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Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping

L. Didukh,* Yu. Skorenkyy, Yu. Dovhopyaty, and V. Hankevych
Ternopil State Technical University, Department of Physics, 56 Rus’ka Street, Ternopil UA–46001, Ukraine

~Received 2 July 1999!

In the present paper, we propose a doubly orbitally degenerate narrow-band model with correlated hopping.
The peculiarity of the model is taking into account the matrix element of electron-electron interaction, which
describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the
effective hopping integral. The cases of the strong and weak Hund’s coupling are considered. By means of a
generalized mean-field approximation the single-particle Green function and quasiparticle energy spectrum are
calculated. Metal-insulator transition is studied in the model at different integer values of the electron concen-
tration. With the help of the obtained energy spectrum, we find energy gap width and criteria of metal-insulator
transition.
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I. INTRODUCTION

The electron-electron interaction-driven metal-insula
transition~MIT ! has fascinated theorists and experimental
for many years. This transition is named after Sir Nev
Mott, being one of the pioneers who laid down the found
tions of our physical understanding of this phenomenon1,2

Despite a large amount of papers devoted to study of
transition~e.g., see a review3! the construction of consisten
theory of MIT is still far from carrying out and constitute
one of the most challenging problems in condensed ma
physics.

The simplest model describing MIT in materials with na
row energy bands is the Hubbard model.4 This model de-
scribes a single nondegenerate band of electrons with
local Coulomb interaction. The model Hamiltonian conta
two energy parameters: the matrix elementt0 being the hop-
ping integral of an electron from one site to another (t0 is not
dependent on occupation of sites involved in the hopp
process! and the parameterU being the intraatomic Coulomb
repulsion of two electrons of the opposite spins. This mo
is studied intensively~for recent reviews see Refs. 5 and 6!.

Theoretical analyses, on the one hand, and available
perimental data, on the other hand, point out the necessi
the Hubbard model generalization. As a rule this general
tion is perfomed by two means: taking into account the
bital degeneration or correlated hopping~in the present pape
we do not consider the generalization of the Hubbard mo
by taking into account the inter-atomic Coulomb and e
change interactions!.

A model of nondegenerate band has to be generalize
taking into account the orbital degeneration being a cha
teristic of the transition-metal compounds, which exhi
MIT. First the degenerate Hubbard model was introduced
description of transition metal compounds in papers
Roth,7 Kugel’ and Khomskii,8 Cyrot and Lyon-Caen.9 In
these works, in particular, the importance of intra-atomic
change interactionJ, which stabilizes the localized magnet
moments in accordance with the Hund’s rule was inve
gated.

The intensive study of MIT in the degenerate Hubba
model has begun only in few recent years by use of the s
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r
s
l
-

is

er

he
s

g

l

x-
of
a-
-

el
-

by
c-
t
r
f

-

i-

ve

boson method,10–13 the variational method,14 the limit of in-
finite dimension.15

The results of works10–15 show the possibility of the
metal-insulator transition in the doubly degenerate Hubb
model. However the criteria of the transition obtained in t
noted works are substantially different. In particular, atn
51, J50 ~here in all the casesT50 K and the rectangula
density of states are considered! in Refs. 11 and 12 the cri-
terion of MIT is U/w54.95, in Ref. 14 –U/w55.18, in
Ref. 15 – U/w53.0; at n51, J50.1 in Ref. 10 –U/w
53.04; atn52, J50 in Refs. 11,12 –U/w56.0, in Ref. 10
U/w54.0, in Ref. 14 – U/w59.0, in Ref. 15 – U/w
53.7. In addition in Ref. 10 atn51 MIT of first order is
found, but in Refs. 12 and 14 – MIT of second order. Co
sequently a further investigation of MIT in narrow-ban
models with orbital degeneration is necessary.

Another way of the Hubbard model generalization whi
allows to describe the essential peculiarities of transit
metal compounds is taking into account the correlated h
ping. The necessity of taking into consideration correla
hopping is caused by two reasons. Firstly, theoreti
analysis16 points out the inapplicability of the Hubbar
model for the description of real strongly correlated electr
systems, in some compounds~e.g., see the estimation i
Refs. 17–21! the matrix element of electron-electron intera
tion describing correlated hopping is of the same order t
the hopping integral or on-site Coulomb repulsion. Second
using the idea of correlated hopping and caused by it
electron-hole asymmetry we can interpret the peculiarities
some physical properties of narrow-band materials.22–28

