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Transport properties of strongly correlated metals: A dynamical mean-field approach

Jaime Merino* and Ross H. McKenzie†

School of Physics, University of New South Wales, Sydney 2052, Australia
~Received 8 September 1999!

The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model
on the hypercubic lattice at half-filling is calculated. Dynamical mean-field theory, which maps the Hubbard
model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit
of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi
liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a
nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in con-
ventional metals. The resistance smoothly increases from a quadratic temperature dependence at low tempera-
tures to large values which can exceed the Mott-Ioffe-Regel value\a/e2 ~where a is a lattice constant!
associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical
conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including
transition metal oxides, strontium ruthenates, and organic metals.
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I. INTRODUCTION

The discovery of heavy fermion metals, metal-insula
transitions in transition metal oxides, high-temperature
perconductivity in copper oxides, and colossal magnetore
tance in manganates has stimulated extensive theore
studies of strongly correlated electron models.1,2 In spite of
intensive research over the past decade the nature of the
tallic state in strongly correlated materials is still poorly u
derstood. This is particularly true of the cuprate superc
ductors, for which most of the metallic properties cannot
understood within the Fermi liquid picture that has so s
cessfully described conventional metals.3 Yet there are also a
wide range of materials that have low-temperature proper
~e.g., the observation of magnetic oscillations such as th
Haas–van Alphen effect! consistent with a Fermi liquid bu
which at higher temperature are inconsistent with a Fe
liquid. These include transition metal oxides,4 heavy
fermions,5–7 strontium ruthenates,8 the quasi-two-
dimensional molecular crystalsk-(BEDT-TTF)2X,9 and the
quasi-one-dimensional Bechgaard salts10 (TMTSF)2X
@BEDT-TTF5bis~ethylenedithio!-tetrathiafulvalene TMTSF
5tetramethyltetraselenafulvalene#. In conventional metals
the electronic properties are robust up to temperature
some sizable fraction of the Fermi energy. In contrast, in
above materials the electronic properties change at s
temperature much less than the Fermi energy.

A brief summary is now given of some of the commo
differences between the transport properties of strongly
related metals and the properties of elemental metals. L
in the paper specific references will be given to experime
results on a wide range of materials.

Resistivity. Boltzmann transport theory gives an expre
sion for the magnitude of the resistivity in terms of ba
parameters and a mean free path between quasiparticle
lisions. At low temperatures this expression suggests a m
free path that is much larger than a lattice constant, a
conventional metals. However, at higher temperatures
PRB 610163-1829/2000/61~12!/7996~13!/$15.00
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resistivity smoothly increases to large values that sugge
mean free path smaller than a lattice constant, implying
breakdown of a quasiparticle picture.

Thermopower. In conventional metals this is linear i
temperature, has values much lower thankB /e.87 mV/K,
and has the same sign as the charge carriers. In stro
correlated metals it can have a nonmonotonic tempera
dependence, can change sign, and can have values o
orderkB /e.

Hall resistance. In conventional metals this is weakl
temperature dependent and gives the sign of the charge
riers. In strongly correlated metals, the Hall resistance can
strongly temperature dependent, change sign, and have
opposite sign to the thermopower.

Optical conductivity. In conventional metals, one ob
serves a Drude peak at zero frequency, which broadens
persists to high temperatures. The spectral weight of
peak is comparable to that predicted from the optical s
rule and the density of charge carriers~or the plasma fre-
quency!. In contrast, in strongly correlated metals most
the spectral weight is in broad features at high energies. F
thermore, the Drude peak only exists at low temperature

A. Dynamical mean-field theory

The main purpose of this paper is to show that transp
properties such as those described above are obtained
dynamical mean-field treatment of the Hubbard model. O
the past decade a considerable amount of work has b
done using this approximation to understand the Mo
Hubbard metal-insulator transition.11,12 This approximation
becomes exact in the limit of either large lattice connectiv
or spatial dimensionality. It has been found to give a go
description of three-dimensional transition metal oxides a
has been argued to be relevant to the properties of
cuprates.13,14 Whereas most previous studies of transp
properties13–17 have focused on doped Mott insulators w
consider the case where the band is half filled and the H
bard interactionU is less than the minimum value needed f
7996 ©2000 The American Physical Society
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the formation of the Mott insulating state. This is the situ
tion in the metallic phase of the molecular crysta
k-(BEDT-TTF)2X.9

Dynamical mean-field theory maps the Hubbard mo
onto a single impurity Anderson model that must be solv
self-consistently. While time-dependent fluctuations are c
tured by this approximation, spatially dependent fluctuatio
are neglected. Some important physics that emerges12 is that
there is a low-energy scaleT0 which is much smaller than
the noninteracting half-bandwidthD and the Coulomb repul
sion U. D is of the order of the Fermi energy given by ba
structure calculations. This energy scaleT0 is the analog of
the Kondo temperature for the impurity problem and defin
the energy scale of coherent spin excitations. In the meta
phase the density of statesr(v) contains peaks at energie
v52U/2 and 1U/2 which correspond to the lower an
upper Hubbard bands, respectively, and involve incohe
charge excitations. These peaks are broad and have wid
orderD. At temperatures belowT0 a quasiparticle peak with
width of orderT0 forms at the Fermi energy~see Fig. 1!. The
quasiparticle band involves coherent excitations~i.e., they
have a well-defined dispersion relation! that form a Fermi
liquid. The spectral weight of this peak~see Fig. 2! vanishes
as the metal-insulator transition is approached. Thus,
temperatureT0 defines an energy scale at which there is
crossover from Fermi liquid behavior to incoherent exci
tions. A similar crossover occurs in heavy fermio
materials.5–7

B. Overview

In Sec. II A the model we study is introduced: a Hubba
model on the hypercubic lattice with one electron per s

FIG. 1. Strong temperature dependence of the spectral de
of the strongly correlated metallic phase of a Hubbard mode
half-filling and in large dimensions. Note that only at the low te
peratures does a coherent quasiparticle band form near the che
potentialm. The broad features nearv2m.6U/2 are the lower
and upper Hubbard bands. The results shown are forU54t1* and a
degree of magnetic frustration oft2* 50.3t1* . For comparison we
also show the noninteracting density of states (U50), for which
the square-root singularity placed at the upper band edge is
plotted. It is this strong temperature dependence of the spe
density that leads to many of the unconventional transport pro
ties discussed in this paper.
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~i.e., at half-filling!. As well as a nearest-neighbor hoppingt1
a next-nearest-neighbor hoppingt2 is also included for sev-
eral reasons. First, this term introduces magnetic frustra
which enhances the stability of the metallic phase by s
pressing the Ne´el temperature for antiferromagnet
ordering.12 Second, in the absence of this term the model
exact particle-hole symmetry and the thermopower and H
conductivity vanish. Third, the model represents a high
dimensional version of a frustrated Hubbard model that
scribes the organic conductorsk-(BEDT-TTF)2X.9 In Sec.
II B we review how the dynamical mean-field theory reduc
to an impurity problem. In the infinite-dimensional limit a
the vertex corrections to correlation functions vanish a
transport quantities are determined by the one-electron s
tral function. The relevant expressions are presented in
II C. Section II D describes how the local impurity proble
is solved at the level of iterated perturbation theory. T
method is known to give reliable results for the impuri
problem up to moderate interactions.

