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Crossover to Fermi-liquid behavior for weakly coupled Luttinger liquids
in the anisotropic large-dimension limit

E. Arrigoni*
Institut für Theoretische Physik, Universita¨t Würzburg, D-97074 Wu¨rzburg, Germany

~Received 8 October 1999!

We study the problem of the crossover from one- to higher-dimensional metals by considering an array of
Luttinger liquids~one-dimensional chains! coupled by a weak interchain hoppingt' . We evaluate the exact
asymptotic low-energy behavior of the self-energy in the anisotropic infinite-dimension limit. This limit ex-
tends the dynamical mean-field concept to the case of a chain embedded in a self-consistent medium. The
system flows to a Fermi-liquid fixed point for energies below the dimensional crossover temperature, and the
anomalous exponenta renormalizes to zero, in the case of equal spin and charge velocities. In particular, the
single-particle spectral function shows sharp quasiparticle peaks with nonvanishing weight along the whole
Fermi surface, in contrast to the lowest-order result. Our result is obtained by carrying out a resummation of all
diagrams of the expansion int' contributing to the anisotropicD→` limit. This is done by solving, in an
almost completely analytic way, an asymptotically exact recursive equation for the renormalized vertices,
within a skeleton expansion. Our outcome shows that perturbation expansions int' restricted to lowest orders
are unreliable below the crossover temperature. The extension to finite dimensions is discussed. This work
extends our recent letter@Phys. Rev. Lett.83, 128 ~1999!#, and includes all mathematical details.
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I. INTRODUCTION

According to Fermi-liquid~FL! theory,1,2 a quasiparticle
is identified by a single dispersive coherent peak in
single-particle spectral function describing a particle o
hole close to the Fermi surface~FS!. This peak becomes
sharper when approaching the FS, which reflects the fact
the lifetime of the quasiparticle becomes infinite at the F
while keeping its total weightZ ~quasiparticle weight! finite.
On the other hand, FL theory fails generically in one dime
sion, where quasiparticles are not well defined, and the
ementary excitations consist of collective charge and s
excitations with bosonic properties. In this case, the sing
particle spectral function shows two dispersing peaks, co
sponding to charge and spin modes. The splitting into t
peaks corresponds to the decay of the quasiparticle into
and charge excitations,3–6 i.e., the spin and the charge of a
injected electron move independently with different velo
ties. A more important result is the fact that the quasipart
weight Z vanishes when the FS is approached. This imp
that fork equal to the Fermi momentumkF , where spin and
charge energies merge, the spectral function does not
come ad function as a function of frequencyv, but rather it
diverges with a weaker power-law behavior likeva21. This
reflects onto the behavior of the momentum distribut
n(k), which no longer shows a discontinuity atk5kF , but
rather a power-law behavior@ un(k)2n(kF)u}uk2kFua#.
The same exponent appears in the local density of sta
which vanishes atv50 like va. The exponenta thus char-
acterizes the anomalous behavior of one-particle correla
functions and it plays the role of the anomalous dimension
in field theory. However, in contrast to the usual fiel
theoretical models~like f4 theory!, the anomalous behavio
of one-dimensional fermions is not universal, since the
ponenta depends on the interaction. One-dimensional~1D!
PRB 610163-1829/2000/61~12!/7909~21!/$15.00
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metals having these properties take the name of Luttin
liquids ~LL !, the name coming from the Luttinger mod
~LM !,7–9 which plays the role of the ‘‘canonical model’’ fo
1D interacting fermions.

The interesting question is what happens between one
two dimensions.10–15 Specifically, one can start from
D-dimensional array of chains~the interesting cases are, o
course,D52 or 3!, initially uncoupled, and then switch on
small tunneling~hopping! amplitudet' between the chains
The question is when and how does the crossover to a
mal FI behavior occur? While the question of the crosso
from an anomalous LL to a normal FL state is a challeng
problemper se, there are other reasons why one is interes
in this problem. The first two are connected to the theory
high-Tc superconductivity. First, it has been suggested t
the normal-state properties of high-Tc superconductors may
be explained by some kind of two-dimensional LL state.16,17

Once a 2D LL state is assumed within a CuO2 plane, it has
been suggested that incoherent hopping between diffe
layers may favor a BCS paired state.18 Secondly, it has be-
come clear from a variety of experiments19 that underdoped
high-Tc materials are characterized by the presence of cha
modulations in the form of one-dimensional stripes.19 In
these structures, the electron dynamics occurs mainly in
direction longitudinal to the stripes, and, thus, it could
effectively described by quasi-one-dimensional models
which the transverse dynamics is reduced.20,21 The third rea-
son is related to the existence of several synthetic and na
compounds that can be considered as quasi-one-dimens
metals,22,23such as the organic conductors tetrathiofulvale
tetracyanoquinonedimethane~TTF-TCNQ!, the Bechgaard
salts24 tetramethyltetraselenafulvalene (TMTSF)2X and tet-
ramethyltetratiafulvalene (TMTTF)2X ~with X5PF6,ClO4,
etc.!, or the inorganic chains NbSe3 and K0.3MoO3. A further
possibility to study the crossover between 1D and 2D is
couple a finite number of chains together. The phase diag
7909 ©2000 The American Physical Society
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of such ladder systems is quite rich, and it shows an in
esting dependence on whether the number of chains is
or odd.25–30

In this paper, we consider the effect of a small tunnel
matrix elementt' coupling the chains. The question is, do
the electron liquid go over to a FL state for arbitrarily sm
t' and sufficiently low temperatures or is there a critic
value of t' below which one has a LL state for arbitrari
low temperatures? This question is related to the problem
dimensional coherence addressed by Andersonet al.17,15

These authors suggest that for sufficiently strong interac
the system may remain in a LL state for sufficiently sm
t' . Clearly, the correct starting point, as stressed by th
authors, is to consider initially the problem of an uncoup
LL and then treatt' as a perturbation.

However, renormalization-group calculations show th
t' is a relevant perturbation, which means that an arbitra
small t' should destroy the 1D LL state.31 This can be un-
derstood from simple dimensional arguments. Consider
LL Green’s functionG(xu0) in real space.32 This varies like
uxu212a at large distances, and thus the Fermi field opera
C(x)}AG(xu0) has dimensions@C(x)#5Ei

~11a!/2 . There-
fore, upon integrating over the imaginary timet, the pertur-
bation associated with thet' term @see Eq.~1! below#, has
dimensionEi

a21. This means that each term in the perturb
tion expansion int' carries a termEi

a21, which diverges at
low energies whenevera,1. These divergences signal th
fact that the perturbationt' is relevant fora,1.

Let us consider the energy at which higher-order terms
the t' perturbation start to become important~i.e., all of the
same order!. This is given byEi5t'

1/(12a)[teff . This intro-
duces a new energy scale,teff , which characterizes, for ex
ample, the crossover temperature above which tempera
fluctuations cover the effect oft' and the system behave
like a LL.13,33 This means that for temperaturesT much
smaller thanEF but much larger thanteff the scaling behavior
is characterized by the LL anomalous dimensiona. For ex-
ample, the Green’s function atk5kF scales likeva21 ~for
v@T) in this range. In this temperature region, the system
still effectively one dimensional since the effects oft' are
washed out by the temperature. Below this crosso
temperature13 and for energies smaller thanteff the effects of
t' become important and higher-dimensional coherence
in. Notice that the effects of electron interactions are inde
important in reducing the coherence of the interchain h
ping. In fact, the crossover temperature is reduced consi
ably for a.0, since in this caseteff!t' , and the interchain
hopping maintains an incoherent behavior down to very l
temperatures.14 However, strictly speaking, whether the sy
tem is a FL, a LL, or something else can be determined in
T→0 limit only, since both of them are asymptotic theorie
i.e., valid in the low-energy limit. Therefore, the importa
energy region to be studied isEi!teff . This is the nontrivial
region, since the behavior here is determined by all term
the t' expansion.

For this reason, any perturbative expansion restricted
lowest order is uncontrolled at low energiesEi!teff , and
lowest-order expansions are inconclusive. This is the rea
why theoretical results are still contradictory about the nat
of the ground state in this energy region. Since, as discu
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above, this is precisely the relevant region for a possible
behavior, it is worthwhile investigating it in a controlle
way. This has been done in Ref. 11, by considering all d
grams corresponding to the infinite-dimension limit. In th
paper, we extend the results of that letter, and provide
details of the calculation.

This paper is organized as follows. In Sec. II, we intr
duce the problem of LLs weakly coupled by single-partic
hoppingt' . We discuss the issue of the perturbation exp
sion in t' , its difficulties, and the lowest-order approxim
tions. Next, we discuss the limit considered here, namely,
‘‘anisotropic’’ D→` limit, and the analysis of the
asymptotic low-energy regime. Finally, we present an
pealing discussion of the analogy of our method with t
parquet summation and with the renormalization group, a
discuss the cases in which the present method is contro
In Sec. III, we describe in detail the procedure to carry o
the sum of the diagrams leading to theD→` limit for the
self-energy Eq.~4!. The idea is to write a recursive equatio
for the ‘‘restricted renormalized cumulants’’ Eq.~5! in terms
of the effective hoppingT' . In the leading logarithmic or-
der, this gives a set of self-consistent recursive equations,
~9!, which can be easily solved to a very high degree
accuracy by a power expansion and a Pade´ analysis. In Sec.
IV, we discuss the results of this calculation. The most i
portant one is the fact that the anomalous exponent scale
zero, i.e., the self-energy no longer scales anomalousl
low energies. This is seen in the spectral function close to
‘‘special’’ Fermi point c'50, which becomes sharper, i
contrast to the lowest-order approximation. The quasipart
weight no longer vanishes atc'50 in our result. Finally, in
Sec. V we state our conclusions, and discuss possible ex
sions of the calculation to the inclusion of spin-charge se
ration and to finite dimensions.

We considered that the reader would benefit from an
clusion of all details of the calculations, so that any o
could follow and repeat our steps without difficulties, a
possibly extend them to some other cases. The calculatio
transparent, as it is almost completely analytic except for
Padésolution of the recursive equation described in Appe
dix F. In order not to burden the bulk of the paper, we d
ferred most of these calculational details to the appendix

II. THE PROBLEM: FROM ONE TO HIGHER
DIMENSIONS

We consider aD8-5(D21)-dimensional hypercubic ar
ray of parallel one-dimensional chains~i.e., the total dimen-
sion is D!. We consider here the case of equal spin a
charge velocities, since it allows for crucial simplifications
the calculation. Since we are interested in the effects an
the fate of the anomalous exponenta, we believe that spin-
charge separation should not play an important role. T
chains are labeled by the (D21)-dimensional coordinatex'

along the hyperplane perpendicular to them, while the co
dinate along the chains is calledxi . The Hamiltonian we
want to study has the following form:32

H5(
x'

HLL~x'!1 (
x'x'8

t'~x'2x'8 !