Now two ways are commonly used to generalize t
single-band Hubbard model by taking into account correla
hopping. One of them has been proposed in Ref. 16. Hir
showed that in contrast to the hopping integral of the Hu
bard model~which is not dependent on occupation of sit
involved in the hopping process! this integral of a general-
ized Hubbard model had to depend on occupation of s
involved in the hopping process. Hamiltonian of the gen
alized in such a way Hubbard model is written as

H52(
i j s

t i j
s ais

1 aj s1U(
i

ni↑ni↓ , ~1.1!
7893 ©2000 The American Physical Society
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7894 PRB 61DIDUKH, SKORENKYY, DOVHOPYATY, AND HANKEVYCH
t i j
s 5tAA~12ni s̄!~12nj s̄!1tAB~ni s̄1nj s̄22ni s̄nj s̄!

1tBBni s̄nj s̄ . ~1.2!

In recent few years Hamiltonian~1.1! is widely used to
study MIT in narrow energy bands.29–31

In Refs. 17 and 27 the necessity of the Hubbard mo
generalization by taking into account the matrix element
electron-electron interaction describing intersite hoppings
electrons had been pointed out. The Hamiltonian of the g
eralized Hubbard model with correlated hopping is

H52m(
is

ais
1 ais1t~n!(

i j s
8 ais

1 aj s

1X(
i j s

8 ~ais
1 aj sni s̄1H.c.!1U(

i
ni↑ni↓ , ~1.3!

with

t~n!5t01n(
kÞ i
kÞ j

J~ ik jk ! ~1.4!

being the effective hopping integral of electrons betwe
nearest-neighbor sites of lattice,X5J( i i i j ); n5Ne /N is the
electron concentration (Ne is the number of electrons,N is
the number of lattice sites!,

J~ ik jk !5E E w* ~r2Ri !w~r2Rj !
e2

ur2r 8u

3uw~r 82Rk!u2drdr 8, ~1.5!

w(r2Ri) is the Wannier function, the prime at the sum
signifies thatiÞ j .

In the model described by Hamiltonian~1.3! an electron
hopping from one site to another is correlated both by
occupation of the sites involved in the hopping process~with
the hopping integralX) and the occupation of the neares
neighbor sites@with the matrix elementJ( ik jk) at kÞ i , k
Þ j ] which we take into account in the Hartree-Fock a
proximation@Eq. ~1.4!#. The peculiarity of model~1.3! is the
concentration dependence of the hopping integralt(n) in
contrast to similar models.

MIT in a generalized Hubbard model with correlated ho
ping has been studied in a number of recent works.29–38 In
particular, at half-filling andt052X ~or tAB50) some exact
results have been found.29,32–34In a simple cubic lattice with
coordination numberz MIT occurs at

Uc5z~ utAA1tBBu!52zut0u. ~1.6!

If U.Uc the ground state of system is a paramagnetic M
Hubbard insulator with the concentration of doubly occup
sitesd50, the ground state energy is equal to zero.

For an arbitraryt0Þ2X ~or tABÞ0) the finding of MIT
criterion and the description of this phenomenon in a gen
alized Hubbard model with correlated hopping still rema
an open problem. One of the steps to solve this task is re
papers30,31,35–38where criteria of MIT, ground state energ
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concentration of doubly occupied sites have been found
Refs. 30,31 and 35–37 the authors have obtained the foll
ing criterion of MIT:

Uc5z~ utAAu1utBBu!5z~ ut0u1ut012Xu! ~1.7!

in agreement with the Mott’s general physical ideas.2 By
means of the slave bosons method39 it has been found in Ref
38 that MIT occurs atUc54zut1Xu; however here there is a
problem of discrepancy of this result with the exact M
criterion ~1.6!.

Considering the above arguments on the necessity of
Hubbard model generalization by taking into account orb
degeneration, on the one hand, and correlated hopping
the other hand, in the present paper we propose a do
orbitally degenerate narrow-band model with correlated h
ping. The structure of this paper is the following. Section
is devoted to the model formulation and model Hamiltoni
construction, the representation of the Hamiltonian of a d
bly orbitally degenerate model with correlated hopping in t
electron and Hubbard operators is given. In Sec. III me
insulator transition in the model at different integer values
the electron concentration is studied. The cases of the st
and weak Hund’s coupling are considered. The absence
natural small expansion parameter in the region near the M
requires to find the nonperturbative approaches; in suc
situation methods of mean-field type are useful. We shall
one of these methods, a variant of the generalized Hart
Fock approximation,40,41 which has been proposed in Ref
27 and 42. The approach gives the exact band and ato
limits in the single-band Hubbard model and describes M
The method reproduces~see Ref. 37! the exact results@cri-
terion of MIT ~1.6! and ground-state energy# for the case of
a half-filled nondegenerate band in a generalized Hubb
model with correlated hopping att052X. By means of the
generalized mean-field approximation the single-parti
Green function and quasiparticle energy spectrum are ca
lated. With the help of the obtained energy spectrum we fi
energy gap width and criteria of metal-insulator transitio
Finally, Sec. IV is devoted to the conclusions and the co
parison of our results with those of other authors.