At low temperatures and low energies the electron s
energy has a Fermi liquid form and in Sec. III we prese
analytical results for the different transport quantities in t
regime. An expression is derived for the Kadowaki-Woo
ratio: the ratio of theT2 coefficient of the resistivity to the
square of the linear specific heat coefficientg. For strong
interactions it is shown to be independent of the band par
eters and the strength of the interactions. The ratio of
thermopower togT is shown to be independent of th
strength of the interactions.

The temperature dependence of the different trans
quantities is presented in Sec. IV. In particular we focus
the effect of the crossover from coherent to incoherent e
tations with increasing temperature. For moderate to str
interactions the resistivity smoothly increases from aT2 de-
pendence at low temperatures to large values correspon
to mean free paths less than a lattice constant. For str
interactions the resistivity can have a nonmonotonic te

ity
t

ical

ot
ral
r-

FIG. 2. Dependence of the Fermi liquid quasiparticle weighZ
on the Hubbard interactionU. This paper focuses on the case
moderate interactions, 2,U/t1* ,4, corresponding to effective
mass enhancements (m* /mb51/Z) of 2–4, as observed in man
organic metals~Refs. 9 and 38! and Sr2RuO4 ~Ref. 39!. Even for
such moderate interactions the transport properties turn out to
strongly temperature dependent. The curves shown are fot2*
50.1t1* , but virtually identical results are obtained fort2* 50.3t1* .
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7998 PRB 61JAIME MERINO AND ROSS H. MCKENZIE
perature dependence; at temperatures several times th
herence temperature it decreases with increasing temp
ture. The thermopower is linear in temperature up to
temperature of the order of the coherence temperatur
which it decreases. The resulting peak is similar to the p
that occurs in the electronic specific heat and is associ
with the thermal destruction of the quasiparticles. For stro
interactions most of the spectral weight in the optical co
ductivity is associated with transitions from~to! the lower
~upper! Hubbard band. A Drude peak only exists for tem
peratures less than the coherence temperature.

II. DYNAMICAL MEAN-FIELD THEORY

A. The model

We consider a Hubbard model with nearest-neighbor h
ping, t1, and next-nearest-neighbor hopping,t2, on a given
lattice. The Hamiltonian is

H5t1(
i j ,s

~cis
† cj s1H.c.!1t2(

ik,s
~cis

† cks1H.c.!

1U(
i

ni↑ni↓2m(
is

nis ~1!

whereU is the Coulomb repulsion between two electrons
the same site andm is the chemical potential. We will only
consider the case of half-filling, i.e., one electron per s
We treat the case of ad-dimensional hypercubic lattice with
connectivity z, which hast1 hopping to any of the 2z (z
52d) neighbors andt2 along the diagonals of the eleme
tary unit cell. In order to have a finite kinetic energy in th
d→` limit the hoppings are rescaled ast1* 5A2zt1 and t2*
5A2z(z21)t2, with z52d, z being the connectivity of the
lattice. The noninteracting (U50) density of states,D0(e)
5(kd(e2ek), associated with this lattice in the limit of in
finite dimensions (d→`) reads18,12

D0~e!5S 2

p D 1/2 1

E~e!
coshS E~e!t1*

2t2*
2 D expS t1*

22E~e!2

4t2*
2 D

~2!

with E(e)5(t1*
212t2*

222A2t2* e)1/2. D0(e)50, whenever
E(e) is not real. Note thatD0(e) has a finite band edge wit
a square-root divergence. We sett1* as the unit of energy
The reason for choosing this lattice is that we can trea
varying degree of frustration by tuning the ratiot2* /t1* ,
which changes the shape of the bare density of states. O
lattices, such as the Bethe lattice with next-nearest ne
bors, can also be used, but its density of states remains
metric and therefore is qualitatively the same as its nonfr
trated counterpart. Before considering how this model can
studied using dynamical mean-field theory, we note a p
sible alternate approach to that used here. If one is intere
in weak to intermediate values ofU/t, one can directly star
from a weak-coupling treatment of the infinite dimension
model. Such an approach was taken in Schweitzer’s
Czycholl’s19 treatment of transport properties for the pe
odic Anderson model.
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B. Local impurity self-consistent approximation

In the limit of infinite dimensions, mean-field theory o
the full interacting lattice problem becomes exact and
problem reduces to solving a set of dynamical mean-fi
equations.11,12 Therefore, the original Hubbard model
mapped to an impurity problem in the presence of a bath
electrons which describes the rest of the lattice electrons
that has to be found self-consistently. More precisely, o
has to solve the associated single impurity Anderson mo

H5(
k,s

~ek2m!cks
† cks1(

s
~ed2m!nds

1(
k,s

Vkd~cds
† cks1cks

† cds!1Und↑nd↓ , ~3!

where the parametersek and Vkd describe the bath of elec
trons through the hybridization function, which is defined

D~ ivn!5(
k

uVku2

ivn2ek
. ~4!

This function represents the amplitudes for the lattice el
trons to leave a site and, after wandering around the latt
to return. Therefore the problem remains local in space
ordinates but time-dependent correlations are fully taken
account. This is because in the large coordination limit,
electron can only hop once from one site to its nearest ne
bor. Processes in which an electron can repeat a given
from one site to another in the lattice are suppressed as
are at least of order 1/d. Some preliminary work is just
appearing20, that tries to extend the zero-order expansion
include this type of higher-order process.

The bath functionD( ivn) is determined self-consistently
from the following condition:

D~ ivn!5 ivn2S~ ivn!2G21~ ivn!, ~5!

where the self-energyS( ivn) is determined by solving the
Anderson Hamiltonian~3!, which is local in space, i.e., doe
not depend on momentum.G( ivn) is the lattice Green’s
function from which the spectral densities can be obtaine

r~v!52
1

p
Im G~v1 ih!. ~6!

C. Transport quantities

In the limit of infinite dimensions, transport quantities ca
be calculated straightforwardly, due to the local nature of
self-energy. For example, the evaluation of the optical c
ductivity simplifies drastically as only the particle-ho
bubble has to be evaluated in the Kubo formula. Contrib
tions due to higher-order processes included in vertex c
rections cancel exactly.21 For a more detailed discussion o
the derivation of the expressions presented here see Ref
and 13.

