables. The expression obtained #r Eq. (17), comes  the absence of interactions. The dependence of the quasipar-
from fixing them=2 moment of the spectral density as ex- ticle weightZ on the Hubbard interactiod is shown in Fig.

plained in Ref. 28: 2. The specific heat will be linear in temperature at low tem-
peratures with a slope that isZLtimes larger than the non-
M (M) — f W™p(w)dw (19 interacting va_Iue. Th_e effective mass deduced from mag-
o netic oscillations will also be larger tham,, the value

predicted by band structure calculations, by the same factor
whereM (™ can be computed from the Heisenberg equation§m*/m,=1/Z). This enhancement is found to be about two
of motion. The parameteB is fixed from the exact atomic to four in many organic metals® and SgRuQ,.*° In this
limit solution, V,4—0. section we consider the low-temperature transport properties
(iv) Computation of the impurity Green'’s function that follow from this form of the self-energy.
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A. Resistivity TABLE 1. Values of the fitting paramete€ and quasiparticle
weights for different values of the Coulomb repulsibnfor the
frustrated hypercubic lattice. Note th@tscales with 122 even for

~ AT2 values of the interaction such that the metallic phase has well de-

p=AT-. (23 ' L .
fined quasiparticles with only moderate enhancements of the effec-

Such a temperature dependence is characteristic of metals time masses.
which the dominant scattering mechanism is the interaction

The resistivity in a Fermi liquid behaves as

of the electrons with one another and is observed in transi-  U/t] Cty Z(U) CZ%}
;l(;)rrrlmorrlcsegals, various organic conductofs,and heavy 1 01 09 0.08
Yamada and Yosid4 demonstrated this behavior for an L5 g'jj 8'27 8'22

Anderson lattice and showed that Umklapp scattering events ' ' '
2.5 0.70 0.55 0.21

should dominate the contribution to the resistivity because
momentum conservation would give an infinite conductivity 3 1.07 0.45 0.22
when the lattice is not present. Uhrig and Vollhardt have
shown how in the limit of large dimensions the umklapp ) S
processes lead to a finite conductivilyCox and Grewe model, for which we take a constant hybridizatian=D.
pointed out that in an anisotropic system when the electroffor this case, it is found thi&C=(R—1)?/2DZ?, whereR
velocity and momentum are no longer parallel normal scatis Wilson's ratio,
tering can contribute to the resistivity.

In transition metals and heavy fermions the Kadowaki- /40
Woods rulé**relates the coefficiena to the linear coeffi- R— Xloc!Xioc (28)
cient for the specific heaty:A/y?=const. The constant is vl y°
4.0<10 2 Q cm (mol/mJ¥ for transition metals, and

1.0<10 " Q cm (mol/mJj for most heavy fermions and andy,,. is the local susceptibilityy is the linear coefficient

for transiton metal oxides near the Mott-Hubbard for the specific heat, and the zero superscript denotes the
transition™ However, recent measurements on JRAU  values in the absence of interactioRsiakes values between
found values of 10'? Q cm (mol/mJf for x=0,0.5 butin- 1 for U=0 and the universal value 2 fot)/D|=1 (Kondo
creasing to 10 O cm (mol/mJ¥ for x>1.1% regime.2*

We now evaluate the ratié/y? using our results. From  \We also find that this scaling holds for the Anderson
the self-energy(22), the resistivity in the low-temperature model with the self-consistent bath. We fou@idby fitting
limit associated with expressidi4) is the imaginary part of the self-energy obtained from our dy-

namical mean-field theory calculations to the low-frequency
2d \/ﬂkéha 2 and low-temperature forr{22), for different values ofJ. As

e’Dly, T shown in Table I, we find tha€ scales with 1Z2 for U
=2t7 as expected as we are in the Kondo regime, giving a
universal behavior of thé/+? ratio. However, it decreases
< for U<2, consistent with the result from the Anderson

