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Metal-insulator transition with infinite-range Coulomb coupling:
Fractional statistics and quantum critical properties

C. Vitoriano, L. B. Bejan, A. M. S. Maceˆdo, and M. D. Coutinho-Filho
Laboratório de Fı́sica Teo´rica e Computacional, Departamento de Fı´sica, Universidade Federal de Pernambuco,
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~Received 1 July 1999; revised manuscript received 21 October 1999!

We show that the Hubbard model with infinite-range Coulomb coupling is equivalent to an ideal gas of three
species of particles obeying fractional exclusion statistics. A full appreciation of this mapping requires an
extension of the pertinent formalism. This very simple, but rather peculiar model is exactly solvable in any
dimension and exhibits a Mott metal-insulator transition, whose universality class is shown to be that of a free
spinless Fermi gas. A modified version of the Luttinger theorem is shown to apply in any dimension. We also
characterize the metallic and insulating phases by obtaining the electronic band structure as well as the
interacting density of states. The fractional statistics manifests itself on the amplitudes of several thermody-
namic quantities and, in particular, the Pauli spin susceptibility is subdominant in all metallic phases, and a
Curie-type of response appears.
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I. INTRODUCTION

The field of strongly correlated electron systems has, o
the years, been the subject of intense activity. Its range
application includes high-Tc superconductivity, heavy fermi
ons, metal-insulator transition~MIT !, and fractional quantum
Hall effect. A crucial common feature of these systems is
fact that several physical phenomena of interest take plac
intermediate or strong Coulomb coupling. In many situ
tions, perturbative approaches are unreliable and contro
nonperturbative calculations become necessary. Unfo
nately, non-perturbative schemes have proved rather diffi
to implement, and as a consequence many fundamental p
erties of even the simplest models have been elusive. I
therefore, important to study non-trivial models or spec
limits where exact results are possible, such as o
dimensional lattices with short and long-range interaction1

infinite dimensional systems,2 finite dimensional lattices with
infinite-range hopping,3,4 or infinite-range interaction.5–7

Among the subjects of interest concerning strongly cor
lated electron systems, one of the most important is the M
Hubbard MIT.8,9 Recently, Anderson10 emphasized that the
problem of doping a single Mott-Hubbard band is the sta
ing point to understand the problem of high-Tc superconduc-
tivity. A long time ago, Wigner11 was one of the first to
suggest that the electron gas model of a metal is unst
against crystalization at low density due to the long-ran
Coulomb repulsion. However, a more complete analysis
the MIT induced by electron-electron interactions has b
put forward by Mott.12 Later, Hubbard13 proposed a micro-
scopic lattice model, with ashort-range~on site! interaction
that was shown14 to exhibit a MIT at a critical value of the
interaction parameter,U. Hubbard’s prediction of a secon
order MIT was based on a kind of coherent phase appr
mation leading to the absence of a well-defined Fermi s
face on the metallic side15 and no magnetism. Using a varia
tional method due to Gutzwiller,16 Brinkman and Rice17

obtained a MIT for the Hubbard model with a proper d
PRB 610163-1829/2000/61~12!/7941~12!/$15.00
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scription of the metallic state, but with an oversimplifie
picture of the insulating phase, which consisted of nonint
acting local moments. We know from the strong-coupli
limit of the Hubbard model that the insulating phase h
antiferromagnetic order. An account of magnetism in t
presence of a MIT can be found in the works by Slate18

who suggested a mechanism in which the doubling of
unit cell caused by an underlying long-range antiferrom
netic order splits the Brillouin zone and causes the app
ance of a gap in the density of states~DOS!. The exact so-
lution of the one-dimensional Hubbard model presented
Lieb and Wu19 showed no MIT at finiteU ~the system is an
insulator for anyU.0 at half-filled band!. In two dimen-
sions, the MIT is still a controversial issue: results20 derived
using real-space renormalization-group suggest that at h
filled band the ground-state is insulating for anyU.0 and
isotropic hopping (a5ty /tx51). For a non-isotropic hop-
ping (a,1) the ground-state should be metallic forU/t less
than a certain critical value, which depends ona, and insu-
lator otherwise. On the other hand, recent Monte Carlo da21

suggest that the density-driven MIT ind52 belongs to a
special universality class, where the dynamic and correla
length exponents are given respectively byz54 and n
51/4, instead ofz52 andn51/2 as ind51.

More recently, considerable progress in our understand
of metal-insulator transitions has been obtained from exa
solvable limits. Gebhard and Ruckenstein22 introduced a
model that consists of a Hubbard chain with long-range h
ping and showed that it exhibts a MIT at half filling whenU
equals the bandwidthD. In the limit of infinite dimensions,
the pioneering work of Metzner and Vollhardt23 introduced a
nontrivial version of the Hubbard model in which the Brin
man and Rice solution becomes exact. Georgeset al.24,2

studied the MIT in the infinite dimensional Hubbard mod
and demonstrated that the metallic phase is a renormal
Fermi liquid. Nevertheless, several low-dimensional stron
correlated electron system, with close association with
physics of the MIT, have found metallic phases displayi
7941 ©2000 The American Physical Society
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7942 PRB 61VITORIANO, BEJAN, MACÊDO, AND COUTINHO-FILHO
non-Fermi liquid ~NFL! behavior, specially in the high-Tc

and fractional quantum Hall literature. It has been found t
the low-energy effective theories of such systems pos
very peculiar properties, which cause the breakdown
Fermi-liquid theory.25 For instance, near a quantum critic
point ~QCP! the fluctuations of soft modes induce anomalo
scattering, which suppress quasiparticles lifetimes. Other
amples are systems with enhanced small momentum tran
forward scattering.