3(
rs

E dxi c r ,s
† ~xi ,x'!c r ,s~xi ,x'8 !, ~1!
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where c r ,s(xi ,x') @c r ,s
† (xi ,x')# is the destruction@cre-

ation# operator for a right- (r 511) or left-moving (r 5
21) fermion at the positionxi along the chainx' with spin
s. Moreover,HLL(x') is the Hamiltonian for an~uncoupled!
LL in the chainx' . Since we are interested in low-energ
properties we can just take forHLL(x') a Luttinger model,
characterized by its parameters7,8,5 a and vF ~since we ne-
glect spin-charge separation!, which will depend in a non-
trivial way on the bare parameters of the microscopic ch
Hamiltonian. However, we are not interested in this dep
dence here, and we just take these parameters as our st
point. In Eq. ~1!, t'(x'2x'8 ) is the amplitude for the hop
ping of an electron from chainx'8 to chain x' , where, as
usual, we have assumed that neither thexi coordinate nor the
direction r are changed by the hopping. Moreover, one c
restrict oneself to the case of a hopping between nea
neighbor chains only. Inclusion of hopping with finite exte
sion in thexi direction or of next-nearest-neighbor hoppin
in the x' direction is straightforward. However, it is no
expected to change the low-energy results. Witht'50, the
problem can be solved exactly, as the ground state is g
by the product ground states of the LM in each chain, wh
are known.7–9

Knowing the exact solution of thet'50 problem, one can
envisage carrying out a perturbative expansion in power
t' , as t' is small. This is, however, not without complica
tions, as Wick’s theorem does not hold for thet'50 ground
state, since the LM, although exactly solvable, conta
electron-electron interactions. A similar problem occurs
the expansion about the atomic limit of the Hubbard mod
whereby one first solves the single-site problem exactly
then expands in powers of the hoppingt. A diagrammatic
formulation for this problem was introduced by Metzner
Ref. 34, and further discussed in Ref. 35. It consists in c
rying out a linked-cluster expansion, where an arbitra
~even! number of lines (2n) can join into one dot. This dot is
associated with the exactn-particle cumulant of the single
site problem.36

This method has been extended to the problem of expa
ing about the LLs in Ref. 10. The diagrams contributing
the expansion are the same, the only difference being
each line is now labeled by the extra variablexi ~intrachain
coordinate! and r ~for left- or right-moving fermions!, be-
sides spins and imaginary timet. Actually, this method
turns out to be more appropriate for the present prob
rather than for the Hubbard model. Indeed, in the Hubb
model, one expands about a highly degeneratet50 ground
state, which is not the case in our problem of coupled LLs
t'50. Alternatively, one can use the diagrammatic rules
momentum space, for which each line carries an intrach
momentumki , a Matsubara frequencyv, and an interchain
momentumk' , as well as indicess and r. Apart from this
modification, rule 2 of Ref. 34 for calculating the Green
function remains the same. A set of these curious diagra
contributing to the Green’s function, is shown in Fig. 1. T
building blocks of the diagrammatic expansion are~i! hop-
ping lines connecting nearest-neighbor chains~sayx'1 ,x'2)
associated witht'(x'12x'2), and~ii ! ‘‘dots’’ with n enter-
ing andn leaving legs, associated with then-particle cumu-
lant of the single chain. The latter can be readily evalua
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at least for low energies, since one knows the exact solu
of the Luttinger model and of its correlation functions~cf.
Appendix A!.

Boieset al.used a functional-integral method to obtain
expansion int' about the LL.13 Although their formulation
allows, in principle, for an expansion to any order int' , in
practice one can just get the first few orders. Our meth
provides a systematic diagrammatic formulation of this e
pansion to any order. The advantage of a diagrammatic
mulation is that one can choose a class of diagrams to
over, according to some physical guidance, without be
restricted to the few lowest-order terms. This is particula
important for the model at study, since, as discussed in
Introduction, each power oft' in the perturbation carries a
termEi

a21, which diverges precisely in the important regio
Thus, one cannot reliably restrict consideration to a fin
number of diagrams.

Some diagrams contributing to the expansion of
Green’s functionG ~gray box! are shown in Fig. 1~a!. As in
conventional perturbation theory, one can consider the fu
tion G obtained by the sum of irreducible diagrams, i.e., t
ones that cannot be separated by cutting a single line@see
Fig. 1~c!#. One then obtains a Dyson-like equation forG as a
function of G @Fig. 1~b!# of the form32

G~k!5@G~k!212t'~k'!#21. ~2!

Notice thatG21, and notG, appears in the inverse Green
function, in contrast to standard perturbation theory. For t
reason, we callG the inverse self-energy.

The lowest-order approximation forG ~the ‘‘dot’’: a in
Fig. 1! corresponds to takingG5G0, the Green’s function of
the isolated LL. This gives for the total Green’s function, E
~2!,32

FIG. 1. Diagrammatic expansion int' of the single-particle
Green’s functionG ~gray box!. A directed line connecting two
chainsx'1

andx'2
gives a contributiont'(x'1

2x'2
), or t'(k') in

momentum space~Ref. 32!. A dot with n entering andn leaving
lines contributes a factorGc

0 ~n-particle cumulant of the uncouple
LL; see Sec. III!. ~a! Example of single-particle irreducible an
reducible contributions toG. ~b! Dyson’s equation forG in terms of
the inverse self-energyG ~gray disk!. ~c! Example of diagrams con
tributing to G. ~d! Self-consistent diagrams contributing toG in the
D→` limit. The self-consistency is due to the presence of the
G in the internal lines of the loop.
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G~k!5@G0~k!212t'c'#21. ~3!

This expression is a generalization of the Hubbard I appro
mation for the case of an expansion about the LL. Equa
~3! was first obtained by Wen via a different procedure37

and reobtained by Boieset al.13 within a functional-integral
method. This approximation, which we will refer to a
‘‘LO,’’ is also called ‘‘single-dot,’’ ‘‘random phase~RPA!,’’
‘‘Wen’s,’’ or ‘‘Hubbard I’’ in other papers. Fora,1, the
effect of the interchain kinetic energyt'c' is to change the
branch-cut singularity into a true quasiparticle pole~cf. Ref.
38! for all k points close to the FS, except for thosek' points
for which c'50 ~for example, forD52 these arek'5
6p/2). In particular, the positions of the poles forv50
identify the new FS, which acquires a dispersion of the fo
kiF(k')}(t'c')1/(12a), i.e., it is reduced with respect to th
noninteracting case, where one would havekiF(k')}t'c' ,
but not completely suppressed.10 For the sake of complete
ness, we discuss the main results of this approximation
Appendix B.

Since the branch cuts are shifted into poles, this appr
mation gives a FL along the whole FS except close to
c'50 region. This can also be seen from the quasipart
weight Z, plotted in Fig. 4 below~dashed line!, which van-
ishes forc'50. For this reason, the quasiparticle peak
quite broad in this region, as can be seen from Fig. 6 bel
However, as discussed above, this result, being restricte
lowest order, is uncontrolled in the regionEi!teff and one
should sum an infinite series of diagrams in order to
reliable results. Since it is not possible to sum all diagram
the expansion, we want to select a workable subset of
grams according to somephysicallimit in order to avoid an
arbitrary choice. Specifically, we consider the series given
the diagrams indicated in Fig. 1~d!, corresponding to the
large-dimension limit (D→`). The D→` procedure
adopted here is different from the standard dynamical me
field theory,39 since our system is strongly anisotropic, as t
hopping in one~in the i! direction is not rescaled by th
usual 1/AD8 factor and is much larger than in the otherD
21(') directions.32 In analogy to the standardD→`
method,39 where one has a singleimpurity embedded in a
self-consistent medium, ourD→` system represents a1D
chainembedded in an effective self-consistent medium. A
consequence, the self-energy is local with respect to th'
coordinates but has a nontrivial dependence on thei ones.40

We believe that this is the correct starting point to study
crossover problem, since, in this way, one treats the o
dimensional problem exactly and includes the coupling
the other chains by an effective dynamical mean field.

Even summing all theD5` diagrams is an impossibl
task. Nevertheless, since we are interested in low-ene
properties, we can restrict ourselves to the leading singu
ties in each diagram. It turns out convenient to rewrite
power expansion in terms of thedressedhoppingT' ~indi-
cated by a dashed line in Fig. 2!. This is very similar to the
skeleton expansion in conventional perturbation theo
where self-energy insertions are removed. The advantag
that the scaling behavior of the effective hopping@cf. Eq.
~C12!# exactly cancels the power-law divergences of the d
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grams, and each term of the perturbation acquires the s
scaling as a function of the energy, and only logarithm
divergences are left.

The procedure of summing just the leading logarithm
divergences is similar in spirit to the sum of the leadi
divergences in the parquet series, which was introduced
the Russian41 and by the French42 schools in order to study
the instabilities of various one- and higher-dimensional el
tron systems. This method is equivalent to the one-lo
renormalization-group~g-ology! approach,43 and it actually
gives a rigorous background, as well as a systematic for
lation for the extension of theg-ology method to higher di-
mensions. In our case, this corresponds to considering
quantity l 5a ln(teff /Ei) to be of order 1, and thus taking a
orders inl, while consideringa small.

Similarly, in the parquet summation, org-ology,43 the
small parameter is the bare interaction vertexg0 and one
sums all powers ofg0 ln(EF /v), v being the characteristic
energy scale. The sum of this series gives therenormalized
interaction vertexg(v/EF) which thus acquires an energ
dependence. Within the renormalization-group picture,
energy-dependent interaction vertex is interpreted as an
fective interaction acting on an effective low-energy su
space, i.e., on a subspace in which high-energy modes
integrated out. Whenever the interaction vertex scales
zero, this signals that the effective low-energy theory d
scribes noninteracting electrons, i.e., the theory is asymp
cally ~infrared! free. As a consequence, the exponents of c
relations functions are mean-field-like and, in the case
fermions, the system is a Fermi liquid. On the other ha
when a vertex diverges, no controlled prediction can
made about the low-energy behavior of the system, since
perturbative approach breaks down for sufficiently low en
gies, even wheng0 is small. In this case, the divergent verte
signals an instability toward some kind of broken-symme
state.

In our case, the role of the interaction vertex is played
the anomalous exponenta. The bare a is the correlation
exponent of the uncoupled set of Luttinger liquids. Switchi
on the interliquid hoppingt' produces a renormalization o
the exponent. This renormalized exponent is obtained
looking at the low-energy behavior of the self-energy in t
coupled-chains system. Similarly to theg-ology case, our
result, obtained by summing the leading logarithmic div
gences, is thus controlled if~i! the starting~bare! value ofa
is not too large and~ii ! a scales to zero for low energies. Th

FIG. 2. ~a! Diagrams contributing to the inverse self-energyG in
the D5` limit within an expansion in the dressed hoppingT'

~dashed line!. ~b! Dressed hopping and its diagrammatic express
in terms of the bare hoppingt' ~full line! and the Green’s function
Other conventions are as in Fig. 1.
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first requirement~i! is easy to fulfill, since for most interest
ing systemsa is quite small. For example, for the Hubba
modela< 1

8 , where the equal sign holds for an infinite valu
of the on-site interactionU. Larger values ofa are obtained
by increasing the range of the interaction.44 This is another
reason why our approach is more convenient than a we
coupling expansion inU: while our calculation makes sens
also for very large~bare! U, for which a is still small, the
weak-coupling renormalization group is not justified forU
larger than the bandwidth. An estimate of the maximu
valueac of a for which our calculation is justified is given in
Sec. V. The second requirement~ii ! can be checked only
a posteriori. The main result of this paper is that indee
point ~ii ! turns out to be satisfied, asa scales to zero for
energies smaller thanteff . Thus, our procedure of restrictio
to the leading logarithmic divergences is controlled, unl
one starts from a model with a too large value ofa.

III. ANISOTROPIC D\` METHOD

In this section, we carry out the sum of theD→` dia-
grams for the inverse self-energy. In theD→` limit, the
inverse self-energyG(x0) is' local,40 and is obtained as th
sum of the loop diagrams in Fig. 2~a! @equivalent to those o
Fig. 1~d!# as

G~x0!5Gc
0~x0u0!1 (

m51

`
~21!m

m!

3E F )
k51

m

d2yk d2xkT'~2xk,0!G
3Gc

0~y01x0 ,...,ym1xmuy0 ,...,ym!

5Gc
0~x0u0!1 (

m51

`

~21!m

3E
1↓m

F )
k51

m

d2yk d2xkT'~2xk,0!G
3Gc

0~y01x0 ,...,ym1xmuy0 ,...,ym!, ~4!

where in the last line we have exploited the symmetry
exchange of the coordinates 1, . . . ,m and restricted the inte
gration to the regionux1u.ux2u.¯.uxmu indicated by
‘‘1 ↓m. ’’ The corresponding factorm! is then canceled by
the symmetry factor 1/m! of the diagram. In Eq.~4!,
Gc

0(y08 ,...,ym8 uy0 ,...,xm) is the (m11)-particle cumulant of
the uncoupled LL, i.e., the connected part of t
(m11)-particle Green’s functionGc

0(y08 ,...,ym8 uy0 ,...,xm)
defined in Eq.~A11! @see also Eq.~D23! for the definition of
cumulants in terms of Green’s functions#. In particular, for
m50 the single-particle cumulantGc

0 coincides with the
Green’s functionG0, as there are no disconnected par
Moreover, T'(x,x'50) is the dressed hopping written i
real space, which is calculated in Appendix C.