L f = dxx e (25 Model thatR—1 in theU—0 limit
nm —a(X24 2)M (1+ e¥)? From the numerical values & in Table I, we can com-
pute theA/y? ratio, using the density of states of a simple
and findlg;=1/12. Expression24) is the resistivity at low  hypercubic lattice: we get fdd ~ 3.0 (Kondo regim¢ a ratio
temperatures for the case of a simple hypercubic lattice, fopf (1.24a)x 10712 () cm. This result is comparable to ex-
which the density of states By(¢) = (1/\/?t’1‘)e‘52“f2 and  perimental findings for transition metal oxides if we take the
t;?=4t2d. D is the effective half-bandwidth defined & lattice constant to ba~10 A.

p(T)= (29)

where we have numerically integrated

=2tF . Previous calculations using a highly accurate projective
The linear specific heat term for the same density of state§'€thod to solve the dynamical mean-field theory on the Be-
is the lattice find that very close to the Mott-Hubbard transition
Aly?=(2.32) X 10" 12 O cm(mol/mJ¥ wherea is the lattice
2\2mmk constant in A of a three-dimensional system at half-fillffig.
Y="37p (26)  This differs from our result by a factor of 2 but turns out to

be due to the different lattice used. In order to make a direct
whereZ is the quasiparticle weight. Combining expressionscomparison with the results obtained in Ref. 46 we have
(24) and (26) we obtain repeated our calculations using iterative perturbation theory
for a Bethe lattice at half-filling. We take a noninteracting
A 9d\2mha ) density of stateDq(e)=(1/t* 7)\2— (e/t¥)2. The fitting
;2_ 477—3sz|0? : (27) parameters of the self-energy to the low-temperature form
for the Bethe lattice are shown in Table Il. We find that
Hence, we see that if the dimensionless quari@Z? is  already for moderate values &f, the value ofCZ? con-
universal then so will be the rati®/?. Insight into this  verges rapidly to the value obtained in Ref. 46, providing a
question can be gained by considering first a pure Andersostringest test of the method used here.
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TABLE Il. The same as in Table | for the Bethe lattice. The A simpler expression for the slope of the thermopower
final entry is the result obtained in Ref. 46 using a highly accuratecgn be found in the limit3/t¥ —0; in this case, expression
projective methodU.=4.137 refers to the critical value at which (9) reduces to
the T=0 second order metal-insulator transition takes place.

- I(B I 21 t;
Uit ct* Z(V) cztr S(M~—— —\2 ==>T. (32)
le] los'~ Zt}
- 0.35 0.r2 0.18 The slope of the thermopower is, therefore, directly propor-
2.0 0.70 0.57 0.23 . . .
25 1.40 0.42 0.25 tional to the degree of frustration present in the frustrated
Uc—4-13 ' : 0 '29 hypercubic lattice. We have checked that at low temperatures

our numerical results are in good agreement with this expres-
sion.
The simple expressio(81) may explain the huge values
(S>kg/e at 300 K) recently observei for NaCo,0,, which
Similarly to the above analysis for the resistivity we canhas potential applications as a thermoelectric maté&tiahis
gain some insight into the behavior of the thermopower amaterial consists of layers of Co@ith the crystal structure
low temperatures from the Anderson model. It can be showwf a triangular lattice. For such a lattice the noninteracting
for the N-fold degenerate Anderson modélthat the ther-  density of states can be expressed analytically as shown in
mopower increases linearly with temperature at low temperaRef. 50. Evaluating the derivative at the Fermi energy for a
tures. Its slope scales a<Zlin the same way as the slope of half-filled band gives
the specific heat. Therefore, within the Anderson model the