An important property of some non-Fermi liquids is th
appearence of quasiparticle excitations with fractional sta
tics intermediate between bosons and fermions. In two
mensions, this can be traced back to the existence of a
trivial group structure associated with the exchange
identical particles, the so-calledanyons.26 Recently,
Haldane27 proposed a generalization of Pauli’s exclusi
principle, which leads to a new kind of fractional statistic
whose associated particles have been calledexclusons.28–32

Several systems have been reported to be described
Haldane’s exclusion statistics: fractional quantum H
effects28,33–35 1d and higher dimensional solvabl
models,29,36–40low-T properties of one-component Luttinge
liquids41 and Mott insulators.42 From the above remarks, it i
clear that the fractional statistical concept have had subs
tial importance to the understanding of many interrelated
topical subjects. It seems thus reasonable to expect exclu
to play some role in the mechanism of MIT in low
dimensional systems.

In this paper, we concentrate our effort in the Hubba
model with infinite-rangeCoulomb coupling.5–7 We show,
in Sec. II, that this model is mapped onto an ideal gas
three species of particles obeying fractional exclusion sta
tics, thus clarifying some disagreements of previo
works,29,36 and allowing the interpretation of several NF
properties of the model in terms of exclusons. The fractio
statistics manifests itself on the amplitudes of the respo
functions, such as specific heat, and by canceling the P
spin susceptibility in some metallic regimes. We thus ma
an attempt in describing a Mott MIT as being caused by
statistical interaction between exclusons. We report, in S
III, a thorough analysis of the ground-state properties incl
ing a phase diagram, in which the regions separated by c
cal lines are described in the framework of exclusion sta
tics. The electronic one-particle dynamical properties of
model, with particular emphasis on the interacting DOS
also presented. In Sec. IV, we analyze the applicability of
generalized Luttinger’s theorem, recently proposed
Haldane. We provide in Sec. V a complete scaling analy
of the interaction-driven MIT, and, by explicit calculation o
the exponents, we show that the universality class of its Q
is that of ad-dimensional free spinless Fermi gas. In partic
lar, we show that the mean number of doubly occupiedk
states, which is one of the three species of exclusons ide
fied in the model, can be taken as the order parameter o
interaction-driven MIT. In this context, we should mentio
that Continentino and one of us43 have shown that the
interaction- and the density-driven transitions are in the sa
universality class. The static spin susceptibility is presen
in Sec. VI, where we show that the Pauli response is s
dominant in all metallic states due to the strong correlation
the system. Finally, conclusions are presented in Sec. V
t
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II. THE MODEL AND EXCLUSON REPRESENTATION

Our model system is a Hubbard-like Hamiltonian wi
infinite-range Coulomb repulsion5

H52t (
^ i , j &,s

cis
† cj s2~m1U/2!(

is
cis

† cis

1
U

N (
j 1 j 2 j 3 j 4

d j 11 j 3 , j 21 j 4
cj 1↑

† cj 2↑cj 3↓
† cj 4↓ . ~1!

The first term describes the hopping of electrons on
d-dimensional hypercubic lattice ofN sites, and̂ i , j & is a
notation for nearest neighbors. The second term represe
coupling to a reservoir of particles, and the third term e
presses the conservation of the particle mass center in
scattering process, thus selecting the zero momentum tr
fer forward scattering only, which is an efficient way to ge
erate NFL behavior.25

Introducing the lattice Fourier transform

cj s
† 5

1

AN
(

k
cks

† e2 ik•r j , cj s5
1

AN
(

k
ckseik•r j , ~2!

we get a diagonal Hamiltonian ink space5–7,44

H5(
k,s

~«k2m2U/2!nks1U(
k

nk↑nk↓ . ~3!

Here,nks5cks
† cks is the number of electrons with momen

tum k and spins, and

«k52t(
^0,j &

eik•r j , ~4!

is the energy of the electron in this state. We remark that
diagonality ofH in k space does not imply necessarily th
the physics of this model is trivial. In fact, a more detail
analysis of the model reveals unexpected features, as wi
discussed in the following sections.

We shall now discuss the mapping of the interacting el
tron system described by Eq.~1! onto an ideal gas of par
ticles obeying fractional statistics. In a recent paper, W28

discussed the thermodynamics of an ideal gas obeying
generalized Pauli exclusion principle introduced
Haldane.27 In Wu’s approach, the total energy of the syste
is additive

E5(
ka

«kanka , ~5!

wherek is a good quantum number anda is a species labe
for the exclusons. The statistical weightW is given by

W5)
ka

~Dka1Nka21!

~Dka21!!Nka
, ~6!

where

Dka5Gk2 (
k8a8

gkk8;aa8Nk8a8 , ~7!
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Gk is the number of available single-particle states wh
there is no particle in the system~we will assume thatGk is
independent ofk, i.e., Gk5G0), Nka is the corresponding
number of particles and the matrixgkk8;aa8 defines the mu-
tual statistical interaction. The set of mean occupation nu
bers,nka5Nka /G0, that minimizes the grand-canonical fre
energy satisfies28

~11wka! )
k8a8

S wk8a8

11wk8a8
D gk8k;a8a

5eb«ka, ~8!

whereb51/T and wka5Dka /Nka . Equation~8! was also
derived45 using the von Neumann entropy associated w
Haldane exclusion statistics. Moreover, the grand-canon
free energy reads

bV f rac5b
V

G0
52(

ka
ln~11wka

21!. ~9!

The mapping of the interacting electron system descri
by Eq. ~1! onto an ideal gas of particles obeying fraction
exclusion statistics has already been proposed in
literature,36,29 but the results were incomplete and thus so
controversy has arisen with respect to the true nature of
excluson particles of the model~see, e.g., the concludin
remarks of Ref. 29!. In fact, using Eq.~1!, the energy is
given by

E5^H&5(
ka

«kanka , a51,2,3, ~10!

where «k15«k2m2U/25«k2 , «k35U and nk1
5^nk↑&,nk25^nk↓&,nk35^nk↑nk↓&. If we interpretnk1 , nk2,
and nk3 as excluson species@see Eq.~27! of Ref. 36#, one
can show that it is impossible to obtain a statistical ma
that gives rise to the correct thermodynamics of the mo
To accomplish this we need to introduce a matrixL that
transforms the variablesNka of the Hamiltonian~1! into the
correct excluson species

Ñka52 (
k8a8

Lkk8;aa8Nk8a8 . ~11!

