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We show that the Hubbard model with infinite-range Coulomb coupling is equivalent to an ideal gas of three
species of particles obeying fractional exclusion statistics. A full appreciation of this mapping requires an
extension of the pertinent formalism. This very simple, but rather peculiar model is exactly solvable in any
dimension and exhibits a Mott metal-insulator transition, whose universality class is shown to be that of a free
spinless Fermi gas. A modified version of the Luttinger theorem is shown to apply in any dimension. We also
characterize the metallic and insulating phases by obtaining the electronic band structure as well as the
interacting density of states. The fractional statistics manifests itself on the amplitudes of several thermody-
namic quantities and, in particular, the Pauli spin susceptibility is subdominant in all metallic phases, and a
Curie-type of response appears.

[. INTRODUCTION scription of the metallic state, but with an oversimplified
picture of the insulating phase, which consisted of noninter-
The field of strongly correlated electron systems has, oveacting local moments. We know from the strong-coupling
the years, been the subject of intense activity. Its range dfmit of the Hubbard model that the insulating phase has
application includes higf-. superconductivity, heavy fermi- antiferromagnetic order. An account of magnetism in the
ons, metal-insulator transitidiMIT), and fractional quantum presence of a MIT can be found in the works by Slafer,
Hall effect. A crucial common feature of these systems is thavho suggested a mechanism in which the doubling of the
fact that several physical phenomena of interest take place anit cell caused by an underlying long-range antiferromag-
intermediate or strong Coulomb coupling. In many situa-netic order splits the Brillouin zone and causes the appear-
tions, perturbative approaches are unreliable and controllednce of a gap in the density of stat@®0S). The exact so-
nonperturbative calculations become necessary. Unfortdution of the one-dimensional Hubbard model presented by
nately, non-perturbative schemes have proved rather difficultieb and Wi° showed no MIT at finiteJ (the system is an
to implement, and as a consequence many fundamental promsulator for anyU>0 at half-filled band In two dimen-
erties of even the simplest models have been elusive. It isions, the MIT is still a controversial issue: restfliderived
therefore, important to study non-trivial models or specificusing real-space renormalization-group suggest that at half-
limits where exact results are possible, such as onefilled band the ground-state is insulating for ady>0 and
dimensional lattices with short and long-range interactions,isotropic hopping &= t,/ty=1). For a non-isotropic hop-
infinite dimensional systenfsjnite dimensional lattices with  ping («<1) the ground -state should be metallic foft less
infinite-range hopping:? or infinite-range interactiory.’ than a certain critical value, which depends @nand insu-
Among the subjects of interest concerning strongly corredator otherwise. On the other hand, recent Monte Carlo’data
lated electron systems, one of the most important is the Mottsuggest that the density-driven MIT =2 belongs to a
Hubbard MIT®® Recently, Andersaf! emphasized that the special universality class, where the dynamic and correlation
problem of doping a single Mott-Hubbard band is the startdength exponents are given respectively by 4 and v
ing point to understand the problem of high-superconduc- =1/4, instead ok=2 andv=1/2 as ind=1.
tivity. A long time ago, Wignef' was one of the first to More recently, considerable progress in our understanding
suggest that the electron gas model of a metal is unstablef metal-insulator transitions has been obtained from exactly
against crystalization at low density due to the long-rangesolvable limits. Gebhard and Ruckenstinintroduced a
Coulomb repulsion. However, a more complete analysis ofnodel that consists of a Hubbard chain with long-range hop-
the MIT induced by electron-electron interactions has beemping and showed that it exhibts a MIT at half filling when
put forward by Mott'? Later, Hubbar&® proposed a micro- equals the bandwidth. In the limit of infinite dimensions,
scopic lattice model, with ahort-range(on sit@ interaction  the pioneering work of Metzner and Vollhaftlitntroduced a
that was showl{ to exhibit a MIT at a critical value of the nontrivial version of the Hubbard model in which the Brink-
interaction parametet). Hubbard’s prediction of a second man and Rice solution becomes exact. Georgeal?*?
order MIT was based on a kind of coherent phase approxistudied the MIT in the infinite dimensional Hubbard model
mation leading to the absence of a well-defined Fermi surand demonstrated that the metallic phase is a renormalized
face on the metallic sid@and no magnetism. Using a varia- Fermi liquid. Nevertheless, several low-dimensional strongly
tional method due to Gutzwilldf Brinkman and Ric¥  correlated electron system, with close association with the
obtained a MIT for the Hubbard model with a proper de-physics of the MIT, have found metallic phases displaying
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non-Fermi liquid (NFL) behavior, specially in the higiii; [l. THE MODEL AND EXCLUSON REPRESENTATION

and fractional quantum Hall I|terature. It has been found that Our model system is a Hubbard-like Hamiltonian with
the Iow-engrgy effectl.ve theques of such systems posseiﬁfinite—range Coulomb repulsién
very peculiar properties, which cause the breakdown o
Fermi-liquid theory?® For instance, near a quantum critical
point (QCP the fluctuations of soft modes induce anomalous H=—t E CiTnga_ (put U/Z)Z CiTgCia
scattering, which suppress quasiparticles lifetimes. Other ex- {t1).e 7
amples are systems with enhanced small momentum transfer ‘ :
forward scattering. N > ), +13.2+14C111Cip1C151Ciyl - @

An important property of some non-Fermi liquids is the lal2lsle
appearence of quasiparticle excitations with fractional statisThe first term describes the hopping of electrons on a
tics intermediate between bosons and fermions. In two did-dimensional hypercubic lattice df sites, and(i,j) is a
mensions, this can be traced back to the existence of a nonotation for nearest neighbors. The second term represents a
trivial group structure associated with the exchange ofoupling to a reservoir of particles, and the third term ex-
identical particles, the so-calledanyons®™ Recently, presses the conservation of the particle mass center in the
Haldané” proposed a generalization of Pauli's exclusionscattering process, thus selecting the zero momentum trans-
principle, which leads to a new kind of fractional statistics, fer forward scattering only, which is an efficient way to gen-
whose associated particles have been cathedlusong®=>?  erate NFL behaviof®
Several systems have been reported to be described by Introducing the lattice Fourier transform
Haldane’'s exclusion statistics: fractional quantum Hall
effect$®®-3° 1d and higher dimensional solvable 1 1