We are interested in the dominant low-energy behav
(Ei!teff corresponding toux0uteff@1) of correlation functions
and thus we can restrict consideration to the leading loga
mic divergences in the loop integrals@Eq. ~4!#, as discussed
in Sec. II. Let us estimate this leading contribution. If, as
k-

s

r

.

r

h-

first step, one neglects the self-consistency of the Gree
function and dresses the hoppingT' with the bare Green’s
function only @Eq. ~C12!#, one can see that the leading co
tribution of an m-loop term in Eq. ~4! has the form
Gc

0(x0u0)3(a ln ux0uteff)
2m. Indeed, one ‘‘a ln’’ term arises

from each integration of the ‘‘center-of-mass’’ coordinat
yk ~cf. Appendix D!, another ‘‘a’’ from each T' , due to its
real-space structure@cf. Eq. ~C12!#, and a ‘‘ln’’ comes out
for each integration of the ‘‘relative’’ coordinates@Eq. ~8!#.

Even summing up ‘‘just’’ the leading logarithmic diver
gences of the integrals in Eq.~4! is a tough task. To do this
we proceed in several steps. First, consider that some
gration regions in Eq.~4! can be left out, as they do no
contribute to the leading logarithmic divergences. Spec
cally, in addition to the regionux1u.ux2u.¯.uxmu ~called
1↓m), to which we are restricted by symmetry, we can fu
ther restrict consideration to the region45 ux0u.ux1u, and
uxpu,min(uyq2yr u,uyq82yr u,uyq82yr8u) for each p>q,r ~of
course,qÞr ), whereyq8 is defined asyq1xq . The fact that
the leading logarithmic contributions come only from th
integration region, which we will call ‘ ‘0⇓m, ’ ’ is proven in
Appendix E.

For convenience, we introduce the ‘‘restricted renorm
ized cumulants’’ ~RRCs!,46 defined only in the region
‘‘0 ⇓m’ ’ as

Gc~y01x0 ,...,ym1xmuy0 ,...,ym!

[Gc
0~y01x0 ,...,ym1xmuy0 ,...,ym!

2E
0⇓m11

d2xm11 d2ym11 T'~2xm11,0!

3Gc~y01x0 ,...,ym111xm11uy0 ,...,ym11!.

~5!

Comparing Eq.~4! and Eq.~5!, it is straightforward to verify
that G(x0) is given by the single-particle RRC,Gc(x0u0).

We thus proceed by evaluating the integrals in Eq.~5!. An
important point, which we will show below, is that, at th
leading logarithmic order, the (m11)-particle cumulant is
renormalized by a multiplicative factor that depends on
absolute values of the relative coordinatesuxi u only. More
precisely, the RRC can be written as

G~y01x0 ,...,ym1xmuy0 ,...,ym!

5Fm~ l 0 ,...,l m!Gc
0~y01x0 ,...,ym1xmuy0 ,...,ym!, ~6!

where theFm is the renormalization factor, which we hav
written in terms of the logarithmic variablesl i
[a ln(uxi uteff). We can thus first carry out the integratio
over the center-of-mass coordinateym11 in Eq. ~5! by simply
considering the effect on the bare cumulant, as the renorm
ization factor does not depend onym11 . This integral is quite
involved, but its leading logarithmic contribution can be ca
culated analytically. This is carried out in Appendix D
where one obtains32
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E
0⇓m11

d2ym11 Gc
0~y01x0 ,...,ym111xm11uy0 ,...,ym11!

52pGc
0~y01x0 ,...,ym1xmuy0 ,...,ym!

3uxm11u2Gc
0~xm11u0!(

j 51

m

a~ lnuxj u2 lnuxm11u!

3S d r j ,r m11
1

1

S
d r j ,2r m11D . ~7!

After carrying out the integral overym11 we carry out the
integration over the ‘‘relative’’ coordinatexm11 , which in-
cludes a sum overr ands.32 Inserting the form Eq.~6! and
the result Eq.~7! into Eq. ~5!, and dividing both sides of the
equation byGc

0(y01x0 ,...,ym1xmuy0 ,...,ym), one obtains

Fm~ l 0 ,...,l m!5122pE
teff
21^uxm11u^uxmu

d2xm11 T'~2xm11,0!

3uxm11u2Gc
0~xm11u0!

3Fm11~ l 0 ,...,l m ,l m11!(
j 51

m

~ l j2 l m11!

3S d r j ,r m11
1

1

S
d r j ,2r m11D , ~8!

where the lower limit of integration foruxm11u is due to the
fact that T' changes its behavior in the regionEF

21

,uxm11u,teff
21 ~Ref. 47!, and thus there is no logarithmi

contribution here, and the upper one is due to the restric
0⇓m11 in Eq. ~5!. Inserting the asymptotic expression f
the dressed hopping Eq.~C21! in Eq. ~8!, one can carry out
the integration overxm11 in circular coordinates, and obtai
the recursive self-consistent equation forFm

Fm~ l 0 ,...,l m!5112~11S!E
0

l m
dlm11(

j 50

m

~ l j2 l m11!

3Fm11~ l 0 ,...,l m11!@F̄0~ l m11!

1F̄08~ l m11!#. ~9!

From Eq. ~9!, it is obvious thatFm depends on just two
variables, namely,l[ l 01•••1 l m21 , and l m . With this re-
definition, and renaming the integration variablel m11 as l 8,
Eq. ~9! can be reduced to

Fm~ l ,l m!5112~11S!E
0

l m
dl8@ l 1 l m2~m11!l 8#

3Fm11~ l 1 l m ,l 8!@F̄0~ l 8!1F̄08~ l 8!#. ~10!

Equation ~10! is a self-consistent equation, sinceF̄0
51/Fm50 @Eq. ~C17!#, which depends on theFm , to insert
on the right-hand side. We have not been able to find
analytic solution to Eq.~10!. However, by expanding in
powers of the variablesl i one can write a recursive equatio
for the coefficients of the expansion of the functionsFm up
n

n

to a rather high order with a moderate numerical effort. T
procedure is described in detail in Appendix F.

We have evaluated the coefficients ofF0 up to the 42nd
order in l. A MATHEMATICA program has allowed us to
evaluate these coefficients in a rational form, which is p
ticularly recommended for a Pade´ analysis. A straight sum-
mation of the series is not recommended, since its con
gence radius seems to be rather small~of the order unity!,
while we need the asymptotic behavior for largel. Neverthe-
less l 5a ln(uxuteff) is restricted to the neighborhood of th
real positive axis, and a Pade´ analysis shows that the pole
are either away on the complex plane or on the negative
axis. A Pade´ analysis is thus the most appropriate proced
in order to determine the large-l behavior of the function
F0( l ), which also gives the asymptotic behavior of the i
verse self-energyG(x). The results will be presented an
discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

As shown in Appendix F, the solution of Eq.~10! gives
F0( l );ecl for large l, where the exponentc turns out to be
essentially equal to 1~within about 1024 of accuracy! in both
cases with and without spin. Introducing this result and E
~A12! in the expression for the inverse self-energy@Eq. ~6!
with m50# yields

G~x!5G0~xu0!F0@a ln~ uxuteff!#

→G0~xu0!~ uxuteff!
a}teff

a /uxu, ~11!

i.e., the anomalous exponenta exactly cancels out in the
asymptotic behavior ofG! The same thing happens in mo
mentum space. From Eq.~C16! one notices that the
~asymptotic behavior of the! renormalization function is the
same in momentum space, provided one replacesuxu with
1/uku. Thus, for low energies we obtain for the right-movin
component (r 511)

G~k!→G0~k!teff
a uku2a}teff

a ~ iv2ki!
21, ~12!

where we have used Eq.~C8!.
The Green’s function of the coupled system is given

the Dyson equation Eq.~2!. Taking the result Eq.~12!, one
can readily notice that the Green’s function now has pole
iv2ki}teff

a t'(k'), i.e., even forc'50, in contrast to the LO
result, where a branch cut was present. In particular, at
FS (iv→01 i01) and forc'50, our result becomes asymp
totically exact, asuku vanishes at the pole.

FIG. 3. Fermi-surface dispersionkiF
as a function of the off-

chain kinetic energyc' ~in units of t') for the coupled spinful
Luttinger liquids @Eq. ~1!# with bare LL exponenta51/4. OurD
→` result~solid line! is compared with the LO approximation Eq
~3! ~dashed!.
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Let us look at the FS more precisely. This is the cur
kiF

(c') parametrized by the Fermi momentum as a funct
of the' momenta, and is determined by the solution of t
equationG@kiF

(c'),iv501 i01#215t'c' . Obviously, Eq.

~12! giveskiF
(c'50)50. In Fig. 3 we plot the FS curve fo

other values ofc' and a5 1
4 in the case of particles with

spin. We compare our result~full line! with the LO result
~dashed line!. For smallc' , our result gives a regular behav
ior kiF

(c')}teffc' in contrast to the lowest-order resu

which gives a flattening of the FS atc'50, due to the be-
havior kiF

(c')}teffc'
1/(12a) .

The quasiparticle weightZ(c') at the FS is given by the
inverse of the coefficient of the linear term inv in the in-
verse Green’s function, more precisely,Z(c')21

5(d/div)1/G„kiF
(c'),iv…iv→01 i01. We have plottedZ as a

function of c' for the case with spin in Fig. 4, again com
pared with the LO approximation. Moreover, in order
show the importance of summing the infinite series of d
grams, we have included the result obtained by trunca
the D→` series@Fig. 2~a!# at the first loop, by still taking
the self-consistently dressed hopping as internal line.
small c' , the lowest-order result~dashed line! gives a Z
vanishing asZ(c')}(t'c')a/(12a), thus yielding poorly de-
fined quasiparticles aroundc'50. Inclusion of the first loop
~dotted line! gives a vanishingZ too. Therefore, self-
consistency is not enough to restore the FL behavior.
result, instead, yields a finiteZ for c'→0, as can be see
from the figure~solid line!. The correct FL behavior is thu
recovered on thewholeFS, including the regionsc'50.

FIG. 5. Spectral functionA(v) of the coupled spinful Luttinger
liquids for different values ofc' , ki50, anda51/4 from ourD
→` result. For the sake of clarity, the different curves are shif
vertically by steps of 10. They correspond toc'

50.05,0.1,0.15,0.2,0.25,0.3,0.35, from bottom to top. Notice
sharpening of the peaks upon approaching the FS atc'→0.

FIG. 4. Quasiparticle weightZ as a function of the off-chain
kinetic energyc' with the same conventions as in Fig. 3. In add
tion, we show the result~dotted line! obtained by partially improv-
ing on the LO approximation, i.e., by including the first se
consistent loop for the inverse self-energy of Fig. 1~d!.
e
n
e

-
g

or

ur

These results can be more concretely seen in the spe
function for smallc' .48 This is plotted in Fig. 5 for different
c' and forki50. The figure shows a well-defined dispersi
quasiparticle peak, which becomes sharper on approac
the FS, as should be the case for a FL. The dispersion
function of c' is a clear indication of higher-dimensiona
coherence. For comparison, in Fig. 6, we have shown the
result. As one can see, the peak is dispersive too, but m
broader and lower~notice the different scale!. Moreover, a
closer inspection shows that the quasiparticle weight
creases on approaching the FS, which is consistent with w
we have shown in Fig. 4.

We want to study the spectral function even forkiÞ0. To
understand what happens, let us first look at the spec
function for the LM ~without spin-charge separation!,3,4

which we plot in Fig. 7 forki50.2. From the figure, one ca
readily recognize the two nonanalyticities atv6ki . For
v↘1ki one has in fact a divergence like (v2ki)a/221,
while for v↗2ki the spectral function vanishes as (ki

1v)a/2. The power-law divergence instead of a pole atv
5ki is due to the fact that the pointv5ki where the inverse
Green’s function 1/G0 of the LL vanishes, is not a simple
zero but a branch cut. Between6ki the spectral function of
the LM is identically zero, as the Green’s function has n
ther cuts nor poles here. Atki50 the two nonanalyticities
merge in a single power-law divergenceva21.