II. MODEL HAMILTONIAN

On the analogy of an orbitally non-degenerate model17,27

we start from the following generalization of the Hubba
model for an orbitally degenerate band taking into acco
the matrix element of electron-electron interaction, whi
describes intersite hoppings of electrons~correlated hop-
ping!:

H52m(
igs

aigs
1 aigs1 (

i j gs
8 aigs

1

3F t i j 1(
kg8

J~ igkg8 j gkg8!nkg8Gaj gs1U(
ig

nig↑nig↓

1U8(
is

niasnibs̄1~U82J!(
is

niasnibs , ~2.1!
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wherem is the chemical potential,aigs
1 ,aigs are the creation

and destruction operators of an electron of spins (s
5↑,↓; s̄ denotes spin projection, which is opposite tos) on
i-site and in orbitalg (g5a,b denotes two possible value
of orbital states!, nigs5aigs

1 aigs is the number operator o
electrons of spins and in orbital g on i-site, nig5nig↑
1nig↓ ; t i j is the hopping integral of an electron fromg
orbital of j site tog orbital of i site ~we neglect the electron
hoppings betweena and b orbitals!. In real systems the
electron hoppings between different orbitals can exist, in
dition the hopping integrals are anisotropic foreg orbitals.
This may have an effect on the orbital and magne
ordering.8,43,44 We, however, assume for simplicityt i j

ab

5t i j dab . This assumption considerably simplifies the ana
sis of properties of the model under consideration and allo
to describe the physics of the metal-insulator transition.

J~ igkg8 j gkg8!5E E wg* ~r2Ri !wg~r2Rj !
e2

ur2r 8u

3uwg8~r 82Rk!u2drdr 8 ~2.2!

(wg is the Wannier function!, the prime at second sum in Eq
~2.1! signifies thatiÞ j ,

U5E E uwg~r2Ri !u2
e2

ur2r 8u
uwg~r 82Ri !u2drdr 8

~2.3!

is the intra-atomic Coulomb repulsion of two electrons of t
opposite spins at the same orbital~we assume that it has th
same value ata andb orbitals!,

U85E E uwa~r2Ri !u2
e2

ur2r 8u
uwb~r 82Ri !u2drdr 8

~2.4!

is the intra-atomic Coulomb repulsion of two electrons of t
opposite spins at the different orbitals,

J5E E wa* ~r2Ri !wb~r2Ri !
e2

ur2r 8u
wb* ~r 82Ri !

3wa~r 82Ri !drdr 8 ~2.5!

is the intra-atomic exchange interaction energy which sta
lizes the Hund’s states forming the atomic magnetic m
ments. The parametersU, U8, J are connected by the
relation45

U85U22J. ~2.6!

In Hamiltonian ~2.1! we rewrite the sum
( i jkgg8s

8 J( igkg8 j gkg8)aigs
1 nkg8aj gs in the form
-

c

-
s

i-
-

(
i j gs

8 ~J~ ig ig j g ig!aigs
1 aj gsnigs̄1H.c.!

1 (
i j gs

8 ~J~ ig i ḡ j g i ḡ !aigs
1 aj gsni ḡ1H.c.!

1 ( 8
i j gg8s

(
kÞ j
kÞ i

J~ igkg8 j gkg8!aigs
1 aj gsnkg8 ~2.7!

(ḡ5b if g5a, andḡ5a wheng5b).
The first and third terms of Eq.~2.7! generalize correlated

hopping introduced for an orbitally nondegenerate mo
~e.g., see Ref. 27!. The second term of expression~2.7! de-
scribes correlated hopping of electrons being the peculia
of orbitally degenerate systems only~it is absent in a single-
band case!. Among this type of processes one can separ
out three essentially different~from the energy point of view!
hoppings (Xi

kl-representation allows to have done this e
ily !.