Several transport quantities of interest can be obtai
from the spectral density. The real part of the optical co
ductivity in thex direction is given by
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sxx~n!5s0E
2`

`

dv
f ~v!2 f ~v1n!

n

1

N

3(
ks

S ]ek

]kx
D 2

rk~v!rk~v1n!, ~7!

wherea is the lattice constant,s05e2p/2\a, andN is the
total number of sites in the system.

In the low-frequency limit,n→0, the Hall conductivity
reduces to

sxy
H 5s0

HE
2`

`

dv
] f ~v!

]v

1

N (
ks

S ]ek

]kx
D 2 ]2ek

]ky
2 rk~v!3, ~8!

where B is an external magnetic field that points in thez
direction ands0

H52p2ueu3aB/3\2. From the above equa
tions we can evaluate the Hall coefficient,RH

[sxy /(sxx
2 B). RH can be derived from a more gener

expression22 which correctly describes the high- and low
frequency limits. This generalized expression involves in
grations all over the Brillouin zone which, for frequenci
n.max(U,t), cannot be written as an integral over the Fer
surface such as the ones that appear in Eqs.~7! and ~8!.
Therefore, the Hall coefficient we have computed rema
valid only in the low-frequency limit. Calculations within
dynamical mean-field theory using iterative perturbat
theory~IPT! for the high-frequency Hall coefficientRH* have
been carried out by Majumdar and Krishnamurthy23 for the
doped Mott insulator.

The thermopower is defined as

S52
kB

ueuT
L12

L11
, ~9!

where the transport integrals reduce in thed→` limit to

L jk5E
2`

`

dvS 2
] f ~v!

]v D F 1

N (
ks

S ]ek

]kx
D 2

rk~v!2G j

vk21.

~10!

In the above expressions, a further simplification can
made in the case of a simple hypercubic lattice, as all su
in the momentum reduce to integrations in energy weigh
by the density of states:

1

N (
ks

S ]ek

]kx
D 2

rk~v!25
2

dE2`

`

deD0~e!r~e,v!2, ~11!

1

N (
ks

S ]ek

]kx
D 2 ]2ek

]ky
2

rk~v!3

52
1

2d2E
2`

`

deD0~e!er~e,v!3, ~12!

with the spectral densities given by

r~e,v!52
1

p
ImS 1

v1m2e2S~v1 ih! D . ~13!

We will use this simplification in order to avoid the cumbe
some sums over momentum. In particular the dc conducti
reduces to the following expression:
-

i

s

e
s
d

ty

sxx5
2s0

d E
2`

`

deD0~e!E
2`

`

dvS 2
] f ~v!

]v D r~e,v!2

~14!

for the simple hypercubic lattice.
For reasons of simplicity, we will still use the above e

pressions in the presence of a nonzerot2* . This is because
the focus of this paper is on many-body effects and not
how different band structures may change the res
slightly.

D. Iterative perturbation theory

A wide range of techniques have been used to solve
Anderson model~3!. An extensive review has been given b
Hewson.24 Among them the iterative perturbation theory
straightforward and at the same time gives a qualitativ
correct description because it recovers exactly the ato
(U/D→`) and the noninteracting (U50) limits. It also pro-
vides a fast way of scanning a wide range of parameter
the Anderson model, which, by means of other methods s
as exact diagonalization and quantum-Monte Carlo is co
putationally very demanding. Other approximate schem
such as the noncrossing approximation, which takes an
nite resummation of a certain class of perturbative diagra
is limited in its applicability to high temperatures.25

Originally, the iterative perturbation scheme could be a
plied only for systems at half-filling and with particle-ho
symmetry. This limitation comes from the fact that the hig
energy behavior of the spectral density is exactly reprodu
for half-filling by accident but this is not true at arbitrar
filling. However, our main interest in this work is to stud
frustrated models where the noninteracting density of sta
is nonsymmetric and, consequently, particle-hole symme
is broken. Recently Kajueter and Kotliar26 have modified the
standard iterative perturbation theory to treat asymme
cases, based on the earlier work of Martin-Roderoet al.27 by
which the self-energy is built up as an interpolative soluti
that recovers both the strong- and weak-coupling limits a
satisifies the Friedel-Langreth sum rule. Other authors28 have
extended this framework to compute more accurately
high-energy features of the spectral densities. Neverthe
all of them approximately agree with exact diagonalizati
calculations when the interactionU is relatively large.

Our present work analyzes the transport properties of m
als that are strongly correlated but sufficiently away from
Mott transition so that well-defined quasiparticles exist
low temperatures. This means that we are always in the
tallic side of the Mott transition but not too close to th
critical point at which the quasiparticle weight vanishe
Some controversy has arisen recently29 on the reliability of
IPT even for moderate couplings of the interactio
Müller-Hartman30 and also Schweitzer and Czycholl31 had
earlier shown that a second-order expansion in terms of
skeleton diagrams which depend on the interacting Gree
function,G( ivn) instead ofG0( ivn), does not reproduce th
upper and lower Hubbard bands: only a Fermi liquid ty
peak is found in the spectral density. The skeleton diagra
enter the expansion of the Luttinger-Ward functional and
the ones that collapse into a local form asd→`, giving a
local self-energy.11,12 However, Yamada32 has shown that
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8000 PRB 61JAIME MERINO AND ROSS H. MCKENZIE
when taking into account all the fourth order terms, the up
and lower Hubbard bands are reproduced, in agreement
the IPT results. This means that an expansion up to sec
order in the interacting Green’s functions is insufficient
grasp the correct behavior of the spectral density. Moreo
recent nonperturbative calculations done by Bulla, Hews
and Pruschke,33 using the numerical renormalization grou
for the Hubbard model in infinite dimensions, clearly sho
the formation of the upper and lower Hubbard bands. The
fore, we believe that the method used here can be sa
applied, giving a qualitative description of strongly corr
lated metals.

We use the finite-temperature version of the formalis
instead of the one used by Kajueter and Kotliar,26 valid at
T50, as we are interested in the thermodynamic proper
of correlated metals over a wide range of temperatures.

We briefly outline the method used and refer the reade
the more detailed work recently published.26,34,28

~i! Guess of an effective hybridization functionD( ivn)
and input of the chemical potential of the systemm together
with the chemical potential of the effective bathm0. We fix
the population per site of the interacting lattice to ben
[^ns&50.5, and it is kept fixed along the rest of the step

~ii ! Computation of the Green’s function of the effectiv
bath

G0~ ivn!5
1

ivn1m02D~ ivn!
~15!

and computation of the population of the bathn0[^n0s&
52G0(t502).