B. Thermopower

ratio of the thermopower to the linear coefficient of the spe- dDo(€)/ de — 124 33
cific heat is independent of Coulomb interaction. However, it Do) | 7 (33
depends on the band filling: it drops to zero as half-filling is - F
reached, as it should, as for a system with particle-hole symand so Eq(31) predicts a ratio of 1/2|, which reexpressed
metry at half-filling the thermopower is zero. in appropiate units is 5.2810 2 & V mol/mJ. The mea-
The low-temperature behavior of the transport integralsured thermopower is approximately linear in temperature up
L,, defined in Eq(10), can be shown to be to about T=200 K, at which it has a value of about
80 wV/K. The measured specific heat coefficrints y
Do(e)l 1 =48 mJ/(mol¥) giving a ratio S(T)/yT of
1= 21 (29 8x10°2 wV mol/mJ. This suggests that the large value of
e | __ 2mzZC . S .
€€ the thermopower of this material is not just due to strong

correlations enhancing the effective mass but also due to the
wherel,; is the integral defined by Eq25) and the term large particle-hole asymmetry associated with the triangular
proportional to the bare density of states at the Fermi energhattice. Also, the theory presented predicts a positive ther-
vanishes as the integral is antisymmetric. On the other hananopower at low temperatures for the triangular lattice, con-
L, is proportional to the dc conductivity and reduces for lowsistent with experimerf€
temperatures to th@? behavior analyzed in Sec. Il A

Therefore expressio(®) reduces to C. Hall resistance
In the low-temperature limit, the Hall conductivit{8)
5Ty K& Dole)ldel 1T (30 reducesto
lel  Do(e) ol H
F H 0o 3 €p
Ty~ 52 WDO(Esz)WIOZ (34)

where we again numerically compute the ratio of the inte-

gralsl,;/19;=2.65. A similar expression was recently given where the integral, is defined by Eq(25) and is equal to
by Palsson and Kotliar, who considered the thermopower i 007 30. This expression depends on the interaction through
a doped Mott insulatol® The sign of the thermopower gives Coc1/72. A similar expression was recently found by Lange
information on the type of charge carrigedectron or holes  and Kotliar’
that are contributing mostly to the transport. This sign comes The Hall coefficient reduces at low temperatures to
in our expressions from the slope of the density of states at
the Fermi energy. a® lp, u—ReX(w=pu)

The ratio of the thermopower to the specific heat at low Ry~ m 12 W (35
temperatures is given by o 1 TR

wherelozllglz 1.06. Expressioli35) shows temperature de-

S(T) 1 3 dDy(e)lde Iy pendence through the chemical potentied w(T). At T
T =" 6] 222 Dy(e)Z o (31) =0, expressior{35) is independent ob) because from Lut-
Y 0 e=ep 01 tinger's theoremez=u— ReX (w=u). Moreover, in theU

—0 limit, and in the particle-hole symmetric case, expres-
which is universal, i.e., independent of the interactions for asion (35) reduces to zeraqRy=0 for T—0, as it should, as
given degree of frustration in the lattice. the density of holes cancels exactly the density of electrons
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contributing to the transport in the system. As soon as the 30.0
degree of frustration} /t7 #0, then, the Hall coefficient is

nonzero, and, again at=0, independent of the Coulomb
interaction. The sign of the Hall coefficient depends on the

sign of the real part of the self-energy referred to the chemi- 200
cal potential. This means that, in general, it is possible to

have a different sign for the thermopower and the Hall factor @
at low temperatures depending on the shape of the bare den- =
sity of states and the Fermi energy. 100 |
D. Optical conductivity
At low temperatures the optical conductiviy) reduces
to 0.0

0.00 0.10 0.20 0.30 0.40

T/t"1

o(w)=

ooD(€p) q f(v)—f(v+w)
dr v w FIG. 3. Temperature dependence of the resistivity in the frus-
trated hypercubic lattice far; /t7 =0.1 and for different values of