Within the LO approximation, Eq.~3!, the zero of 1/G is
shifted away from the branch cut. Thus, an isolated quasi
ticle pole appears in the region2ki,v,ki on the real axis
~Fig. 8!. This pole is always present for anyc'Þ0 ~see Ap-
pendix B!. The pole removes spectral weight from the pe
at v5ki which is now no longer a divergence.

d

e

FIG. 6. Spectral functionA(v) from the LO approximation for
the same parameters as in Fig. 5, except that the curves are s
by 1. The peaks sharpen upon approaching the FS, but the q
particle weight vanishes.

FIG. 7. Spectral function of the isolated Luttinger model~with
equal charge and spin velocities! for a51/4 andki50.2 ~Refs. 3,
4!.
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In our D→` result, the situation is similar. However, Fig
9 shows that in this case the two singularities at6ki lose
much more spectral weight in favor of the pole. This is a
other reason why the quasiparticle weight remains lar
within our result, as shown in Figs. 4 and 5. Forc'50 Eq.
~3! does not have quasiparticle poles, while our result yie
a pole with nonvanishing weight at the FS even in this ca
The reason for that is due to the different behavior of
quasiparticle weight, as shown in Fig. 4, and by the fact t
the scattering rate does not vanish fast enough for Eq.~3!,
while it vanishes faster than linearly within our result,
discussed in Ref. 11@cf. Fig. 2~c! of that reference#.

V. CONCLUSIONS

In conclusion, we have studied the problem of the cro
over from one to higher dimensions for fermionic system
when Luttinger liquids are coupled by a small hoppingt' .
Specifically, we have concentrated on the region below
single-particle crossover temperature,Ei!teff , which is the
one relevant for the dimensional crossover. We have car
out an expansion in powers oft' , and summed the self
consistent series of diagrams@Fig. 1~d!# corresponding to the
anisotropic D→` limit. Our result shows that the LL expo
nent a renormalizes to zero for energies smaller than
single-particle crossover temperatureteff . The system thus
flows to a FL fixed point with mean-field-like exponent
This is seen, for example, in the self-energy, which n
scales linearly as a function of frequency and momentum
contrast to the LO approximation Eq.~3!, where the self-

FIG. 8. Spectral function within the LO approximation fo
coupled spinful Luttinger liquids witha51/4, ki50.2, andc'5
20.2. In order to make the quasiparticled function visible, we have
added a small imaginary part;3.031025. Due to the proximity of
the singularity, the peak actually becomes broader.

FIG. 9. Spectral function for theD→` result with the same
parameters as in Fig. 8. Notice the much larger transfer of spe
weight from the singularities to the quasiparticle pole.
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energy still scales anomalously likeuku12a. As a conse-
quence, well-defined quasiparticles are recovered along
in the neighborhood of the whole FS, in contrast to the res
Eq. ~3!, where the spectrum is incoherent for smallc' .

We have shown the importance of including an infin
series of diagrams, in order to give reliable results in
region Ei!teff . Even introducing the first loop of the dia
grammatic expansion@in Fig. 1~d!# does not give the correc
result, as shown in Fig. 4. This shows that not even a s
consistent calculation is sufficient. This is the reason w
previous theoretical results, restricted to lowest orders,
still contradictory about the nature of the ground state in t
energy region.

These results have been obtained for the case of e
spin and charge velocities. In fact, we believe that the sca
behavior of the anomalous exponenta found here is univer-
sal and should not be affected by the inclusion of spin-cha
separation. Nevertheless, an extension of the present c
lation to the case of LLs with different velocities could b
interesting, first, in order to check this fact, and second
order to verify whether spin-charge separation also scale
zero in higher dimension likea, or not.

The imaginary part of the self-energy2Im G21 needed to
evaluate the spectral functions in Figs. 5 and 9 has b
determined by analytic continuation of theasymptoticform
Eq. ~12!.48 However, one should mention that our calcul
tion, restricted to the leading divergences, yields reliable
sults for ImG21 at small values ofv andki only. On the FS
and for largec' , ki is large too. Thus, for largec' , we
cannot state with certainty whether corrections to ImG21 be-
yond the leading divergences vanish fast enough upon
proaching the FS or not. Arguments similar to that of or
nary perturbation theory49 cannot be extended to the prese
case, due to the momentum dependence of the vertices in
t' expansion. A hint can possibly be obtained by explici
evaluating numerically the first few loops in Fig. 1~d! with-
out restriction to the leading divergences.

In principle, we cannot say whether our result is valid a
for the physical cases of finite dimensions, and, in particu
for D52 or D53. However, as we have shown in Append
C 2, the non-'-local dressed hoppingT'(x,x'Þ0) vanishes
faster than the'-local oneT'(x,0) for largeuxu. Non-'-local
contributions are thus irrelevant and one may try to exte
the present result to finite dimensions. However, there
still '-local diagrams of order 1/D ~for example, if one takes
the diagramg of Fig. 1 and replaces all internal lines with
local T'), which may spoil this result. It might be interestin
to consider an expansion about the presentD5` result, con-
sider the irrelevance or relevance of such diagrams, and
predictions about a possible critical dimensionDc , above
which the results of this paper hold. For example, this co
be done in order to study the critical behavior in the neig
borhood of the transition to the two-particle regime ata
5a2p ,10 whereasp;0.41 (0.62) for spinless~spinful! elec-
trons.

In Sec. II, we have already noted that o
‘‘renormalization-group-like’’ result holds fora smaller than
a certain ac . Although we cannot determineac exactly
within our approach, we can estimate it, e.g., by the value
a for which the spectral function becomes negative in so

ral
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regions. This criterion givesac'0.50 for the spinless and
ac'0.33 for the spinful case.

Another question is the contribution of the shifted po
uku, c'Þ0, which turn out to be irrelevant in the present ca
~cf. Appendix C!. However, these poles may give importa
contributions in lower dimensions. Indeed, these poles
the ones giving rise, in some conditions, to the well-kno
nesting or superconducting instabilities at selected region
the FS.
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APPENDIX A: MANY-PARTICLE CORRELATION
FUNCTIONS OF THE LUTTINGER LIQUID

For the sake of completeness, and in order to fix our
tation, we give here the expressions for then-particle
Green’s functions of the LM in real space. To our know
edge, their explicit expression, although known, has not b
reported anywhere else. In Appendix A 1, we discuss
scaling behavior of the diagrams in thet' expansion.

A generic'-local n-particle Green’s function is define
as32

Gd1¯d2n~x1 ,...,x2n![^Ttc
d1~x1!¯cd2n~x2n!&, ~A1!

whereTt is the imaginary-time ordering operator andcd(x)
destroys~for d521) or creates~for d511) a fermion at
the pointx ~which includesr ands!. In order to extract the
t'50 cumulantsGc

0 of the isolated LM, to be used in Eq.~4!,
we first need the~disconnected! Green’s functionsG0. These
can be written as

G0,d1¯d2n~x1 ,...,x2n!

5~2pa!2nh r 1
¯h r 2n

3 )
2n> i 1. i 2>0

@Pr i 1
r i 2

~xi 1
2xi 2

!#2di 1
di 2. ~A2!

This holds whenever the particle- and momentu
conservation constraints( i 51

2n di50 and( i 51
2n dir i50 are ful-

filled, otherwiseG050. Here, a is a short-distance cutof
(a}vF /EF). The Klein factorsh r i

obey anticommutation

rules $h r ,h r 8%5d r ,r 8 and account for the fermionic

anticommutations.50,51 From now on, we will seta to unity,
unless otherwise specified.

The functionsP in Eq. ~A2! can be written as

Pr 1r 2
~x!5R~x!2q~r 1r 2 ,Kr!expF ir 11r 2

2 S p

2
2A~x! D G ,

~A3!

where the exponentq(r 1r 2 ,Kr) is given by32
e

re

of

r-

-

n
e

-

q~r ,Kr!5H 1

2 S rK r1
1

Kr
D for S51

1

4 F r ~Kr11!1
1

Kr
11G for S52

5H 11a for r 51

B for r 521,
~A4!

where the LL exponenta is related toKr via

Kr11/Kr22

2S
5a, ~A5!

and

B[
1/Kr2Kr

2S
. ~A6!

Here,

R~x![
b

pa
Acosh2 xĩ2cos2 t̃, ~A7!

and

A~x![arg~ tanhxĩ1 i tant̃ !, ~A8!

xĩ[pxi /b,t̃[pt/b. At zero temperatureT51/b50, Eqs.
~A7! and ~A8! become

R~x!→A~xi
21t2!/a25uxu/a, ~A9!

and

eiA~x!→ei arg~xi1 ir !5
xi1 i t

uxu
5

x•v

uxu
, ~A10!

where we have introduced the complex vectorv5(1,i ), al-
lowing for a compact expression. These expressions are v
for uxu@a and need a short-distance cutoff foruxu;a. The
cutoff prescription for the LM amounts to replacingxi

21t2

with xi
21(utu1a)2. However, it turns out convenient t

adopt a ‘‘rotation-symmetric’’ cutoff obtained by replacin
xi

21t2 with xi
21t21a2, or by settingR(x)51 for uxu,a.

The low-energy results, obviously, do not depend on the s
cific choice of the short-distance cutoff. The advantage
setting equal spin and charge velocities is clear at this po
Without this assumption, the correlation functions would n
be invariant under rotation in the (xi ,t) plane, which would
have made the calculations more difficult.

In conformity with Ref. 11, we define

G0~y08 ,...,ym8 uy0 ,...,ym!

[G0,1,21,1,21,...~y0 ,y08 ,...,ym ,ym8 !

5^Ttc
†~y0!c~y08!...c†~ym!c~ym8 !& t'50 ,

~A11!

and Gc
0(y08 ,...,ym8 uy0 ,...,ym) as the corresponding cumulan

~or connected Green’s function! to be inserted in the dia
grammatic expression Eq.~4!.
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As an example, we use Eq.~A2! to evaluate the single
and two-particle Green’s functions~here, we indicate explic-
itly the indices r as 1 for r 511 or 1̄ for r 521). The
single-particle Green’s function reads

G0~x1u01!52
i

2pa
uxu212ae2 i argx•v, ~A12!

while the two-particle Green’s function for right-moving pa
ticles reads

G0~y11,y21uy181,y281!

5
G0~y11uy181!G0~y21uy281!G0~y11uy281!G0~y181uy21!

G0~y11uy21!G0~y181uy281!
.

~A13!

On the other hand, the two-particle Green’s function
mixed right- and left-moving particles reads

G0~y11,y21̄uy181,y281̄!5G0~y11uy181!G0~y21̄uy281̄!

3S uy12y28uuy182y2u
uy12y2uuy182y28u

D 2B

. ~A14!

1. Scaling behavior of diagrams

From Eqs.~A11!, ~A2!, ~A3!, ~A9!, and ~A5! one can
easily extract the scaling behavior of Green’s functions fo
homogeneous rescaling of the coordinatesxi→lxi .

G0~ly08 ,...,lyn218 uly0 ,...,lyn21!

5l2~m11!~11a!G0~y08 ,...,yn218 uy0 ,...,yn21!,

~A15!

i.e., an n-particle Green’s function~and a cumulant too!
scales liken one-particle Green’s functions in real spac
Going back to the diagrammatic formalism, Eq.~A15! gives
the scaling behavior of a vertex with 2n legs. In addition,
each internal line associated with at' term contributes an
integration overt andxi , i.e., a factorl2. Let us now con-
sider an order-N diagram~N internal lines!, with E external
lines. Each internal line belongs to two vertices and e
external one to one, so that the sum over all vertices (v) of
the number of legs for each vertexLv is equal toL[(vLv
52N1E. Adding the contribution from the integrals in th
internal lines, this diagram scales likel2(11a)L/212N

5l (12a)N2(11a)E/2. This shows that each order int' con-
tributes a factorl12a;Ei

a21 ~Ref. 32!. To get the same
diagram in momentum space one has to integrate oveE
21 externalxi andt, getting a factorl2E22. For example, a
momentum-space diagram of ordert'

N for the inverse self-
energy scales likeEi

2(N11)(12a) .
This is correct provided no short-distance divergences

cur in the integration of diagrams, i.e., if the integrals do n
depend on the short-distance cutoffa of Eq. ~A9!. A short-
distance divergence would introduce a negative power oa,
which has to be compensated by a positive power ofl in
order to have the correct dimensions~powers of a length
scale!. This is what happens, e.g., in diagramsg andd in Fig.
1~c!, for a.a2p , i.e., in the two-particle regime.10 In dia-
r

a

.

h

c-
t

gram g, if one assigns to the external lines 1,2 the indexr
511, and to the internal lines 3,4,5 the indicesr 511,
21,21, respectively, and inserts the expressions for the t
particle vertices taken from Eq.~A14!, one obtains for
G(x12x2) a contribution of the form

a4at'
3 E )

i 53

5

d2xi~ ux12x3uux42x5u!212a

3F S ux12x5uux32x4u
ux12x4uux32x5u D

2B

21G3e2 i @arg~x12x3!2arg~x42x5!#

3F S ux22x5uux32x4u
ux22x4uux32x5u D

2B

21G3e2 i @arg~x32x2!2arg~x52x4!#

~A16!

