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Crossover to Fermi-liquid behavior for weakly coupled Luttinger liquids
in the anisotropic large-dimension limit
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We study the problem of the crossover from one- to higher-dimensional metals by considering an array of
Luttinger liquids(one-dimensional chaipngoupled by a weak interchain hopping. We evaluate the exact
asymptotic low-energy behavior of the self-energy in the anisotropic infinite-dimension limit. This limit ex-
tends the dynamical mean-field concept to the case of a chain embedded in a self-consistent medium. The
system flows to a Fermi-liquid fixed point for energies below the dimensional crossover temperature, and the
anomalous exponent renormalizes to zero, in the case of equal spin and charge velocities. In particular, the
single-particle spectral function shows sharp quasiparticle peaks with nonvanishing weight along the whole
Fermi surface, in contrast to the lowest-order result. Our result is obtained by carrying out a resummation of all
diagrams of the expansion in contributing to the anisotropiD —c limit. This is done by solving, in an
almost completely analytic way, an asymptotically exact recursive equation for the renormalized vertices,
within a skeleton expansion. Our outcome shows that perturbation expansigneestricted to lowest orders
are unreliable below the crossover temperature. The extension to finite dimensions is discussed. This work
extends our recent lett¢Phys. Rev. Lett83, 128(1999], and includes all mathematical details.

[. INTRODUCTION metals having these properties take the name of Luttinger
liquids (LL), the name coming from the Luttinger model
According to Fermi-liquid(FL) theory:? a quasiparticle  (LM),”~® which plays the role of the “canonical model” for
is identified by a single dispersive coherent peak in thelD interacting fermions.
single-particle spectral function describing a particle or a The interesting question is what happens between one and
hole close to the Fermi surfad€&S). This peak becomes WO dlme_n5|on§.‘ Specifically, one can start from a
sharper when approaching the FS, which reflects the fact th&t-dimensional array of chainghe interesting cases are, of
the lifetime of the quasiparticle becomes infinite at the FScoUrseD =2 or 3, initially uncoupled, and then switch on a
while keeping its total weighZ (quasiparticle weightfinite. small tunneling(hopping amplitudet, between the chains.

On the other hand, FL theory fails generically in one dimen-11€ guestion is when and how does the crossover to a nor-

. o ' mal Fl behavior occur? While the question of the crossover
sion, where quasiparticles are not well defined, and the el:

N . . -from an anomalous LL to a normal FL state is a challenging
ementary excitations consist of collective charge and spi

S . ) . : . roblemper se there are other reasons why one is interested
excitations with bosonic properties. In this case, the smgle?) per S y

. . . . in this problem. The first two are connected to the theory of
particle spectral function shows two dispersing peaks, Coregiq, 1 ~syperconductivity. First, it has been suggested that

sponding to charge and spin modes. The splitting into WQpe hormal-state properties of high-superconductors may
peaks corresponds to the decay of the quasiparticle into spif, explained by some kind of two-dimensional LL st

and charge excitatiori’s®i.e., the spin and the charge of an Once a 2D LL state is assumed within a Gu@ane, it has
injected electron move independently with different veloci- peen suggested that incoherent hopping between different
ties. A more important result is the fact that the quasiparticlaayers may favor a BCS paired stafeSecondly, it has be-
weight Z vanishes when the FS is approached. This impliegome clear from a variety of experimetit$hat underdoped
that fork equal to the Fermi momentukg , where spin and  high-T, materials are characterized by the presence of charge
charge energies merge, the spectral function does not beaodulations in the form of one-dimensional stripgsn
come aé function as a function of frequenay, but rather it  these structures, the electron dynamics occurs mainly in the
diverges with a weaker power-law behavior li€ 1. This  direction longitudinal to the stripes, and, thus, it could be
reflects onto the behavior of the momentum distributioneffectively described by quasi-one-dimensional models in
n(k), which no longer shows a discontinuity latkg, but  which the transverse dynamics is reduée#: The third rea-
rather a power-law behaviof|n(k) —n(kg)|«|k—kg|*].  sonis related to the existence of several synthetic and natural
The same exponent appears in the local density of statespmpounds that can be considered as quasi-one-dimensional
which vanishes ai=0 like w®. The exponentr thus char- metals?>?3such as the organic conductors tetrathiofulvalene-
acterizes the anomalous behavior of one-particle correlatiotetracyanoquinonedimethand TF-TCNQ), the Bechgaard
functions and it plays the role of the anomalous dimension asalt$* tetramethyltetraselenafulvalene (TMT$K)and tet-

in field theory. However, in contrast to the usual field- ramethyltetratiafulvalene (TMTTEX (with X=PF;,ClO,,
theoretical modelglike ¢* theory), the anomalous behavior etc), or the inorganic chains NbSand K, ;MoOs. A further

of one-dimensional fermions is not universal, since the expossibility to study the crossover between 1D and 2D is to
ponenta depends on the interaction. One-dimensidid&))  couple a finite number of chains together. The phase diagram
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of such ladder systems is quite rich, and it shows an interabove, this is precisely the relevant region for a possible FL
esting dependence on whether the number of chains is evdighavior, it is worthwhile investigating it in a controlled
or odd%>—20 way. This has been done in Ref. 11, by considering all dia-
In this paper, we consider the effect of a small tunnelingd"@ms corresponding to the infinite-dimension limit. In this
matrix element, coupling the chains. The question is, doesP2Per, we extend the results of that letter, and provide the

the electron liquid go over to a FL state for arbitrarily small details of the calculation.

o : e This paper is organized as follows. In Sec. Il, we intro-
t, and sufficiently low temperatures or is there a C”t'calduce the problem of LLs weakly coupled by single-particle

value oft, below which one has a LL state for arbitrarily hopningt, . We discuss the issue of the perturbation expan-
low temperatures? This question is related to the problem cfjon int, , its difficulties, and the lowest-order approxima-
dimensional coherence addressed by Andersbal'”'®  tions, Next, we discuss the limit considered here, namely, the
These authors suggest that for sufficiently strong interactiotianisotropic” D—c< limit, and the analysis of the
the system may remain in a LL state for sufficiently smallasymptotic low-energy regime. Finally, we present an ap-
t, . Clearly, the correct starting point, as stressed by thespealing discussion of the analogy of our method with the
authors, is to consider initially the problem of an uncoupledParquet summation and with the renormalization group, and
LL and then treat, as a perturbation. discuss the cases |n_wh|_ch the.present method is controlled.
However, renormalization-group calculations show that" S€C- Ill, we describe in detail the procedure to carry out
t, is a relevant perturbation, which means that an arbitrarily}€, Sum of the diagrams leading to the-c limit for the
smallt, should destroy the 1D LL staf.This can be un- self-energy Eq(4). The idea is to write a recursive equation

derstood from simple dimensional arguments. Consider thfgOr the "restricted renormalized cumulants” EG) in terms
LL Green’s functionG(x|0) in real spacé? This varies like f the effective hoppind/, . In the leading logarithmic or-

1w X S der, this gives a set of self-consistent recursive equations, Eq.
[X| at large distances, and thus the Fermi field operatotg), which can be easily solved to a very high degree of

W(x)*\G(x[0) has dimensiong W (x)]=& %, There-  accuracy by a power expansion and a Panalysis. In Sec.
fore, upon integrating over the imaginary tinethe pertur-  |v, we discuss the results of this calculation. The most im-
bation associated with thig term[see Eq.(1) below], has portant one is the fact that the anomalous exponent scales to
dimension&f"l. This means that each term in the perturba-zero, i.e., the self-energy no longer scales anomalously at
tion expansion irt, carries a temfﬁ“_l, which diverges at low energies. This is seen in the spectral function close to the

low energies whenevex<1. These divergences signal the “special” Fermi point ¢, =0, which becomes sharper, in
fact that the perturbatioty is relevant fora<1. contrast to the lowest-order approximation. The quasiparticle

Let us consider the energy at which higher-order terms if€ight no longer vanishes at =0 in our result. Finally, in

thet, perturbation start to become importdne., all of the ~ >EC- V We state our conclusions, and discuss possible exten-
same order This is given byfuzti/(l_ @ —t_q. This intro- sions of the calculation to the inclusion of spin-charge sepa-

duces a new energy scalgy, which characterizes, for ex- ration and to finite dimensions.
gy it S We considered that the reader would benefit from an in-
ample, the crossover temperature above which temperatur

. Busion of all details of the calculations, so that any one
fluctuations cover the effect df, and the system behaves TR
like a LL.133 This means that for temperaturdsmuch could follow and repeat our steps without difficulties, and

smaller tharE: but much larger thaty the scaling behavior possibly extend them to some other cases. The calculation is

) . . X transparent, as it is almost completely analytic except for the
is characterized b,y the Ll.‘ anomalous dlme_nsmzif?r €X" " padesolution of the recursive equation described in Appen-
ample, the Green’s function &t=kg scales likew (for

_dix F. In order not to burden the bulk of the paper, we de-

“’.>>T) n t.h'S range. In this temperature region, the system 'Serred most of these calculational details to the appendixes.
still effectively one dimensional since the effectstof are

washed out by the temperature. Below this crossover Il. THE PROBLEM: FROM ONE TO HIGHER
temperatur€ and for energies smaller thagy the effects of DIMENSIONS
t, become important and higher-dimensional coherence sets
in. Notice that the effects of electron interactions are indeed We consider &'-= (D —1)-dimensional hypercubic ar-
important in reducing the coherence of the interchain hopray of parallel one-dimensional chaifise., the total dimen-
ping. In fact, the crossover temperature is reduced considefion is D). We consider here the case of equal spin and
ably for a>0, since in this case<t, , and the interchain charge velocities, since it allows for crucial simplifications in
hopping maintains an incoherent behavior down to very lowthe calculation. Since we are interested in the effects and in
temperature& However, strictly speaking, whether the sys- the fate of the anomalous exponentwe believe that spin-
tem is a FL, a LL, or something else can be determined in th€harge separation should not play an important role. The
T—0 limit only, since both of them are asymptotic theories, chains are labeled by th®(-1)-dimensional coordinate,
i.e., valid in the low-energy limit. Therefore, the important @long the hyperplane perpendicular to them, while the coor-
energy region to be studied &<t.. This is the nontrivial ~ dinate along the chains is calleq. The Hamiltonian we
region, since the behavior here is determined by all terms iWant to study has the following forrif:
thet, expansion.