~iii ! Ansatz for the self-energy, which is given by

S~ ivn!5Un1
AS (2)~ ivn!

12BS (2)~ ivn!
~16!

with A andB defined as

A5
n~12n!

n0~12n0!
B5

U~12n!2m1m0

U2n0~12n0!
. ~17!

The second-order self-energyS (2)( ivn) is computed from
the imaginary time-dependent Green’s function of the ba

S (2)~ ivn!5E
0

b

dteivntS~t! ~18!

where S(t)52U2G0(t)G0(t)G0(2t). We use fast Fou-
rier transforms to go back and forth from time to ener
variables. The expression obtained forA, Eq. ~17!, comes
from fixing them52 moment of the spectral density as e
plained in Ref. 28:

M (m)5E
2`

`

wmr~w!dw ~19!

whereM (m) can be computed from the Heisenberg equati
of motion. The parameterB is fixed from the exact atomic
limit solution, Vkd→0.

~iv! Computation of the impurity Green’s function
r
ith
nd

r,
n,

e-
ly

,

s

to

.

s

G~ ivn!5(
k

G~ ivn ,k!5E
2`

` D0~e!de

ivn1m2e2S~ ivn!
.

~20!

The free parameters (m0 ,m), can be now fixed from the
following set of equations:

n52G~t502!50.5,

n5n0 . ~21!

The last condition, originally introduced by Martin-Rode
et al.27 together with the expressions for the interpolati
self-energy~16! and ~17!, is nearly equivalent to the Lut
tinger condition or the Friedel-Langreth sum rule,35 and fixes
the correct low-energy behavior of the self-energy. Nume
cally this condition is much easier and faster to handle th
the Luttinger one. Results from both of these conditio
agree equally well with results from exact diagonalization
finite clusters.28 Finding (m0 ,m) takes around four to six
iterations using Broyden’s method.36

~v! The final step is the requirement that the latti
Green’s funtionG( ivn) coincide with the Green’s function
of the associated impurity problem given by the Anders
Hamiltonian. This condition is expressed in Eq.~5!.

The above steps~i!–~v! are repeated until a self-consiste
bath function is obtained. Note that the calculations are k
on the imaginary frequency axis: this makes the computa
much faster and more efficient with the use of fast Four
transform algorithms. Analytical continuation to the real fr
quency axis is needed in order to compute the spectral d
sities entering the different transport quantities. This conti
ation is numerically implemented using Pad´
approximants.37

III. FERMI LIQUID BEHAVIOR
AT LOW TEMPERATURES

For temperatures and frequencies much less than
Kondo temperature the self-energyS(v) of the Anderson
model has the Fermi liquid form24

S~v,T!5vS 12
1

ZD2 iC@v21~pkBT!2#, ~22!

whereZ is the quasiparticle weight andC is a positive con-
stant. At sufficiently low temperatures and energies
imaginary part becomes much smaller than the bandw
and the spectral function~13! will have well-defined peaks
when v5ZEk , whereEk is the band dispersion relation i
the absence of interactions. The dependence of the quas
ticle weightZ on the Hubbard interactionU is shown in Fig.
2. The specific heat will be linear in temperature at low te
peratures with a slope that is 1/Z times larger than the non
interacting value. The effective massm* deduced from mag-
netic oscillations will also be larger thanmb , the value
predicted by band structure calculations, by the same fa
(m* /mb51/Z). This enhancement is found to be about tw
to four in many organic metals9,38 and Sr2RuO4.39 In this
section we consider the low-temperature transport prope
that follow from this form of the self-energy.
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A. Resistivity

The resistivity in a Fermi liquid behaves as

r.AT2. ~23!

Such a temperature dependence is characteristic of meta
which the dominant scattering mechanism is the interac
of the electrons with one another and is observed in tra
tion metals,4 various organic conductors,9 and heavy
fermions.5

Yamada and Yosida40 demonstrated this behavior for a
Anderson lattice and showed that Umklapp scattering ev
should dominate the contribution to the resistivity beca
momentum conservation would give an infinite conductiv
when the lattice is not present. Uhrig and Vollhardt ha
shown how in the limit of large dimensions the umkla
processes lead to a finite conductivity.41 Cox and Grewe
pointed out that in an anisotropic system when the elec
velocity and momentum are no longer parallel normal sc
tering can contribute to the resistivity.6

In transition metals and heavy fermions the Kadowa
Woods rule42,43 relates the coefficientA to the linear coeffi-
cient for the specific heat,g:A/g25const. The constant is
4.0310213 V cm (mol/mJ)2 for transition metals, and
1.0310211 V cm (mol/mJ)2 for most heavy fermions and
for transition metal oxides near the Mott-Hubba
transition.44 However, recent measurements on UPt52xAu
found values of 10212 V cm (mol/mJ)2 for x50,0.5 but in-
creasing to 10211 V cm (mol/mJ)2 for x.1.1.45

We now evaluate the ratioA/g2 using our results. From
the self-energy~22!, the resistivity in the low-temperatur
limit associated with expression~14! is

r~T!.
2dA2pkB

2\a

e2DI 01
CT2, ~24!

where we have numerically integrated

I nm[E
2`

` dxxn

~x21p2!m

ex

~11ex!2 ~25!

and find I 01.1/12. Expression~24! is the resistivity at low
temperatures for the case of a simple hypercubic lattice,

which the density of states isD0(e)5(1/Apt1* )e2e2/t1*
2

and
t1*

254t1
2d. D is the effective half-bandwidth defined asD

5A2t1* .
The linear specific heat term for the same density of sta

is

g5
2A2ppkB

2

3ZD
, ~26!

whereZ is the quasiparticle weight. Combining expressio
~24! and ~26! we obtain

A

g2 5
9dA2p\a

4p3kB
2 I 01e

2 DCZ2. ~27!

Hence, we see that if the dimensionless quantityDCZ2 is
universal then so will be the ratioA/g2. Insight into this
question can be gained by considering first a pure Ander
in
n
i-

ts
e

e

n
t-

-

or

s

s

n

model, for which we take a constant hybridizationD5D.
For this case, it is found that24 C5(R21)2/2DZ2, whereR
is Wilson’s ratio,

R5
x loc /x loc

0

g/g0
, ~28!

andx loc is the local susceptibility,g is the linear coefficient
for the specific heat, and the zero superscript denotes
values in the absence of interactions.R takes values betwee
1 for U50 and the universal value 2 foruU/Du>1 ~Kondo
regime!.24

We also find that this scaling holds for the Anders
model with the self-consistent bath. We foundC by fitting
the imaginary part of the self-energy obtained from our d
namical mean-field theory calculations to the low-frequen
and low-temperature form~22!, for different values ofU. As
shown in Table I, we find thatC scales with 1/Z2 for U
>2t1* as expected as we are in the Kondo regime, givin
universal behavior of theA/g2 ratio. However, it decrease
for U<2, consistent with the result from the Anderso
model thatR→1 in theU→0 limit.