The first and second sums of Eq.~2.7! describe the hop-
pings of electrons, which are correlated by electron occu
tion of sites involved in the hopping process. The third su
describes the hoppings of an electron betweenu igs& and
u j gs& states, which are dependent on the occupation num
nk of other (kÞ i , kÞ j ) sites. Let us take into account th
influence of occupation of these sites in the Hartree-F
approximation

( 8
i j gg8s

(
kÞ j
kÞ i

J~ igkg8 j gkg8!aigs
1 aj gsnkg8

.n( 8
i j gs

T1~ i j !aigs
1 aj gs , ~2.8!

wheren5^nia1nib& is the average number of electrons p
site,

T1~ i j !5(
kÞ j
kÞ i

J~ igkg8 j gkg8! ~2.9!

@we supposeJ( igka j gka)5J( igkb j gkb) andT1( i j ) have
the same value for botha andb orbitals#. Assuming thata-
andb-states are equivalent, denote:

J~ ig i ḡ j g i ḡ !5taa8 ~ i j !5tbb8 ~ i j !5t i j8 , ~2.10!

J~ ig ig j g ig!5taa9 ~ i j !5tbb9 ~ i j !5t i j9 . ~2.11!

So we can rewrite Hamiltonian~2.1! in the following
form:

H52m(
igs

aigs
1 aigs1 (

i j gs
8 t i j ~n!aigs

1 aj gs

1 (
i j gs

8 ~ t i j8 aigs
1 aj gsni ḡ1H.c.!

1 (
i j gs

8 ~ t i j9 aigs
1 aj gsnigs̄1H.c.!1U(

ig
nig↑nig↓

1U8(
is

niasnibs̄1~U82J!(
is

niasnibs , ~2.12!
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with the effective hopping integralt i j (n)5t i j 1nT1( i j ) be-
ing the concentration-dependent in consequence of ta
into account correlated hoppingT1( i j ).

The distinction of Hamiltonian~2.12! from models of
narrow-band materials with orbital degeneracy is taking i
account the matrix elementJ( igkg8 j gkg8) caused by
electron-electron interaction. This leads to the electron-h
asymmetry~which is analogous one to the case of an non
generate band26,27! and the dependence of hopping integ
on the average number of electrons per site. Thus,
narrow-band model that are described by Hamiltonian~2.12!
shows much better physics than the Hubbard model w
doubly orbital degeneration.

In the model described by Hamiltonian~2.12! each site of
the lattice can be in one of 16 states~see Fig. 1!.

Let us pass to the configurational representation of Ham
tonian~2.12!. Use the representation of the operators of c
ation and destruction of electron throughXi

kl-operators of
transition of sitei from the statel to the statek:

aia↑
1 5Xi

a↑,01Xi
↑↑,b↑1Xi

↑↓,b↓1Xi
a2,a↓1Xi

a2↓,↓↓1Xi
a2↑,↓↑

1Xi
b2↑,b21Xi

4,b2↓ ,

aia↓
1 5Xi

a↓,01Xi
↓↓,b↓1Xi

↓↑,b↑2Xi
a2,a↑2Xi

a2↓,↑↓2Xi
a2↑,↑↑

1Xi
b2↓,b22Xi

4,b2↑ ,
~2.13!

aib↑
1 5Xi

b↑,02Xi
↑↑,a↑2Xi

↓↑,a↓1Xi
b2,b↓2Xi

b2↓,↓↓2Xi
b2↑,↑↓

1Xi
a2↑,a21Xi

4,a2↓ ,

aib↓
1 5Xi

b↓,02Xi
↓↓,a↓2Xi

↑↓,a↑2Xi
b2,b↑1Xi

a2↓,a21Xi
b2↑,↑↑

1Xi
b2↓,↓↑2Xi

4,a2↑ .

Such choice of representation with taking into account
commutational rules

$Xi
p,l ;Xj

k,t%5d i j ~d lkXi
p,t1d tpXi

k,l !,

@Xi
p,l ;Xj

k,t#5d i j ~d lkXi
p,t2d tpXi

k,l !, ~2.14!

FIG. 1. The possible configurations of the lattice sites.
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where the anticommutator ($A;B%) has to be taken only if
both operators are fermionic, i.e., change the particle num
by one~e.g.,Xi

gs,0 or Xi
g2s,4), and the constraint

(
p

Xi
p51, ~2.15!

whereXi
p5Xi

p,lXi
l ,p is the operator of number ofup& states

on the sitei ensures the fulfillment of the anticommutatio
relations fora operators.