[1/7(v)+Ur(v+w)] 36 U/t} =2, 3,3.5, and 4. Fou =4t} there is a crossover from me-
1 , (36) tallic behavior at low temperatures to insulating behavior at high
(wlZ)?+ Z[llT( v)+ Ur(v+ w)]? temperatures. The resistivity is given in unitsggf=7%a/e?, where

ais a lattice constant which corresponds to a value of the resistivity
where 1#(v)=2Im3(v), similar to an expression first ob- at which the mean free path is comparable to a lattice constant.
tained by Murat&? For o<#T, the frequency dependence

of the self-energy can be neglected and the above expressigg, «x-(BEDT-TTF),X family of organic superconductofs.

reduces to Results similar to Fig. 3 were obtained previously for the
204Dyl )2 #(T) simple hypercubic latticet{=0) when the impurity problem
o(w,T)=—22F (370  was solved using quantum Monte Carlo calculations and the

2
dm 1+ [wr(T)] noncrossing approximatiofi,and for the Bethe lattice when

where  1H(T)=2Im3X(0,T)~2C(#T)2 and 7*(T) theimpurity problem was solved using iterative perturbation
— «(T)/Z. theory™
Bad metals In conventional metals transport occurs by
well-defined quasiparticles; they have a wavelength
(~1/kg) much less than the mean free phdnd so transport
The Fermi liquid behavior discussed in the previous secproperties can be described by the Boltzmann equation.
tion occurs only up to some temperature of the order of thedowever, if the scattering is sufficiently strong that the mean
coherence temperatuile. There is then a smooth crossover free path is comparable to a lattice constaht4) then
to the case where all of the low-energy excitations are inCox_| — 7 and the quasiparticle concept breaks down. This is
herent(see Fig. 1. In this section we present results showing sfien referred to as the Mott-loffe-Regel linfftFor an iso-

IV. CROSSOVER TO INCOHERENT EXCITATIONS

the effect of this crossover on transport properties. tropic three-dimensional metal this corresponds to a conduc-
o tivity of o=e?/(3%a), and is sometimes referred to as the
A. Resistivity Mott minimum conductivity. However, for a wide range of

The temperature dependence of the resistivity is shown igtrongly correlate%emetals, including the cupratefsillerene
Fig. 3 fort}/t* =0.1 and various interaction strengths. It hasmetals  AsCeo), the organic  superconductors
two properties often observed in strongly correlated metalsk-(BEDT-TTF),X.? SL,RuQ,,°” SrRuQ;,*® and VG, it is
(i) for strong interactions a nonmonotonic temperature deobserved that as the temperature increases the resistivity can
pendence occurs, ar(d) for high temperatures it smoothly increase to values corresponding to mean free paths much
increases to large values corresponding to mean free patlgss than a lattice constant. Such materials have been referred
less than a lattice constant. to as “bad metals.®® In contrast, in the A-15 metals the
For values of the interaction comparable to the bandresistivity appears to ‘saturate’ at a high-temperature value
width, U~4t} , the resistivity shows a peak at a temperaturecorresponding to the Mott-loffe-Regel linfit. However, it
of about 0.27 . The temperature at which this peak appearshas recently been suggested that the resistivity does not satu-
corresponds approximately to the temperature at which thenate but rather a change in temperature dependence occurs
are no longer Fermi liquid quasiparticles pres@ee Fig. L =~ when the scattering is strong enough to cause a breakdown
The decreasing resistance with increasing temperature, chast the Migdal approximatiof® Emery and Kivelson
acteristic of a semiconductor or insulator, is due to thermaproposeff that the smooth temperature dependence of the
excitations to the upper Hubbard band. Note that the peakesistance in bad metals suggests that the low-temperature
temperature is not the Kondo temperature, which in our caltransport is also not due to quasiparticles.
culations is at much lower temperatures. Such a peak in the At low temperatures the resistivity given §%4) can be
resistivity is observed in heavy fermion sytehamd some of ~ written
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FIG. 4. Temperature dependence of the thermopower for the FIG. 5. Specific heat in units of the gas const&tfor the
frustrated hypercubic lattice fag /t} =0.1 and for different values frustrated hypercubic lattice fd& /t¥ =0.1 and for different values
of U/t =2,3,3.5, and 4. The dashed lines are based on lineasf U/t¥ =2, 3, 3.5, and 4. Note that the peak occurs at a tempera-
extrapolations to zero temperature as expressed in(&). The ture comparable to that at which the peak in the thermopower oc-
curves show how interactions between electrons significantlycurs (compare with Fig. # The dashed lines are linear extrapola-
change the magnitude and temperature dependence from the line#ins to zero temperature. As in the case of the thermopower, the
behavior expected for a weakly interacting Fermi liquid. Indeed, thesimple linear behavior found for the noninteracting case is qualita-
appearance of a minimum in the thermopower is a signature ofively changed and a peak at low temperatures shows up foy
thermal destruction of the coherent Fermi liquid state that exists at=3. The temperature scale at which this peak appears is set by the
low temperatures. binding energy of the spin-screening cloud formed at each lattice