From the numerical values ofC in Table I, we can com-
pute theA/g2 ratio, using the density of states of a simp
hypercubic lattice: we get forU'3.0 ~Kondo regime! a ratio
of (1.24a)310212 V cm. This result is comparable to ex
perimental findings for transition metal oxides if we take t
lattice constant to bea'10 Å.

Previous calculations using a highly accurate project
method to solve the dynamical mean-field theory on the
the lattice find that very close to the Mott-Hubbard transiti
A/g25(2.3a)310212 V cm(mol/mJ)2 wherea is the lattice
constant in Å of a three-dimensional system at half-filling46

This differs from our result by a factor of 2 but turns out
be due to the different lattice used. In order to make a dir
comparison with the results obtained in Ref. 46 we ha
repeated our calculations using iterative perturbation the
for a Bethe lattice at half-filling. We take a noninteractin
density of statesD0(e)5(1/t1* p)A22(e/t1* )2. The fitting
parameters of the self-energy to the low-temperature fo
for the Bethe lattice are shown in Table II. We find th
already for moderate values ofU, the value ofCZ2 con-
verges rapidly to the value obtained in Ref. 46, providing
stringest test of the method used here.

TABLE I. Values of the fitting parameterC and quasiparticle
weights for different values of the Coulomb repulsionU for the
frustrated hypercubic lattice. Note thatC scales with 1/Z2 even for
values of the interaction such that the metallic phase has well
fined quasiparticles with only moderate enhancements of the e
tive masses.

U/t1* Ct1* Z(U) CZ2t1*

1 0.1 0.9 0.08
1.5 0.23 0.8 0.16
2 0.44 0.67 0.20
2.5 0.70 0.55 0.21
3 1.07 0.45 0.22
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B. Thermopower

Similarly to the above analysis for the resistivity we c
gain some insight into the behavior of the thermopower
low temperatures from the Anderson model. It can be sho
for the N-fold degenerate Anderson model,47 that the ther-
mopower increases linearly with temperature at low tempe
tures. Its slope scales as 1/Z, in the same way as the slope
the specific heat. Therefore, within the Anderson model
ratio of the thermopower to the linear coefficient of the sp
cific heat is independent of Coulomb interaction. However
depends on the band filling: it drops to zero as half-filling
reached, as it should, as for a system with particle-hole s
metry at half-filling the thermopower is zero.

The low-temperature behavior of the transport integ
L12 defined in Eq.~10!, can be shown to be

L125
]D0~e!

]e U
e5eF

1

2pZC
I 21 ~29!

where I 21 is the integral defined by Eq.~25! and the term
proportional to the bare density of states at the Fermi ene
vanishes as the integral is antisymmetric. On the other h
L11 is proportional to the dc conductivity and reduces for lo
temperatures to theT2 behavior analyzed in Sec. III A
Therefore expression~9! reduces to

S~T!5
2kB

ueu
]D0~e!/]e

D0~e!
U

e5eF

I 21

I 01

T

Z
, ~30!

where we again numerically compute the ratio of the in
grals I 21/I 0152.65. A similar expression was recently give
by Palsson and Kotliar, who considered the thermopowe
a doped Mott insulator.16 The sign of the thermopower give
information on the type of charge carriers~electron or holes!
that are contributing mostly to the transport. This sign com
in our expressions from the slope of the density of state
the Fermi energy.

The ratio of the thermopower to the specific heat at l
temperatures is given by

S~T!

gT
52

1

ueu
3

2p2

]D0~e!/]e

D0~e!2 U
e5eF

I 21

I 01
, ~31!

which is universal, i.e., independent of the interactions fo
given degree of frustration in the lattice.

TABLE II. The same as in Table I for the Bethe lattice. Th
final entry is the result obtained in Ref. 46 using a highly accur
projective method.Uc54.13t1* refers to the critical value at which
the T50 second order metal-insulator transition takes place.

U/t1* Ct1* Z(U) CZ2t1*

1.5 0.35 0.72 0.18
2.0 0.70 0.57 0.23
2.5 1.40 0.42 0.25

Uc54.13 0.29
t
n

a-

e
-
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A simpler expression for the slope of the thermopow
can be found in the limitt2* /t1* →0; in this case, expressio
~9! reduces to

S~T!'
2kB

ueu
I 21

I 01
A2

t2*

Zt1*
2 T. ~32!

The slope of the thermopower is, therefore, directly prop
tional to the degree of frustration present in the frustra
hypercubic lattice. We have checked that at low temperatu
our numerical results are in good agreement with this exp
sion.

The simple expression~31! may explain the huge value
(S.kB /e at 300 K! recently observed48 for NaCo2O4, which
has potential applications as a thermoelectric material.49 This
material consists of layers of CoO2 with the crystal structure
of a triangular lattice. For such a lattice the noninteract
density of states can be expressed analytically as show
Ref. 50. Evaluating the derivative at the Fermi energy fo
half-filled band gives

]D0~e!/]e

D0~e!2 U
e5eF

521.24 ~33!

and so Eq.~31! predicts a ratio of 1/2ueu, which reexpressed
in appropiate units is 5.2331023 m V mol/mJ. The mea-
sured thermopower is approximately linear in temperature
to about T5200 K, at which it has a value of abou
80 mV/K. The measured specific heat coefficient51 is g
548 mJ/(mol K2) giving a ratio S(T)/gT of
831023 mV mol/mJ. This suggests that the large value
the thermopower of this material is not just due to stro
correlations enhancing the effective mass but also due to
large particle-hole asymmetry associated with the triangu
lattice. Also, the theory presented predicts a positive th
mopower at low temperatures for the triangular lattice, co
sistent with experiment.48

C. Hall resistance

In the low-temperature limit, the Hall conductivity~8!
reduces to

sxy
H 5

s0
H

2d2

3

8p2D0~e5eF!
eF

C2T4I 02 ~34!

where the integralI 02 is defined by Eq.~25! and is equal to
0.007 30. This expression depends on the interaction thro
C}1/Z2. A similar expression was recently found by Lang
and Kotliar.17

The Hall coefficient reduces at low temperatures to

RH'
a3

6ueu
I 02

I 01
2

m2ReS~v5m!

t1*
2D0~eF!