9,36-40 ; ; | T a—iker; o ik-r;

models? low-T properties of one-component Luttinger Cip= E Cxo€ I, Cjo= E Cko€ ", (2
liquids*! and Mott insulatoré? From the above remarks, it is WN % W
glea}r that the fractional statistica[ concept ha_ve had substa;, get a diagonal Hamiltonian i spacé"4*
tial importance to the understanding of many interrelated and
topical subjects. It seems thus reasonable to expect exclusons
to play some role in the mechanism of MIT in low- H=2 (exy—p—UR2)N,+ UE NN - 3
dimensional systems. ko K

In this paper, we concentrate our effort in the Hubbard
model with infinite-range Coulomb coupling~’ We show,
in Sec. Il, that this model is mapped onto an ideal gas o
three species of particles obeying fractional exclusion statis-
tics, thus clarifying some disagreements of previous &= —t> ek, 4

works2°% and allowing the interpretation of several NFL o

properties of the model in terms of exclusons. The fractionals he energy of the electron in this state. We remark that the
statistics manifests itself on the amplitudes of the respons"?

Here,nk(,:clgckg is the number of electrons with momen-
]Ium k and sping, and

. . X liagonality ofH in k space does not imply necessarily that
functions, such as specific heat, and by canceling the Pauy,q physics of this model is trivial. In fact, a more detailed

spin susceptibility in some metallic regimes. We thus make,a\vsis of the model reveals unexpected features, as will be
an attempt in describing a Mott MIT as being caused by theyicssed in the following sections.

statistical interaction _between exclusons. We repqrt, 'in Sec. We shall now discuss the mapping of the interacting elec-
_III, athorough_ analysu_; of th_e ground-s_tate properties 'nd“q_’[ron system described by E€l) onto an ideal gas of par-
ing a phase diagram, in which the regions separated by Citicjes oheying fractional statistics. In a recent paper,2#u
qal lines are desc_rlbed in thg frameworlk of exclus[on statisyiscussed the thermodynamics of an ideal gas obeying the
tics. The electronic one-particle dynamical properties of thegeneralized Pauli exclusion principle introduced by

model, with particular emphasis on the interacting DOS, isj51dane?’ In Wu's approach, the total energy of the system
also presented. In Sec. IV, we analyze the applicability of th

_ _ s additive
generalized Luttinger's theorem, recently proposed by
Haldane. We provide in Sec. V a complete scaling analysis
of the interaction-driven MIT, and, by explicit calculation of E=z EkaNka » (5)
the exponents, we show that the universality class of its QCP ka

is that of ad-dimensional free spinless Fermi gas. In particu- ..\ is a good quantum number andis a species label

lar, we show that the mean number of doubly occugked ¢, the exclusons. The statistical weidhis given by
states, which is one of the three species of exclusons identi-

fied in the model, can be taken as the order parameter of the _

. . . . . (Dka+Nka 1)
interaction-driven MIT. In this context, we should mention w=][] — =, (6)
that Continentino and one of ¥fshave shown that the ka (Dka™1)!Niq

interaction- and the density-driven transitions are in the samg
universality class. The static spin susceptibility is presente&v
in Sec. VI, where we show that the Pauli response is sub-
dominant in all metallic states due to the strong correlation in Dyo=Gy— 2 Ok’ :aa’ Nk o’ (7)
the system. Finally, conclusions are presented in Sec. VII. K'a’

here
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Gy is the number of available single-particle states when 1 ~ ~ ~ ~
there is no particle in the systetwe will assume tha6, is Q:% #kaNka™ 5 % (Diat Nia)IN(Dyat Nica)
independent ok, i.e., Gy=Gy), Ny, is the corresponding

number of particles and the mat@ ., defines the mu- 1 ~ ~ ~ -
tual statistical interaction. The set of mean occupation num- 5 % Dialn Diat B % NiaIN Nicg - (14
bers,n,,=N,,/Gg, that minimizes the grand-canonical free
energy satisfié8 In equilibrium, the sefn,,} is obtained by the condition
2Q/9Ny,=0. Thus, we find the following generalized law of
Ik’ k;a' 1
Wir o/ ; mass action
(1w [T | — —efe,  (8)
k' a' 1+Wk/ar ~gk'k;a'a
k’a’ Be

. — =g ka’ (15)

where 8=1/T andw,,=D,,/N,,. Equation(8) was also Wa (LW ) ke at Mkia’a

derived® using the von Neumann entropy associated with
Haldane exclusion statistics. Moreover, the grand—canonica\.’b’here
free energy reads

gkk’;aa’ == E akk”;aa”Ak”k’;a"a’ ’ (16)
Qo= = =S (14w} 9 o
ﬂ frac_ﬁG_O_ = n( Wka)- ( ) and
The mapping of the interacting electron system described Wi 00 =Dy g Nigr 1 - 17)

by Eq. (1) onto an ideal gas of particles obeying fractional The f is obtained b bstituti into E
exclusion statistics has already been proposed in th 4(; ree energy is obtained by substituting ELp) into Eq.

literature®¢2° but the results were incomplete and thus some
controversy has arisen with respect to the true nature of the

excluson particles of the modésee, e.g., the concluding BQrac=— 2 In(1+w.h, (18
remarks of Ref. 2B In fact, using Eq.(1), the energy is ke
given by in agreement with Eq(9). Note that if by some fortunate

guess the starting,,, is the correct set of exclusons, then the

matrix A reads:

E=(H)=2 exuNka, =123, (10)
ka

Akk’;aa’:_ﬁkk’éaa’ ) (19)

where  eg=g—pu—U2=gr,, &3=U and ng  in which case, Eq(15) reduces to Eq(8). To obtain the
=(Nkp),Nk2={(Nk| ), Nka= (N1 N} ) - If we interpretny;, Nko,  correct mean occupation numbers from E), we find that
andn,; as excluson specigsee Eq.(27) of Ref. 3¢, one the following matrices

can show that it is impossible to obtain a statistical matrix

that gives rise to the correct thermodynamics of the model. 1 1 -1
T lish thi i ixth
0 accomplish t is we need to mtroo_luce_ a mamlxt at ke =0r| 0 1 0O |, (20)
transforms the variabldd,, of the Hamiltonian(1) into the
correct excluson species 0 0 1
1 0 -1
Nka:—kZa, Akk’;aa'Nk'a" (11) Akk’;aaf:_ékkf O 1 _1 , (21)
0 0 1

The statistical weight has the same form as in . _ ) . .
satisfy all required conditions. The matm@xy.. .. has been

~ ~ anticipated in Ref. 36 but with an incorrect interpretation.
_ (DkatNie—1) (12) The true statistical matrix of the system is given by

ka (bka_l)Nka ,

1 1 1
Where ékk’;aa’zakk’ 0 1 1 . (22)
0 0 1
Dikea=Ck— 2 O’ iaaNirar - (13)  Therefore, the energy is written more appropriately in the

k'a'

form

Now we proceed to obtain the set of mean occupation num-

bers,n,,= Ny, /G,. Using the statistical weight given by Eq. E=2 SralMkas (23
(12) and assumindl,,, , Dy, , andN,,, to be large numbers, ke

the free energy can be written as where
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2.0
tka=— 2 errar(A Dirkara- (24) @ (1) )
K a' 15 —I
Using the matrix(21), we obtain: <\l 10 Pmin Pmax
B B eV 2N I
eru=ex—m—U2=¢gy,, 0.5
(25) 3
~ 0.0
ex3=2(ex— ). 00 05 10 15 20
We may thus interprat,; andny, as the occupation number P
of singly occupieck states, whereas,; counts doubly oc-
) 6 . 1.5
cupiedk states’® Moreover, the mean occupation number of (b) F
exclusons can be written &g, = (i, .), Where g, are (Hmax
operators defined by 0.5 (2)
= I 3)
Ya=(1—cf C)Ck;, o= (1—cl Cy)Ck, 05 (1 QF =
Hmin
k3= Ck1Cx| - (26) 15 E
0.0 1.0 2.0
We have confirmed this proposal by calculating the re- A/U
tardedexclusonGreen’s functions whose poles are located
precisely at the energies given in Eg@5) FIG. 1. Ground-state phase diagramds=1, (a), and in any
dimension,(b). In region(1) there are only holes and singly occu-
t piedk states; in regiori2) we have doubly occupiekl states but no
(o ¥l
GZ(k,w) = k;“' k.a ; (27 holes; finally, in regior(3) we find both singly and doubly occupied
=gy tin particlek states and holes. The capital lett&andF mean empty
and full band, respectively.
Uea Wk D=1 2 Ty, (28) Ill. GROUND-STATE PROPERTIES
: , =,k

Let us now consider the ground-state properties of the
where the angle brackets denote the thermal average and thigeracting electron system. We present in Fi@) the phase
curly braces define the usual anticommutator. Note that igliagram of a one-dimensional lattice, for which a full ana-
Eqg. (27) the poles suggest independent excluson speciesytical derivation is possible. The capital letter | denotes a
while the numerator, which is given by E@28), shows Mott-insulating phase, whileE and F represent regions
clearly the mutual statistical interaction. where the band is empty and full, respectively. The lines

We stress that the mapping of a model of interacting parpmin and pnmay are defined by
ticles onto a multicomponent system obeying fractional ex-

clusion statistics is of great interest in the literature. Re- 1 u-az. 2 e

cently, Maskevitc#—48 hgs developed an interesting scheme pm"‘_iﬁ o(x)dx= ZarcsivU/A, (29
to construct physical realizations of fractional statistics. It

consists of incorporating the interaction matgnto renor- AR-U 1 (AR

malized quantum numbers for the physical particles and has Pmax:( f_m Efm—u) a(x)dx

been applied to the problem of anyons in the lowest Landau
level. A serious restriction in Maskevitch’s approach, how- 2
ever, is the requirement thgtoe a symmetric matrix. In fact, =2- ;arcsin/A, (30
there is no need for such constraint in Wu’'s E). The map
presented in this work is an example of a realization of avhere the lattice DOSy(X), is defined by
multicomponent excluson gas, with a nonsymmetric statisti-
cal interactiong, in terms of interacting fermions. Note that
we do not impose any renormalization of quantum numbers
in constructing the map, since the kinetic and the interaction
term in the Hamiltonian commute. . _ = T(X) B(x+ AI2) B(AI2—X), (31)

We have thus presented an extension of the fractional-
statistics formalism, that has made it possible to map an inin which 6(x) is the Heaviside step function. These lines
teracting electron system of two species of particles onto aseparate two metallic phases, whose properties can be under-
ideal gas of three species of exclusons. A somewhat surpristood using fractional-statistics concepts. Although the actual
ing and unique feature of this model is the appearance ashape of the lines is dimensional dependent, the point where
stable single-particle excitations with nontrivial exclusionthey meetlU=A, is the same for all dimensions as can be
statistics in any dimension. seen directly from Eq929) and(30). We also find that the

2
()= 2 Ax=2i)
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FIG. 3. Fermi energy as a function of the interactiondir 1.
L5 The curvesp=0.5 andp= 1.5 display cusps as the band filling is
(b) such thap = pyin @andp= pnax, respectively. In the curve=1, the
U=3A2 cusps appear in the QCP. In this last curve, we have calculated the
< Fermi energy ap=1" for U>A.
=.00 |
—A/2 cosp, region(1l),
U+A/2cospm, region(2),
-1.5 EF= 2 2
u 1 T T
0.0 18 20 > ii\/< A cosp? - ( U cotp? , region(3),