site due to the Kondo effect.

ha 1
p=d(2m)¥?— — (38 The peak in the specific heat, already analyzed by several

e” D authors’® is associated with the binding energy of the Kondo
where 7 is the scattering time. The Mott-loffe-Regel condi- spin screening cloud which eventually forms at each lattice
tion (I=a) is equivalent torD=21, leading to a resistivity site. The high-temperature behavior found is typical of sys-
tems that have a depleted density of states at the Fermi en-

ha ergy, for example, in semimetals and insulators one expects

Po= 7" (39 : .

e the magnitude of the thermopower to decrease as the tem

B . L perature is decreased. This is more easily understood from

For a=10 A this corresponds to a resistivity of 3(mem. the behavior of the spectral densities which show this effec-

Figure 3 _shows that even fo_r moderate interaction Strengthﬁve depletion of quasiparticle excitations at the Fermi energy
the resistivity can smoothly increase to values much large see Fig. 1

than th|s. Furthermore, our r.esults prowde a cc_)unterexampl The change in sign of the thermopower at intermediate
to the ideas of Emery and Kivelstfsince there is a smooth * L .
emperature§ ~0.27 for U=3.57 can be explained from

; e ot
crossover from transport by incoherent excitations at hlgq ) ' . .
S he fact that the spectral weight of the quasiparticle excita-
temperatures to Fermi liquid transport at low temperatures.tionS is transferreg mostly tog the Iowerqrathgr than 1o the

upper Hubbard band, making the holes, rather than the elec-
trons, the dominant carriers contributing to energy transport
In Fig. 4, we show the results for the thermopower as gsee Fig. 1
function of temperature for different values of the Coulomb It is worth stressing that it is not necessary to get to too
interactionU and in the nearly symmetric casg/t} =0.1. large values ob)/t} to find a clear signature of the minimum
The low-temperature behavior is correctly described byin the thermopower and strong temperature behavior. This is
Eq. (9). As can be observed, the slope of the thermopower aa feature that one can find in sufficiently correlated systems
low temperatures increases with increasihgscaling as the far from the Mott transition as can be checked from the ef-
effective massn*/m=1/Z. We find a minimum in the ther- fective masses we obtaim*/m, which in our calculations
mopower which is rather shallow for small and becomes vary between 2 and 4 fdd~2 and 4, respectively.
increasingly pronounced with increasiblg A similar feature Figure 6 shows the thermopower when the frustration is
also occurs for doped Mott insulatéfsand for the Anderson  increased td}/tf =0.3. The magnitude of the thermopower
lattice’® We observe that the mimimum moves to higheris enhanced as a result of the larger asymmetry present in the
temperatures ad/t] is decreased. This is a consequence ofparticle-hole excitations of the system. Thus, the slope at low
the increase in the Kondo scale with decreasihg@nd is temperatures is increased by a factor of about 3, as expected
supported by the observation that this minimum follows thefrom Eq. (32). The main features remain similar to the less
peak in the specific heat. To illustrate the close relationshigrustrated case3/t;~0.1, although the minimum of the
between the thermopower and the specific heat, Fig. 5 shovthermopower is more pronounced for a larger degree of frus-
the specific heat for the same parameter values as Fig. 4. tration.