~35!

whereI 02/I 01
2 51.06. Expression~35! shows temperature de

pendence through the chemical potentialm5m(T). At T
50, expression~35! is independent ofU because from Lut-
tinger’s theoremeF[m2ReS(v5m). Moreover, in theU
→0 limit, and in the particle-hole symmetric case, expre
sion ~35! reduces to zero,RH50 for T→0, as it should, as
the density of holes cancels exactly the density of electr

e
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contributing to the transport in the system. As soon as
degree of frustrationt2* /t1* Þ0, then, the Hall coefficient is
nonzero, and, again atT50, independent of the Coulom
interaction. The sign of the Hall coefficient depends on
sign of the real part of the self-energy referred to the che
cal potential. This means that, in general, it is possible
have a different sign for the thermopower and the Hall fac
at low temperatures depending on the shape of the bare
sity of states and the Fermi energy.

D. Optical conductivity

At low temperatures the optical conductivity~7! reduces
to

s~v!5
s0D~eF!

dp E dn
f ~n!2 f ~n1v!

v

3
@1/t~n!11/t~n1v!#

~v/Z!21
1

4
@1/t~n!11/t~n1v!#2

, ~36!

where 1/t(n)52 ImS(n), similar to an expression first ob
tained by Murata.52 For v!pT, the frequency dependenc
of the self-energy can be neglected and the above expres
reduces to

s~v,T!5
2s0D0~eF!Z

dp

t* ~T!

11@vt* ~T!#2 , ~37!

where 1/t(T)52 ImS(0,T)'2C(pT)2 and t* (T)
5t(T)/Z.

IV. CROSSOVER TO INCOHERENT EXCITATIONS

The Fermi liquid behavior discussed in the previous s
tion occurs only up to some temperature of the order of
coherence temperatureT0. There is then a smooth crossov
to the case where all of the low-energy excitations are in
herent~see Fig. 1!. In this section we present results showi
the effect of this crossover on transport properties.

A. Resistivity

The temperature dependence of the resistivity is show
Fig. 3 for t2* /t1* 50.1 and various interaction strengths. It h
two properties often observed in strongly correlated met
~i! for strong interactions a nonmonotonic temperature
pendence occurs, and~ii ! for high temperatures it smoothl
increases to large values corresponding to mean free p
less than a lattice constant.

For values of the interaction comparable to the ba
width, U'4t1* , the resistivity shows a peak at a temperatu
of about 0.2t1* . The temperature at which this peak appe
corresponds approximately to the temperature at which th
are no longer Fermi liquid quasiparticles present~see Fig. 1!.
The decreasing resistance with increasing temperature, c
acteristic of a semiconductor or insulator, is due to therm
excitations to the upper Hubbard band. Note that the p
temperature is not the Kondo temperature, which in our c
culations is at much lower temperatures. Such a peak in
resistivity is observed in heavy fermion sytems5 and some of
e
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the k-(BEDT-TTF)2X family of organic superconductors.9

Results similar to Fig. 3 were obtained previously for t
simple hypercubic lattice (t250) when the impurity problem
was solved using quantum Monte Carlo calculations and
noncrossing approximation,25 and for the Bethe lattice when
the impurity problem was solved using iterative perturbat
theory.53

Bad metals. In conventional metals transport occurs b
well-defined quasiparticles; they have a wavelen
(;1/kF) much less than the mean free pathl and so transport
properties can be described by the Boltzmann equat
However, if the scattering is sufficiently strong that the me
free path is comparable to a lattice constant (l;a) then
kFl;p and the quasiparticle concept breaks down. This
often referred to as the Mott-Ioffe-Regel limit.54 For an iso-
tropic three-dimensional metal this corresponds to a cond
tivity of s5e2/(3\a), and is sometimes referred to as th
Mott minimum conductivity. However, for a wide range o
strongly correlated metals, including the cuprates,55 fullerene
metals (A3C60),

56 the organic superconductor
k-(BEDT-TTF)2X,9 Sr2RuO4,57 SrRuO3,58 and VO2,59 it is
observed that as the temperature increases the resistivity
increase to values corresponding to mean free paths m
less than a lattice constant. Such materials have been refe
to as ‘‘bad metals.’’60 In contrast, in the A-15 metals th
resistivity appears to ‘saturate’ at a high-temperature va
corresponding to the Mott-Ioffe-Regel limit.61 However, it
has recently been suggested that the resistivity does not
rate but rather a change in temperature dependence oc
when the scattering is strong enough to cause a breakd
of the Migdal approximation.62 Emery and Kivelson
proposed60 that the smooth temperature dependence of
resistance in bad metals suggests that the low-tempera
transport is also not due to quasiparticles.

At low temperatures the resistivity given by~24! can be
written

FIG. 3. Temperature dependence of the resistivity in the fr
trated hypercubic lattice fort2* /t1* 50.1 and for different values of
U/t1* 52, 3, 3.5, and 4. ForU54t1* there is a crossover from me
tallic behavior at low temperatures to insulating behavior at h
temperatures. The resistivity is given in units ofr05\a/e2, where
a is a lattice constant which corresponds to a value of the resisti
at which the mean free path is comparable to a lattice constan
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r.d~2p!1/2
\a

e2

1

tD
, ~38!

wheret is the scattering time. The Mott-Ioffe-Regel cond
tion (l .a) is equivalent totD.2p, leading to a resistivity

r0.
\a

e2 . ~39!

For a510 Å this corresponds to a resistivity of 3 mV cm.
Figure 3 shows that even for moderate interaction stren
the resistivity can smoothly increase to values much lar
than this. Furthermore, our results provide a counterexam
to the ideas of Emery and Kivelson60 since there is a smoot
crossover from transport by incoherent excitations at h
temperatures to Fermi liquid transport at low temperature

B. Thermopower

In Fig. 4, we show the results for the thermopower a
function of temperature for different values of the Coulom
interactionU and in the nearly symmetric caset2* /t1* 50.1.

The low-temperature behavior is correctly described
Eq. ~9!. As can be observed, the slope of the thermopowe
low temperatures increases with increasingU, scaling as the
effective massm* /m51/Z. We find a minimum in the ther-
mopower which is rather shallow for smallU and becomes
increasingly pronounced with increasingU. A similar feature
also occurs for doped Mott insulators13 and for the Anderson
lattice.19 We observe that the mimimum moves to high
temperatures asU/t1* is decreased. This is a consequence
the increase in the Kondo scale with decreasingU and is
supported by the observation that this minimum follows
peak in the specific heat. To illustrate the close relations
between the thermopower and the specific heat, Fig. 5 sh
the specific heat for the same parameter values as Fig.