For this reason, any perturbative expansion restricted to H=2 Hy(x)+ X t,(x,—x))
lowest order is uncontrolled at low energi€g<tg, and X !
lowest-order expansions are inconclusive. This is the reason
why theoretical results are still contradictory about the nature T /
of the ground state in this energy region. Since, as discussed 8 rZ:’ DX P (X X0 o (X X ) @

X X|
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where i, (X, ,X,) [z,/er’(,(x”,xl)] is the destructioncre-

ation] operator for a right- (=+1) or left-moving = _ X11 X.2

—1) fermion at the position; along the chairx, with spin - €19 ® ¥ +eee (2)
o. Moreover,H , (x,) is the Hamiltonian for aifuncoupled

LL in the chainx, . Since we are interested in low-energy = "' H ()

properties we can just take fét (x,) a Luttinger model,

characterized by its parameté?s a andvg (since we ne- o
glect spin-charge separatiprwhich will depend in a non- _.+

trivial way on the bare parameters of the microscopic chain

Hamiltonian. However, we are not interested in this depen-
dence here, and we just take these parameters as our startil
point. In Eq.(1), t, (x, —x]) is the amplitude for the hop- _‘_ - @ + + +

ping of an electron from chaim| to chainx, , where, as

usual, we have assumed that neithertheoordinate nor the

directionr are changed by the hopping. Moreover, one can

restrict oneself to the case of a hopping between nearest- 7'C- 1f D'agrammat'cbeXpa“S:;’” in dOfl the single-particle
neighbor chains only. Inclusion of hopping with finite exten- Green’s unctiong (gray box. A directed line connecting two
L . . . . chainsx, . andx, _ gives a contributiort, (X, —x, ), ort,(k,) in
sion in thex; direction or of next-nearest-neighbor hopping momentulm < acz(aRef 32. A dot with n erlmterinz andh leavin
in the x, direction is straightforward. However, it is not P 0 g g

. lines contributes a factog‘;’0 (n-particle cumulant of the uncoupled
expected to change the low-energy results. With:0, the || . 5o sec. 111. (a) Example of single-particle irreducible and

problem can be solved exactly, as the ground state is givepqycible contributions tg. (b) Dyson’s equation fog in terms of
by the product ground states of the LM in each chain, whichne inverse self-energy (gray disk. (c) Example of diagrams con-
are known’~ tributing toT". (d) Self-consistent diagrams contributingain the
Knowing the exact solution of thig =0 problem, one can D —« limit. The self-consistency is due to the presence of the full
envisage carrying out a perturbative expansion in powers of in the internal lines of the loop.
t,, ast, is small. This is, however, not without complica-
tions, as Wick’s theorem does not hold for the=0 ground at least for low energies, since one knows the exact solution
state, since the LM, although exactly solvable, containsf the Luttinger model and of its correlation functiof.
electron-electron interactions. A similar problem occurs forAppendix A).
the expansion about the atomic limit of the Hubbard model, Boieset al.used a functional-integral method to obtain an
whereby one first solves the single-site problem exactly anéxpansion int, about the LL!® Although their formulation
then expands in powers of the hoppihgA diagrammatic  allows, in principle, for an expansion to any ordertin, in
formulation for this problem was introduced by Metzner in practice one can just get the first few orders. Our method
Ref. 34, and further discussed in Ref. 35. It consists in carprovides a systematic diagrammatic formulation of this ex-
rying out a linked-cluster expansion, where an arbitrarypansion to any order. The advantage of a diagrammatic for-
(even number of lines () can join into one dot. This dotis mulation is that one can choose a class of diagrams to sum
associated with the exactparticle cumulant of the single- over, according to some physical guidance, without being
site problem3 restricted to the few lowest-order terms. This is particularly
This method has been extended to the problem of expandmportant for the model at study, since, as discussed in the
ing about the LLs in Ref. 10. The diagrams contributing tOIntroduction, each power df, in the perturbation carries a
the expansion are the same, the only difference being thaérm&*~*, which diverges precisely in the important region.
each line is now labeled by the extra varialle(intrachain  Thus, one cannot reliably restrict consideration to a finite
coordinatg¢ and r (for left- or right-moving fermiong be-  number of diagrams.
sides spino and imaginary timer. Actually, this method Some diagrams contributing to the expansion of the
turns out to be more appropriate for the present problensreen’s functiong (gray box are shown in Fig. (). As in
rather than for the Hubbard model. Indeed, in the Hubbargonventional perturbation theory, one can consider the func-
model, one expands about a highly degenetat® ground tion I' obtained by the sum of irreducible diagrams, i.e., the
state, which is not the case in our problem of coupled LLs abnes that cannot be separated by cutting a single[Eee
t, =0. Alternatively, one can use the diagrammatic rules inFig. 1(c)]. One then obtains a Dyson-like equation pas a
momentum space, for which each line carries an intrachaifunction of I" [Fig. 1(b)] of the fornt?
momentumk;, a Matsubara frequenay, and an interchain
momentumk, , as well as indicesr andr. Apart from this Gk)=[T(k)"*—t, (k)] % )
modification, rule 2 of Ref. 34 for calculating the Green’s
function remains the same. A set of these curious diagram$\otice thatI’ %, and notI", appears in the inverse Green’s
contributing to the Green’s function, is shown in Fig. 1. Thefunction, in contrast to standard perturbation theory. For this
building blocks of the diagrammatic expansion &irehop-  reason, we call’ the inverse self-energy.
ping lines connecting nearest-neighbor chds®/x, 1,X, ») The lowest-order approximation fd? (the “dot™: « in
associated with, (X, ;—X, »), and(ii) “dots” with n enter-  Fig. 1) corresponds to takinfj=G°, the Green’s function of
ing andn leaving legs, associated with timeparticle cumu-  the isolated LL. This gives for the total Green’s function, Eq.

lant of the single chain. The latter can be readily evaluated(2),
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G(k)=[G°(k) =t c.] 3 0V o0 O
¥ Yo GAyplyo) T y'24\ 172 kN ’

. o - . ="’+h‘+)’0>.>y6+$"+--- (a)
This expression is a generalization of the Hubbard | approxi- 2 v0) e Ly ! ¥
mation for the case of an expansion about the LL. Equation ° o 4 48 4‘ ,
(3) was first obtained by Wen via a different procedtfre, et -
and reobtained by Boiest al® within a functional-integral _
method. This approximation, which we will refer to as Vol + (b)
“LO,” is also called “single-dot,” “random phas€RPA),” To(¥o = Yo,k1) ty(ky)

“Wen's,” or ‘,‘HUbbar,d I n ,Other papers. Fora<1, the FIG. 2. (a) Diagrams contributing to the inverse self-enefgin
effect of the interchain kinetic energyc, is to change the .o b= |imit within an expansion in the dressed hoppifg
branch-cut singularity into a true quasiparticle paé Ref.  (gashed ling (b) Dressed hopping and its diagrammatic expression
38) for all k points close to the FS, except for thdsepoints  in terms of the bare hopping (full line) and the Green’s function.

for which ¢, =0 (for example, forD=2 these arek, = Other conventions are as in Fig. 1.

+/2). In particular, the positions of the poles far=0 . ]

identify the new FS, which acquires a dispersion of the form@rams, and each term of the perturbation acquires the same
kie(k, )= (t, ¢, )Y@, je., itis reduced with respect to the scaling as a function of the energy, and only logarithmic

; ; divergences are left.
noninteracting case, where one would h&yg(k, )=t , c, , o _ L
but not completely suppress&dFor the sake of complete- The procedure of summing just the leading logarithmic

ness, we discuss the main results of this approximation irq!vergences 1S similar in sp|r|t_ to the. sum of_the leading
Appendix B. divergences in the parquet series, which was introduced by

the Russiaft and by the Frenéi schools in order to study

Since the branch cuts are shifted into poles, this apProXlyq instabilities of various one- and higher-dimensional elec-

mation gives a FL along the whole FS except close to thg,,, systems. This method is equivalent to the one-loop
cL_=0 region. Th|_s can also be seen from the quas'part'Cl‘?enormalization—groumg-ology) approack?® and it actually
weight Z, plotted in Fig. 4 below(dashed ling which van-  gives a rigorous background, as well as a systematic formu-
ishes forc, =0. For this reason, the quasiparticle peak is|ation for the extension of thg-ology method to higher di-
quite broad in this region, as can be seen from Fig. 6 belowmensions. In our case, this corresponds to considering the
However, as discussed above, this result, being restricted uantity| = « In(te/£,) to be of order 1, and thus taking all
lowest order, is uncontrolled in the regidh<<te and one  orders inl, while consideringr small.

should sum an infinite series of diagrams in order to get Similarly, in the parquet summation, a@rology the
reliable results. Since it is not possible to sum all diagrams irsmall parameter is the bare interaction vertgxand one

the expansion, we want to select a workable subset of diasums all powers of), In(Er/w), w being the characteristic
grams according to somghysicallimit in order to avoid an  energy scale. The sum of this series gives rérormalized
arbitrary choice. Specifically, we consider the series given bynteraction vertexg(w/Eg) which thus acquires an energy
the diagrams indicated in Fig.(d), corresponding to the dependence. Within the renormalization-group picture, the
large-dimension limit D—=). The D—o procedure energy-dependent interaction vertex is interpreted as an ef-
adopted here is different from the standard dynamical mearfective interaction acting on an effective low-energy sub-
field theory?°® since our system is strongly anisotropic, as thespace, i.e., on a subspace in which high-energy modes are
hopping in one(in the ) direction is not rescaled by the integrated out. Whenever the interaction vertex scales to
usual 14D’ factor and is much larger than in the otf®r  zero, this signals that the effective low-energy theory de-
—1(L) directions® In analogy to the standard)— o scribes noninteracting electrons, i.e., the theory is asymptoti-
method®® where one has a singlenpurity embedded in a cally (infrared free. As a consequence, the exponents of cor-
self-consistent medium, oD —« system represents BD  relations functions are mean-field-like and, in the case of
chainembedded in an effective self-consistent medium. As germions, the system is a Fermi liquid. On the other hand,
consequence, the self-energy is local with respect talthe when a vertex diverges, no controlled prediction can be
coordinates but has a nontrivial dependence oriltiees?®  made about the low-energy behavior of the system, since the
We believe that this is the correct starting point to study theperturbative approach breaks down for sufficiently low ener-
crossover problem, since, in this way, one treats the onegies, even whegg is small. In this case, the divergent vertex
dimensional problem exactly and includes the coupling tosignals an instability toward some kind of broken-symmetry
the other chains by an effective dynamical mean field. state.

Even summing all thed =« diagrams is an impossible In our case, the role of the interaction vertex is played by
task. Nevertheless, since we are interested in low-energthhe anomalous exponert. The bare « is the correlation
properties, we can restrict ourselves to the leading singulariexponent of the uncoupled set of Luttinger liquids. Switching
ties in each diagram. It turns out convenient to rewrite theon the interliquid hopping, produces a renormalization of
power expansion in terms of thiressedhopping7; (indi-  the exponent. This renormalized exponent is obtained by
cated by a dashed line in Fig).ZThis is very similar to the looking at the low-energy behavior of the self-energy in the
skeleton expansion in conventional perturbation theorycoupled-chains system. Similarly to thpology case, our
where self-energy insertions are removed. The advantage igsult, obtained by summing the leading logarithmic diver-
that the scaling behavior of the effective hoppiftd. Eq.  gences, is thus controlled () the starting(barg value of &
(C12] exactly cancels the power-law divergences of the diais not too large andii) « scales to zero for low energies. The
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first requirementi) is easy to fulfill, since for most interest- first step, one neglects the self-consistency of the Green’s
ing systemsx is quite small. For example, for the Hubbard function and dresses the hoppifig with the bare Green’s
modela< g, where the equal sign holds for an infinite value function only[Eq. (C12)], one can see that the leading con-
of the on-site interactiotd. Larger values ofx are obtained tribution of an mrloop term in Eg. (4) has the form

by increasing the range of the interactfriThis is another  G2(xo|0) X (a In [xo|ter)?™. Indeed, one ‘& In” term arises
reason why our approach is more convenient than a weakrom each integration of the “center-of-mass” coordinates
coupling expansion itJ: while our calculation makes sense vy, (cf. Appendix D, another ‘a” from each 7, , due to its
also for very large(barg U, for which « is still small, the  real-space structuref. Eq. (C12)], and a “In” comes out
weak-coupling renormalization group is not justified fdr  for each integration of the “relative” coordinat¢gqg. (8)].
larger than the bandwidth. An estimate of the maximum Even summing up “just” the leading logarithmic diver-
valuea, of a for which our calculation is justified is given in gences of the integrals in E4) is a tough task. To do this
Sec. V. The second requiremefit) can be checked only we proceed in several steps. First, consider that some inte-
a posteriori The main result of this paper is that indeed gration regions in Eq(4) can be left out, as they do not
point (i) turns out to be satisfied, as scales to zero for contribute to the leading logarithmic divergences. Specifi-
energies smaller thaig. Thus, our procedure of restriction cally, in addition to the regiofix,|>|x,|>--->|x,| (called

to the leading logarithmic divergences is controlled, unlesg | m), to which we are restricted by symmetry, we can fur-

one starts from a model with a too large valueaof ther restrict consideration to the regfdnxg|>|x,|, and
ol <min(yq—y:|.lyq=Yel.lyg—yr[) for each p=q.r (of
[ll. ANISOTROPIC D—% METHOD course,g#r), wherey(’] is defined ag/y+X4. The fact that

the leading logarithmic contributions come only from this
integration region, which we will call “‘Q@m,’" is proven in
Appendix E.