FIG. 2. Chemical potential as a function of band filling dn
=1 and atT=0. In (a) the system displays cuspsmt;, andp,.x  Where the plugminus sign is used fop>1(p<<1). In Fig.
but remains always metallic for any filling. Itb) the chemical 3, we ploteg as a function of the interaction for three par-
potential displays a discontinuity at=1 and the system exhibits a ticular values of the band filling. Fgs=0.5, e varies as a
Mott MIT. (From Ref. 4) function of U until the mean number of doubly occupi&d
states vanishespE pnin), Where it displays a cusp, after
line pmin (Pmay) for different DOS cross atl/A=1/2,p which e¢ is independent ot). For p=1, we calculated the

=1/2(U/A=1/2,p="3/2). An equivalent phase diagram that F€Mi energy ap=1": e grows linearly withU up to the
is dimensional independent is shown in Figb)1 In region QCP, and becomesU independent thereafter. Fop

. : - e s =1.5,ep always varies withU and displays a cusp as the

(1) the system is a compress@le sFatlstlcaI sBln liduid, mean nFumberyof holes ik space vanisﬁeé%pmag?aﬂer
where double occupancy of particles is absent, n@=0.  \hich ¢, grows linearly withU. We remark that the Fermi
Region(2) represents the mentioned phase with the absenc@nergy does not display a discontinuityTat 0 as the inter-
of double occupancy of holes. The insulating phase is agtion is switched on.
incompressible statistical spin liquid and both the charge The charge compressibilify,obtained from Eq.(32),
compressibility K, andn,; vanish. The insulating line | ter- reads
minates at the QCIPsee Figs. (@ and Xb)]. In region(3)
the system is a degenerate compressible statistical spin lig-
uid, which is characterized by partial exclusion of doubly
occupied states and a finite compressibility.

The chemical potential &=0 is obtained as a function
of the band filling using

K=%aﬂﬂ—umyhﬂﬂ+umn. (33

A plot of K as a function of the electron density is shown in
Figs. 4a) and 4b) for a one-dimensional lattice. Observe in
4R 1 fuiun Fig. 4(a) that K exhibits a singular behr_alvior at two sp_ecial
p= f o(x)dx+ —f o(x)dx. (32)  PoINts,ppin a_ndpmax_._ Although Hatsugai a_nd_ Kohmotalid
— 2)u-ur find these singularities, their physical origin has not been
discussed, neither have the lings;, and p,a, been identi-
fied. It is clear that the divergence Kfas the system crosses
In Figs. 2a) and 2b) we show a plot ofu as a function of  these critical lines, reveals the existence of two different me-
the band filling for a one-dimensional latticlr similar fig-  tallic phases in the ground state for<A. For U>A the
ures see Ref.)5In Fig. 2Aa) the chemical potential is con- compressibility displays the expected one-dimensional sin-
tinuous and displays cusps @t pnyin andp=pmax. In Fig.  gular behavior as one approaches the Mott phasel() at
2(b) we see that the chemical potential has a discontinuity aivhich K=0.
p=1 signaling the vanishing of the charge compressibility in  We now proceed to the calculation of the fermionic inter-
the insulating phase. The Fermi energy is obtained from thacting DOS. Using the Matsubara one-electron Green’s func-
chemical potential agsg= u— U/2. In the ground-statgFig.  tion, G,(K,iw,),***° where w,=(2n+1)x/B,(n=0,+1,
1(a)], the Fermi energy satisfies: +2,...), and itgelation with the retarded Green’s function
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6.0
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U=A2
< 4.0

%

2.0

0.0
0.0

pmin 1.0 pmax 2.0

6.0

(b)
< 40| V=32
N

2.0

0.0
0.0

1.0

Y

FIG. 4. Charge compressibility as a function of band filling in
d=1 and afT=0. In (a) the charge compressibility displays singu-
lar behavior afp,in and pnhay, revealing the existence of different
metallic regimes. In(b) the system is insulator gi=1, with K
=0. (From Ref. 4

2.0

Gl(k,w)= lim G,(K,iw,), (39
ia)n—>a)+i0+
we find for T—0 the expression
1—(Nyy Nk
G+(k,w)= ~< k .>o n ~< k~>0 . ,
w—skl+lO+ w_(8k3_8kl)+|0+
(35

where (n,,)q is defined in Eq.(40), and G*=1/25,G .
The poles in Eq(35) determines the fermionic band struc-
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ture of the model. In particular, fop=1 we find two
branches fow,, since the mean occupation number satisfies
(Nke)o=1/2, when arccodf/A)<k<arccos¢-U/A). This
special filling shows a clear signature of the fractional statis-
tics by giving rise to a split in the spectral functiéik,w),
defined in Eq.(36). In fact, the quantitity of interest is the
fermionic interacting DOS defined by

2 2 X
D(“’):N; A(k,w)=—m; Im{G™*(k, )},
(36)

whereA(k, ) is the spectral function. Substituting E@5)
into Eq. (36), we obtain the interacting DOS at=0:

D(w)= %G(w-f-,u,-i- U/2){6(w)+ 0(U+ w)}

+ %U(w-l-,u,—UIZ){f)(—w)-i- o0(U—w)}.
(37

A plot of D(w) in Figs. 5a)—5(f) makes it possible to visu-
alize the Mott MIT ind=1. Note that the states with<0

are filled. The interaction-driven MIT is shown in Figsab-
5(d), whereas the density-driven MIT can be seen by looking
at the figures in the sequence e,d,f. In Fith)3he system is
metallic and the three fractional species are in equilibrium
with a Fermi surface consisting of four vectors krspace
(the two positive ones are shown in Fig.. s U moves
towardsA, the mean number of the species-3 per site,

N3=(ZNks)/N, approaches zero as the QQHg. 5c)] is
reached. Thus, we can taki as the order parameter of the
interaction-driven MIT. This result is confirmed by the as-
ymptotical behavior o3 close to the QCP and is in agree-
ment with scaling predictions of Sec. V. The Mott phase
with @ gap Ag,p,=U—A=A/2 in the interaction DOS is
shown in Figs. &). In the metallic states plotted in Figs.