FIG. 4. Temperature dependence of the thermopower for
frustrated hypercubic lattice fort2* /t1* 50.1 and for different values
of U/t1* 52, 3, 3.5, and 4. The dashed lines are based on lin
extrapolations to zero temperature as expressed in Eq.~32!. The
curves show how interactions between electrons significa
change the magnitude and temperature dependence from the
behavior expected for a weakly interacting Fermi liquid. Indeed,
appearance of a minimum in the thermopower is a signature
thermal destruction of the coherent Fermi liquid state that exist
low temperatures.
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The peak in the specific heat, already analyzed by sev
authors,63 is associated with the binding energy of the Kon
spin screening cloud which eventually forms at each latt
site. The high-temperature behavior found is typical of s
tems that have a depleted density of states at the Ferm
ergy, for example, in semimetals and insulators one exp
the magnitude of the thermopower to decrease as the
perature is decreased. This is more easily understood f
the behavior of the spectral densities which show this eff
tive depletion of quasiparticle excitations at the Fermi ene
~see Fig. 1!.

The change in sign of the thermopower at intermedi
temperaturesT'0.2t1* for U53.5t1* can be explained from
the fact that the spectral weight of the quasiparticle exc
tions is transferred mostly to the lower rather than to
upper Hubbard band, making the holes, rather than the e
trons, the dominant carriers contributing to energy transp
~see Fig. 1!.

It is worth stressing that it is not necessary to get to
large values ofU/t1* to find a clear signature of the minimum
in the thermopower and strong temperature behavior. Th
a feature that one can find in sufficiently correlated syste
far from the Mott transition as can be checked from the
fective masses we obtain,m* /m, which in our calculations
vary between 2 and 4 forU'2 and 4, respectively.

Figure 6 shows the thermopower when the frustration
increased tot2* /t1* 50.3. The magnitude of the thermopow
is enhanced as a result of the larger asymmetry present in
particle-hole excitations of the system. Thus, the slope at
temperatures is increased by a factor of about 3, as expe
from Eq. ~32!. The main features remain similar to the le
frustrated caset2* /t1* '0.1, although the minimum of the
thermopower is more pronounced for a larger degree of fr
tration.
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FIG. 5. Specific heat in units of the gas constantR, for the
frustrated hypercubic lattice fort2* /t1* 50.1 and for different values
of U/t1* 52, 3, 3.5, and 4. Note that the peak occurs at a temp
ture comparable to that at which the peak in the thermopower
curs ~compare with Fig. 4!. The dashed lines are linear extrapol
tions to zero temperature. As in the case of the thermopower,
simple linear behavior found for the noninteracting case is qua
tively changed and a peak at low temperatures shows up forU/t1*
>3. The temperature scale at which this peak appears is set b
binding energy of the spin-screening cloud formed at each lat
site due to the Kondo effect.
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The thermopower of the cuprates64 and the organic super
conductors k-(BEDT-TTF)2X ~Ref. 65! and
b-(BEDT-TTF)2X ~Ref. 66! has the common properties th
it is not a monotonic function of temperature and has la
values of order 10–50mV/K at 100 K. For the organics
these properties cannot be explained in terms of the ca
lated band structures and a weakly interacting Fe
liquid.65,66 For Sr2RuO4 the thermopower increases nonli
early with temperature from 4 K to 300 K, appearing to
saturate at high temperatures, and has the opposite sign t
Hall coefficient.67

As discussed above a peak or minimum in the th
mopower is a signature of the decay of coherent excitati
with increasing temperature. It is desirable to see if this f
ture can be observed in experiments on other strongly co
lated metals. Such a peak should be clearly distinguish
from a peak due to phonon drag68 by several features. Th
latter produces a thermopower that is proportional to the
tice specific heat and thus cubic in the temperature foT
!uD . For higher temperatures the phonon drag th
mopower goes like 1/T. The result is a peak around a tem
perature of (0.1–0.2)uD . Values ofuD can be deduced from
the specific heat data. Thus, it should be possible to dis
guish whether an observed peak in a material is due to p
non drag or loss of Fermi liquid coherence because of
different temperatures at which they occur and becaus
the different behavior at higher temperatures.

Zhou and Goodenough have observed peaks around
K in the thermopower of CaVO3 ~Ref. 69! and
La12xNdxCuO3.70 They attribute these peaks to phonon dra
This peak cannot be due to the correlation effects consid
here because it occurs at too low a temperature. In CaV3
the optical conductivity still has a Drude peak at 300 K71

and it is estimated thatD51 eV and U53 eV. Conse-
quently, the coherence temperature will be of the order
1000 K.

The peak in the electronic specific heat would be
tremely difficult to observe because it will be masked by

FIG. 6. Temperature dependence of the thermopower for
frustrated hypercubic lattice witht2* /t1* 50.3 andU/t1* 52, 3, 3.5,
and 4. The dashed lines are extrapolations to zero temperature
effect of frustration is more clearly seen when comparing this fig
with the caset2* /t1* 50.1. The values of the thermopower are i
creased as well as the slope at low temperatures. However
position of the minimum is nearly independent of the degree
frustration.
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T3 phonon contribution. In contrast, the phonon contributi
to the thermopower decreases with increasing tempera
and so should not mask the feature due to correlations.

C. Hall resistance

In Figs. 7 and 8 we show results for the temperature
pendence of the Hall coefficientRH for t2* /t1* 50.1 and 0.3,
respectively. We observe from the curves that for small v
ues of theU/t1* ratio, the Hall coefficient is nearly indepen
dent of temperature, whereas for larger values of the inte
tion there is an increase in the Hall coefficient for increas
T reaching a maximum atT'0.3t1* . This fact is observed
for both values of the frustration shown. Note that the sign
the Hall coefficient is not necessarily the same as the sig
the thermopower.

For a given value of the frustration, all curves converge
the same value atT50 as expected from Eq.~35!. However,

e

he
e

he
f

FIG. 7. Temperature dependence of the Hall coefficient for
frustrated hypercubic lattice witht2* /t1* 50.1 and for different val-
ues ofU/t1* 52, 3, 3.5, and 4. Note the saturation of the Hall coe
ficient at low temperatures for all values ofU/t1* . As the interac-
tion is increased strong temperature dependence arises.

FIG. 8. Temperature dependence of the Hall coefficient for
frustrated hypercubic lattice witht2* /t1* 50.3 and for different val-
ues ofU/t1* 52, 3, 3.5, and 4. A greater degree of asymmetry c
enhance some features of the Hall resistance. At low temperat
it is more strongly temperature dependent than fort2* /t1* 50.1 and
an upturn in the Hall coefficient can even arise.



en
n

-
t,

nt
a

ba

a
us
-

-

s
an
o

tu
s

us

xi-

ca

te

re
ca
pe
g

t

m
o

e

a
ud
nc
r

,
at
es.
a

s
not
en-
ing
d

ot

bout

zed

ns-
ifi-
ort
he

t be-
ross-
nt
de-
effi-
atic
the

ad
ua-
the

uc-

rs at

the
ua-

s

in

8006 PRB 61JAIME MERINO AND ROSS H. MCKENZIE
the temperature dependence at low temperatures fort2* /t1*
50.3 differs from thet2* /t1* 50.1 case. The behavior at low
temperatures is determined by the temperature depend
of the chemical potential, which depends on the lattice a
lyzed through the bare density of states and the value
U/t1* . For the caset2* /t1* 50.3, the Hall coefficient is more
strongly dependent onU than for thet2* /t1* 50.1 case. More-
over, an upturn of the Hall coefficient is found in the low
temperature limitT→0 in the latter case. This means tha
although qualitatively the situation is similar for differe
degrees of frustration, some features can be enhanced
may depend on the details of the band structure and the
density of states of the material.