For convenience, we introduce the “restricted renormal-
ized cumulants” (RRC9,*® defined only in the region
“0lm’” as

In this section, we carry out the sum of tle— dia-
grams for the inverse self-energy. In the— limit, the
inverse self-energy (x,) is L local° and is obtained as the
sum of the loop diagrams in Fig(& [equivalent to those of
Fig. 1(d)] as

]

r<x0)=92<x0|0>+n§1

|

X GAYo+ X Ym+ Xl Yo -+ Yim)

(="
m! Ge(Yot X0+ Ymt Xm|Yos -+ Ym)

=G2(Yo+ X0, Yt XmlYo, -+ Ym)

m
11 d?ye a7 (= %00)

- j dzXm+l dzym+l TL(_XerlvO)
olm+1

o * Xgc(YO+XOv---1ym+1+xm+l|y01---1ym+1)-
_ _1\m
- gc(XO|O) + mE:1 ( 1) (5)

m
X f { d?y, d2x, 7, (—X,0) Comparing Eq(4) and Eq.(5), it is straightforward to verify
1lm| k=1 thatI'(x,) is given by the single-particle RRG¢(x|0).

0 We thus proceed by evaluating the integrals in &g. An
XGe(Yot Xo.- Y+ XmlYos-- Yim), @ important point, which we will show below, is that, at the
where in the last line we have exploited the symmetry forleading logarithmic order, then{+1)-particle cumulant is
exchange of the coordinates.1 . ,m and restricted the inte- renormalized by a multiplicative factor that depends on the
gration to the region|x;|>|X,|>"+->|x, indicated by absolute values of the relative coordinateg only. More
“1 |m.” The corresponding factom! is then canceled by Precisely, the RRC can be written as
the symmetry factor bi! of the diagram. In Eq.(4),

GAYh . Yl Yo .. Xm) is the m+1)-particle cumulant of

the uncoupled LL, ie., the n;gnnected part of the (Yot X0, Ym+ XmlYo, - Ym)

(m+1)-particle Green’s functionG.(Y4,---YmlYo,---Xm) _ 0

defined in Eq(A11) [see also Eq(D23) for the definition of Fllor - AmGeYoXor - Yt XmlYos- - ym) (6)
cumulants in terms of Green'’s functigndn particular, for

m=0 the single-particle cumularﬁ(cJ coincides with the where theF,, is the renormalization factor, which we have
Green’s functiong®, as there are no disconnected partswritten in terms of the logarithmic variablesl,
Moreover, 7, (x,x, =0) is the dressed hopping written in =a In(|X|tes). We can thus first carry out the integration
real space, which is calculated in Appendix C. over the center-of-mass coordingtg, ; in Eq. (5) by simply

We are interested in the dominant low-energy behaviorconsidering the effect on the bare cumulant, as the renormal-
(&<tef corresponding tdxo|tes>1) of correlation functions ization factor does not depend gp, 1. This integral is quite
and thus we can restrict consideration to the leading logarithinvolved, but its leading logarithmic contribution can be cal-
mic divergences in the loop integrdl&q. (4)], as discussed culated analytically. This is carried out in Appendix D,
in Sec. Il. Let us estimate this leading contribution. If, as awhere one obtair{é
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0
f d%Yms1Ge(Yot X0, Ym+ 1+ Xme Yoo Y1) 0.1 —
olm+1 -
0 —
=27G2(Yot X0, Y+t XmlYo: - Ym) Ky —
(X ey
m -0.1 .~
X X 226206 210) 25 (il = Il ) 02 “er 92
i=
1 FIG. 3. Fermi-surface dispersidg_ as a function of the off-

X (7) chain kinetic energyc, (in units of t;) for the coupled spinful
Luttinger liquids[Eq. (1)] with bare LL exponentw=1/4. OurD

. . —oo result(solid line) is compared with the LO approximation Eq.
After carrying out the integral ovey,,. ; we carry out the (3) (dashedl

integration over the “relative” coordinatg,,. ;, which in-
cludes a sum over and 0% Inserting the form Eq(6) and 5 5 rather high order with a moderate numerical effort. This
the re§ult Eq(()?) into Eq. (5), and dividing both sides gf the procedure is described in detail in Appendix F.
equation byGe(Yo+Xo, - Ym+XmlYo,---.Ym), One obtains We have evaluated the coefficients &f up to the 42nd
order inl. A MATHEMATICA program has allowed us to
a4 2 _ evaluate these coefficients in a rational form, which is par-
Fllo,-.-lm)=1 ZWJ;;ﬂl<|xm+l(xmd Xm+1 71 (= Xm+1.0) ticularly recommended for a Padalysis. A straight sum-
mation of the series is not recommended, since its conver-
X|Xm+1|2g2(xm+l|0) gence radius seems to be rather snfaflthe order unity,
m while we need the asymptotic behavior for laigdleverthe-
o less|=a In(|x|tex) is restricted to the neighborhood of the
X Fmallo, "lm’lm”);l (j=lme 1) real positive axis, and a Pa@malysis shows that the poles
are either away on the complex plane or on the negative real
8) axis. A Padeanalysis is thus the most appropriate procedure
' in order to determine the lardebehavior of the function
Fo(l), which also gives the asymptotic behavior of the in-

where the lower limit of integration fofixy. 4| is due to the  yerse self-energy(x). The results will be presented and
fact that 7, changes its behavior in the regioE;1 discussed in Sec. IV.

<|Xms1l<tot (Ref. 47, and thus there is no logarithmic

contribution here, and the upper one is due to the restriction IV. RESULTS AND DISCUSSION

OUm+1 in Eq. (5). Inserting the asymptotic expression for ) ) ) )

the dressed hopping E6C21) in Eq. (8), one can carry out ~ AS ShC?Wﬂ in Appendix F, the solution of EGLO) gives
the integration ovek,,, , in circular coordinates, and obtain Fo(l)~€“ for largel, where the exponert turns out to be

the recursive self-consistent equation 8y, essentia_lly equal tp (within _about 104 Qf accpracyin both
cases with and without spin. Introducing this result and Eg.

O, r +_5rj,—r

i'Tmr1 S m+1/"

1
O r +_5rj,frm+1

X j''m+1 S

I m (A12) in the expression for the inverse self-enef@y. (6)
fm(lo,...,lm)=1+2(1+8)f Alns1 > (1= lme) with m=0] yields
0 i=o
I'(x)=G%(x|0) Fol a In(|X|tes) ]

X Fri1(loseedme D[ Follms 1)

+ Fu(l .

Follmo)] ® i.e., the anomalous exponent exactly cancels out in the
From Eg.(9), it is obvious thatF,, depends on just two asymptotic behavior of'! The same thing happens in mo-
variables, namelyl=Io+---+1,,_;, andl,,. With this re- mentum space. From EqC16 one notices that the
definition, and renaming the integration variable ; asl’, (asymptotic behavior of theenormalization function is the
Eg. (9) can be reduced to same in momentum space, provided one replagesvith
1/|k|. Thus, for low energies we obtain for the right-moving
component {=+1)

—GO(X|0) (|| tegr) “ortye/|I, (11)

fm(l,lm)=1+2(1+S)Jlmdl’[l+lm—(m+ 1)1
0 T'(k)— GO(K)te k|~ “oct(im—k ) 71, (12)

X Fnea(I 1 ID[Fo() +Fo(1)]. (100 where we have used E¢C8).
o The Green’s function of the coupled system is given by

Equation (10) is a self-consistent equation, sincg  the Dyson equation Eq2). Taking the result Eq(12), one
=1/F-o [Eq. (C17], which depends on th&,,, to insert can readily notice that the Green’s function now has poles at
on the right-hand side. We have not been able to find amnw—kjxtgqt, (k,), i.e., even forc, =0, in contrast to the LO
analytic solution to Eqg.(10). However, by expanding in result, where a branch cut was present. In particular, at the
powers of the variablels one can write a recursive equation FS (w—0+i0") and forc, =0, our result becomes asymp-
for the coefficients of the expansion of the functighg up  totically exact, agk| vanishes at the pole.
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FIG. 4. Quasiparticle weighZ as a function of the off-chain 0.1 0.2 0.3
kinetic energyc, with the same conventions as in Fig. 3. In addi- w/teff
tion, we show the resulidotted ling obtained by partially improv-
ing on the LO approximation, i.e., by including the first self-
consistent loop for the inverse self-energy of Fi¢d)1

FIG. 6. Spectral functiod\(w) from the LO approximation for
the same parameters as in Fig. 5, except that the curves are shifted
by 1. The peaks sharpen upon approaching the FS, but the quasi-

Let us look at the FS more precisely. This is the curveParticle weight vanishes.
kuF(Cﬁ parametrized by the Fermi momentum as a function .
of the | momenta, and is determined by the solution of the 1Nese results can4§)e more concretely seen in the spectral
equationF[kHF(ci),iw=0+i0*]’1=tlcl . Obviously, Eq. function for smallc, . .ThIS is plotted in Fig. $f0r dllfferen.t
(12) givesk, (c, =0)=0. In Fig. 3 we plot the FS curve for o and fo_rkH=0. The figure shows a well-defined d|sperS|vg
gL L . " quasiparticle peak, which becomes sharper on approaching
other values oft, anda=73 in the case of particles with the FS as should be the case for a FL. The dispersion as a
spin. We compare our resuffull line) with the LO result  fynction of ¢, is a clear indication of higher-dimensional
(dashed ling For smallc, , our result gives a regular behav- coherence. For comparison, in Fig. 6, we have shown the LO
ior ky_(c )>terC, In contrast to the lowest-order result, result. As one can see, the peak is dispersive too, but much
which gives a flattening of the FS at =0, due to the be- broader and loweftnotice the different scale Moreover, a
haviork”F(cL)octeffci/(l_“). closer inspection shows that the quasiparticle weight de-

The quasiparticle weighf(c, ) at the FS is given by the Créaseson approaching the FS, which is consistent with what

inverse of the coefficient of the linear term imin the in-  We have shown in Fig. 4. _

verse Green's function, more preciselyZ(c,) ! We want to study the spectral function even kp#0. To

=(d/diw)1/G(k, (c,),iw), .o+. We have plotted as a understand what happens, let us first look at the spectral
: L i o007 T TE : function for the LM (without spin-charge separatiph

function of ¢, for the case with spin in Fig. 4, again com- which we plot in Fig. 7 fork,=0.2. From the figure, one can

pared with the LO approximation. Moreover, in order to readily recognize the two nonanalyticities attk,. For

show the importance of summing the infinite series of d'a'w\+ku one has in fact a divergence likeo (- kj)¥2~1,

grams, we have included the result obtained by truncatingv ; X :