B. Thermopower
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FIG. 6. Temperature dependence of the thermopower for the !
frustrated hypercubic lattice with}/t7 =0.3 andU/t; =2, 3, 3.5, FIG. 7. Temperature dependence of the Hall coefficient for the
and 4. The dashed lines are extrapolations to zero temperature. Thaistrated hypercubic lattice witt§/t7 =0.1 and for different val-
effect of frustration is more clearly seen when comparing this figureues ofU/t} =2, 3, 3.5, and 4. Note the saturation of the Hall coef-
with the caset;/t} =0.1. The values of the thermopower are in- ficient at low temperatures for all values 0t} . As the interac-
creased as well as the slope at low temperatures. However, thn is increased strong temperature dependence arises.

position of the minimum is nearly independent of the degree of
frustration. T3 phonon contribution. In contrast, the phonon contribution
to the thermopower decreases with increasing temperature
The thermopower of the cuprafésnd the organic super- and so should not mask the feature due to correlations.
conductors  k-(BEDT-TTF),X (Ref. 65 and
B-(BEDT-TTF),X (Ref. 66 has the common properties that
it is not a monotonic function of temperature and has large
values of order 10-5@.V/K at 100 K. For the organics In Figs. 7 and 8 we show results for the temperature de-
these properties cannot be explained in terms of the calcypendence of the Hall coefficiem, for t5/t¥ =0.1 and 0.3,
lated band structures and a weakly interacting Fermiespectively. We observe from the curves that for small val-
liquid.®5¢ For SpRuUQ, the thermopower increases nonlin- ues of theU/t} ratio, the Hall coefficient is nearly indepen-
early with temperature fra 4 K to 300 K, appearing to dent of temperature, whereas for larger values of the interac-
saturate at high temperatures, and has the opposite sign to ttien there is an increase in the Hall coefficient for increasing
Hall coefficient®’ T reaching a maximum af~0.3t* . This fact is observed
As discussed above a peak or minimum in the therfor both values of the frustration shown. Note that the sign of
mopower is a signature of the decay of coherent excitationghe Hall coefficient is not necessarily the same as the sign of
with increasing temperature. It is desirable to see if this feathe thermopower.
ture can be observed in experiments on other strongly corre- For a given value of the frustration, all curves converge to
lated metals. Such a peak should be clearly distinguishablghe same value a&=0 as expected from E¢35). However,
from a peak due to phonon d¥gy several features. The

C. Hall resistance

latter produces a thermopower that is proportional to the lat- 3.0 : : : :
tice specific heat and thus cubic in the temperatureTfor ]
<60p. For higher temperatures the phonon drag ther- 25 | Uit1=4
mopower goes like T/. The result is a peak around a tem-
perature of (0.1-0.2), . Values offp can be deduced from 20|
the specific heat data. Thus, it should be possible to distin-
guish whether an observed peak in a material is due to pho- 15}
non drag or loss of Fermi liquid coherence because of the o
different temperatures at which they occur and because of 10 L
the different behavior at higher temperatures.
Zhou and Goodenough have observed peaks around 100 05 L
K in the thermopower of CaVvQ (Ref. 69 and
La; _,Nd,Cu0,.”° They attribute these peaks to phonon drag. 00 ‘ ‘ ‘ ‘
0.00 0.10 0.20 0.30 0.40