The statistical weight has the same form as in Eq.~6!

W5)
ka

~D̃ka1Ñka21!

~D̃ka21!Ñka

, ~12!

where

D̃ka5G̃k2 (
k8a8

g̃kk8;aa8Ñk8a8 . ~13!

Now we proceed to obtain the set of mean occupation n
bers,ñka5Ñka /G0. Using the statistical weight given by Eq
~12! and assumingÑka , D̃ka , andNka to be large numbers
the free energy can be written as
n

-

h
al

d
l
e

e
e

x
l.

-

V5(
ka

«kaNka2
1

b (
ka

~D̃ka1Ñka!ln~D̃ka1Ñka!

1
1

b (
ka

D̃kaln D̃ka1
1

b (
ka

Ñkaln Ñka . ~14!

In equilibrium, the set$ñka% is obtained by the condition
]V/]Nka50. Thus, we find the following generalized law o
mass action

)
k8a8

w̃
k8a8

gk8k;a8a

~11w̃k8a8!
gk8k;a8a1Lk8k;a8a

5eb«ka, ~15!

where

gkk8;aa852 (
k9a9

g̃kk9;aa9Lk9k8;a9a8 , ~16!

and

w̃k8a85D̃k8a8 /Ñk8a8 . ~17!

The free energy is obtained by substituting Eq.~15! into Eq.
~14!

bV f rac52(
ka

ln~11w̃ka
21!, ~18!

in agreement with Eq.~9!. Note that if by some fortunate
guess the startingnka is the correct set of exclusons, then th
matrix L reads:

Lkk8;aa852dkk8daa8 , ~19!

in which case, Eq.~15! reduces to Eq.~8!. To obtain the
correct mean occupation numbers from Eq.~15!, we find that
the following matrices

gkk8;aa85dkk8S 1 1 21

0 1 0

0 0 1
D , ~20!

Lkk8;aa852dkk8S 1 0 21

0 1 21

0 0 1
D , ~21!

satisfy all required conditions. The matrixgkk8;aa8 has been
anticipated in Ref. 36 but with an incorrect interpretatio
The true statistical matrix of the system is given by

g̃kk8;aa85dkk8S 1 1 1

0 1 1

0 0 1
D . ~22!

Therefore, the energy is written more appropriately in t
form

E5(
ka

«̃kañka , ~23!

where
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«̃ka[2 (
k8a8

«k8a8~L21!k8k;a8a . ~24!

Using the matrix~21!, we obtain:

«̃k15«k2m2U/25 «̃k2 ,
~25!

«̃k352~«k2m!.

We may thus interpretñk1 andñk2 as the occupation numbe
of singly occupiedk states, whereasñk3 counts doubly oc-
cupiedk states.36 Moreover, the mean occupation number
exclusons can be written asñka5^cka

† cka&, wherecka are
operators defined by

ck15~12ck↓
† ck↓!ck↑ , ck25~12ck↑

† ck↑!ck↓ ,

ck35ck↑ck↓ . ~26!

We have confirmed this proposal by calculating the
tardedexclusonGreen’s functions whose poles are locat
precisely at the energies given in Eq.~25!

Ga
1~k,v!5

^$ck,a ,ck,a
† %&

v2 «̃k,a1 ih
, ~27!

^$ck,a ,ck,a
† %&512 (

gÞa
ñk,g , ~28!

where the angle brackets denote the thermal average an
curly braces define the usual anticommutator. Note tha
Eq. ~27! the poles suggest independent excluson spec
while the numerator, which is given by Eq.~28!, shows
clearly the mutual statistical interaction.

We stress that the mapping of a model of interacting p
ticles onto a multicomponent system obeying fractional
clusion statistics is of great interest in the literature. R
cently, Maskevitch46–48has developed an interesting schem
to construct physical realizations of fractional statistics.
consists of incorporating the interaction matrixg into renor-
malized quantum numbers for the physical particles and
been applied to the problem of anyons in the lowest Lan
level. A serious restriction in Maskevitch’s approach, ho
ever, is the requirement thatg be a symmetric matrix. In fact
there is no need for such constraint in Wu’s Eq.~8!. The map
presented in this work is an example of a realization o
multicomponent excluson gas, with a nonsymmetric stati
cal interactiong, in terms of interacting fermions. Note tha
we do not impose any renormalization of quantum numb
in constructing the map, since the kinetic and the interac
term in the Hamiltonian commute.

We have thus presented an extension of the fractio
statistics formalism, that has made it possible to map an
teracting electron system of two species of particles onto
ideal gas of three species of exclusons. A somewhat sur
ing and unique feature of this model is the appearance
stable single-particle excitations with nontrivial exclusi
statistics in any dimension.
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III. GROUND-STATE PROPERTIES

Let us now consider the ground-state properties of
interacting electron system. We present in Fig. 1~a! the phase
diagram of a one-dimensional lattice, for which a full an
lytical derivation is possible. The capital letter I denotes
Mott-insulating phase, whileE and F represent regions
where the band is empty and full, respectively. The lin
rmin andrmax are defined by

rmin5
1

2E2D/2

U2D/2

s̃~x!dx5
2

p
arcsinAU/D, ~29!

rmax5S E
2D/2

D/22U

1
1

2ED/22U

D/2 D s̃~x!dx

522
2

p
arcsinAU/D, ~30!

where the lattice DOS,s(x), is defined by

s~x![
2

N (
k

d~x2«k!