. . . ) : hile for —k; the spectral function vanishes ak
the D— series[Fig. 2(@)] at the first loop, by still taking T )P T;)e/pow”er-law givergence instead of a pol I (t
the self-consistently dressed hopping as internal line. For ) Cult

. . =k, is due to the fact that the poiat=k; where the inverse
small ¢, , the lowest-order resultdashed ling gives aZ = ) T :
vanishing aZ(c, ) (t, ¢, )™~ ). thus yielding poorly de- Green’s function 1° of the LL vanishes, is not a simple

fined quasiparticles arourt = 0. Inclusion of the first loop zero but a branch cut. Betweerk; the spectral function of

(dotted ling gives a vanishingZ too. Therefore, self- the LM is identically zero, as the Green’s function has nei-

consistency is not enough to restore the FL behavior. Outrher cuts nor poles here. A4=0 the two nonanalyticities

: : . merge in a single power-law divergeneé 1.
result, instead, yields a finit& for ¢, —0, as can be seen g gep 9

from the figure(solid line). The correct FL behavior is thus .W'thm the LO approximation, EQ3), the Zero of 1f is .
. . . . shifted away from the branch cut. Thus, an isolated quasipar-
recovered on thevholeFS, including the regions, =0.

ticle pole appears in the regionk,<w<k; on the real axis

100 (Fig. 8. This pole is always present for agy #0 (see Ap-
\ pendix B. The pole removes spectral weight from the peak
at o=k, which is now no longer a divergence.
S 60 —
3 < :
= T\ 3
20 I\ A
«
) 1
0.1 0.2 0.3
O [tefs
FIG. 5. Spectral functio\(w) of the coupled spinful Luttinger — B
liquids for different values ot, , k,=0, anda=1/4 from ourD 04 02 0 02 0.4
—oo result. For the sake of clarity, the different curves are shifted
verticaly by steps of 10. They correspond ta; FIG. 7. Spectral function of the isolated Luttinger mod@eith

=0.05,0.1,0.15,0.2,0.25,0.3,0.35, from bottom to top. Notice theequal charge and spin velocitje®r a«=1/4 andk,=0.2 (Refs. 3,
sharpening of the peaks upon approaching the FS at0. 4).
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0.5 energy still scales anomalously liK&|* . As a conse-
quence, well-defined quasiparticles are recovered along and
in the neighborhood of the whole FS, in contrast to the result
Eq. (3), where the spectrum is incoherent for snwll.

We have shown the importance of including an infinite
oL /‘ series of diagrams, in order to give reliable results in the
’ Jk region & <tg;. Even introducing the first loop of the dia-

03 02 0 02 04 grammatic expansiofin Fig. 1(d)] does not give the correct

® /toss result, as shown in Fig. 4. This shows that not even a self-

consistent calculation is sufficient. This is the reason why
FIG. 8. Spectral function within the LO approximation for previous theoretical results, restricted to lowest orders, are

coupled spinful Luttinger liquids wittw=1/4, k;=0.2, andc, = still contradictory about the nature of the ground state in this
—0.2. In order to make the quasipartidéunction visible, we have  energy region.
added a small imaginary part3.0< 10" °. Due to the proximity of These results have been obtained for the case of equal

the singularity, the peak actually becomes broader. spin and charge velocities. In fact, we believe that the scaling

. . behavior of the anomalous exponenfound here is univer-
In ourD — = result, the situation is similar. However, Fig. sa| and should not be affected by the inclusion of spin-charge
9 shows that in this case the two singularitiesak, .Ioge separation. Nevertheless, an extension of the present calcu-
much more spectral weight in fa\(or of the pole. Th|s IS @M 1ation to the case of LLs with different velocities could be
other reason why the quasiparticle weight remains Iargernteresting, first, in order to check this fact, and second, in

within our result, as shown in Figs. 4 and 5. for=0 Eq. order to verify whether spin-charge separation also scales to
(3) does not have quasiparticle poles, while our result yieldsZero in higher dimensionplikez orgnot P
a pole with nonvanishing weight at the FS even in this case. . : ' )

P gweig The imaginary part of the self-energylmI' ! needed to

The reason for that is due to the different behavior of the . P
quasiparticle weight, as shown in Fig. 4, and by the fact tha?valu""t,e the spectral' functpns In Figs. 5 and 9 has been
the scattering rate does not vanish fast enough for(Bq. ~determined by analytic continuation of tiasymptoticiorm
while it vanishes faster than linearly within our result, asEd- (12 However, one should mention that our calcula-

discussed in Ref. 1ficf. Fig. 2c) of that referenck tion, restricteﬁd1 to the leading divergences, yields reliable re-
sults for ImI'™* at small values of» andk; only. On the FS

and for largec, , k; is large too. Thus, for large, , we
V. CONCLUSIONS cannot state with certainty whether corrections td T be-
yond the leading divergences vanish fast enough upon ap-
proaching the FS or not. Arguments similar to that of ordi-
nary perturbation theofy cannot be extended to the present
gase, due to the momentum dependence of the vertices in the
t, expansion. A hint can possibly be obtained by explicitly
8valuating numerically the first few loops in Fig(dl with-
out restriction to the leading divergences.

In principle, we cannot say whether our result is valid also
for the physical cases of finite dimensions, and, in particular
efor D=2 orD=3. However, as we have shown in Appendix

C 2, the nont-local dressed hoppind, (x,x, #0) vanishes

In conclusion, we have studied the problem of the cross
over from one to higher dimensions for fermionic systems
when Luttinger liquids are coupled by a small hopping
Specifically, we have concentrated on the region below th
single-particle crossover temperatués<tqs, which is the
one relevant for the dimensional crossover. We have carrie
out an expansion in powers of , and summed the self-
consistent series of diagrarffsig. 1(d)] corresponding to the
anisotropic D— limit. Our result shows that the LL expo-
nent « renormalizes to zero for energies smaller than th

single-particle crossover temperaturg. The system thus
g'e-p P & y faster than the -local one7, (x,0) for large|x|. Non-L-local

flows to a FL fixed point with mean-field-like exponents. I .
This is seen, for example, in the self-energy, which nOWcontnbuuons are thus irrelevant and one may try to extend

scales linearly as a function of frequency and momentum, iﬁhe present result to finite dimensions. However, there are

contrast to the LO approximation E¢B), where the self- still 1-local diagrams of order D (for example, if one takes
' the diagramy of Fig. 1 and replaces all internal lines with a

local 7, ), which may spoil this result. It might be interesting
to consider an expansion about the pregesate result, con-
sider the irrelevance or relevance of such diagrams, and give
predictions about a possible critical dimensibr, above
which the results of this paper hold. For example, this could
be done in order to study the critical behavior in the neigh-
01 JL borhood of the transition to the two-particle regime aat

=y, whereag,~0.41 (0.62) for spinlesgspinful) elec-
trons.
-0.4 0.2 0 0.2 04
In Sec. Il, we have already noted that our
w/teff o H . H ”
renormalization-group-like” result holds fos smaller than
FIG. 9. Spectral function for th® —o result with the same a certaina,. Although we cannot determine, exactly
parameters as in Fig. 8. Notice the much larger transfer of spectrakithin our approach, we can estimate it, e.g., by the value of
weight from the singularities to the quasiparticle pole. «a for which the spectral function becomes negative in some
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regions. This criterion gives.~0.50 for the spinless and 1 1
a~0.33 for the spinful case. 7| MKyt for S=1
Another question is the contribution of the shifted poles q(r.K,)= P
k|, ¢, #0, which turn out to be irrelevant in the present case : “lrk o+ 1)+ i+1 for S=2
(cf. Appendix Q. However, these poles may give important 4 P K,
contributions in lower dimensions. Indeed, these poles are
the ones giving rise, in some conditions, to the well-known _ 1ta for r=1 (Ad)
nesting or superconducting instabilities at selected regions of B forr=—-1,
the FS.
where the LL exponent is related toK , via
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APPENDIX A: MANY-PARTICLE CORRELATION B= —s (AB)
FUNCTIONS OF THE LUTTINGER LIQUID

: i Here,
For the sake of completeness, and in order to fix our no-

tation, we give here the expressions for theparticle B __
Green's functions of the LM in real space. To our knowl- R(X)=— \/coslt xH—cosz?, (A7)
edge, their explicit expression, although known, has not been ma
reported anywhere else. In Appendix A1, we discuss thend
scaling behavior of the diagrams in the expansion.

§,2A generic_L-local n-particle Green’s function is defined A(x)=arg tanhx, +i tan7), (A8)
a
X =mx,/B,F=m7lB. At zero temperaturd =1/3=0, Egs.
(A7) and (A8) become

R(X)— (X + ) /a%=|x|/a, (A9)

G 9an(Xy . ) = (T x0) - 0z0)), - (AL)

whereT  is the imaginary-time ordering operator at{(x)

destroys(for d=—1) or createqfor d=+1) a fermion at and

the pointx (which includesr and o). In order to extract the .

t, =0 cumulantg;® of the isolated LM, to be used in E€#), A i argx+in_ XIFTIT_ XV (A10)

we first need thédisconnectedGreen’s functiong®. These x| x|’

can be written as where we have introduced the complex veoter(1,), al-

lowing for a compact expression. These expressions are valid

G4 %an(x; | Xon) for |x|>a and need a short-distance cutoff foi ~a. The

_ n cutoff prescription for the LM amounts to replacirxﬁJr '
=(2ma) "y, with x2+(|7|+a)2. However, it turns out convenient to
adopt a “rotation-symmetric” cutoff obtained by replacing

x Il [P

(%, —x;,)] %k, (A2)  x2+ 72 with x?+ 72+ a2, or by settingR(x) =1 for |x|<a.
2n=i1>i,=0

The low-energy results, obviously, do not depend on the spe-
cific choice of the short-distance cutoff. The advantage of
This holds whenever the particle- and momentum-setting equal spin and charge velocities is clear at this point.
conservation constrain®?",d;=0 and=?",d;r;=0 are ful-  Without this assumption, the correlation functions would not
filled, otherwiseG°=0. Here,a is a short-distance cutoff be invariant under rotation in the(, ) plane, which would
(axvp/Eg). The Klein factorsy, obey anticommutation have made the calculations more difficult.

rules {7, .7 }=5,,, and account for the fermionic ' conformity with Ref. 11, we define

rr;
]

anticommutati_oné(?'51 From now on, we will se to unity, Yy Yo i)
unless otherwise specified.
The functionsP in Eq. (A2) can be written as =G0 ey, YE e Ym o Vi)
, =(T" (Vo) ¥(Yo) -t/ (Ym) (YD)t =0
- K Ir l+ r2 a
Prr,(X)=R(x)~91"2: ﬂ)ex;{T(E—A(x)) } (A11)

(A3)  and G%(Y},....y4lYos---Ym) as the corresponding cumulant
(or connected Green’s functiprio be inserted in the dia-
where the exponerd(rr,,K,) is given by* grammatic expression E).
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As an example, we use E@A2) to evaluate the single- gram vy, if one assigns to the external lines 1,2 the index

and two-particle Green'’s functiorihere, we indicate explic- =+1, and to the internal lines 3,4,5 the indices +1,
itly the indicesr as 1 forr=+1 or 1 for r=-1). The —1,—1,respectively, and inserts the expressions for the two-
single-particle Green'’s function reads particle vertices taken from EqA14), one obtains for
_ I'(x,—Xx5,) a contribution of the form
i _
G(x1|01)=— o—[x| "t e ¥V, (A12) 5