~we do not consider the dependence on the' coordinate
here!. According to the scaling analysis carried o
above, the contribution Eq.~A16! should behave like
a4at'

3 ux12x2u224a ~notice that this expression correctly ha
the dimensions of an inverse length!. This behavior is correct
on assuming that the integral does not depend ona in the
a→0 limit. However, this is not the case forB.1, for which
the integral diverges at small distances, as one can rea
verify. Thus, forB.1 the integral gives ana-dependent con-
tribution a222B, which must be balanced by an addition
contribution proportional toux12x2u2B22 in order to have
the correct dimensions. Thus, forB.1, corresponding to
a.a2p , the contribution Eq. ~A16! varies like
t'
3 a222B14aux12x2u2B24a, i.e., a stronger divergence. Th

produces the two-particle exponent obtained in Ref. 10.

APPENDIX B: RESULTS OF THE LOWEST-ORDER
APPROXIMATION

In this section, we summarize some results of the
approximation Eq.~3! introduced by Wen.37 Within this ap-
proximation, the introduction oft' modifies the denominato
of the Green’s function by a termt'c' . The Green’s func-
tion for the LM Eq.~C8! can be readily analytically contin
ued to the complex plane~we set the constantga to 1 for
simplicity, and taker 511):

G0~ki ,z5 iv!5
~v21ki

2!a/2

iv2ki
5

~ki
22z2!a/2

z2ki
. ~B1!

This expression is analytic forz on the real axis and2ki

,z,ki , which is the reason why the LM spectral function
zero in this region. The denominator of Eq.~3! becomes

G0~ki ,z!212c't'5
z2ki

~ki
22z2!a/22c't' . ~B2!

The zero of Eq.~B2! gives a true pole whenever it occu
within the region of analyticity. For example, the FS is giv
by the pointski ,c' where

G0~ki ,z50!215c't' , ~B3!

i.e.,

2ki /ukiua5c't'⇒ki52sgnc'uc't'u1/~12a!. ~B4!
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By including a finite value for the energyz, one can easily
see that, wheneverc'Þ0, Eq. ~B2! is analytic in the neigh-
borhood of this point, i.e., the solution is a true pole~cf. Ref.
38!. By differentiating Eq.~B2! with respect toz and replac-
ing the solution Eq.~B4!, one obtains the inverse of th
residuum, i.e., of the weightZ, for this pole. The result is
Z5(c't')a/(12a), and is plotted in Fig. 4.

Close to the FS, one can look for a zero of Eq.~B2! of the
form z5xki . This gives

ki5y~x!kiF
~c'! ~B5!

with

y~x!5S ~11x!a/2

~12z!12a/2D 1/~12a!

. ~B6!

The solution is real, and thus it gives a pole, for each21
,x,1. In this region,y(x) takes all the values 0,y(x)
,`, i.e., for eachy.0 there is always a solutionx. This
means that for any point (ki ,c') in the Brillouin zone with
kic',0 one always has a pole at a given frequency. T
weight Z of the pole is readily evaluated as

Z5uc't'ua/~12a!@~12x!2a/2~11x!12a/2#1/~12a!

3@11~12a!x#21, ~B7!

which vanishes only at the border of the region,x→61.
Obviously, the above discussion holds only fora,1.

The fact that there is always a true pole for anykic',0
can also be seen directly from Eq.~B2!. For given c't'
~say.0!, andq52ki.0, the function

q1z

~q22z2!a/2 ~B8!

vanishes forz52q and diverges forz→q2. Between2q
and 1q, it is an increasing function ofz. Thus, for any
t'c' , there is always a value ofz within the analytic region
of Eq. ~B2!, giving a zero. In practice, for smallc' the pole
starts to build close to the left nonanalyticity, while for in
creasingc' it approaches the right singularity. This pole c
be seen in Fig. 8.

APPENDIX C: EVALUATION OF THE DRESSED
HOPPING

In this section, we evaluate the long-distance behavio
the dressed hopping in real space, which we need in Eq.~8!.
Its diagrammatic equation is given in Fig. 2~b! and reads32

T'~k,c'!5t'c'1t'c'G~k,c'!t'c'

5t'c'@12t'c'G~k!#21, ~C1!

where we have used the Dyson equation Eq.~2!. At the low-
est order,G scales asG(k);Ei

a21, and thus, from Eq.~C1!,
T'(k,c') formally varies likeEi

12a for small energies and
fixed t'c' . As discussed in the Introduction~cf. also Appen-
dix A!, every order int' in the perturbation expansion ca
ries along a term that scales likeEi

a21 and thus higher order
in t' are more and more strongly divergent. However, due
the scaling ofT' , replacing the bare hoppingt' in the per-
e

f

o

turbation expansion with the dressedT' cancels this power-
law divergence. Thus, the correct starting point to study
low-energy region is to carry out askeletonexpansion inT'

and remove all self-energy insertions. In our case, this c
responds to replacing the diagrammatic series of Fig. 1~d!
with that of Fig. 2~a!. Although the power-law singularities
have disappeared in this way, logarithmic divergences
still present in this expansion as discussed in Sec. III. Th
divergences can, however, be resumed, in the same spir
was done for the parquet series by Dzyaloshinskii and
Nozières and co-workers,41,42 as discussed in Sec. II.

The behavior ofT' discussed above holds for nonze
c' . In Eq. ~8! we need thex'50 hopping, i.e., we have to
integrate overc' , including c'50. One should thus trea
this integration point with due care. We first Fourie
transform in the' direction, obtaining

T'~k,x'50!5E dc'D~c'!T'~k,c'!, ~C2!

where D(c') is the density of states for the out-of-cha
energy. In theD→` limit and for a cubic lattice with
nearest-neighbor hopping this reads32,39

D~c'!5
1

2Ap
e2c'

2 /4. ~C3!

The integral Eq.~C2! can be readily evaluated for small en
ergies, where the quantitye[@ t'G(k)#21 is small. By in-
serting Eq.~C1!, collectinge, and summing and subtractin
t' , we obtain

T'~k,x'50!52eE dc'D~c'!S t'1
et'

c'2e D
52et'@11O~e ln e!#→2

1

G~k!
,

~C4!

where the lne contribution is given by thec'50 point. It is
clear that the asymptotic result Eq.~C4! does not depend on
the specific form of the density of statesD(c'), as long as it
is regular atc'50 and normalized.

We now carry out the Fourier transform in thei direction.
For the sake of definiteness, we consider here the rig
moving (r 511) component. All results forr 521 are sim-
ply obtained by changing the sign of thei coordinate, i.e.,xi

or ki . As a first attempt, we evaluateT '
0 , the LO approxi-

mation forT' , i.e., we useG5G0. The full dressedT' will
be evaluated in Appendix C 1. The LL Green’s function
given in Eq.~A12!. Its Fourier transform is given by

G0~k!5E d2x e2 ik•xG0~xu0!, ~C5!

where we have identified32 k5(ki ,2v). We now introduce
the angles of the two vectorsx and k with the x axis, i.e.,
f5argx•v andu5argk•v, andv5(1,i ) as in Appendix A.
Equation~C5! becomes
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G0~k!5
2 iaa

2p E d2x e2 i uxuukucos~u2f!e2 ifuxu212a.

~C6!

Going over to circular coordinates and transformingf85f
2u ands5ukuuxu yields

G0~k!5
2 iaa

2p
ukua21e2 iuE

ukua

`

s2a ds

3E
0

2p

df8e2 i ~f81s cosf8!, ~C7!

where we do not care about the specific form of the cutof
s,ukua, as it can be taken to zero in the low-energy lim
~uku is always limited byteff!1/a). The last integral overf8
gives22p iJ1(s), with J1(s) a Bessel function. Integrating
over s, Eq. ~C7! gives

G0~k!'2
uakua

k•v
ga52

uakua

ki2 iv
ga , ~C8!

where

ga[
G~12a/2!

2aG~11a/2!
. ~C9!

As in Eq. ~C8!, we will from now on indicate with ‘‘'’’
expressions valid in the asymptotic limit. However, whe
ever this becomes clear, we will switch back to ‘‘5.’’

To evaluateT '
0 (x,0), we first insert Eq.~C8! in Eq. ~C4!

~remember, here we useG5G0), and then transform bac
into x coordinates. Thus,

T '
0 ~x,0!'2E d2k

4p2 eik•xG0~k!21

5
1

4p2gaaa E q dq du eiquxucos~u2f!q12aeiu,

~C10!

with the same conventions as above, and withq[uku. Trans-
forming quxu5s and integrating overu yields

T '
0 ~x,0!'

uxua23eif

4p2gaaa E
0

`

s22ads2p iJ1~s!. ~C11!

In principle, the last integral does not converge at larges.
However, it can be regularized by inserting a converge
factor e2ms5e2muxuuku with m;1/uxuteff , physically due to
the fact that the behaviorT'(k,c')'2G(k)21 @Eq. ~C4!# is
cut off at uku;teff . The convergence factorm can then be
safely taken to zero, since the result of the integral does
depend onm for small m. In this way, one obtains

T '
0 ~x,0!'

ia~22a!

2paa uxua23eif, ~C12!

with f5argx•v.

1. Fully dressed function

We now carry out the same Fourier transforms with
renormalized functionG, i.e., with Eq.~6! with m50,
t

-

e

ot

e

G~x!5Gc~xu0!5G0~xu0!F0@a ln~ uxuteff!#, ~C13!

with the renormalization functionF0( l ) given as a power
expansion@cf. Eq. ~F1!#

F0~ l !5 (
n50

`

f nl n. ~C14!

The Fourier transform ofG can be carried out as in Eq.~C7!,
and the integral overf8 gives the same result, asF0 only
depends on the modulus ofx. Thus, we are left with

G~k!5
2 iaa

2p
ukua21e2 iuE

ukua

`

s2a ds@22p iJ1~s!#

3 (
n50

`

f nanS ln s1 ln
teff

uku D
n

. ~C15!

SinceF0 is, in general, a complicated function, and its coe
ficients f n very general, the Fourier transform can only
carried up to the leading logarithmic behavior, which,
discussed in Sec. II, amounts to consideringl 5a ln(uxuteff)
of order 1 buta small. In this way, we can neglect the lns
within parentheses in Eq.~C15! and the effect of the renor
malization functionF0 becomes merely multiplicative, pro
vided one replacesuxu with uku21 in its argument. We thus
obtain

G~k!52
uakua

k•v
F0S a ln

teff

uku D5G0~k!F0S a ln
teff

uku D ,

~C16!

where we have replaced the coefficientga with its a→0
limit ga5051, consistently with the leading-logarithmic ap
proach. One can also verifya posteriori that inserting the
asymptotic result forF0( l ) (;el) in Eq. ~C13! one indeed
obtains Eq.~C16! for small a.

We now needT'(x,0) in real space, i.e., the Fourier tran
form of 2G(k)21. To express2G(k)21 we need the recip-
rocal function ofF0 in terms of its power-series coefficien
f̄ n :

F̄0~ l ![
1

F0~ l !
5 (

n50

`

f̄ nl n, ~C17!

where f̄ n can be determined from all thef m with m<n.
Again, this function does not depend on angles, and we
proceed as for Eq.~C11!, yielding

T'~x,0!'
uxua23eif

4p2gaaa E
0

`

s22a ds2p iJ1~s!