6.0 6.0
q |@ a |@©
340 340
= &
20 2.0 L
09,5 s 0.5 L5 0. 15 R a—Y 0.5 15
/A w/A /A
6.0 6.0
a |® 4 ()
340 340
a a
2.0 2.0 U
00,5 s 0.5 L5 09,5 05 0.5 L5 00,5 05 0. 15
/A /A /A

FIG. 5. Interacting DOS ird=1 andT=0 as the system undergoes an interaction-driven M&—-(d)] and a density-driven MIT

[(e),(d),(f)]. All states withw=<0 are filled.
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<pmax- Here, the Fermi surface is defined by the set
A 10 U<A {—ky,—kq,kq,k;} and |4yi|=1/2._ With this prescription,
E ’ the volume of the Fermi surface is given by
\g/ V|: = k1+ k2, (41)
0.5 . .
and therefore density of particles reads
pr=k;+k,=Vg=V . (42)
0.0
0.0 K 15 k We remark that although E¢42) shows that the volume of
k the Fermi surface is preserved, this cannot be considered as a

FIG. 6. Mean occupation number of the ground state for a par-pr.OOf of the validity of the Luttlnger§ theorem in the gener-
ticular band filling ind=1 satisfyingp < p< pras. ghzed fprm _propqsed by Haldane, sifdev;| changes as the
min max interaction is switched on. Nevertheless, we stress that as

5e) and &f) the Fermi surface is defined by only two long asU>0, |A;| is indeed an adiabatic invariant.

k-vectors. The particle-hole symmetrgf the model mani-
fests itself in Figs. B)—5(f). V. THERMODYNAMICS AND SCALING ANALYSIS

In this section we provide a scaling analysis of the model
IV. LUTTINGER'S THEOREM in the vicinity of the QCP of the interaction-driven Mott
MIT, whose hypothesis are confirmed by microscopic calcu-

Recently, Haldaré has proposed a theory for describing%ions_ The system described by Ej. exhibits a Mott MIT

the low-energy excitations of interacting electronic system
in the metallic state. In this approach, the system is assume
to have a “generalized” Fermi surface defined kyspace
vectors at which the mean occupation numbgt) displays
some type of singular behavior a=0. In particular, the
volume of the Fermi surface, defined by the set of “singu-
lar” points kFi is given by

ef. HatT=0,u=0, andU=A. There are several equiva-
ent formulations of the scaling theory at zero and finite
temperatur® >’ and here we choose a scaling form for the
singular part of the grand-canonical free ener@yT,u«;9),
that is valid in the whole vicinity of the QCPTEx=g
=0)

M

T
-g)= g (d+2) L
VF:Z AVikFi- (38) Oy(T,n;9)=¢ ZQO(g‘ﬁ,gﬁ‘s . (43
1

where the indiced »; are adiabatic invariants and are related!n Ed- (43 & is the critical correlation lengtH(), is a uni-
to the particles statistics. They are determined by the stef€rsal scaling function, the chemical potentjal,is the field
discontinuity of the distribution function of the non- thatcouples tothe order parameggr; (A —U)/2 is the vari-

interacting particles through the formula able that drives the transition at zero tempera_tuylseanq
Acr0s= B9 are crossover exponentd,is the Euclidian di-

Avi=lim{ny(kg — &) —ng(kg + 6)}. (39 mension of the system ardis the dynamic exponent. The

50 : ' presence ofz, which governs the scaling properties of the

T=0 critical dynamics, results in an effective dimension
) . des=d+2z. The main assumption in this scaling theory is
in the fractional quantum Hall effectA ;| can assume val- that the transition is characterized by a single correlation

ues gl\lie?t' by Iﬁ,t\r/]vhereFrﬁn_ ISt akn Integer numb:ar. Furt?er-f length ¢, expressed in different equivalent asymptotic forms,
more, Luttinger's theorem IS taken as a general property o corresponding to the approaching path to the QCP

the system due to momentum and particle number conserva-

For fermions,|Av;| =1, by virtue of the Pauli principle, but

tions. ~g %, T=0, g—0",
More recently, Byczuk and Spafkshowed that in the f~9 g
Hubbard model with infinite range Coulomb coupling the &~T7'T, g=0, T—0. (44)

singularities of the Fermi surface satidfy»;|=1/2 for any

U>0. The authors however do not use this result to establishccording to the values of the rati/g? and the sign of,

any connection with Luttinger's theorem. In this section, wethree different regimes can be identified: a quant@ a
provide such a connection in the context of the model. Usingluantum critical(QC) and a classicalthermally activategl
definition (38), the volume of the Fermi surface for the non- regime. In Fig. 7 we plot a phase diagram as a functiog of
interacting case i&V(FO)=p7T, wherep particle density and and T where these regions are separated by crossover lines:
|Av|=1. As the interaction is switched on, keepipgcon-  T=9 and T=-—g. The hyperscaling relation: 2a=(d

stant, the mean occupation numbefTat0 satisfie3 +2)v is assumed to be valid for am<d., whered, is the
upper critical dimension. Using Toulouse’s metffoth ob-

1 tain d., we will find that the hyperscaling relation is valid
(Meg)o=5[0(n—extU2)+0(p—e—U2)]. (400 for anyd.
In the scaling analysis we will use the singular part of the
In Fig. 6, we plot this function for the one-dimensional lat- grand-canonical free energy and, consequently, we identify
tice and for a particular band filling satifying,i;<<p  regular and singular terms in corresponding expressions for
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A (d+2)1/2