2m7a 1
3d2Xi(|X1_X3||X4_X5|) 1ra

a““tff
while the two-particle Green'’s function for right-moving par- =
ticles reads (|X1—X5| |x3—x4|> —B_ .
G(y11y,1]y11y51) X1 = X4l Xg— X
~ Gyally; 1)G%(y21y;1)G0(y11]y;1)G°(y1 1]y,1)
GPy11]y.1)G°(y11]y51) '

X efi[argx17x3)7argx4fx5)]

X @~ argxz—xz) —argxs —X4)]

(|X2_X5||X3—X4|> _B_l
[X2—X4|X3— Xs|

(A13) (Al6)
On the other hand, the two-particle Green's function for(We do not consider the dependence on theoordinate
mixed right- and left-moving particles reads herg. According to the scaling analysis carried out
above, the contribution Eq(A16) should behave like
GO(y11y,1]y,1ys1) = G2(y1 1]y, 1)G2(yo1]ys1) a*t3|x,—x,|?* (notice that this expression correctly has
the dimensions of an inverse lengtfrhis behavior is correct
ly1=Yallyi =Yl ° on assuming that the integral does not dependaon the
ly:1—yallyi— 5l (A14) a—0 limit. However, this is not the case f8 1, for which

the integral diverges at small distances, as one can readily
verify. Thus, forB>1 the integral gives aa-dependent con-
tribution a®~ 28, which must be balanced by an additional
From Egs.(A11), (A2), (A3), (A9), and (A5) one can contribution proportional tdx;—x,|?6~2 in order to have
easily extract the scaling behavior of Green’s functions for ahe correct dimensions. Thus, f@>1, corresponding to

1. Scaling behavior of diagrams

homogeneous rescaling of the coordinates \x; . a>ay,, the contribution Eq. (A16) varies like
on , t3a27 2B 4|x, —x,|?B74 je., a stronger divergence. This
G(NYg s+ NYn-1/\Yo, .- AYn-1) produces the two-particle exponent obtained in Ref. 10.

=\~ (MDA Y Yo Yno1),
APPENDIX B: RESULTS OF THE LOWEST-ORDER
(A15) APPROXIMATION

i.e., ann-particle Green’s functionand a cumulant tgo
scales liken one-particle Green’s functions in real space.
Going back to the diagrammatic formalism, E415) gives
the scaling behavior of a vertex withn2egs. In addition,
each internal line associated withta tg:rm contributes an
integration overr andx;, i.e., a factoln“. Let us now con-

sider an ordeN diagram(N internal lines, with E external gﬁ;fgﬁ;‘%‘;&fgg‘f‘fﬁye set the constarg,, to 1 for
lines. Each internal line belongs to two vertices and each ' '
external one to one, so that the sum over all vertiedsaf (w2+kf)a/2 (kf_ZZ)a/Z

the number of legs for each vertéy is equal toL=3 L, Pk, z=iw)=— = . (BY
=2N+E. Adding the contribution from the integrals in the lo—kK 2=k

internal lines, this diagram scales lika ~(**Y2* 2N Thig expression is analytic far on the real axis and-k,
=\(-aN=(1*+)E2 This shows that each order tn con-  <z<k,, which is the reason why the LM spectral function is
tributes a factor)\1*“~€ﬁ’"l (Ref. 32. To get the same zero in this region. The denominator of E§) becomes
diagram in momentum space one has to integrate &ver
—1 externalx, andr, getting a facton €~ 2. For example, a
momentum-space diagram of ordé} for the inverse self-

energy scales likg, (N a) N . o i e wh :
This is correct provided no short-distance divergences oclhe zero of Eq(B2) gives a true pole whenever it occurs

cur in the integration of diagrams, i.e., if the integrals do not"Vithin the region of analyticity. For example, the FS is given
depend on the short-distance cutafbf Eq. (A9). A short-  PY the pointsk;,c, where

distance divergence would introduce a negative powe, of Pk, . z=0) L=c,t (B3)
which has to be compensated by a positive powek af " e
order to have the correct dimensiofigowers of a length j.e.,
scalg. This is what happens, e.g., in diagramand §in Fig.

1(0), for a>ay,, i.e., in the two-particle regim€. In dia- —ky/|k|*=c, t,=k,=—sgnc,|c,t, |VI"¥ (B4

In this section, we summarize some results of the LO
approximation Eq(3) introduced by Wenr! Within this ap-
proximation, the introduction df, modifies the denominator
of the Green’s function by a terin c, . The Green’s func-
tion for the LM Eq.(C8) can be readily analytically contin-

Gk, ,z) " t—c,t =z_—k"—c t (B2)
I 1L (kf_zz)a/z 1Lt
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By including a finite value for the energg one can easily
see that, whenevar, #0, Eq. (B2) is analytic in the neigh-
borhood of this point, i.e., the solution is a true p@ié Ref.
38). By differentiating Eq.(B2) with respect t@ and replac-
ing the solution Eq.(B4), one obtains the inverse of the
residuum, i.e., of the weighZ, for this pole. The result is
Z=(c,t,)¥™ 9 and is plotted in Fig. 4.

Close to the FS, one can look for a zero of E8R) of the
form z=xk; . This gives

kH:)’(X)knF(Cﬂ (B5)
with
(1+X)a/2 UN1l-«)
y(X)= m&) (B6)

The solution is real, and thus it gives a pole, for each
<x<1. In this region,y(x) takes all the values Qy(x)
<, i.e., for eachy>0 there is always a solutior This
means that for any poink(,c,) in the Brillouin zone with
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turbation expansion with the dressgd cancels this power-
law divergence. Thus, the correct starting point to study the
low-energy region is to carry outskeletonexpansion inZ;
and remove all self-energy insertions. In our case, this cor-
responds to replacing the diagrammatic series of Fid) 1
with that of Fig. Za). Although the power-law singularities
have disappeared in this way, logarithmic divergences are
still present in this expansion as discussed in Sec. lll. These
divergences can, however, be resumed, in the same spirit as
was done for the parquet series by Dzyaloshinskii and by
Nozieres and co-workers*?as discussed in Sec. Il.

The behavior of7, discussed above holds for nonzero

. In Eq. (8) we need thes; =0 hopping, i.e., we have to

mtegrate overc, , including ¢, =0. One should thus treat
this integration point with due care. We first Fourier-
transform in thel direction, obtaining

Ti(k,XLIO):f dc, D(c,) 7, (k,c,), (C2

kic, <0 one always has a pole at a given frequency. Thevhere D(c,) is the density of states for the out-of-chain

weight Z of the pole is readily evaluated as
=|CLtL|“/(l_“)[(1—X)_“/2(1+X)1_“/2]1/(1‘“)

X[1+(1—a)x] ™4, (B7)

which vanishes only at the border of the region;> = 1.
Obviously, the above discussion holds only tor< 1.

The fact that there is always a true pole for dqgy, <0
can also be seen directly from E@2). For givenc,t,
(say>0), andg= —k;>0, the function

q+z

B8
@ ®9
vanishes forz=—q and diverges forz—q . Between—q

and +q, it is an increasing function of. Thus, for any
t,c, , there is always a value afwithin the analytic region
of Eq. (B2), giving a zero. In practice, for smatl, the pole

starts to build close to the left nonanalyticity, while for in-
creasingc, it approaches the right singularity. This pole can

be seen in Fig. 8.

APPENDIX C: EVALUATION OF THE DRESSED
HOPPING

energy. In theD—o limit and for a cubic lattice with
nearest-neighbor hopping this re¥d¥

1 2
D(c,)=——=e /4
2N\

(C3)

The integral Eq(C2) can be readily evaluated for small en-
ergies, where the quantity=[t, I'(k)]"* is small. By in-
serting Eq.(C1), collectinge, and summing and subtracting
t, , we obtain

et
71(k,xL=O)=—ef dch(cL)(tiJr )
CJ__E
1
=—¢€t, [1+0(elne)]—— F(k)
(CH
where the Ire contribution is given by the, =0 point. It is

clear that the asymptotic result E@4) does not depend on
the specific form of the density of stat®%c, ), as long as it
is regular atc, =0 and normalized.

We now carry out the Fourier transform in thdirection.

In this section, we evaluate the long-distance behavior ofor the sake of definiteness, we consider here the right-

the dressed hopping in real space, which we need i(&g.
Its diagrammatic equation is given in Figlb® and read®

7, (k,c )=t c, +t,c, G(k,c)t ¢,

=t,c [1-t ¢, T(k)] Y, (CY

where we have used the Dyson equation @g. At the low-
est order[" scales ad"(k)~£"1, and thus, from Eq(C1),
7, (k,c,) formally varies Iikeé’Hl_“ for small energies and
fixedt, ¢, . As discussed in the Introductidof. also Appen-
dix A), every order int, in the perturbatlon expansion car-
ries along a term that scales Ilkiﬁ_ and thus higher orders

moving (r = +1) component. All results for=—1 are sim-
ply obtained by changing the sign of theoordinate, i.e X

or k. As a first attempt, we evaluatg?, the LO approxi-
mation for7, , i.e., we usd'=G°. The full dressed’; will

be evaluated in Appendix C1. The LL Green’s function is
given in Eq.(A12). Its Fourier transform is given by

gO(k): f d2X e—ik-XgO(X|0)' (C5)

where we have identifi€d k= (k,,— w). We now introduce
the angles of the two vectops and k with the x axis, i.e.,

in t, are more and more strongly divergent. However, due tap=argx-v and #=argk-v, andv=(1,i) as in Appendix A.

the scaling of7, , replacing the bare hoppirtg in the per-

Equation(C5) becomes
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['(x)=Ge(x|0)=G%X|0) Fol @ In(|X]te)],  (C13
with the renormalization functiotf,(l) given as a power
(C6) expansior{cf. Eq. (F1)]
Going over to circular coordinates and transformipg= ¢ "
— 6 ands=|Kk||x| yields Fo(l)= Z Fn,

Qo(k):%f d2x e IMIKIcos 9~ g1 -id]| ~1-a,

(C19

Qo(k)— fk s *ds The Fourier transform of can be carried out as in E(C7),
é and the integral oveg’ gives the same result, &, only

depends on the modulus »f Thus, we are left with

X fzwd¢/e—i(¢’+scos¢’), (C7)
0
I'k)=

a-lg fm s odg —2midy(s)]
|kla

where we do not care about the specific form of the cutoff at
s<|k|a, as it can be taken to zero in the low-energy limit .