5s̃~x!u~x1D/2!u~D/22x!, ~31!

in which u(x) is the Heaviside step function. These lin
separate two metallic phases, whose properties can be un
stood using fractional-statistics concepts. Although the ac
shape of the lines is dimensional dependent, the point wh
they meet,U5D, is the same for all dimensions as can
seen directly from Eqs.~29! and ~30!. We also find that the

FIG. 1. Ground-state phase diagram ind51, ~a!, and in any
dimension,~b!. In region~1! there are only holes and singly occu
piedk states; in region~2! we have doubly occupiedk states but no
holes; finally, in region~3! we find both singly and doubly occupie
particlek states and holes. The capital lettersE andF mean empty
and full band, respectively.
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line rmin (rmax) for different DOS cross atU/D51/2,r
51/2(U/D51/2,r53/2). An equivalent phase diagram th
is dimensional independent is shown in Fig. 1~b!. In region
~1! the system is a compressible statistical spin liqui6

where double occupancy of particles is absent, i.e.,ñk350.
Region~2! represents the mentioned phase with the abse
of double occupancy of holes. The insulating phase is
incompressible statistical spin liquid and both the cha

compressibility,K, andñk3 vanish. The insulating line I ter
minates at the QCP@see Figs. 1~a! and 1~b!#. In region ~3!
the system is a degenerate compressible statistical spin
uid, which is characterized by partial exclusion of doub
occupied states and a finite compressibility.

The chemical potential atT50 is obtained as a function
of the band filling using

r5E
2`

m2U/2

s~x!dx1
1

2Em2U/2

m1U/2

s~x!dx. ~32!

In Figs. 2~a! and 2~b! we show a plot ofm as a function of
the band filling for a one-dimensional lattice~for similar fig-
ures see Ref. 5!. In Fig. 2~a! the chemical potential is con
tinuous and displays cusps atr5rmin andr5rmax. In Fig.
2~b! we see that the chemical potential has a discontinuit
r51 signaling the vanishing of the charge compressibility
the insulating phase. The Fermi energy is obtained from
chemical potential as:«F5m2U/2. In the ground-state@Fig.
1~a!#, the Fermi energy satisfies:

FIG. 2. Chemical potential as a function of band filling ind
51 and atT50. In ~a! the system displays cusps atrmin andrmax

but remains always metallic for any filling. In~b! the chemical
potential displays a discontinuity atr51 and the system exhibits
Mott MIT. ~From Ref. 4.!
ce
n
e

iq-

at

e

«F55
2D/2 cosrp, region~1!,

U1D/2 cosrp, region~2!,

U

2
6

1

2
AS D cos

rp

2 D 2

2S U cot
rp

2 D 2

, region~3!,

where the plus~minus! sign is used forr.1(r,1). In Fig.
3, we plot«F as a function of the interaction for three pa
ticular values of the band filling. Forr50.5, «F varies as a
function of U until the mean number of doubly occupiedk
states vanishes (r5rmin), where it displays a cusp, afte
which «F is independent ofU. For r51, we calculated the
Fermi energy atr512: «F grows linearly withU up to the
QCP, and becomesU independent thereafter. Forr
51.5,«F always varies withU and displays a cusp as th
mean number of holes ink space vanishes (r5rmax), after
which «F grows linearly withU. We remark that the Ferm
energy does not display a discontinuity atT50 as the inter-
action is switched on.

The charge compressibility,5 obtained from Eq.~32!,
reads

K5
1

2
$s~m2U/2!1s~m1U/2!%. ~33!

A plot of K as a function of the electron density is shown
Figs. 4~a! and 4~b! for a one-dimensional lattice. Observe
Fig. 4~a! that K exhibits a singular behavior at two speci
points,rmin andrmax. Although Hatsugai and Kohmoto5 did
find these singularities, their physical origin has not be
discussed, neither have the linesrmin andrmax been identi-
fied. It is clear that the divergence ofK as the system crosse
these critical lines, reveals the existence of two different m
tallic phases in the ground state forU,D. For U.D the
compressibility displays the expected one-dimensional
gular behavior as one approaches the Mott phase (r51) at
which K50.

We now proceed to the calculation of the fermionic inte
acting DOS. Using the Matsubara one-electron Green’s fu
tion, Gs(k,ivn),49,50 where vn5(2n11)p/b,(n50,61,
62, . . . ), and itsrelation with the retarded Green’s functio

FIG. 3. Fermi energy as a function of the interaction ind51.
The curvesr50.5 andr51.5 display cusps as the band filling
such thatr5rmin andr5rmax, respectively. In the curver51, the
cusps appear in the QCP. In this last curve, we have calculated
Fermi energy atr512 for U.D.
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Gs
1~k,v!5 lim

ivn→v1 i01

Gs~k,ivn!, ~34!

we find for T→0 the expression

G1~k,v!5
12^nks&0

v2 «̃k11 i01
1

^nks&0

v2~ «̃k32 «̃k1!1 i01
,

~35!

where ^nks&0 is defined in Eq.~40!, and G1[1/2(sGs
1 .

The poles in Eq.~35! determines the fermionic band stru

FIG. 4. Charge compressibility as a function of band filling
d51 and atT50. In ~a! the charge compressibility displays sing
lar behavior atrmin andrmax, revealing the existence of differen
metallic regimes. In~b! the system is insulator atr51, with K
50. ~From Ref. 4.!
ture of the model. In particular, forr51 we find two
branches forvk , since the mean occupation number satisfi
^nks&051/2, when arccos(U/D),k,arccos(2U/D). This
special filling shows a clear signature of the fractional sta
tics by giving rise to a split in the spectral functionA(k,v),
defined in Eq.~36!. In fact, the quantitity of interest is the
fermionic interacting DOS defined by

D~v!5
2

N (
k

A~k,v!52
2

Np (
k

Im$G1~k,v!%,

~36!

whereA(k,v) is the spectral function. Substituting Eq.~35!
into Eq. ~36!, we obtain the interacting DOS atT50:

D~v!5
1

2
s~v1m1U/2!$u~v!1u~U1v!%

1
1

2
s~v1m2U/2!$u~2v!1u~U2v!%.

~37!