2

2(2x
A

QX y)/N= —Ad(

X {ag+ayy+ayy’+---}, (49

T=—g T=g

Quantum Critical
regime

wherex=maxg,T} andy=min{g,T}/x define the regime of

interest. The series’ coefficients depend on the system’s di-

mensionality,d, and onf, defined as an index counting the

Q;‘e‘";s:;" degeneracy of the ground state. We remark that in the exclu-
s son representation fl/equals tok-state mean occupation

0 g number for the case of total exclusion &&0 (N =Ny,

=1/f, ni3=0). In thequantumregime @>T) the first three

FIG. 7. Phase diagram as a functiongadnd temperaturé. The  coefficients are listed below:

regions indicated are separated by crossovers lihegy and T=

—g. The pointT=g=u=0 is the QCP of the MIT. o 4 o 2Inf o

B TGdr2) T g ¥
Q. We are interested in obtaining results at low temperatures (50)
(BU>1) and near the QCPT(=0,U=A), and thus we write

Thermally
Activated regime

1[ 72 In )2
?Jr(n)

In the QC regime|g|<T) we can determine all coefficients
via the general relation

Q(T,,u;g)z% (ey—pmw—U/2)~NTIn2

Qc—lrdcb L +1,1],f=2, (51
1 am - fml 2 f 1 2 m 1 1T &y ( )
_TEK In} 1+ Eeﬁ(skw—um +0(e” V). where®(z,v,u) is the Lerch functiof® which replaces the

Riemann Zeta function that appears in similar expansions for
(45 Fermi liquid systemgsee Appendix A for details More-

) ) . . over, the presence of the Lerch function in the amplitudes of
The first two terms in Eq(45) being regular functions are he specific heat is a signature of the fractional exclusion
useless from the scaling point of view and can be neglectedagistics and identifies the non-Fermi-liquid behavior of the
However, we point out that the second term exhibits thesystem. Note that a distinct value faf was reported in Ref.
degeneracy of the ground state and gives rise t0 a residugl hresymably due to an incorrect treatment of the low-
entropy. The third term is singular f&d —A~ and T—0,  emnerature expansion. We should point out that,ffer,
and can be. conveniently rewritten using the tlght-blndlng,[he standard coefficients for the spinless Fermi das:0)
DOS, a(e), in the form, are recovered if one includes the neglected terms
[O(e #Y?)] in Eq. (49).
14 leﬁ(gu,z)] B)_/ compariln.g the singular part in Eqgl9) and (43) we
k obtain the critical exponentsyy=wvr=1/2,z=2 and ¢,
(46) =¢r=1, and after using the hyperscaling equation, we get
ay=ar=1—d/2. Although in most cases the crossover ex-
in which we have set the chemical potentia=0 and the ponent satisfies the relatiap=zv, as we find in our study,
density of states parity was used. The logaritmic factor of thehere are special situations in which different expressions
integrand in Eq.(46) is vanishingly small in the interval apply®’ In the classicalregime (T<|g|) the dominant term
[0,U/2] for B—, and therefore, a8 —A ", the dominant of () is obtained by substituting the series in E49) by a
part of the integral comes from the band edge afd) can  thermal activation factore~19/'T,
be approximated by For the Mott interaction-driven transition, the chemical
potential couples to the order parameter, which we identify

A2
O(T,0;9)= —Tf de o(e)ln
0

2g\d2-1 £ as the number of doubly occupidd-states per siteN;
U(S)ZAd(l_X) 1+O(1_X)]' =(ZNys)/N. Indeed, by approaching the QCP along the
pathT=u=0g—0", we find: N5(g)=Aq(A/d)(2g/A)¥?,
26 andN;(g) =0, forT= =0 andg=<0. From the expressions
= 1. (47)  above an exponeng=d/2 results. We can also derive an
A equation of state:Ng(u)=Aq4(A/d)(2u/A)2T=g=0u
_ _ _ —07, from which we identifyd=2/d andA=86=1. The
In the aboveA, is a dimensional dependent constant: vanishing behavior o5, as one approaches the QCP along
the line u=g=0,T—0 is also determined by the exponent
A 4 i) a2 49 B:N3(T)=A4aC(A/2)(2T/A)¥2. The above results are
ATAT(d/2) \ 27) consistent with the usual assumption of taking the charge

stiffness,D., defined as thedc part of the conductivity,
andI'(s) is the Gamma function. After integrating by parts o(w)=D.d(w), as the order parameter for the Mott MIT. In
twice, we obtain a series expansion for the free energy pefiact, from the scaling predictiott, D~ ¢ (4*272) and the
site (see Appendix A above-derived results for the order parameter, we fipd
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~g Y2 for T=pu=0, andg—0", and alsoé&r~T 2, for For completeness, we have also calculated the static struc-
u=0g=0 andT—0, with z=2 andv=1/2, as expected. ture factor,S(q,T,u;g), associated with the Fourier trans-

It is interesting to note that the density-driven MIT in the form of the density-density correlation function. In thean-
d=1 short-rangeHubbard model exhibits the same critical tum regime the singular part readS;(q—0;T=w=0;9)
exponents as the model we stuthyin fact, in both cases we ~g%?,g—0 and thus, from the scaling predictidhS,(q
have a=1/2, v=1/2, z=2, which implies é~571, K, —0;T=u=0;9)~g "% 7" one obtainsy=d. The ex-
~ 6~ 1 andD,~ § where §=|1—n|. On the other hand, for ponenty also determines the singular behavior®in the
d=3, other similitarities can be found in comparison with QC regime: S((q—0;T=ux=0;9)~T%2,T—0. Moreover,
the solution of Brinkman and Rité for the interaction- we can show that the charge compressibility satisfi#s:
driven Mott MIT, where the critical exponenta=0, v  =A4(29/A)¥> 1 T=u=0g—0"%, and therefore y=1
=1/2, z=1 describe analogous qualitative behavior for the—d/2. From the above anlysis, we conclude that the expo-
correlation length, charge compressibility and charge stiffnents of the quantum critical fixed point of the MIT are in
ness:é~g~ Y2 K.~g,D.~g, but with distinct exponents. the same universality class as that of the spinless free Fermi