(k| is always limited byt.g<1/a). The last integral oves’

gives —2miJ(s), with J;(s) a Bessel function. Integrating X Z fna®
overs, Eq. (C7) gives

n
In s+|n

W 19

SinceF, is, in general, a complicated function, and its coef-
lak|*  [ak[ ficients f,, very general, the Fourier transform can only be

G(k)~— Ky 3™~ kH—iwg“' (C8) carried up to the leading logarithmic behavior, which, as
discussed in Sec. Il, amounts to considerirga In(|X|tex)
where of order 1 bute small. In this way, we can neglect thedn
T'(1—al2) within parentheses in EC15 and the effect of the renor-
0= (C9) malization function’, becomes merely multiplicative, pro-
2°I(1+al2) vided one replacelx| with |k| ™! in its argument. We thus
As in Eq. (C8), we will from now on indicate with "  obtain
expressions valid in the asymptotic limit. However, when- N
ever this becomes clear, we will switch back te-:" r(k)=— ﬂj_— ( In Lert ) go(k)]f()( aln )

To evaluate7 ?(x,0), we first insert Eq(C8) in Eq. (C4) k K| Iy
(remember, here we udeé=¢%), and then transform back (C16
into x coordinates. Thus, where we have replaced the coefficiaqt with its —0

limit g,-o=1, consistently with the leading-logarithmic ap-

T%(x,0)~ f—e"‘ Xg0(k) 1 proach. One can also verifg posteriori that inserting the

asymptotic result foFo(1) (~€') in Eq. (C13 one indeed

obtains Eq(C16) for small .
—2—J q dq dg eldXlcos = d)gl-ag We now need’; (x,0) in real space, i.e., the Fourier trans-
4m°gqa” form of —I'(k) ". To express-TI'(k) " we need the recip-
(C10 rocal function of 7y in terms of its power-series coefficients

with the same conventions as above, and \ith k|. Trans- fn

forming g|x|=s and integrating ovep yields

Foh=7qy=2 fol" (C17)

o |X|a73ei¢ o , .
TL(X,O)*MTZ—gaaf S adSZ’JTI\]l(S). (Cll)
“ 0 where f, can be determined from all thg, with m=n.

In principle, the last integral does not converge at lasge Again, this function does not depend on angles, and we can

However, it can be regularized by inserting a convergenc@roceed as for Eq(C11), yielding

factor e #S=e~ #XIKl with x~1/X|tes, physically due to oy
the fact that the behavidf, (k,c,)~—T'(k) ! [Eq.(C4)]is _IX“e > .

cut off at |k|~tes. The convergence factqu can then be L0~ 47°g,a% Jo ST ds2midy(s)
safely taken to zero, since the result of the integral does not .

depend onu for small w. In this way, one obtains _
pend o a Y %S TraIn(|x|tey) — Ins]". (C18
n=0

a(2

T9(x,0~ 2—|x|a 3¢, (C12

The procedure is now slightly more complicated than for Eq.
(C16), since we have to consider terms at the first order in
Ins. The reason is that, if we neglect completely thes In
term, the integral in Eq(C18) is of ordera:

with ¢=argx-v.

1. Fully dressed function

We now carry out the same Fourier transforms with the fwszw\ll(s)ds=g _,~2a. (€19
renormalized functiod’, i.e., with Eq.(6) with m=0, 0 “
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On the other hand, expanding the-]" power on the right- s?
hand side of Eq(C18), and keeping the first term in 1-57 for Ry=0
yields a result of order 1:
” d s for Rg=1
2« - ~_ — = Tor kq=
JO s“7“InsJ(s)ds= daga,2 2. (C20 D’
The first integral thus ives a contribution s?
g g for Ry=2, (C26

2f " [ In(X|te) " to the nth term of the series in Eq. - 2D’

(C18), while the second gives@g”[lnqxheﬁ).]”*l. Both  and, in general, a term of ordes/(/D")" for Ry=n. Insert-
terms are of the same order within the Ieadmg—loganthmu:ing| these results in Eq(C24), one obtains at the leading
approach and must be taken into account. We thus obtain order in 14D’

ia . Ry
T, (x,0)~ —|X|* %€ *{ Fol a In(|X|teg)] (ds . o s
ma Dr(c)= | g% “1l an| 5| . (€27
+Fylal t , C21 N _
ol o In(Ix{ter) I} (€2 where theag are coefficients obtained from E(C25). For
since S7_ofo(I"+nI" Y =Fo()+Fo(l) [here, Fy(l)  example, from Eq(C26 a,=1, a,=—i, and a,=—1/2.

The powers ofs in Eq. (C27) can be replaced with deriva-

=(d/dl)Fy(l)]. Equation(C22) is the final result of this tives with respect t@, , yielding

section, which we need to insert in E®).

D(c,), (C28

—i d |
JD’ dc,

In the D—o limit, only the local effective hopping where the usual density of states is given in Eg3). We
7,(x,x, =0) is needed in the diagrams of Fig. 2, ascan now insert Eq(C1) and Eq.(C28) in Eg. (C22). Since
1-nonlocal contribution vanish in this limit In order to  fdc,(d/dc,)"D(c,)=0 for n=1, for the nonlocalZ, we
study the contribution of finit® corrections, we consider can subtract ac, -independent term fron¥, (k,c,), and
the L-nonlocal contributions t@, , given by write

2. First 1/D corrections: irrelevance of L-nonlocal DR(CL)=H aR,
dressed hopping d

g
T, (k,e)+ =

ﬂ(k,xNﬁO):fchDXL(cL)TL(k,CL), (C22 TL(k,XﬁO)MJdCL (k)

where, sinceZ, depends ork, only throughc, , we have
introduced the “generalized density of state@iere, we use X
R instead ofx, )

(C29

1 d XLD
FE (cy),

WhereZEdem. The term within square brackets in Eq.

D’ D’
dky .\ = 2 (C29 varies asl'(k) 2 for largeI'(k), and the same holds
DR(CL)_f (dnl P \/ﬁz‘l coskq | for the integral[the fact that the coefficient df (k) 2 di-

(C23 verges atc, =0 might, at most, give a logarithmic correc-
_ _ _ tion]. Thus,7; (k,x, #0) vanishes at least likE (k) 2 for
Following Refs. 39, we now introduce the Fourier represenioy energies, i.e., faster thafi (k,x, =0). Diagrams con-
tation of theé function, obtaining taining_L-nonlocal7; contributions are thus irrelevant in the
ds renormalization-group sense.
Dr(c.)= J 5 €°%I(sR), (C24
™ APPENDIX D: INTEGRATION OVER

where the integral(s,R) is given by CENTER-OF-MASS COORDINATES

In this section, we prove Ed7), for the integration over

I(s R)ZJ H %eide(rZis coskg /D" the center-of-mass coordinatg, ;. In order to simplify the
' d 2 notation, we introduce the shorthandC(O0,... n)
. =G%y5,--. YilYo,-..yn) for the cumulants, and
-1 J d okRal 1 2is - G(0,...nN)=G%Yy,...yAlYo.....yn) for the disconnected
d 2w JD’ LL Green’s functions. Notice that in these Green’s functions
the implicit ¢ and r variables? are pairwise equal. More
2s? precisely,o andr,, associated witly,, are equal tar, and
_ - 1 —3/2 K N i i
D’ cos'k+0O(D' ") |, (€25 |/ associated witly,. The reason is that & (ort,) line

does not change eithelr or r (see Fig. 2 In
and we have expanded in powers of /. The last integral addition, we define x,=y,—Vyi, F(n)=2m|x,/>G(n),
gives at the leading order Ij,nzaln(|x,-|/|xn|)[6,j,rn+(1/S)5rj,,rn], and for the in-
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tegration|oy,d%y, we use the notatioff,,.
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not converge, i.e., the shift is not allowed without further

The proof proceeds in two steps. We first show that theprescriptions. However, this holds if one uses the zero-

term on the right-hand side of E¢7) is also given by an
integral of a disconnected Green’s function, namely,

f [G(O,...n)—G(0, ... n—1)G(n)]

n—1

=G(0, ... ,n—1)F(n)20 ljns (D1)
=

where, for convenience, we have renanmed:-n—1. Then,
in Appendix D 3, we prove the step from E@1) to Eq.(7)
by induction.

1. Disconnected Green'’s function

To show the first part, we write then¢ 1)-particle cor-
relation function Eq(A11) by using Eq.(A2) in the follow-
ing form:

G(0,...n)=G(0,...n—1)G(n)

n—-1

Pri ,rn(Yi_Yr,1)Pri ,rn(yi’ _yn)
>< H ! ! 1
1=0 Pri ,rn(yi_yn) Pri ,rn(yi _yn)

(D2)
where we have used the fact thiat=r . We thus have

f [G(O,...n)—G(0,...n—1)G(n)]

=G(O,...,n—1)G(n)fI(n—l), (D3)
n
with the argument of the integral
n-1 I:’ri ,rn(yi_yr,1)|:’ri ,rn(yi, _yn)
In—1)=| ] —
1=0 Pri ,rn(Yi_yn) l:)ri ,rn(yi _yn)
(D4)

The integral in Eq(D3) is restricted to the region|(n,

temperature form Eq(A9). On the other hand, the finite-
temperature prescription EGA7) introduces a cutoff for val-
ues ofeachof the arguments in th&€ P/P in Eq. (D5) of the
order of 1T, making theseparateintegrals absolutely con-
vergent and allowing for the coordinate shift.

We thus need to expari@n—1) up to the second order in
Xn

n—1

1+1(n—1) =[] [1-x#P (V) +XEX2P,. (V)]
i=0

n—1
xj1:[0 [1-x4P,.(Y])

+ X8 X P (V)T (D6)

where a sum over repeated indigesu’, v, v’ is understood,
and where we have introduced the notatigpsy;—y, and
Yi =Y —Vy,. Moreover, x4 is the u component of the

vector xn, P,(y)=[(a/oy*)P(y)]/P(y), and P,.(y)
=[(alay*)(dloy”)P(y)]/2P(y). Moreover, we have omit-

ted ther; indices in the function®, since they are fixed by
theiry argumentdi.e., P(y;—yn)=P;, ; (Yi=Yn)]-
Expanding the denominator of E(P6) we obtain

n—1
1+|<n—1>win0 (1= %X P (YD) + XX P (V)]
X[LH+XE P, (V) =X X0 P o i (Y])
+ X8 X0 P (V)P (V)] (D7)
Collecting powers ofxﬁ, we obtain the second-order term
I(n—1)®:

I(n—1)@=xtx" Zi [P,..(¥)—P,.(J)

wherex, is smaller than all other distances, which are the
arguments of thé®’s, in Eq. (D4). For this reason, we can
expandl(n—1) in powers ofx,=y,—YV,. The zeroth order
of this expansion is zero, d¢n—1)=0 for x,=0. The first
orderl(n—1)® gives

+P,L<W>PV<W>]+Z>J_ [P,(YDP.(¥)

+P,L<W>PV<VJ>]—Zj P.(YDP.(Y])

nt VI:’r- N (yi_yn) _
l(n—1)M= ,20 —Xp- W =xﬁx;( Z {P (V) =P (Y +[PL(Y)
VPr- o (Yi/_yn) _ - v’ E - VA

where theV is considered as applied to the argument of the +PLYDPLY])) — Py Pu(y})

function. Having in mind to integrate this expression over
Yn, one would be tempted to carry out a shift in coordinates
Ya—YntX; in the second term within square brackets in Eq.
(DY), thus obtaining zero. This shift, however, has to bewith the integration over, in mind, and with the same
carried out with some care, since the logarithmic gradient&rguments about convergence as for &2p), we can carry
VP (Yi=Yn)IPy  (Yi—Yn) vary as 1y,| for large|y,|.  out a coordinate shift of, in some of the terms of the sum
Therefore, the integral of each separate term in(B§) does  Eq. (D8). First of all, we shifty,—y,+Xx; in the P, ,(y])

- P,AV()H(W)])- (D8)
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term, so that it becomeB,, ,(y;) and it cancels the fird,, ,

term. Next, we transform the first-derivative term in the first

sum in Eq.(D8) in the following way:

[P.(Y)) =P,y IP.(Y)
=3 P.(YDP.(Y)+32 P.Y)P.(Y)

— 2 P.(Y)P.(Y) =2 Pu(YDP.(Y]) (D9)

1
—3

WYDPLY)+3
—3 PL.Y)P.(Y)