A plot of D(v) in Figs. 5~a!–5~f! makes it possible to visu
alize the Mott MIT ind51. Note that the states withv<0
are filled. The interaction-driven MIT is shown in Figs. 5~a!–
5~d!, whereas the density-driven MIT can be seen by look
at the figures in the sequence e,d,f. In Fig. 5~b! the system is
metallic and the three fractional species are in equilibri
with a Fermi surface consisting of four vectors ink-space
~the two positive ones are shown in Fig. 6!. As U moves
towardsD, the mean number of the speciesa53 per site,
N35((kñk3)/N, approaches zero as the QCP@Fig. 5~c!# is
reached. Thus, we can takeN3 as the order parameter of th
interaction-driven MIT. This result is confirmed by the a
ymptotical behavior ofN3 close to the QCP and is in agree
ment with scaling predictions of Sec. V. The Mott pha
with a gap Dgap5U2D5D/2 in the interaction DOS is
shown in Figs. 5~d!. In the metallic states plotted in Figs
FIG. 5. Interacting DOS ind51 andT50 as the system undergoes an interaction-driven MIT@~a!–~d!# and a density-driven MIT
@~e!,~d!,~f!#. All states withv<0 are filled.
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5~e! and 5~f! the Fermi surface is defined by only tw
k-vectors. The particle-hole symmetry5 of the model mani-
fests itself in Figs. 5~a!–5~f!.

IV. LUTTINGER’S THEOREM

Recently, Haldane51 has proposed a theory for describin
the low-energy excitations of interacting electronic syste
in the metallic state. In this approach, the system is assu
to have a ‘‘generalized’’ Fermi surface defined byk-space
vectors at which the mean occupation numbern(k) displays
some type of singular behavior atT50. In particular, the
volume of the Fermi surface, defined by the set of ‘‘sing
lar’’ points kFi

is given by

VF5(
i

Dn ikFi
, ~38!

where the indicesDn i are adiabatic invariants and are relat
to the particles’ statistics. They are determined by the s
discontinuity of the distribution function of the non
interacting particles through the formula

Dn i5 lim
d→0

$n0~kFi
2d!2n0~kFi

1d!%. ~39!

For fermions,uDn i u51, by virtue of the Pauli principle, bu
in the fractional quantum Hall effect,uDn i u can assume val
ues given by 1/m, wherem is an integer number. Further
more, Luttinger’s theorem52 is taken as a general property
the system due to momentum and particle number conse
tions.

More recently, Byczuk and Spalek49 showed that in the
Hubbard model with infinite range Coulomb coupling t
singularities of the Fermi surface satisfyuDn i u51/2 for any
U.0. The authors however do not use this result to estab
any connection with Luttinger’s theorem. In this section,
provide such a connection in the context of the model. Us
definition ~38!, the volume of the Fermi surface for the no
interacting case isVF

(0)5rp, wherer particle density and
uDn i u51. As the interaction is switched on, keepingr con-
stant, the mean occupation number atT50 satisfies5

^nks&05
1

2
@u~m2«k1U/2!1u~m2«k2U/2!#. ~40!

In Fig. 6, we plot this function for the one-dimensional la
tice and for a particular band filling satifyingrmin,r

FIG. 6. Mean occupation number of the ground state for a p
ticular band filling ind51 satisfyingrmin,r,rmax.
s
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,rmax. Here, the Fermi surface is defined by the s
$2k2 ,2k1 ,k1 ,k2% and uDn i u51/2. With this prescription,
the volume of the Fermi surface is given by

VF5k11k2 , ~41!

and therefore density of particles reads

rp5k11k25VF5VF
(0) . ~42!

We remark that although Eq.~42! shows that the volume o
the Fermi surface is preserved, this cannot be considered
proof of the validity of the Luttinger’s theorem in the gene
alized form proposed by Haldane, sinceuDn i u changes as the
interaction is switched on. Nevertheless, we stress tha
long asU.0, uDn i u is indeed an adiabatic invariant.

V. THERMODYNAMICS AND SCALING ANALYSIS

In this section we provide a scaling analysis of the mo
in the vicinity of the QCP of the interaction-driven Mo
MIT, whose hypothesis are confirmed by microscopic cal
lations. The system described by Eq.~1! exhibits a Mott MIT
~Ref. 5! at T50, m50, andU5D. There are several equiva
lent formulations of the scaling theory at zero and fin
temperature53–57 and here we choose a scaling form for t
singular part of the grand-canonical free energy,V(T,m;g),
that is valid in the whole vicinity of the QCP (T5m5g
50)

Vs~T,m;g!5j2(d1z)V0S T

gf
,

m

gbdD . ~43!

In Eq. ~43! j is the critical correlation length,V0 is a uni-
versal scaling function, the chemical potential,m, is the field
that couples to the order parameter,g5(D2U)/2 is the vari-
able that drives the transition at zero temperature,f and
Dcross5bd are crossover exponents,d is the Euclidian di-
mension of the system andz is the dynamic exponent. Th
presence ofz, which governs the scaling properties of th
T50 critical dynamics, results in an effective dimensio
de f f5d1z. The main assumption in this scaling theory
that the transition is characterized by a single correlat
lengthj, expressed in different equivalent asymptotic form
corresponding to the approaching path to the QCP

jg;g2ng, T50, g→01,

jT;T2nT, g50, T→0. ~44!

According to the values of the ratioT/gf and the sign ofg,
three different regimes can be identified: a quantum~Q!, a
quantum critical~QC! and a classical~thermally activated!
regime. In Fig. 7 we plot a phase diagram as a function og
andT where these regions are separated by crossover li
T5g and T52g. The hyperscaling relation: 22a5(d
1z)n is assumed to be valid for anyd<dc , wheredc is the
upper critical dimension. Using Toulouse’s method58 to ob-
tain dc , we will find that the hyperscaling relation is vali
for any d.

In the scaling analysis we will use the singular part of t
grand-canonical free energy and, consequently, we iden
regular and singular terms in corresponding expressions

r-
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V. We are interested in obtaining results at low temperatu
(bU@1) and near the QCP (T50,U5D), and thus we write

V~T,m;g!5(
k

~«k2m2U/2!2NT ln 2

2T(
k

lnH 11
1

2
eb(«k2m2U/2)J 1O~e2bU/2!.