The grand-canonical specific heat can be writtenCas gas® at the QCPu=0, T=0, characterized by the vanish-
=CM+c@+c® where ing of the Fermi surface.

u\? VI. THE STATIC MAGNETIC SPIN SUSCEPTIBILITY
C(1)=/32k2 (8k_,U«+ 5) Ned(Nkoe—Nia)s— (52) '
7 In this section we evaluate the zero-field magnetic suscep-

U ) 2 tibility at finite temperature. The grand-canonical free energy

c@=p2y <8k—,u— > Q) in a magnetic field is given by
k,o

X (1= Ngo = Nig+ Nikg) (Mg Nica) (53 Q(T,p,H;9)= —Tzk: In{1+e™ 2Ptk r)

— By —p—UI2)
CO= B2 [2(e4— ) (1= Mgy =N+ NN +2e T oosl fath), (58
k,o

where pg is the Bohr magneton. The zero-field magnetic

(54 susceptibility is defined as follows
We note that in the exclusion representation, the above ex-
pressions evidence the mutual statistical interaction between o1 3°Q
the exclusion species: Xu(T9)=- N yH2 = (59
H=0
CO=82S S (Bra—Frw) MiaPia (55) and thus, using Eq59) we find
k a=1,2
2
Mg (A2 o(e)de
CO=p2> 2 &f.Na(1-1y) (56) xu(1:9)= ?J'A/zeﬁ(a"“u’zﬂ 2+e AlemntuR); (€0
= n —Ny),
B 2 A, Skalka K

At this point, we remark that the zero-field magnetic suscep-
tibility for fixed density, x,, can be obtained from E¢60)
CO=p2> efNia(1-ny), (57) by eliminatingx in favor of p=N./N. On the other hand,

k the mean occupation number of the simple occugisthates,

- o~~~ Ns, is defined as
in which we have definech,=n,;+n,+n; and «,y s

=123. Ns(T,1;9)=Ne—N3=N;+N;, (61)
At low temperatures and in different regimes we derive
expressions fo€™) andC®(C®)~eP2_0) using the in-
teracting DOS, Eq(37), at T=0. In the quantumregime,
one finds: CX(T,g)=(3/2)D(w=0)a3T,u=0,(T/g)—0,

with N,=3,n,,, («=1,2,3), the total average number of
the excluson species. After some algebra we obtain

S Q dh Af2 o(e)de
which implies a thermal mags=C .(T,g)/T~g _ and NS(T,,u;g)zNJ P iU} 51 g Ae— 70D
an exponente=1—d/2. Moreover, in the QC regime we —AR
obtain: CO(T)=[D(w=T)+D(w=—T)]ad(d (62)

+2)/4]T,u=0,(g/T)—0, whose explicit T dependence Comparing Eq(60) with Eq. (62), we get
reads:CO%(T)~T9?, with an exponent/z (Refs. 53—57

expected for a QCP, and is here a consequence of the dis- Mé
persion relation and the tight-binding DOS at the band edge Xu(T:9)= T
[Eqg. (47)]. Similar results have also been obtained for the

density-driven MIT by allowing the variable interchange: We thus find that, as a consequence of strong interactions
g<—m. As a peculiar aspect of this model, at=—g (p in the system, the Pauli response is subdominant at low tem-
=pmin) OF =0 (p=pmay the quantumand QC contribu- peratures, and the susceptibility is essentially Curie-like. On
tions compete equally. This peculiar feature will be furtherthe other hand, folJ—<, the susceptibility is pure Curie-
considered in a forthcoming publication. type sinceN;+ N, is T independent.

N.{+N,
N

(63
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We now present an analysis of E§2) in four particular  where p((T=0) is the mean particle density with simple

cases: . . _ occupancy irk space. On the other hand, as wedix 1 and

(@) The simplest one is obtained for=0, when we re-  putU<A, the chemical potential at low temperature is given
cover the Pauli magnetic susceptibility in tiie-0 limit. by*

(b) Another case of interest is the atomic limit, where the
“hopping term,” t, vanishes and Eq62) becomes: u=—TIn2+ . (70

2 Thus, forx,(T) we obtain
MB 2
X,L(T):7 PE—U 1 51 o Bu+UR) (64) 2
X, (T)= Tps(T:O)mga(U/z)ln 24, (7D

which is indeed the correct resflt.
(¢) For U—ce and fixing p<1, the number of doubly (f) If one setsU=Uc=A,u=0 andT—0, i.e., close to
occupiedk statesN3 vanishes and wet get a Curie-like mag- the QCP, we get from Eq60)
netic susceptibility both in the insulating phapes 1, and in
the metallic onep<1, thus: wh A2 g(e)de
12

B
Xp(T)="Fp- (65) (72)
We should notice that the integrand in E@2) is exponen-

We remark that Eq(65) is valid in any dimension and, in tially small_aSS moves away from the band edge. By using
particular, ford=1 it coincides with the result obtaind in the the approximate form of(¢) in the band edge, E¢47), we
short-rangeinfinite-coupling Hubbard chaiff. If we fix the  finally obtain

} +O(e Fr2),

chemical potential instead @f, we find for the spin suscep- 2
tibility, obtained by substituting in Eq60) u— u—U/2 and =B Nt
. . . . . X/.L( ) { 3 }1
by taking the limitU—« in this sequence, the following T
result
u=9g=0T-0, (73
2

In2

— ~ C
XM(T)=$p(T=0)+ kot (66) whereN;=Agag “(Ao/2)(2T/A) %2

. . A VII. CONCLUSIONS
whereu is kept far from the band edge in order to justify the