PL(YD P, (Vi) =3 PL(YDP.(Y))

(D10)

=3[P ,.(y)—P,(y)1 [P.(y)—P,(¥y)],

where Eq.(D10) is obtained by shiftingy,—y,+X; in the
second term and by exchangipgandv in the fourth term of
Eq. (D9) [which is allowed, as Eq(D8) is symmetric in
u, v]. Inserting the result in EqD8), and factorizing in the
same way the terms in the last sum, we finally get

1
(=1 5xix12, [P, (¥~ Pu(¥])]

X[P,(¥) = P.(¥])]
2

1 u _
5| 2 XIP.D—P.)]| . (D11

i

where “—” means that it is equal but for a shift of the
integration variabley,, in some of the summands.
We now need the logarithmic gradien®s,(y,—yy). If

the pointsa andb correspond to two electrons on opposite

sides of the FS, i.er,=—ry, then from Eqs(A3), (A4),

and (A9), P°(y)=1y| &, and
d,lyl® y*
W=y =B (b2

where we have set=y,—Y,, and introduced a superscript
symbol 0 or 1 toP,, depending on whether,=—r}, or
r.=rp, respectively. In the second casg=r,=r, we can
write P1(y)=cly| 2 “y-v, wherec is a constant, and the
two-component vectow=(1,—ir), slightly different from
the one defined in Appendix A. Differentiating, we obtain

yl‘v VIL
PLY)=—(2+a) W2+
1

=|—2[(Y'V*)V”—

Y (2+a)y*],

(D13

as|y|?=(y-v)(y-v*).
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ani(yi—yn)P‘E(yj—yn)
Y
=B?ms,, R (D14)
= n
ma><|y. Yil.[xal)’

where in the intermediate step we have transformedy
+y;, andy;—y;=X, and used the result E(D21). Here, we
have introduced a large-distance cut&#1/T, on which,
eventually, the final result does not depend. The maximum in
the logarithm only applies in practice whes j, as|x,| is
always the smallest distance. In this case, the result is ob-
tained by keeping in mind thax,| is the short-distance cut-
off, and by applying Eq(D20). Forr,=r;=r;=r, we need

fnPi(yi ~Yn)PH(Y;~Yn)

fm{[(y X) - V¥ JvF—(2+ a) (y* —x*)}

X[(y-v*)V'=(2+ a)y’]

=[V* A VE—(2+a)8,,,/]
yr —x y”'
X[VFY'V' = (2+ a) )0, fd
2+ a)ad,,| R (D15)
= n ,
T & ma)‘(|Yi_Yj|a|Xn|)

again using Eq(D21) and the fact thav** v*#' =0 and
vAVFTHyE Y =26, . Finally, forr,=r;=—r;, we have

)

Po(Yi—Yn) P3(Yi—Yn)

=(—B)[v*"'v-
R
max(|y; — ;[ Xnl)
=m[B(2+a)d,,—Bv* V"]
R
xn ma)‘(|yi_yj|v|xn|)

(2+ a) 5V’V]775,LL,V’

XIn

R

—m(l+a)BJ,,In max([y—;
i ils

(D16)

where in the last step we have symmetrized with respeat to

There are thus three types of integrals to be carried out iand v.

Eq. (D3) with the second-order term E(D11). First, for the
case that,= —r;=—r;, we need an integral of the form

We can thus use these results to integrate(B4.1) and
obtain
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RS PR
LR ’ Ay
A\ A\ A Vv ‘ot ry N
- ’ 11 = M) 1 + gy - v’
™ ( Y/ =yillyi—y| ;)‘\ 1,)-',\
~ =8, X" 2 In ; , I~ )F.\
2 “wrmnn j |y| y]||y| | 0 0 0 0 0 0 0

X{[(2+a)a5ri ,rn+ B? 5ri ,7rn] 5ri T
n—-1

+(1+a)Bs, _,j}+2 2[(2+a)as,
i =) i''n

|n|

+B25, _, ]in (D17)

where we have considered the casg separately, and used
the fact thatx,| is (mucH®) smaller than all other distances

FIG. 10. Splitting of a cumulant contribution into “paired” and
“unpaired” terms. A cumulant is indicated by the black dot and is
obtained as a sum of disconnected Green’s functions, represented
by black squares. The last diagram on the r.h.s. is an “unpaired”
one, according to the definition of Sec. D4, and does not contribute
to the leading logarithmic divergences, as shown in that section.

distance cutoff, and diverges logarithmically at large dis-
tances. We can split the integral into two regiofi$:|x|N
<|y|<R, and(ii) |y|<|x|N, with N large but much smaller

in the region @n, and thus can be neglected whenever itthanR/|x|, so that I'N can be neglected. In regidi), the
appears summed to other distances as the argument of a logategrand can be safely approximated ys{y*/|y|*, whose

rithm. Notice that the large-distance cutétfcancels out, as
anticipated.

Consider now the terms in EqD17) with i#j. These
give logarithmic contributions of the form
n lyi+Xi = yillyi—y; =Xl (D18

lyi—yillyi+xi—yj— x|

For the sake of definiteness, let us takej in Eq.(D18), so
that, in the relevant region{, x; is smaller than all other

integral, taken from Eq(D20), gives 76,4 In(R/|x|). In re-

gion (i), the only length scale left i&|, since the integral
converges at short distances, and thus there is no logarithmic
contribution from this region, and E¢D21) is proven.

3. Integration of cumulants

We have thus proven E¢D1), an equation similar to Eq.
(7), but with disconnectedsreen’s functions instead of cu-
mulants. We now prove by induction the same thing with

differences in the arguments of the logarithm and thus can beumulants. Induction is the best way to do it, as cumulants
set to zero. In this way, numerator and denominator in Eqthemselves can be written by induction in terms of discon-
(D18) cancel and the result is zero. This means that the termsected Green’s functions. Amparticle cumulant consists of
with i #] in Eq. (D17) do not contribute to the leading loga- the sum of thenr-particle disconnected Green'’s functions plus
rithmic divergence. Thus, the only contribution to EB17)  an appropriate sum of products kifparticle Green’s func-
stems from the second summation, which gives tions withk<n (Ref. 36. However, we can show that in our

h1 problem, we need consider only the so-called “paired” con-

@ 2 %] 1 tributions to the cumulants, i.e., we can throw away all those
I(n 1)@ ~27(x,? 2, aln = x| n| tnt g0 -1, terms in the sum in which, for arky; the coordinatey, and
(D19) Ykt X do not belong to the same Green's function. The fact

that these term§‘unpaired terms,” see Fig. I0can be ne-
glected is shown in Appendix D 4.
Let us write in the shorthand form

where we have takeB?~2a/S and (2+ ) a~2a, consis-
tently with the leading logarithmic approximation. Inserting
Eqg. (D19 into Eq. (D3) yields the desired result E¢gD1).
There might be a much faster and elegant way to get the
rather simple result EqD19).

n-1

fC(O, .,n)~C(o,...,n—1)F(n)Eo|j,n, (D22)
=

n

2. Some logarithmic integrals ) o ) ) )
which coincides with Eq(7) for n=m+ 1. The induction
procedure consists in provin@ that Eq.(D22) holds forn
=1, and(ii) that in the hypothesis that E¢D22) holds for
all n=m, it also holds fom=m+1.

For n=1, C(0,1) is equal toG(0,1)—G(0)G(1) plus
unpaired terms. Since, as discussed above, unpaired terms

Here, we evaluate the integrals used in EQ14) and
following. The first integral is straightforward:
yy?

d D20
JA<|y<R |y|4 (b20

R
W(Saﬁ In K,

whereR is a large-distance antl a short-distance cutoff for

ly|, which are needed due to the logarithmic divergences o

the integral. We next prove that

—xa B
J dzyy 21027
yi<r ly=x[? 1yl

where~ means at the leading order in Ri[x|). The integral

Sapl R D21
Waﬁ”Ma ( )

converges at short distances, so there is no need for a short-

can be neglected, fon=1 Eqg. (D22) coincides with Eq.
?Dl), which we have just shown in Appendix D 1.

We now assume EdD22) to be valid for alln=m. Let
us first introduce the definition of a cumulant in terms of
connected Green’s functions,

C(0,...n)=G(0, "C(Py,),

(D23)

)= C(Py)-
P )
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where we have already left out unpaired terms. In ®23), The integralf ,,.. 1 in the first term on the right-hand side of
the P, are subsets of the set of integef§, ... n}, Eq. (D27) can be evaluated by using the induction hypoth-
{P1,....Py} is a partition withNp terms of this set, and the esis Eq.(D22) with n<m, asC(Py,m+1) is a cumulant
..... n) goes over a” inequiva'ent partitions W|th W|th feWer thanm+ 1 pal’ticleS. We thUS Obtain fOI’ th|S term
Np=2 of this set. Equivalent partitions are the ones that can
be set equal by a permutation. Introducing H23) in the
result for the disconnected Green’s functions Hfl) (with - sz " g«l C(Py)---| C(PYF(m+1)
n—m+1), one obtains 777

Np

f C(0,... m+1)—G(0,... mG(m+1) Xj;,k ';,m+1)---C(PNP)
m+1
+ 2 C(Py-C(Py,) == 2 C(Py):C(Py:+-C(Py,)F(m+1)
P(O, ... m+1) P(0,...m)
=G(0,... MF(M+D) 2, s (D24) X3 Lot (D28)
z P

In Eq. (D24), the sum over the partitions of the set of inte- . N <m . .
gers 0,..m+1 can be further split in the following way: since Ekglgi%"k_EifO' '”Se”'_”g_ the last res'ult n Eq.
(D27) and using again the definition E¢D23) yields the

desired result, i.e., EqD22) with n=m+1.

PO,... m+ 4. Irrelevance of “unpaired” terms
Np We want to show that the “unpaired terms” in a cumu-
= 2 > C(Py)--C(Pg,m+ 1)---C(Pn,) lant do not contribute to the leading logarithmic divergences
m k=1 in any of the terms of the sum E@). An (m+1)-particle
cumulant is the sum of products ofparticle Green'’s func-
+ 2 C(P;)---C(Py.)C(m+1) tions with n=<m+ 1. By “unpaired terms” we mean those
P(O,....m) F terms in the sum for which some paired variables., y,
andy,=y,+x,) do not belong to the same Green'’s function.
+C(0, ... mC(m+1), (D25) [, ekxamp|e, tom=1
i.e., into the sum over the partitions of the integers.Q ,m
with the elemenm+ 1 either appended in all subsets of the ~ G2(0,1/0',1')=G%0,10',1")—G°(0[0")G°(1]1")
partition or taken alone. Upon applying the definition Eq.
(D23) with n=m to the last term on the right-hand side, Eq. +G%0|1")G%1]0"), (D29)
(D25) becomes
the last term on the right-hand side is unpaired, while the
first two are paired. The first two terms, when inserted in Eq.
(4) give a Irf(|xo|ter) contribution, as discussed in Sec. IIl.
The contribution td" of the last term can be best understood

PO,. . m+1)

Np diagrammatically(see Fig. 10 Its contribution, written in
= > kz C(Py)---C(Py,m+1)---C(Py,) momentum space, is proportional to

PO, ... m) k=1

+G(0, ... mC(m+1), (D26) f d%k GO(k) 7, (k,x, =0)G°(k)e'k %
which, inserted into the left-hand side of Ef24), cancels
the second term within large parentheses, giving GOk) :

N_f de e'k'XO
FolaIn(teq/|k|)]

f C@0,... m+1)
m+1 G%(xo)

~ Fofan(tedx)]’ (b30)