~45!

The first two terms in Eq.~45! being regular functions are
useless from the scaling point of view and can be neglec
However, we point out that the second term exhibits
degeneracy of the ground state and gives rise to a resi
entropy. The third term is singular forU→D2 and T→0,
and can be conveniently rewritten using the tight-bind
DOS,s(«), in the form,

Vs~T,0;g!52TE
0

D/2

d« s~«!lnH 11
1

2
eb(«2U/2)J ,

~46!

in which we have set the chemical potentialm50 and the
density of states parity was used. The logaritmic factor of
integrand in Eq.~46! is vanishingly small in the interva
@0,U/2# for b→`, and therefore, asU→D2, the dominant
part of the integral comes from the band edge ands(«) can
be approximated by59

s~«!5AdS 12
2«

D D d/221H 11OS 12
2«

D D J ,

2«

D
→12. ~47!

In the above,Ad is a dimensional dependent constant:

Ad5
4

DG~d/2! S d

2p D d/2

, ~48!

andG(s) is the Gamma function. After integrating by par
twice, we obtain a series expansion for the free energy
site ~see Appendix A!,

FIG. 7. Phase diagram as a function ofg and temperatureT. The
regions indicated are separated by crossovers lines:T5g andT5
2g. The pointT5g5m50 is the QCP of the MIT.
s
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Vs~x,y!/N52AdS D

2 D 2S 2x

D D (d12)1/2

3$a01a1y1a2y21•••%, ~49!

wherex5max$g,T% and y5min$g,T%/x define the regime of
interest. The series’ coefficients depend on the system’s
mensionality,d, and onf, defined as an index counting th
degeneracy of the ground state. We remark that in the ex
son representation 1/f equals tok-state mean occupatio
number for the case of total exclusion atT50 (nk15nk2
51/f , nk350). In thequantumregime (g.T) the first three
coefficients are listed below:

a0
Q5

4

d~d12!
,a1

Q52
2 ln f

d
,a2

Q5
1

2 Fp2

3
1~ ln f !2G .

~50!

In the QC regime (ugu,T) we can determine all coefficient
via the general relation

am
QC5

1

f m!
GS d

2DFS 2
1

f
,
d

2
2m11,1D , f 52, ~51!

whereF(z,v,u) is the Lerch function,60 which replaces the
Riemann Zeta function that appears in similar expansions
Fermi liquid systems~see Appendix A for details!. More-
over, the presence of the Lerch function in the amplitudes
the specific heat is a signature of the fractional exclus
statistics and identifies the non-Fermi-liquid behavior of t
system. Note that a distinct value fora2

Q was reported in Ref.
6, presumably due to an incorrect treatment of the lo
temperature expansion. We should point out that, forf 51,
the standard coefficients for the spinless Fermi gas (U50)
are recovered if one includes the neglected ter
@O(e2bU/2)# in Eq. ~49!.

By comparing the singular part in Eqs.~49! and ~43! we
obtain the critical exponents:ng5nT51/2,z52 and fg
5fT51, and after using the hyperscaling equation, we
ag5aT512d/2. Although in most cases the crossover e
ponent satisfies the relationf5zn, as we find in our study,
there are special situations in which different expressi
apply.57 In the classicalregime (T,ugu) the dominant term
of Vs is obtained by substituting the series in Eq.~49! by a
thermal activation factor:e2ugu/T.

For the Mott interaction-driven transition, the chemic
potential couples to the order parameter, which we iden
as the number of doubly occupiedk-states per site:N3

5((kñk3)/N. Indeed, by approaching the QCP along t
pathT5m50,g→01, we find: N3(g).Ad(D/d)(2g/D)d/2,
andN3(g)50, for T5m50 andg<0. From the expression
above an exponentb5d/2 results. We can also derive a
equation of state:N3(m).Ad(D/d)(2m/D)d/2,T5g50,m
→01, from which we identifyd52/d andD5bd51. The
vanishing behavior ofN3, as one approaches the QCP alo
the line m5g50,T→0 is also determined by the expone
b:N3(T).Ada1

QC(D/2)(2T/D)d/2. The above results are
consistent with the usual assumption of taking the cha
stiffness,Dc , defined as thedc part of the conductivity,
s(v)5Dcd(v), as the order parameter for the Mott MIT. I
fact, from the scaling prediction,53 Dc;j2(d1z22), and the
above-derived results for the order parameter, we findjg
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;g21/2, for T5m50, andg→01, and alsojT;T21/2, for
m5g50 andT→0, with z52 andn51/2, as expected.

It is interesting to note that the density-driven MIT in th
d51 short-rangeHubbard model exhibits the same critic
exponents as the model we study.43 In fact, in both cases we
have a51/2, n51/2, z52, which implies j;d21, Kc
;d21 andDc;d whered5u12nu. On the other hand, fo
d53, other similitarities can be found in comparison wi
the solution of Brinkman and Rice17 for the interaction-
driven Mott MIT, where the critical exponentsa50, n
51/2, z51 describe analogous qualitative behavior for t
correlation length, charge compressibility and charge s
ness:j;g21/2,Kc;g,Dc;g, but with distinct exponents.

The grand-canonical specific heat can be written asC
5C(1)1C(2)1C(3), where

C(1)5b2(
k,s

S «k2m1
U

2 D 2

nkd~nks2nkd!, ~52!

C(2)5b2(
k,s

S «k2m2
U

2 D 2

3~12nks2nks̄1nkd!~nks2nkd!, ~53!

C(3)5b2(
k,s

@2~«k2m!#2~12nks2nks̄1nkd!nkd .

~54!

We note that in the exclusion representation, the above
pressions evidence the mutual statistical interaction betw
the exclusion species:

C(1)5b2(
k

(
a51,2

~ «̃k32 «̃ka!2ñk3ñka , ~55!

C(2)5b2(
k

(
a51,2

«̃ka
2 ñka~12ñk!, ~56!

C(3)5b2(
k

«̃k3
2 ñk3~12ñk!, ~57!

in which we have definedñk5ñk11ñk21ñk3 and a,g
51,2,3.