3 (
n50

`

f̄ nan@ ln~ uxuteff!2 ln s#n. ~C18!

The procedure is now slightly more complicated than for E
~C16!, since we have to consider terms at the first order
ln s. The reason is that, if we neglect completely the ls
term, the integral in Eq.~C18! is of ordera:

E
0

`

s22aJ1~s!ds5ga22'2a. ~C19!
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On the other hand, expanding the@¯#n power on the right-
hand side of Eq.~C18!, and keeping the first term in lns
yields a result of order 1:

E
0

`

s22a ln sJ1~s!ds52
d

da
ga22'22. ~C20!

The first integral thus gives a contributio
2 f̄ nan11@ ln(uxuteff)#

n to the nth term of the series in Eq
~C18!, while the second gives 2n f̄nan@ ln(uxuteff)#

n21. Both
terms are of the same order within the leading-logarithm
approach and must be taken into account. We thus obta

T'~x,0!'
ia

paa uxua23eif$F0@a ln~ uxuteff!#

1F08@a ln~ uxuteff!#%, ~C21!

since (n50
` f̄ n( l n1nln21)5F̄0( l )1F̄08( l ) @here, F̄08( l )

5(d/dl)F̄0( l )#. Equation ~C21! is the final result of this
section, which we need to insert in Eq.~8!.

2. First 1ÕD corrections: irrelevance of�-nonlocal
dressed hopping

In the D→` limit, only the local effective hopping
T'(x,x'50) is needed in the diagrams of Fig. 2,
'-nonlocal contribution vanish in this limit.39 In order to
study the contribution of finite-D corrections, we conside
the'-nonlocal contributions toT' , given by

T'~k,x'Þ0!5E dc'Dx'
~c'!T'~k,c'!, ~C22!

where, sinceT' depends onk' only throughc' , we have
introduced the ‘‘generalized density of states’’~here, we use
R instead ofx')

DR~c'!5E S )
d51

D8 dkd

2p
eikdRdD dS c'2

2

AD8
(
d51

D8

coskdD .

~C23!

Following Refs. 39, we now introduce the Fourier repres
tation of thed function, obtaining

DR~c'!5E ds

2p
eisc'I ~s,R!, ~C24!

where the integralI (s,R) is given by

I ~s,R!5E )
d

dkd

2p
eikdRd22is coskd /AD8

')
d

E dk

2p
eikRdS 12

2is

AD8
cosk

2
2s2

D8
cos2 k1O~D823/2!D , ~C25!

and we have expanded in powers of 1/AD8. The last integral
gives at the leading order
c

-

12
s2

D8
for Rd50

2
is

AD8
for Rd51

2
s2

2D8
for Rd52, ~C26!

and, in general, a term of order (s/AD8)n for Rd5n. Insert-
ing these results in Eq.~C24!, one obtains at the leadin
order in 1/AD8

DR~c'!5E ds

2p
eisc'2s2

)
d

aRdS s

AD8
D Rd

, ~C27!

where theaR are coefficients obtained from Eq.~C25!. For
example, from Eq.~C26! a051, a152 i , and a2521/2.
The powers ofs in Eq. ~C27! can be replaced with deriva
tives with respect toc' , yielding

DR~c'!5)
d

aRdS 2 i

AD8

d

dc'
D Rd

D~c'!, ~C28!

where the usual density of states is given in Eq.~C3!. We
can now insert Eq.~C1! and Eq.~C28! in Eq. ~C22!. Since
*dc'(d/dc')nD(c')50 for n>1, for the nonlocalT' we
can subtract ac'-independent term fromT'(k,c'), and
write

T'~k,x'Þ0!}E dc'FT'~k,c'!1
1

G~k!G
3S 1

AD8

d

dc'
D x'

D~c'!, ~C29!

wherex'[(dx'd . The term within square brackets in E
~C29! varies asG(k)22 for largeG(k), and the same holds
for the integral@the fact that the coefficient ofG(k)22 di-
verges atc'50 might, at most, give a logarithmic correc
tion#. Thus,T'(k,x'Þ0) vanishes at least likeG(k)22 for
low energies, i.e., faster thanT'(k,x'50). Diagrams con-
taining'-nonlocalT' contributions are thus irrelevant in th
renormalization-group sense.

APPENDIX D: INTEGRATION OVER
CENTER-OF-MASS COORDINATES

In this section, we prove Eq.~7!, for the integration over
the center-of-mass coordinateym11 . In order to simplify the
notation, we introduce the shorthandC(0, . . . ,n)
[Gc

0(y08 ,...,yn8uy0 ,...,yn) for the cumulants, and
G(0, . . . ,n)[G0(y08 ,...,yn8uy0 ,...,yn) for the disconnected
LL Green’s functions. Notice that in these Green’s functio
the implicit s and r variables32 are pairwise equal. More
precisely,sk andr k , associated withyk , are equal tosk8 and
r k8 , associated withyk8 . The reason is that aT' ~or t') line
does not change eithers or r ~see Fig. 2!. In
addition, we define xk5yk82yk , F(n)[2puxnu2G(n),
l j ,n[a ln(uxj u/uxnu)@d r j ,r n

1(1/S)d r j ,2r n
#, and for the in-
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tegration*0⇓nd2yn we use the notation*n .
The proof proceeds in two steps. We first show that

term on the right-hand side of Eq.~7! is also given by an
integral of a disconnected Green’s function, namely,

E
n
@G~0, . . . ,n!2G~0, . . . ,n21!G~n!#

5G~0, . . . ,n21!F~n! (
j 50

n21

l j ,n , ~D1!

where, for convenience, we have renamedm→n21. Then,
in Appendix D 3, we prove the step from Eq.~D1! to Eq.~7!
by induction.

1. Disconnected Green’s function

To show the first part, we write the (n11)-particle cor-
relation function Eq.~A11! by using Eq.~A2! in the follow-
ing form:

G~0, . . . ,n!5G~0, . . . ,n21!G~n!

3 )
i 50

n21 Pr i ,r n
~yi2yn8!Pr i ,r n

~yi82yn!

Pr i ,r n
~yi2yn!Pr i ,r n

~yi82yn8!
, ~D2!

where we have used the fact thatr k5r k8 . We thus have

E
n
@G~0, . . . ,n!2G~0, . . . ,n21!G~n!#

5G~0, . . . ,n21!G~n!E
n
I ~n21!, ~D3!

with the argument of the integral

I ~n21![F )
i 50

n21 Pr i ,r n
~yi2yn8!Pr i ,r n

~yi82yn!

Pr i ,r n
~yi2yn!Pr i ,r n

~yi82yn8!
21G .

~D4!

The integral in Eq.~D3! is restricted to the region 0⇓n,
wherexn is smaller than all other distances, which are t
arguments of theP’s, in Eq. ~D4!. For this reason, we ca
expandI (n21) in powers ofxn5yn82yn . The zeroth order
of this expansion is zero, asI (n21)50 for xn50. The first
order I (n21)(1) gives

I ~n21!~1!5 (
i 50

n21 F2xn•

“Pr i ,r n
~yi2yn!

Pr i ,r n
~yi2yn!

1xn•

“Pr i ,r n
~yi82yn!

Pr i ,r n
~yi82yn! G , ~D5!

where the“ is considered as applied to the argument of
function. Having in mind to integrate this expression ov
yn , one would be tempted to carry out a shift in coordina
yn→yn1xi in the second term within square brackets in E
~D5!, thus obtaining zero. This shift, however, has to
carried out with some care, since the logarithmic gradie
“Pr i ,r n

(yi2yn)/Pr i ,r n
(yi2yn) vary as 1/uynu for large uynu.

Therefore, the integral of each separate term in Eq.~D5! does
e

e

e
r
s
.

ts

not converge, i.e., the shift is not allowed without furth
prescriptions. However, this holds if one uses the ze
temperature form Eq.~A9!. On the other hand, the finite
temperature prescription Eq.~A7! introduces a cutoff for val-
ues ofeachof the arguments in the“P/P in Eq. ~D5! of the
order of 1/T, making theseparateintegrals absolutely con
vergent and allowing for the coordinate shift.

We thus need to expandI (n21) up to the second order in
xn :

11I ~n21!' )
i 50

n21

@12xn
mPm~ ȳi !1xn

mxn
nPm,n~ ȳi !#

3 )
j 50

n21

@12xn
m8Pm8~ ȳj8!

1xn
m8xn

n8Pm8,n8~ ȳj8!#21, ~D6!

where a sum over repeated indicesm, m8, n, n8 is understood,
and where we have introduced the notationsȳi[yi2yn and
ȳi8[ ȳi82yn . Moreover, xn

m is the m component of the
vector xn , Pm(y)5@(]/]ym)P(y)#/P(y), and Pm,n(y)
5@(]/]ym)(]/]yn)P(y)#/2P(y). Moreover, we have omit-
ted ther i indices in the functionsP, since they are fixed by
their y arguments@i.e., P(yi2yn)[Pr i ,r n

(yi2yn)].
Expanding the denominator of Eq.~D6! we obtain

11I ~n21!' )
i , j 50

n21

@12xn
mPm~ ȳi !1xn

mxn
nPm,n~ ȳi !#

3@11xn
m8Pm8~ ȳj8!2xn

m8xn
n8Pm8,n8~ ȳj8!

1xn
m8xn

n8Pm8~ ȳj8!Pn8~ ȳj8!#. ~D7!

Collecting powers ofxn
2, we obtain the second-order term

I (n21)(2):

I ~n21!~2!5xn
mxn

nS (
i

@Pm,n~ ȳi !2Pm,n~ ȳi8!

1Pm~ ȳi8!Pn~ ȳi8!#1(
i . j

@Pm~ ȳi !Pn~ ȳj !

1Pm~ ȳi8!Pn~ ȳj8!#2(
i , j

Pm~ ȳi !Pn~ ȳj8! D
5xn

mxn
nS (

i
$Pm,n~ ȳi !2Pm,n~ ȳi8!1@Pm~ ȳi8!

2Pm~ ȳi !#Pn~ ȳi8!%1
1

2 (
iÞ j

@Pm~ ȳi !Pn~ ȳj !

1Pm~ ȳi8!Pn~ ȳj8!2Pm~ ȳi !Pn~ ȳj8!

2Pm~ ȳi8!Pn~ ȳj !# D . ~D8!

With the integration overyn in mind, and with the same
arguments about convergence as for Eq.~D5!, we can carry
out a coordinate shift ofyn in some of the terms of the sum
Eq. ~D8!. First of all, we shiftyn→yn1xi in the Pm,n( ȳi8)
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term, so that it becomesPm,n( ȳi) and it cancels the firstPm,n
term. Next, we transform the first-derivative term in the fi
sum in Eq.~D8! in the following way:

@Pm~ ȳi8!2Pm~ ȳi !#Pn~ ȳi8!

5 1
2 Pm~ ȳi8!Pn~ ȳi8!1 1

2 Pm~ ȳi8!Pn~ ȳi8!

2 1
2 Pm~ ȳi !Pn~ ȳi8!2 1

2 Pm~ ȳi !Pn~ ȳi8! ~D9!

→ 1
2 Pm~ ȳi8!Pn~ ȳi8!1 1

2 Pm~ ȳi !Pn~ ȳi !2 1
2 Pm~ ȳi !Pn~ ȳi8!

2 1
2 Pm~ ȳi8!Pn~ ȳi ! ~D10!

5 1
2 @Pm~ ȳi !2Pm~ ȳi8!# @Pn~ ȳi !2Pn~ ȳi8!#,

where Eq.~D10! is obtained by shiftingyn→yn1xi in the
second term and by exchangingm andn in the fourth term of
Eq. ~D9! @which is allowed, as Eq.~D8! is symmetric in
m, n#. Inserting the result in Eq.~D8!, and factorizing in the
same way the terms in the last sum, we finally get

I ~n21!~2!→ 1

2
xn

mxn
n(

i , j
@Pm~ ȳi !2Pm~ ȳi8!#

3@Pn~ ȳj !2Pn~ ȳj8!#

5
1

2 S (
m,i

xn
m@Pm~ ȳi !2Pm~ ȳi8!# D 2

, ~D11!

where ‘‘→’’ means that it is equal but for a shift of th
integration variableyn in some of the summands.