Sommerfeld expansion. This Pauli term can be understood as In this paper, we have studied a Hubbard-type model with
follows: when the magnetic field is applied, the particles ofinfinite-range Coulomb coupling which is mapped onto an
the system align themselves witH, thus reducing the ideal gas of particles obeying fractional statistiasla
chemical potential. Therefore, to kegpconstant a macro- Haldane. We have shown that, for doing this, it was neces-
scopic number of particles, proportionalkly is needed, giv- sary to extend the thermodynamic formalism developed by
ing rise to the Pauli term. The factor In2 ig,(T) is a  Wu, thus clarifying some disagreements in the literature. We
signature of the fractional statistics obeyed by the particlefiave contructed excluson operators and we have checked its
and the degeneracy of the ground-state. validity by calculating theexclusonGreen’s functions and

(d) For p<<pmin, the number of doubly occupiddstates  finding poles exactly at the energies associated with the ex-
is exponentially small, and similarly to the cage—=, we  cluson species. We have presented an attempt to describing a

obtain Mott MIT as being caused by the statistical interaction be-
tween independent exclusons. In particular, we have demon-
Mé strated that the mean number of doubly occupgiestates,
Xp(T)= Tp+ cee (67)  which is one of the three species of exclusons identified in

the model, can be taken as the order parameter of the
interaction-driven MIT. We have described several NFL
properties of the ground state caused by the statistical inter-
5 action. In particular, we have shown that in tHe< p phase
Y, (T)= @;(T=O)+ In—z,uza(,u—U/Z)Jr ..., (69 diagram there exist two fundamental ling@s,i, and pmax.

" T 2 7B ’ separating regions of doubly and singly occupledtates,

whose interpretation in terms of exclusons is evident. These

where we have assumed that-U/2 is far from the band special fillings ind=1 are responsable for cusps at the

and for y,, we find

edge. chemical potential and singularities in the charge compress-
(6) FOr tmin<pu<ptmax andU<A, we find ibility. We have also investigated the Luttinger’s theorem in
the form presented by Haldane and have shown that although
2 In2 the adiabatic condition is only satisfied far>0, we can

2
Xu(T)=5ps(T=0)+ 7#%{0(,&— U2)+o(n+U/2)}  extend Haldane’s prescription in a way that the volume en-
closed by the Fermi surface is preserved for &gz 0. We

+eey (69 report a detailed quantum scaling analysis of the interaction-
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driven MIT close to its QCP where the scaling hypotheses Integrating by parts twice and neglecting terms of order
are confirmed by explicit calculations of the thermodynamicO(e™#"), we obtain
guantities such as the free energy, the specific heat, the order

parameter and the static structure factor. We find, by explicit A2 4
calculation of the critical exponents, that the QCP of the MIT Qs=—Aq 2/ d(d+2)
of the Hubbard model with infinite range Coulomb coupling
belongs to the same universality class as the QTP 4 f,gg (Zg oT \d2-1  fav g a2
- i i X —_—— ———dy.
0) of a spinless free Fermi gas. Moreover,ds-1 we _pupl A A y (&1 1)2 y

identify the same critical exponents as those of the density-
driven MIT of the one dimensional short-range Hubbard
model. It is important to note that the coefficients of the

rand-canonical fr ner xpansion and of th ific™" . S .
grand-canonical free energy expansion and of the spec mits of the integral to—o and«. Retaining the first three

heat express a clear manifestation of the generalized excl rms in the expansion and comparing to ) on n
sion principle. We have also obtained the zero field magnetivsriteS € expansion and comparing to one ca

spin susceptibility in several regimes and we highlight here
that the low-temperature behavior is Curie like, as in the
infinite coupling short-rangd=1 Hubbard model, with sub- o (7 fe’ dy— 4 (A3)
dominant, if any, Pauli-like contribution. 0" d(d+2) —o(@Y+ )2 d(d+2)’

We finish by remarking that our findings, albeit derived in
an extremal limit of an infinite-range Hubbard-type model,

Consider first the quantum casg>T). After a binomial
xpansion in the integral of EQA2), we can extend the

contains several features which may provide insights into atl?zg - _fye dy= 2 Inf, (A4)
more realistic models. We mention in particular the ap- dJ—=(eV+f)2 d

pearence of exclusion statistics in the thermodynamic prop-

erties of the model, and the occurrence of a MIT. Both sub- = fy2eY 1[ 72

jects are of much current interest and we emphasize that the a2Q=f —zdy:§ ?Jr(ln f)2]. (A5)
mapping presented here, between interacting electrons and —=(eV+1)

exclusons, has proved very helpful for obtaining new results o ) ]

in the context of the excluson formalism, such as the exclu- [N the QC case T>g), after a similar binomial expan-
son Green’s function and the specific heat formula, and thugion, the lower limit in the integral of EJA2) can be con-

it represents a concrete step towards the understanding of tgilered as-< while the upper limit may be taken as 0 and
physics underlying fractional statistics. thus we get the general teraf“(m=0,1,2 . . .)

d wydlz—m
——m+1 j dy. A6
(2 ” 0 Y+ 1/f Y (A6)

Using now the integral form of the Lerch functioffs,
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otV —1a—(u—1)t
APPENDIX A: COEFFICIENTS OF GRAND-CANONICAL d(z,0,u)= 1 f v e dt, (A7)
FREE ENERGY EXPANSION Fw)Jo e'-z

We sketch the derivation of the coefficiersts, obtained
in the grand-canonical free energy expansion. Consider the
following changing of variabley= (e —U/2), which trans- z=1,Re>1],
forms Eq.(46) into

[Rev>0, or |z|<1, z#1,Re>0, or

a simple algebra and an integration by parts leads us to

0 ATZJBQ (Zg 2T )dlz—ll . 1 y)d
s— A4 Ny ni1+—e’/dy. 1 d 1d
—-BU/R2 A A f QC= _ _ - +
(A1) as _fm!F(2>q)< 15 m+1,1]. (A8)
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