This peak cannot be due to the correlation effects considered
here because it occurs at too low a temperature. In GavVO
the optical conductivity still has a Drude peak at 300°K, FIG. 8. Temperature dependence of the Hall coefficient for the
and it is estimated thab=1 eV andU=3 eV. Conse- frustrated hypercubic lattice witt}/t* =0.3 and for different val-
quently, the coherence temperature will be of the order ofies ofu/t* =2, 3,3.5, and 4. A greater degree of asymmetry can
1000 K. enhance some features of the Hall resistance. At low temperatures,

The peak in the electronic specific heat would be ex-t is more strongly temperature dependent thantfgt? =0.1 and
tremely difficult to observe because it will be masked by thean upturn in the Hall coefficient can even arise.

T/t"1
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the temperature dependence at low temperaturesfak
=0.3 differs from thet3/t} = 0.1 case. The behavior at low
temperatures is determined by the temperature dependence
of the chemical potential, which depends on the lattice ana-
lyzed through the bare density of states and the value of
U/t] . For the case;/t7 =0.3, the Hall coefficient is more
strongly dependent od than for thet’/t =0.1 case. More-
over, an upturn of the Hall coefficient is found in the low-
temperature limifT—O0 in the latter case. This means that,
although qualitatively the situation is similar for different
degrees of frustration, some features can be enhanced and [ _Ts==r=-TSinin .
may depend on the details of the band structure and the bare ‘ ‘ :
density of states of the material. 0.0 20 40 6.0 8.0
The Hall coefficient for a doped Mott insulator on a ol
simple hypercubic lattice was calculated previously by Prus-
chkeet al'® and Lange and Kotlidf using dynamical mean-
field theory and found to have a qualitatively similar tem-
perature dependence.

— TH* =01
---- Th*{=0.15
—-— TH*y=0.4

0.10

o(w) /00

0.05

FIG. 9. Strong temperature dependence of the optical conduc-
tivity. The curves shown are fdd =4t} , t5 =0.1t7 , at three dif-
ferent temperatures. A Drude peak at zero frequency only occurs at

) o low temperatures. The feature arouwae:U/2 is due to transitions
The layered perovskite §RuO, has Fermi liquid proper-  ¢om the coherent quasiparticle band at the Fermi energy to the

ties at low temperaturBut the Hall resistance of SRuQ, upper Hubbard band and from the lower Hubbard band to the qua-

is strongly temE)?Oratlélre_(ljependéﬁt.lt has a yalue of  siparticle band. The broad featureaatU at higher temperatures is
about—1.15<10" " m* C™~ below 1 K and then increases due to transitions from the lower to the upper Hubbard b@oeh-

rapidly with temperature and changes sign around 35 K ang@are Fig. . Note that most of the spectral weight is contained in
saturates at high temperatures to a value of abouhe high-frequency features.
—0.1x10 ¥ m? C1. The behavior and value below 1 K