Np
- fmﬂ P(O,Z.,m) gl C(Py)-C(P,m+1) i.e., it does not contribute additional logarithmic termdto

in contrast to the contribution from the paired terms. The
X---C(Py.)+G(0, ... mF(m+1) same thing happens at higher order, namely, while the paired
P terms of an (n+1)-particle cumulant inserted in Ed4)
m give a correction of order M(|x,|tes) to I', the unpaired
% E e (D27) terms give smaller powers of fche ngarithm and can thus be
j=0 neglected at the leading logarithmic order.
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10 and can thus be neglected. We have thus prasgn.e., that
8 the leading divergent contribution to each term of the expan-
= 6 sion Eq.(4) comes from the regiofxy|>|X4|.
=4 To show the second pafb) of the statement, we should
g 2 first understand how a logarithmic contribution to Ed)

comes out. Let us consider the integration oygiof Appen-
dix D 1.1(m—1) [Eq.(D4)], which is the onlyy,,-dependent

. part of G(O, . .. m), can be written in the generic form
FIG. 11. IfFy(1)] vs| for S=2, obtained with a rational Pade
interpolation to the expansion of Appendix F of the forRy(l)
=P,(1)/Q(l), with n=k=20 (solid line), n=21, k=20 (dasheg
andn=20, k=21 (dotted. |(m_1):H Pi(Ym—Ti), (E2)
I

APPENDIX E: RELEVANT INTEGRATION REGION

In this section, we show that the leading contribution inwhere theP; are functions with an integrable singularityGn
In(jxo|te) to each of the integrals in the series EQ.[whenever the exponentstle andB in Eq. (A6) are smaller
(4), restricted 10 [Xp|<[Xm-1|<:--<[x;| can be further than 2. Since the singularities are integrable, there is no
restricted (a) to the subregion|xy|<[xo| and (b) to [x;|  divergent(power-law or logarithmigcontribution from inte-
<|yq+ €1Xq—Yq — €2Xq'| for eachp=q.q", q#q’, ande;  gration ofy,, in the neighborhood of the points. For the
=0,1. This relevant region, which we call In," is the g5k of definiteness, let us suppose thaindr, are the two
one where the modulus of th_e relative coordmm,;emth &  pearest points among the, and callA=|r,—r,| their dis-
given indexp (p=0,...m) is smaller than the distance ;e Then, one can consider the cirRle, of radiusNA

H H H 1 H !
between any two different points with indicesq’ smaller aroundr, with N some number of the order 1 smaller than

than or equal tg. The remaining regions do not contnbutg the relevant logarithmic scale. This region contaipandr,

to the leading logarithmic divergence of the integral. This is . .
a crucial poigt inggiving the sim%le expression E%)- but_no_ne of t_he oth_erri points.(In case there are other points
Let us start withm=1. We have already seen in Sec. Il ri inside th|§ region, th.e following arg“me'f“ dqes not
that the contribution to Eq4) from the region 1 gives a change, provided their distance from :_;md 2 1S ”e'their
In? term, and for generah one has a Ifi" contribution. Con- _much larger nor m.uc_h smaller than) !nS|de R<A.‘ Ll
sider now the integration regioho|<|x,| in the termm just one characteristic length scale since there is no need
0 ! for a short-distance scale due to the convergence of the inte-

=1 in Eq. (4), which violates(a). The integration over the gral. Thus, by simple dimensional analysis, one obtains for
“ -of- K i I ith an in- ; A : ' .
center-of-mass” coordinatg, can be replaced with an in the integration in this reg|oyﬁR<Ad2yml(m— 1) A2 with no

tegration overy,, since the integrand depends on the differ- oI o i
over the result Eq(D1) with n=1, and interchange the la- for a logarithm. A logarithmic contribution can come only

bels 1 and 0. This is correct because eyl is smaller than ~ from integratingyy, in the remaining regiorR.. 5, where
;). One thus obtains more energy scales are available. In this region, one can

expand in powers ofA, when it appears as an argument of
14 the P;, as we have done in Appendix D 1 with=|X,|.
f [G(0,)—G(0)G(1)]*2amG(0)G(1)|xo|?In —. Let us start from the simplest case=1. Here, there are
! |XO|(E1) four point_sri, namely,Yq, Yo— X1, y65y0+x0—>_<1, and
Yo+ Xo. Since we hav® |x;|<|x,|, the smallest distanca
If one now inserts the expression BEG12) for the LO7Z,,  Petween two of these points is given b!/l| As discussed
and integrates; from |x,|=0 to |x;|=|%,|, the result is above, the Igadmg logarithmic contribution t(? E{q),comes
proportional  to aZG(0)|xolzf‘xl‘<|xo‘(d2x1/x‘l‘)In|x1/xo| from the regionR. |y |, where|y,—yol, |y1=Yol. [y1~Yol,
= &?G(0)X O(1), whereO(1) is a term of order unity, i.e., |Y1~Yol>|xi| which proves resultb) for m=1. It is now
without logarithmic contribution. For a generic term of the Straightforward to extend this argument by induction for any
logarithmic expansion, EqC21), of the completely dressed M. Specifically, we first assume that we can restrict ourselves
7, one has a similar result, namely, after integration oyer t0 the region where the distancég,—yql, [Ypo=Vql: [¥p
one has no additional logarithmic contribution, while one —Yg| (let us call them ‘ty,—y,| and primed’) are larger
gets a terma?, i.e, one “loses” two logarithms from inte- than|x,,_,|, for p,g=m—1. Then, sincgxy,_1|>|Xy| (we
grating in that region. are restricted to the region/in), it remains to be shown that
Taking now m>1, one first integrates the variables the region where any one of the distandgs—y,| and
Y2,X2,....¥m Xm Dy using Eq.(5). However, this integration primed is smaller thatx,,| does not contribute to the leading
simply renormalizes the two-particle cumulahtby a factor  logarithmic divergence. Sinde,,| is smaller than albther
of order 1 in the leading logarithm, i.e., by a sum of powersdistances]yp—yq| and primed, we can apply the argument
of (aIn|x|tes). Now one can proceed by integrating over above, according to which logarithmic contributions from
y1,X;,. By the same argument as above, it is straightforwardhe integral ind?y,, come from the region outside circles of
to show that integration from the regidro|<|x,| does not  radius|x,| from any of the pointy, ory,. This proves the
contribute additional logarithms, while it gives a tewa, statement.
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— —_ m=4
= = 4
o E3f — — — — — — -
¥ g
=
- 10 'l‘ 20 30 ' 5 10 I 15 20
FIG. 12. d In[F,(1)]/dl vs | with a logarithmic Padepproxi- FIG. 13. d In[F(ml)]/dl vs | for m=4 (solid line and m=2

mation d In[Fy(1)1/d1=P,(1)/Q(l), with n=k=20 (solid line), (dashed, with a logarithmic Padeapproximationd In[F(1)]/dl
n=21, k=20 (dashegl andn=20, k=21 (dotted, covered by the =P,(1)/Q(l) with n=k=19.
solid line).
where we have replaceg=i andr+s+p+2—q=j, and
APPENDIX F: SOLUTION OF THE RECURSIVE introduced the coefficients
EQUATION BY POWER EXPANSION

. . . . i+tj—2 itj—-r—2
In this section, we describe the practical procedure to . g

(m+1 (m+1)
solve the recursive set of equations Efj0) by power ex- Bi =2(S+ 1)r:m%_1’0) pgo fricizr-p-2
pansion up to very high order. We also show some results of
the corresponding Padesummation. We expand the func-

— — r+1 1
tions 7, in powers of their arguments X[fp+(p+1)fp.a] ( i )H—j ]
o ry m+1
Fall I ) = E LT (F1) ~\i)iF=r| (F4)

IJ—

We can use two known results, namel§) F.(1,00=1, Comparison of Eq(F2) with Eq. (F3) gives the relation be-
which implies = 6,0, and (i) =5, of;, asFo(l,lp)  tween thef™ and thef ™%, namely,
only depends oty .
Inserting Eq.(F1) and the expansion for the reciprocal BT for i+j=2i=0j=1
function Eq.(C17) in Eq. (10) yields fﬂl): 1 for i=j=0 (F5)

* 0 otherwise.
2 HP,
=0 From Eq.(F4) it is not too difficult to prove another re-
I , striction on the coefficients], namely,f™) ;=0.
=1+2(s+ 1)10 di’fl+1p—(m+1)I"] We have evaluated the coefﬁuen‘l‘sf l’ up toj=42,
and, consequently, all other coefﬂueriﬁ up to a corre-
(m+1 s sponding high order, by means of an algebraic manipulation
X 2 frs 7(+1m)l program. If one tries to naively sum the series, one comes

remo out with apparent divergences alreadyl af the order of 1,
< _ which is probably the convergence radius. The Paéthod
X 2 [fpt(p+1)fpaqll’P is most appropriate for extrapolations beyond the conver-
p=0 gence radius? Indeed, we find that the possible poles are
I © o - never on the positive real axis, nor close to it, which is the
=1+2(S+ 1)f dir > Y+ (p+1)f 4] only region where we neey(l) to be well defined. The
0 rs,p=0 simplest Padénterpolation consists in equating the coeffi-

ST+1 S P (m+ 1) (1 +1.71'STP+1 (F2 cients of the series to the ones coming from a rational func-
L+ ( Y+ 1) 1. (F2 tion P,(1/Qx(l), whereP,(l) is a polynomial of ordemn,
Carrying out the integration and applying the binomial ex-and Q(I) one of orderk. In Fig. 11 we have plotted
pansion[with the agreement that(=0 for s>r], Eq. (F2)  InPy(1)/Q(l), as obtained by this result, with differentk

becomes close to 20. In all three cases, the logarithm seems to even-
tually acquire a constant slope, suggesting an exponential
o . . behavior for F,. However, abovd ~5 the three different
1+2(S+1) > fU Y+ (p+1)f ] interpolations give different results, which signals a failure
rs,p=0 of the Padeprocedure forl=5. A better approximation is
r+1 achieved by making a rational interpolation to tbegarith-

mic derivative i.e., to set the ansatad In[Fy(l)]/dI

=P,(1)/Qx(l). As one can see from Fig. 12, this logarithmic

o o Padeinterpolation now works well up to a larger 20 and it

:1+2 2 i g(m+1) (F3) clearly shows thatd In[}_‘o(l)]/dl—>1 for large | (within
=0 j—maxio-i) about 10* of accuracy, i.e., thatFy(l)«<e'.

r+s+p+2—q
X > 19

3 e lalsree

q /stp+tl \Q/s+p+2
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We also want to study the behavior of the interactionj.e., the associated RR@;,. of Eq. (5), gets a correction

vertices, given by the RRC E@5). To this end, we have

proportional tox(M* Y wherex is the common value of all

evaluated their asymptotic behavior, when all internal vari-|x,|. Since thebare (m+ 1)-particle cumulang? scales like

ables|x,| are of the same order of magnitudeee the dis-
cussion in Ref. 46 This is obtained by setting al|,=1 in
Eq.(9), or, equivalently] —ml andl =1 in Eq. (10). In Fig.

x~(M*DA+a) (cf. Appendix A, the anomalous exponent is
again exactly canceled by the renormalization. This is impor-
tant, since one needsto scale to zero not only in the self-

13, we have evaluated the logarithmic derivative ofenergy, but also in the interaction vertices, in order for the

Fn(mL1). The figure clearly shows th&,,(ml,1)sce(™ D

low-energy fixed point to be asymptotically free.
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