At low temperatures and in different regimes we der
expressions forC(1) andC(2)(C(3);ēbu/2→0) using the in-
teracting DOS, Eq.~37!, at T50. In the quantumregime,
one finds: CQ(T,g).(3/2)D(v50)a2

QT,m50,(T/g)→0,
which implies a thermal massmT}CQ(T,g)/T;gd/221 and
an exponenta512d/2. Moreover, in the QC regime w
obtain: CQC(T).@D(v5T)1D(v52T)#a2

QC@d(d
12)/4#T,m50,(g/T)→0, whose explicit T dependence
reads:CQC(T);Td/2, with an exponentd/z ~Refs. 53–57!
expected for a QCP, and is here a consequence of the
persion relation and the tight-binding DOS at the band e
@Eq. ~47!#. Similar results have also been obtained for t
density-driven MIT by allowing the variable interchang
g↔m. As a peculiar aspect of this model, atm52g (r
5rmin) or m5g (r5rmax) the quantumand QC contribu-
tions compete equally. This peculiar feature will be furth
considered in a forthcoming publication.
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en

is-
e

e

r

For completeness, we have also calculated the static s
ture factor,S(q,T,m;g), associated with the Fourier trans
form of the density-density correlation function. In thequan-
tum regime the singular part reads:Ss(q→0;T5m50;g)
;gd/2,g→0 and thus, from the scaling prediction,53 Ss(q
→0;T5m50;g);g2(22z2h)n, one obtainsh5d. The ex-
ponenth also determines the singular behavior ofS in the
QC regime:Ss(q→0;T5m50;g);Td/2,T→0. Moreover,
we can show that the charge compressibility satisfies:5 K
.Ad(2g/D)d/221,T5m50,g→01, and therefore g51
2d/2. From the above anlysis, we conclude that the ex
nents of the quantum critical fixed point of the MIT are
the same universality class as that of the spinless free F
gas56 at the QCP,m50, T50, characterized by the vanish
ing of the Fermi surface.

VI. THE STATIC MAGNETIC SPIN SUSCEPTIBILITY

In this section we evaluate the zero-field magnetic susc
tibility at finite temperature. The grand-canonical free ene
V in a magnetic field is given by

V~T,m,H;g!52T(
k

ln$11e22b(«k2m)

12e2b(«k2m2U/2)cosh~bmBH !%, ~58!

where mB is the Bohr magneton. The zero-field magne
susceptibility is defined as follows

xm~T;g![2
1

N S ]2V

]H2D
H50

, ~59!

and thus, using Eq.~59! we find

xm~T;g!5
mB

2

T E
2D/2

D/2 s~«!d«

eb(«2m2U/2)121e2b(«2m1U/2)
. ~60!

At this point, we remark that the zero-field magnetic susc
tibility for fixed density,xr , can be obtained from Eq.~60!
by eliminatingm in favor of r[Ne /N. On the other hand
the mean occupation number of the simple occupiedk states,
NS , is defined as

NS~T,m;g!5Ne2N35N11N2 , ~61!

with Na[(knka , (a51,2,3), the total average number o
the excluson species. After some algebra we obtain

NS~T,m;g!5NE
2D/2

D/2 s~«!d«

eb(«2m2U/2)121e2b(«2m1U/2) .

~62!

Comparing Eq.~60! with Eq. ~62!, we get

xm~T;g!5
mB

2

T S N11N2

N D . ~63!

We thus find that, as a consequence of strong interact
in the system, the Pauli response is subdominant at low t
peratures, and the susceptibility is essentially Curie-like.
the other hand, forU→`, the susceptibility is pure Curie
type sinceN11N2 is T independent.
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We now present an analysis of Eq.~62! in four particular
cases:

~a! The simplest one is obtained forU50, when we re-
cover the Pauli magnetic susceptibility in theT→0 limit.

~b! Another case of interest is the atomic limit, where t
‘‘hopping term,’’ t, vanishes and Eq.~62! becomes:

xm~T!5
mB

2

T

2

eb(m2U/2)121e2b(m1U/2) , ~64!

which is indeed the correct result.8

~c! For U→` and fixing r<1, the number of doubly
occupiedk statesN3 vanishes and wet get a Curie-like ma
netic susceptibility both in the insulating phase,r51, and in
the metallic one,r,1, thus:

xr~T!5
mB

2

T
r. ~65!

We remark that Eq.~65! is valid in any dimension and, in
particular, ford51 it coincides with the result obtaind in th
short-rangeinfinite-coupling Hubbard chain.61 If we fix the
chemical potential instead ofr, we find for the spin suscep
tibility, obtained by substituting in Eq.~60! m→m2U/2 and
by taking the limit U→` in this sequence, the following
result

xm~T!5
mB

2

T
r̄~T50!1

ln 2

2
mB

2s~m!1•••, ~66!

wherem is kept far from the band edge in order to justify th
Sommerfeld expansion. This Pauli term can be understoo
follows: when the magnetic field is applied, the particles
the system align themselves withH, thus reducing the
chemical potential. Therefore, to keepm constant a macro
scopic number of particles, proportional toH, is needed, giv-
ing rise to the Pauli term. The factor ln 2 inxm(T) is a
signature of the fractional statistics obeyed by the partic
and the degeneracy of the ground-state.

~d! For r!rmin , the number of doubly occupiedk states
is exponentially small, and similarly to the caseU→`, we
obtain

xr~T!5
mB

2

T
r1•••, ~67!

and forxm we find

xm~T!5
mB

2

T
r̄~T50!1

ln 2

2
mB

2s~m2U/2!1•••, ~68!

where we have assumed thatm2U/2 is far from the band
edge.

~e! For mmin!m!mmax andU,D, we find

xm~T!5
mB

2

T
r̄s~T50!1

ln 2

2
mB

2$s~m2U/2!1s~m1U/2!%

1•••, ~69!
as
f

s

where r̄s(T50) is the mean particle density with simp
occupancy ink space. On the other hand, as we fixr51 and
put U!D, the chemical potential at low temperature is giv
by49

m52T ln 21•••. ~70!