We now need the logarithmic gradientsPm(ya2yb). If
the pointsa and b correspond to two electrons on oppos
sides of the FS, i.e.,r a52r b , then from Eqs.~A3!, ~A4!,
and ~A9!, P0(y)5uyu2B, and

Pm
0 ~y!5

]muyu2B

uyu2B 52B
ym

uyu2
, ~D12!

where we have sety5ya2yb , and introduced a superscrip
symbol 0 or 1 toPm , depending on whetherr a52r b or
r a5r b , respectively. In the second case,r a5r b[r , we can
write P1(y)5cuyu222ay•v, wherec is a constant, and the
two-component vectorv5(1,2 ir ), slightly different from
the one defined in Appendix A. Differentiating, we obtain

Pm
1 ~y!52~21a!

ym

uyu2 1
vm

y•v

5
1

uyu2 @~y•v* !vm2~21a!ym#, ~D13!

as uyu25(y•v)(y•v* ).
There are thus three types of integrals to be carried ou

Eq. ~D3! with the second-order term Eq.~D11!. First, for the
case thatr n52r i52r j , we need an integral of the form
t

in

E
n
Pm

0 ~yi2yn!Pn
0~yj2yn!

5B2E d2y
ym2xm

uy2xu2
yn

uyu2

5B2pdmn ln
R

max~ uyi2yj u,uxnu!
, ~D14!

where in the intermediate step we have transformedyn5y
1yj , andyi2yj5x, and used the result Eq.~D21!. Here, we
have introduced a large-distance cutoffR}1/T, on which,
eventually, the final result does not depend. The maximum
the logarithm only applies in practice wheni 5 j , as uxmu is
always the smallest distance. In this case, the result is
tained by keeping in mind thatuxnu is the short-distance cut
off, and by applying Eq.~D20!. For r n5r i5r j5r , we need

E
n
Pm

1 ~yi2yn!Pn
1~yj2yn!

5E
n

1

uyu2uy2xu2 $@~y2x!•v* #vm2~21a!~ym2xm!%

3@~y•v* !vn2~21a!yn#

5@v* m8vm2~21a!dmm8#

3@v* n8vn2~21a!dnn8#E d2y
ym82xm8

uy2xu2

yn8

uyu2

5p~21a!admn ln
R

max~ uyi2yj u,uxnu!
, ~D15!

again using Eq.~D21! and the fact thatv* m8v* m850 and
vmv* n1v* mvn52dmn . Finally, for r n5r j52r i , we have

E
n
Pm

0 ~yi2yn!Pn
1~yj2yn!

5~2B!@v* n8vn2~21a!dn8n#pdm,n8

3 ln
R

max~ uyi2yj u,uxnu!

5p@B~21a!dmn2Bv* mvn#

3 ln
R

max~ uyi2yj u,uxnu!

→p~11a!Bdmnln
R

max~ uyi2yj u,uxnu!
, ~D16!

where in the last step we have symmetrized with respect tm
andn.

We can thus use these results to integrate Eq.~D11! and
obtain
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E
n
I ~n21!~2!

'
p

2
dmnxn

mxn
nS (

iÞ j 50

n21

ln
uyi82yj uuyi2yj8u
uyi2yj uuyi82yj8u

3$@~21a!ad r i ,r n
1B2d r i ,2r n

#d r i ,r j

1~11a!Bd r i ,2r j
%1 (

i 50

n21

2@~21a!ad r i ,r n

1B2d r i ,2r n
# ln

uxi u
uxnu D , ~D17!

where we have considered the casei 5 j separately, and use
the fact thatuxnu is ~much45! smaller than all other distance
in the region 0⇓n, and thus can be neglected wheneve
appears summed to other distances as the argument of a
rithm. Notice that the large-distance cutoffR cancels out, as
anticipated.

Consider now the terms in Eq.~D17! with iÞ j . These
give logarithmic contributions of the form

ln
uyi1xi2yj uuyi2yj2xj u
uyi2yj uuyi1xi2yj2xj u

. ~D18!

For the sake of definiteness, let us takei . j in Eq. ~D18!, so
that, in the relevant region 0⇓n, xi is smaller than all other
differences in the arguments of the logarithm and thus can
set to zero. In this way, numerator and denominator in
~D18! cancel and the result is zero. This means that the te
with iÞ j in Eq. ~D17! do not contribute to the leading loga
rithmic divergence. Thus, the only contribution to Eq.~D17!
stems from the second summation, which gives

E
n
I ~n21!~2!'2puxnu2(

i 50

n21

a ln
uxi u
uxnu S d r i ,r n

1
1

S
d r i ,2r nD ,

~D19!

where we have takenB2'2a/S and (21a)a'2a, consis-
tently with the leading logarithmic approximation. Insertin
Eq. ~D19! into Eq. ~D3! yields the desired result Eq.~D1!.
There might be a much faster and elegant way to get
rather simple result Eq.~D19!.

2. Some logarithmic integrals

Here, we evaluate the integrals used in Eq.~D14! and
following. The first integral is straightforward:

E
D,uyu,R

d2y
yayb

uyu4 5pdab ln
R

D
, ~D20!

whereR is a large-distance andD a short-distance cutoff fo
uyu, which are needed due to the logarithmic divergences
the integral. We next prove that

E
uyu,R

d2y
ya2xa

uy2xu2
yb

uyu2
'pdab ln

R

uxu
, ~D21!

where' means at the leading order in ln(R/uxu). The integral
converges at short distances, so there is no need for a s
t
ga-

e
.
s

e

of

rt-

distance cutoff, and diverges logarithmically at large d
tances. We can split the integral into two regions:~i! uxuN
<uyu<R, and~ii ! uyu<uxuN, with N large but much smaller
than R/uxu, so that lnN can be neglected. In region~i!, the
integrand can be safely approximated byyayb/uyu4, whose
integral, taken from Eq.~D20!, givespdab ln(R/uxu). In re-
gion ~ii !, the only length scale left isuxu, since the integral
converges at short distances, and thus there is no logarith
contribution from this region, and Eq.~D21! is proven.

3. Integration of cumulants

We have thus proven Eq.~D1!, an equation similar to Eq
~7!, but with disconnectedGreen’s functions instead of cu
mulants. We now prove by induction the same thing w
cumulants. Induction is the best way to do it, as cumula
themselves can be written by induction in terms of disco
nected Green’s functions. Ann-particle cumulant consists o
the sum of then-particle disconnected Green’s functions pl
an appropriate sum of products ofk-particle Green’s func-
tions withk,n ~Ref. 36!. However, we can show that in ou
problem, we need consider only the so-called ‘‘paired’’ co
tributions to the cumulants, i.e., we can throw away all tho
terms in the sum in which, for anyk, the coordinatesyk and
yk1xk do not belong to the same Green’s function. The f
that these terms~‘‘unpaired terms,’’ see Fig. 10! can be ne-
glected is shown in Appendix D 4.

Let us write in the shorthand form

E
n
C~0, . . . ,n!'C~0, . . . ,n21!F~n! (

j 50

n21

l j ,n , ~D22!

which coincides with Eq.~7! for n5m11. The induction
procedure consists in proving~i! that Eq.~D22! holds forn
51, and~ii ! that in the hypothesis that Eq.~D22! holds for
all n<m, it also holds forn5m11.

For n51, C(0,1) is equal toG(0,1)2G(0)G(1) plus
unpaired terms. Since, as discussed above, unpaired t
can be neglected, forn51 Eq. ~D22! coincides with Eq.
~D1!, which we have just shown in Appendix D 1.

We now assume Eq.~D22! to be valid for alln<m. Let
us first introduce the definition of a cumulant in terms
connected Green’s functions,

C~0, . . . ,n!5G~0, . . . ,n!2 (
P~0, . . . ,n!

C~P1!¯C~PNP
!,

~D23!

FIG. 10. Splitting of a cumulant contribution into ‘‘paired’’ an
‘‘unpaired’’ terms. A cumulant is indicated by the black dot and
obtained as a sum of disconnected Green’s functions, represe
by black squares. The last diagram on the r.h.s. is an ‘‘unpair
one, according to the definition of Sec. D4, and does not contrib
to the leading logarithmic divergences, as shown in that sectio
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where we have already left out unpaired terms. In Eq.~D23!,
the Pk are subsets of the set of integers$0, . . . ,n%,
$P1 ,...,PNP

% is a partition withNP terms of this set, and the

sum (P(0, . . . ,n) goes over all inequivalent partitions wit
NP>2 of this set. Equivalent partitions are the ones that
be set equal by a permutation. Introducing Eq.~D23! in the
result for the disconnected Green’s functions Eq.~D1! ~with
n→m11), one obtains

E
m11

S C~0, . . . ,m11!2G~0, . . . ,m!G~m11!

1 (
P~0, . . . ,m11!

C~P1!¯C~PNP
! D

5G~0, . . . ,m!F~m11!(
j 50

m

l j ,m11 . ~D24!

In Eq. ~D24!, the sum over the partitions of the set of int
gers 0,...,m11 can be further split in the following way:

(
P~0, . . . ,m11!

C~P1!¯C~PNP
!

5 (
P~0, . . . ,m!

(
k51

NP

C~P1!¯C~Pk ,m11!¯C~PNP
!

1 (
P~0, . . . ,m!

C~P1!¯C~PNP
!C~m11!

1C~0, . . . ,m!C~m11!, ~D25!

i.e., into the sum over the partitions of the integers 0, . . . ,m
with the elementm11 either appended in all subsets of t
partition or taken alone. Upon applying the definition E
~D23! with n5m to the last term on the right-hand side, E
~D25! becomes

(
P~0, . . . ,m11!

C~P1!¯C~PNP
!

5 (
P~0, . . . ,m!

(
k51

NP

C~P1!¯C~Pk ,m11!¯C~PNP
!

1G~0, . . . ,m!C~m11!, ~D26!

which, inserted into the left-hand side of Eq.~D24!, cancels
the second term within large parentheses, giving

E
m11

C~0, . . . ,m11!

52E
m11

(
P~0, . . . ,m!

(
k51

NP

C~P1!¯C~Pk ,m11!

3¯C~PNP
!1G~0, . . . ,m!F~m11!

3(
j 50

m

l j ,m11 . ~D27!
n

.

The integral*m11 in the first term on the right-hand side o
Eq. ~D27! can be evaluated by using the induction hypo
esis Eq.~D22! with n<m, as C(Pk ,m11) is a cumulant
with fewer thanm11 particles. We thus obtain for this term

2 (
P~0, . . . ,m!

(
k51

NP

C~P1!¯S C~Pk!F~m11!

3 (
j PPk

l j ,m11D¯C~PNP
!

52 (
P~0, . . .m!

C~P1!¯C~Pk!¯C~PNP
!F~m11!

3(
j 50

m

l j ,m11 , ~D28!

since (k51
Np ( j PPk

5( j 50
m . Inserting the last result in Eq

~D27! and using again the definition Eq.~D23! yields the
desired result, i.e., Eq.~D22! with n5m11.

4. Irrelevance of ‘‘unpaired’’ terms

We want to show that the ‘‘unpaired terms’’ in a cum
lant do not contribute to the leading logarithmic divergenc
in any of the terms of the sum Eq.~4!. An (m11)-particle
cumulant is the sum of products ofn-particle Green’s func-
tions with n<m11. By ‘‘unpaired terms’’ we mean those
terms in the sum for which some paired variables~i.e., yk

andyk8[yk1xk) do not belong to the same Green’s functio
For example, form51

Gc
0~0,1u08,18!5G0~0,1u08,18!2G0~0u08!G0~1u18!

1G0~0u18!G0~1u08!, ~D29!

the last term on the right-hand side is unpaired, while
first two are paired. The first two terms, when inserted in E
~4! give a ln2(ux0uteff) contribution, as discussed in Sec. II
The contribution toG of the last term can be best understo
diagrammatically~see Fig. 10!. Its contribution, written in
momentum space, is proportional to

E d2k G0~k!T'~k,x'50!G0~k!eik•x0

'2E d2k
G0~k!

F0@a ln~ teff /uku!#
eik•x0

'
G0~x0!