can be explained within a Fermi liquid pictufeHowever, Experiments ong-(BEDT-TTF),X where X=13,IBr,,
the sign change can only be explained if the temperaturgpg Aul, at 30 K show no Drude pedR.Experiments on
dependence of the scattering rate in the different bands iﬁ”-(BEDT-TTF)ZS&CHZCFZSQ show no Drude peak,
significantly different® An alternative explanation for the oyen down to 14 K2 Furthermore, it does not appear that
temperature dependence is the decay of coherence discussge spectral weight is conserved as the temperature varies.
here. For (TMTSF),PFR; at 20 K there is a Drude peak and a
Experiments on organic metals (BEDT-TTF),X show  proad peak around 200 chh® The Drude peak contains
a temperature-dependent  Hall coefficiéht. For _ less than one percent of the total spectral weight and is not
B-(BEDT-TTF),l5 the Hall resistance has a broad maxi- present at 100 K. The Drude peak has been fitted to a gen-
mum around 40 K. eralized Drude form with a frequency-dependent scattering
rate 1h(w)~ w?, given by a phenomenological form used
previously for the heavy fermion compound YPt
For SrRuQ a Drude peak was observed at 40 K but not
Figure 9 shows the frequency-dependent conductivity calabove about 100 R* The conductivityo(w)~ 1/w'? above
culated for our model witlJ =4t} andt; =0.1t} at three a temperature-dependent crossover frequency of about
different temperatures. It shows the important features note@ksT/#%, whereas in conventional metals(w) ~ 1/w?. The
below for a range of strongly correlated metdi$the Drude low-temperature Drude peak could be fitted to a generalized
peak only exists at low temperatures, afiid most of the Drude form with 1f(w)~ .
spectral weight is contained in broad high-energy features.
Similar features were found previously using dynamical
mean-field theory and exact diagonalization and iterated per-
turbation theory**® and for doped Mott insulators using  In order to gain a better understanding of why the trans-
quantum Monte Carlo calculation8. port properties of strongly correlated metals deviate signifi-
Infrared measuremerifs’® of the frequency-dependent cantly from the properties of elemental metals the transport
conductivity o(w) of x-(BEDT-TTF),X deviate from the properties of a specific Hubbard model were calculated. The
Drude behavior found in conventional metals. At room tem-transport properties are strongly temperature dependent be-
peratures(w) is dominated by a broad peak around 300 orcause as the temperature increases there is a smooth cross-
400 meV(depending on the polarization and ankpwitha  over from coherent Fermi liquid excitations to incoherent
width of about 150 meV. Even down to 50 K no Drude-like excitations. This leads to a nonmonotonic temperature de-
peak at zero frequency is presésee Fig. 2in Ref. DAt 25  pendence for the resistance, thermopower, and Hall coeffi-
K the high-energy peak decreases slightly in temperature andent. The resistance smoothly increases from a quadratic
a Drude-like peak appears but can only be fitted to a Drudéemperature dependence at low temperatures, obeying the
form if the scattering rate and effective mass are frequencyKadowaki-Woods rule, to large values characteristic of a bad
dependent’  Similar results are obtained for metal. Further signatures of the thermal destruction of qua-
a-(BEDT-TTF),NH,Hg(SCN),.2° siparticle excitations are a peak in the thermopower and the

D. Optical conductivity

V. CONCLUSIONS
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absence of a Drude peak in the optical conductivity. quasiparticle excitations. Furthermore, measurements on a
The results presented here are qualitatively similar to thaingle material ofll the transport properties calculated here
observed transport properties of a wide range of stronghare needed in order to provide a comprehensive test of the
correlated metals, including transition metal oxides, stronphysical picture presented. Ideal candidate materials, since
tium ruthenates, and organic metals. For example, the physthey are metallic at ambient temperature and have coherence

cal picture presents a natural explanation of the recently pre&emperatures of the order of 50-100 K, are,R&rQ,,
sented puzzf@®* of the properties of SrRu Although k-(BEDT-TTF),Cu(SCN),, and B-(BEDT-TTF),IBr,. A
Shubnikov—de Haas oscillations, with a Fermi liquid tem-quantitative comparison of theory with experiment will re-

perature dependence, were observed at low temperdilites, quire that the theory presented here be modified to include
was found that the optical conductivity deviated significantlythe effects of band structuf@.

from a Drude forrd* and it is a bad metal at high
temperatures’ This is because the latter measurements in-
volve energy scaleén frequency and/or temperatyinmuch
larger than the coherence temperature associated with Fermi
liquid excitations. This work was supported by the Australian Research

Finally, it is particularly desirable that measurements ofCouncil. We thank W. Krauth, A. Levy-Yeyati, F. Flores, G.
the temperature dependence of the thermopower be made &wotliar, A. Georges, and M. J. Rozenberg for helpful discus-
a wide range of materials because the peak that we find regions. Some of the computer codes used were taken from
resents a well-defined signature of the thermal destruction dRef. 12.
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