The Hall coefficient for a doped Mott insulator on
simple hypercubic lattice was calculated previously by Pr
chkeet al.13 and Lange and Kotliar17 using dynamical mean
field theory and found to have a qualitatively similar tem
perature dependence.

The layered perovskite Sr2RuO4 has Fermi liquid proper-
ties at low temperatures8 but the Hall resistance of Sr2RuO4
is strongly temperature dependent.72 It has a value of
about21.15310210 m3 C21 below 1 K and then increase
rapidly with temperature and changes sign around 35 K
saturates at high temperatures to a value of ab
20.1310210 m3 C21. The behavior and value below 1 K
can be explained within a Fermi liquid picture.72 However,
the sign change can only be explained if the tempera
dependence of the scattering rate in the different band
significantly different.73 An alternative explanation for the
temperature dependence is the decay of coherence disc
here.

Experiments on organic metalsk-(BEDT-TTF)2X show
a temperature-dependent Hall coefficient.74 For
b-(BEDT-TTF)2I3 the Hall resistance has a broad ma
mum around 40 K.75

D. Optical conductivity

Figure 9 shows the frequency-dependent conductivity
culated for our model withU54t1* and t2* 50.1t1* at three
different temperatures. It shows the important features no
below for a range of strongly correlated metals:~i! the Drude
peak only exists at low temperatures, and~ii ! most of the
spectral weight is contained in broad high-energy featu
Similar features were found previously using dynami
mean-field theory and exact diagonalization and iterated
turbation theory,71,53 and for doped Mott insulators usin
quantum Monte Carlo calculations.76

Infrared measurements77–79 of the frequency-dependen
conductivity s(v) of k-(BEDT-TTF)2X deviate from the
Drude behavior found in conventional metals. At room te
peratures(v) is dominated by a broad peak around 300
400 meV~depending on the polarization and anionX) with a
width of about 150 meV. Even down to 50 K no Drude-lik
peak at zero frequency is present~see Fig. 2 in Ref. 9!. At 25
K the high-energy peak decreases slightly in temperature
a Drude-like peak appears but can only be fitted to a Dr
form if the scattering rate and effective mass are freque
dependent.77 Similar results are obtained fo
a-(BEDT-TTF)2NH4Hg(SCN)4.80
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Experiments onb-(BEDT-TTF)2X where X5I3 ,IBr2,
and AuI2 at 30 K show no Drude peak.81 Experiments on
b9-(BEDT-TTF)2SF5CH2CF2SO3 show no Drude peak
even down to 14 K.82 Furthermore, it does not appear th
the spectral weight is conserved as the temperature vari

For (TMTSF)2PF6 at 20 K there is a Drude peak and
broad peak around 200 cm21.83 The Drude peak contain
less than one percent of the total spectral weight and is
present at 100 K. The Drude peak has been fitted to a g
eralized Drude form with a frequency-dependent scatter
rate 1/t(v);v2, given by a phenomenological form use
previously for the heavy fermion compound UPt3.

For SrRuO3 a Drude peak was observed at 40 K but n
above about 100 K.84 The conductivitys(v);1/v1/2 above
a temperature-dependent crossover frequency of a
3kBT/\, whereas in conventional metals,s(v);1/v2. The
low-temperature Drude peak could be fitted to a generali
Drude form with 1/t(v);v.

V. CONCLUSIONS

In order to gain a better understanding of why the tra
port properties of strongly correlated metals deviate sign
cantly from the properties of elemental metals the transp
properties of a specific Hubbard model were calculated. T
transport properties are strongly temperature dependen
cause as the temperature increases there is a smooth c
over from coherent Fermi liquid excitations to incohere
excitations. This leads to a nonmonotonic temperature
pendence for the resistance, thermopower, and Hall co
cient. The resistance smoothly increases from a quadr
temperature dependence at low temperatures, obeying
Kadowaki-Woods rule, to large values characteristic of a b
metal. Further signatures of the thermal destruction of q
siparticle excitations are a peak in the thermopower and

FIG. 9. Strong temperature dependence of the optical cond
tivity. The curves shown are forU54t1* , t2* 50.1t1* , at three dif-
ferent temperatures. A Drude peak at zero frequency only occu
low temperatures. The feature aroundv'U/2 is due to transitions
from the coherent quasiparticle band at the Fermi energy to
upper Hubbard band and from the lower Hubbard band to the q
siparticle band. The broad feature atv'U at higher temperatures i
due to transitions from the lower to the upper Hubbard band~com-
pare Fig. 1!. Note that most of the spectral weight is contained
the high-frequency features.
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absence of a Drude peak in the optical conductivity.
The results presented here are qualitatively similar to

observed transport properties of a wide range of stron
correlated metals, including transition metal oxides, str
tium ruthenates, and organic metals. For example, the ph
cal picture presents a natural explanation of the recently
sented puzzle85,84 of the properties of SrRuO3. Although
Shubnikov–de Haas oscillations, with a Fermi liquid te
perature dependence, were observed at low temperature85 it
was found that the optical conductivity deviated significan
from a Drude form84 and it is a bad metal at high
temperatures.57 This is because the latter measurements
volve energy scales~in frequency and/or temperature! much
larger than the coherence temperature associated with F
liquid excitations.

Finally, it is particularly desirable that measurements
the temperature dependence of the thermopower be mad
a wide range of materials because the peak that we find
resents a well-defined signature of the thermal destructio
o

’

e
ly
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si-
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-

-

mi

f
on
p-
of

quasiparticle excitations. Furthermore, measurements o
single material ofall the transport properties calculated he
are needed in order to provide a comprehensive test of
physical picture presented. Ideal candidate materials, si
they are metallic at ambient temperature and have cohere
temperatures of the order of 50–100 K, are Sr2RuO4,
k-(BEDT-TTF)2Cu(SCN)2, and b-(BEDT-TTF)2IBr2. A
quantitative comparison of theory with experiment will re
quire that the theory presented here be modified to inclu
the effects of band structure.86
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