Thus, forxr(T) we obtain

xr~T!5
mB

2

T
rs~T50!1mB

2s~U/2!ln 21•••. ~71!

~f! If one setsU5UC5D,m50 andT→0, i.e., close to
the QCP, we get from Eq.~60!

xm~T!5
mB

2

T H 12E
0

D/2 s~«!d«

112e2b(«2D/2)J 1O~e2bD/2!.

~72!

We should notice that the integrand in Eq.~72! is exponen-
tially small as« moves away from the band edge. By usin
the approximate form ofs(«) in the band edge, Eq.~47!, we
finally obtain

xm~T!5
mB

2

T
$12N31•••%,

m5g50,T→0, ~73!

whereN3.Ada1
QC(D0/2)(2T/D0)d/2.

VII. CONCLUSIONS

In this paper, we have studied a Hubbard-type model w
infinite-range Coulomb coupling which is mapped onto
ideal gas of particles obeying fractional statisticsà la
Haldane. We have shown that, for doing this, it was nec
sary to extend the thermodynamic formalism developed
Wu, thus clarifying some disagreements in the literature.
have contructed excluson operators and we have checke
validity by calculating theexclusonGreen’s functions and
finding poles exactly at the energies associated with the
cluson species. We have presented an attempt to describ
Mott MIT as being caused by the statistical interaction b
tween independent exclusons. In particular, we have dem
strated that the mean number of doubly occupiedk states,
which is one of the three species of exclusons identified
the model, can be taken as the order parameter of
interaction-driven MIT. We have described several NF
properties of the ground state caused by the statistical in
action. In particular, we have shown that in theU3r phase
diagram there exist two fundamental lines,rmin and rmax,
separating regions of doubly and singly occupiedk states,
whose interpretation in terms of exclusons is evident. Th
special fillings in d51 are responsable for cusps at t
chemical potential and singularities in the charge compre
ibility. We have also investigated the Luttinger’s theorem
the form presented by Haldane and have shown that altho
the adiabatic condition is only satisfied forU.0, we can
extend Haldane’s prescription in a way that the volume
closed by the Fermi surface is preserved for anyU>0. We
report a detailed quantum scaling analysis of the interact
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driven MIT close to its QCP where the scaling hypothe
are confirmed by explicit calculations of the thermodynam
quantities such as the free energy, the specific heat, the o
parameter and the static structure factor. We find, by exp
calculation of the critical exponents, that the QCP of the M
of the Hubbard model with infinite range Coulomb coupli
belongs to the same universality class as the QCP (T5m
50) of a spinless free Fermi gas. Moreover, ind51 we
identify the same critical exponents as those of the dens
driven MIT of the one dimensional short-range Hubba
model. It is important to note that the coefficients of t
grand-canonical free energy expansion and of the spe
heat express a clear manifestation of the generalized ex
sion principle. We have also obtained the zero field magn
spin susceptibility in several regimes and we highlight h
that the low-temperature behavior is Curie like, as in
infinite coupling short-ranged51 Hubbard model, with sub
dominant, if any, Pauli-like contribution.

We finish by remarking that our findings, albeit derived
an extremal limit of an infinite-range Hubbard-type mod
contains several features which may provide insights i
more realistic models. We mention in particular the a
pearence of exclusion statistics in the thermodynamic pr
erties of the model, and the occurrence of a MIT. Both s
jects are of much current interest and we emphasize tha
mapping presented here, between interacting electrons
exclusons, has proved very helpful for obtaining new res
in the context of the excluson formalism, such as the exc
son Green’s function and the specific heat formula, and t
it represents a concrete step towards the understanding o
physics underlying fractional statistics.
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APPENDIX A: COEFFICIENTS OF GRAND-CANONICAL
FREE ENERGY EXPANSION

We sketch the derivation of the coefficientsam obtained
in the grand-canonical free energy expansion. Consider
following changing of variable,y5b(«2U/2), which trans-
forms Eq.~46! into

Vs52AdT2E
2bU/2

bg S 2g

D
2

2T

D
yD d/221

lnS 11
1

f
eyDdy.

~A1!
ns

A.
od
s
c
der
it

y-

fic
lu-
ic
e
e

,
o
-
p-
-
he
nd

ts
-
s

the

,

he

Integrating by parts twice and neglecting terms of ord
O(e2bU), we obtain

Vs52AdS D

2 D 2 4

d~d12!

3E
2bU/2

bg S 2g

D
2

2T

D
yD d/221 f ey

~ey1 f !2
dy. ~A2!

Consider first the quantum case (g.T). After a binomial
expansion in the integral of Eq.~A2!, we can extend the
limits of the integral to2` and`. Retaining the first three
terms in the expansion and comparing to Eq.~49! one can
write

a0
Q5

4

d~d12!
E

2`

` f ey

~ey1 f !2
dy5

4

d~d12!
, ~A3!

a1
Q5

2

dE2`

` f yey

~ey1 f !2
dy5

2 ln f

d
, ~A4!

a2
Q5E

2`

` f y2ey

~ey1 f !2
dy5

1

2 Fp2

3
1~ ln f !2G . ~A5!

In the QC case (T.g), after a similar binomial expan
sion, the lower limit in the integral of Eq.~A2! can be con-
sidered as2` while the upper limit may be taken as 0 an
thus we get the general termam

QC(m50,1,2, . . . )

am
QC5

1

f m! F S d

2
2m11D G E

0

` yd/22m

ey11/f
dy. ~A6!

Using now the integral form of the Lerch functions,60
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1

G~v !
E

0

` tv21e2(u21)t

et2z
dt, ~A7!

@Rev.0, or uzu<1, zÞ1, Rev.0, or

z51, Rev.1#,

a simple algebra and an integration by parts leads us to

am
QC5

1

f m!
GS d

2DFS 2
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f
,
d

2
2m11,1D . ~A8!
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