F0@a ln~ teffux0u!#
, ~D30!

i.e., it does not contribute additional logarithmic terms toG,
in contrast to the contribution from the paired terms. T
same thing happens at higher order, namely, while the pa
terms of an (m11)-particle cumulant inserted in Eq.~4!
give a correction of order ln2m(ux0uteff) to G, the unpaired
terms give smaller powers of the logarithm and can thus
neglected at the leading logarithmic order.
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APPENDIX E: RELEVANT INTEGRATION REGION

In this section, we show that the leading contribution
ln(ux0uteff) to each of the integrals in the series E
~4!, restricted to uxmu<uxm21u<¯<ux1u can be further
restricted ~a! to the subregionux1u<ux0u and ~b! to uxpu
,uyq1e1xq2yq82e2xq8u for eachp>q,q8, qÞq8, and e i
50,1. This relevant region, which we call ‘‘0⇓m, ’’ is the
one where the modulus of the relative coordinatexp with a
given indexp (p50, . . . ,m) is smaller than the distanc
between any two different points with indicesq,q8 smaller
than or equal top. The remaining regions do not contribu
to the leading logarithmic divergence of the integral. This
a crucial point in giving the simple expression Eq.~7!.

Let us start withm51. We have already seen in Sec.
that the contribution to Eq.~4! from the region 0⇓1 gives a
ln2 term, and for generalm one has a ln2m contribution. Con-
sider now the integration regionux0u,ux1u in the termm
51 in Eq. ~4!, which violates~a!. The integration over the
‘‘center-of-mass’’ coordinatey1 can be replaced with an in
tegration overy0 , since the integrand depends on the diffe
ence between the two. As a consequence, one can just
over the result Eq.~D1! with n51, and interchange the la
bels 1 and 0. This is correct because nowux0u is smaller than
ux1u. One thus obtains

E
1
@G~0,1!2G~0!G~1!#}2apG~0!G~1!ux0u2 ln

ux1u
ux0u

.

~E1!

If one now inserts the expression Eq.~C12! for the LO T' ,
and integratesx1 from ux1u50 to ux1u5ux0u, the result is
proportional to a2G(0)ux0u2* ux1u,ux0u(d

2x1 /x1
4)ln ux1 /x0u

5a2G(0)3O(1), whereO(1) is a term of order unity, i.e.
without logarithmic contribution. For a generic term of th
logarithmic expansion, Eq.~C21!, of thecompletely dressed
T' one has a similar result, namely, after integration overx1
one has no additional logarithmic contribution, while o
gets a terma2, i.e, one ‘‘loses’’ two logarithms from inte-
grating in that region.

Taking now m.1, one first integrates the variable
y2 ,x2 ,...,ym ,xm by using Eq.~5!. However, this integration
simply renormalizes the two-particle cumulantGc by a factor
of order 1 in the leading logarithm, i.e., by a sum of powe
of (a ln uxuteff). Now one can proceed by integrating ov
y1 ,x1 . By the same argument as above, it is straightforw
to show that integration from the regionux0u,ux1u does not
contribute additional logarithms, while it gives a terma2,

FIG. 11. ln@F0( l )# vs l for S52, obtained with a rational Pad´
interpolation to the expansion of Appendix F of the formF0( l )
5Pn( l )/Qk( l ), with n5k520 ~solid line!, n521, k520 ~dashed!,
andn520, k521 ~dotted!.
.
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and can thus be neglected. We have thus proven~a!, i.e., that
the leading divergent contribution to each term of the exp
sion Eq.~4! comes from the regionux0u.ux1u.

To show the second part~b! of the statement, we shoul
first understand how a logarithmic contribution to Eq.~4!
comes out. Let us consider the integration overym of Appen-
dix D 1. I (m21) @Eq. ~D4!#, which is the onlyym-dependent
part of G(0, . . . ,m), can be written in the generic form

I ~m21!5)
i

Pi~ym2r i !, ~E2!

where thePi are functions with an integrable singularity in0
@whenever the exponents 11a andB in Eq. ~A6! are smaller
than 2#. Since the singularities are integrable, there is
divergent~power-law or logarithmic! contribution from inte-
gration of ym in the neighborhood of the pointsr i . For the
sake of definiteness, let us suppose thatr1 andr2 are the two
nearest points among ther i , and callD[ur22r1u their dis-
tance. Then, one can consider the circleR,D of radiusND
aroundr1 , with N some number of the order 1 smaller tha
the relevant logarithmic scale. This region containsr1 andr2

but none of the otherr i points.~In case there are other poin
r i inside this region, the following argument does n
change, provided their distance fromr1 and r2 is neither
much larger nor much smaller thanD.! InsideR,D , there is
just one characteristic length scaleD, since there is no need
for a short-distance scale due to the convergence of the
gral. Thus, by simple dimensional analysis, one obtains
the integration in this region*R,D

d2ym I (m21)}D2 with no
logarithmic contribution since one needs two length sca
for a logarithm. A logarithmic contribution can come on
from integratingym in the remaining regionR.D , where
more energy scales are available. In this region, one
expand in powers ofD, when it appears as an argument
the Pi , as we have done in Appendix D 1 withD5uxmu.

Let us start from the simplest casem51. Here, there are
four points r i , namely, y0 , y02x1 , y08[y01x02x1 , and
y01x0 . Since we have45 ux1u!ux0u, the smallest distanceD
between two of these points is given byux1u. As discussed
above, the leading logarithmic contribution to Eq.~4! comes
from the regionR.ux1u , whereuy12y0u, uy12y08u, uy182y0u,
uy182y08u.ux1u which proves result~b! for m51. It is now
straightforward to extend this argument by induction for a
m. Specifically, we first assume that we can restrict oursel
to the region where the distancesuyp2yqu, uyp2yq8u, uyp8
2yq8u ~let us call them ‘‘uyp2yqu and primed’’! are larger
than uxm21u, for p,q<m21. Then, sinceuxm21u.uxmu ~we
are restricted to the region 1↓m), it remains to be shown tha
the region where any one of the distancesuym2yqu and
primed is smaller thanuxmu does not contribute to the leadin
logarithmic divergence. Sinceuxmu is smaller than allother
distancesuyp2yqu and primed, we can apply the argume
above, according to which logarithmic contributions fro
the integral ind2ym come from the region outside circles o
radiusuxmu from any of the pointsyp or yp8 . This proves the
statement.



t

s
c-

al

x

-

tion
es

er-
re
he

fi-
nc-

ven-
ntial

re

ic

PRB 61 7927CROSSOVER TO FERMI-LIQUID BEHAVIOR FOR . . .
APPENDIX F: SOLUTION OF THE RECURSIVE
EQUATION BY POWER EXPANSION

In this section, we describe the practical procedure
solve the recursive set of equations Eq.~10! by power ex-
pansion up to very high order. We also show some result
the corresponding Pade´ resummation. We expand the fun
tions Fm in powers of their arguments

Fm~ l ,l m!5 (
i , j 50

`

f i , j
~m!l i l m

j . ~F1!

We can use two known results, namely,~i! Fm( l ,0)51,
which implies f i ,0

(m)5d i ,0 , and ~ii ! f i , j
(0)5d i ,0f j , as F0( l ,l 0)

only depends onl 0 .
Inserting Eq.~F1! and the expansion for the reciproc

function Eq.~C17! in Eq. ~10! yields

(
i , j 50

`

f i , j
~m!l i l m

j

5112~S11!E
0

l m
dl8@ l 1 l m2~m11!l 8#

3 (
r ,s50

`

f r ,s
~m11!~ l 1 l m!r l 8s

3 (
p50

`

@ f̄ p1~p11! f̄ p11# l 8p

5112~S11!E
0

l m
dl8 (

r ,s,p50

`

f r ,s
~m11!@ f̄ p1~p11! f̄ p11#

3@~ l 1 l m!r 11l 8s1p2~m11!~ l 1 l m!r l 8s1p11#. ~F2!

Carrying out the integration and applying the binomial e
pansion@with the agreement that (s

r)50 for s.r ], Eq. ~F2!
becomes

112~S11! (
r ,s,p50

`

f r ,s
~m11!@ f̄ p1~p11! f̄ p11#

3 (
q50

r 11

l ql m
r 1s1p122qF S r 11

q D 1

s1p11
2S r

qD m11

s1p12G
511(

i 50

`

(
j 5max~1,22 i !

`

l i l m
j Bi , j

~m11! , ~F3!

FIG. 12. d ln@F0( l )#/dl vs l with a logarithmic Pade´ approxi-
mation d ln@F0( l )#/dl5Pn( l )/Qk( l ), with n5k520 ~solid line!,
n521, k520 ~dashed!, andn520, k521 ~dotted, covered by the
solid line!.
o

of

-

where we have replacedq5 i and r 1s1p122q5 j , and
introduced the coefficients

Bi , j
~m11!52~S11! (

r 5max~ i 21,0!

i 1 j 22

(
p50

i 1 j 2r 22

f r ,i 1 j 2r 2p22
~m11!

3@ f̄ p1~p11! f̄ p11#F S r 11
i D 1

i 1 j 2r 21

2S r
i D m11

i 1 j 2r G . ~F4!

Comparison of Eq.~F2! with Eq. ~F3! gives the relation be-
tween thef (m) and thef (m11), namely,

f i , j
~m!5H Bi , j

~m11! for i 1 j >2,i>0,j >1

1 for i 5 j 50

0 otherwise .

~F5!

From Eq.~F4! it is not too difficult to prove another re
striction on the coefficientsf i , j

(m) , namely,f i . j , j
(m) 50.

We have evaluated the coefficientsf j[ f 0,j
(0) up to j 542,

and, consequently, all other coefficientsf i , j
(m) up to a corre-

sponding high order, by means of an algebraic manipula
program. If one tries to naively sum the series, one com
out with apparent divergences already atl of the order of 1,
which is probably the convergence radius. The Pade´ method
is most appropriate for extrapolations beyond the conv
gence radius.52 Indeed, we find that the possible poles a
never on the positive real axis, nor close to it, which is t
only region where we needF0( l ) to be well defined. The
simplest Pade´ interpolation consists in equating the coef
cients of the series to the ones coming from a rational fu
tion Pn( l )/Qk( l ), wherePn( l ) is a polynomial of ordern,
and Qk( l ) one of orderk. In Fig. 11 we have plotted
ln Pn(l)/Qk(l), as obtained by this result, with differentn,k
close to 20. In all three cases, the logarithm seems to e
tually acquire a constant slope, suggesting an expone
behavior forF0 . However, abovel;5 the three different
interpolations give different results, which signals a failu
of the Pade´ procedure forl *5. A better approximation is
achieved by making a rational interpolation to thelogarith-
mic derivative, i.e., to set the ansatzd ln@F0( l )#/dl
5Pn( l )/Qk( l ). As one can see from Fig. 12, this logarithm
Padéinterpolation now works well up to a largerl;20 and it
clearly shows thatd ln@F0( l )#/dl→1 for large l ~within
about 1024 of accuracy!, i.e., thatF0( l )}el .

FIG. 13. d ln@Fm(ml,l)#/dl vs l for m54 ~solid line! and m52
~dashed!, with a logarithmic Pade´ approximationd ln@F0( l )#/dl
5Pn( l )/Qk( l ) with n5k519.
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We also want to study the behavior of the interact
vertices, given by the RRC Eq.~5!. To this end, we have
evaluated their asymptotic behavior, when all internal v
ablesuxku are of the same order of magnitude~see the dis-
cussion in Ref. 46!. This is obtained by setting alll k5 l in
Eq. ~9!, or, equivalently,l→ml andl m5 l in Eq. ~10!. In Fig.
13, we have evaluated the logarithmic derivative
Fm(ml,l ). The figure clearly shows thatFm(ml,l )}e(m11)l ,
s

v

e

r

a

.
n
n
a

i-

f

i.e., the associated RRC,Gc of Eq. ~5!, gets a correction
proportional tox(m11)a, wherex is the common value of al
uxku. Since thebare (m11)-particle cumulantGc

0 scales like
x2(m11)(11a) ~cf. Appendix A!, the anomalous exponent i
again exactly canceled by the renormalization. This is imp
tant, since one needsa to scale to zero not only in the self
energy, but also in the interaction vertices, in order for
low-energy fixed point to be asymptotically free.
-
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