The model Hamiltonian in the configurational represen
tion has the form:

H52mF(
is

Xi
gs12(

is
~Xi

ss1Xi
ss̄!12(

ig
Xi

g2

13(
igs

Xi
g2s14(

i
Xi

4G1~U82J!(
is

Xi
ss1U8(

is
Xi

ss̄

1U(
ig

Xi
g21~U12U82J!(

igs
Xi

g2s

12~U12U82J!(
i

Xi
41Ht , ~2.16!

where the kinetic part of the Hamiltonian is

Ht5(
n,m

Hnm ~2.17!

with n,m5$0-gs, gs-ss, gs-ss̄, gs-g2, ss-g2s,
ss̄-g2s, g2-g2s, g2s-4%.

The HamiltoniansHnm contain the processes which form
the energy subbands~analogues of the Hubbard subband!
and the processes of the hybridization of these subband
Fig. 2 the transitions between the states of the sites, wh
form the corresponding subbands are shown.

The different hopping integralst i j
nm correspond to the tran

sitions within the different subbandsHnn or between the dif-
ferent subbandsHnm (nÞm)

t i j
nm5t i j 1~tn1tm!, ~2.18!

where

t02gs50, tss2g2s5t i j8 1t i j9 ,

tgs2ss5t i j8 , tss̄2g2s5t i j8 1t i j9 ,
~2.19!

tgs2ss̄5t i j8 , tg22g2s52t i j8 ,

tgs2g25t i j9 , tg2s2452t i j8 1t i j9 .

The mutual placement and the overlapping of the no
subbands depend on the relations between the value
intra-atomic Coulomb repulsion parametersU,U8, intra-
atomic exchange interaction parameterJ and the widths of
subbands.
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III. METAL-INSULATOR TRANSITION

At integer values of electron concentrationn51, 2, 3 in
the model described by the Hamiltonian~2.16! MIT can oc-
cur. The possible metal-insulator transitions at some inte
values of the mean electron number per site will be con
ered below.

A. Metal-insulator transition at electron concentration nÄ1

1. The strong Hund’s coupling case

Let us consider the case of the strong intra-atomic C
lomb interactionU8@t i j and the strong Hund’s couplin
U8@U82J ~valuesU8 andJ are of the same order!. These
conditions allow us to neglect the states of site when th
are more than two electrons on the site and the ‘‘n
Hund’s’’ doubly occupied statesu↑↓&, u↓↑&, ua2&, ub2&
~the analogous conditions are used for an investigation
magnetic properties of the Hubbard model with twofold o
bital degeneration in Refs. 45–47!. Thus lattice sites can b
in one of seven possible states: a hole~a non-occupied by
electron site! u0&; a single occupied by electron sit
ua↑&, ua↓&, ub↑&, ub↓&; the Hund’s doublon or site with
two electrons on the different orbitals with the same sp
u↑↑&, u↓↓&.

Let us pass to the configurational representation of
Hamiltonian. Electron operators in terms of the transiti
operatorsXi

k,l of site i from the stateu l & to the stateuk& are
expressed by the formulas:

aia↑
1 5Xi

a↑,01Xi
↑↑,b↑ , aia↑5Xi

0,a↑1Xi
b↑,↑↑ ,

aia↓
1 5Xi

a↓,01Xi
↓↓,b↓ , aia↓5Xi

0,a↓1Xi
b↓,↓↓ ,

~3.1!
aib↑

1 5Xi
b↑,02Xi

↑↑,a↑ , aib↑5Xi
0,b↑2Xi

a↑,↑↑ ,

aib↓
1 5Xi

b↓,02Xi
↓↓,a↓ , aib↓5Xi

0,b↓2Xi
a↓,↓↓ ,

FIG. 2. Energy levels corresponding to the possible elect
configurations of sites and the transitions between them.
er
-

-

re
-

of
-

s

e

~in these formulas we have took into account only sev
possible states!. It should be emphasized that one have
consider all the possible site states in order to get the cor
anticommutation rules for electron operators.

Let us calculate quasiparticle energy spectrum of
model neglecting the correlated hoppingt i j8 5t i j9 50, t i j (n)
5t i j . We write the Hamiltonian in the form:

H52m(
is

~Xi
as1Xi

bs12Xi
ss!1 (

i j gs
8t i j ~Xi

gs,0Xj
0,gs

1Xi
ss,gsXj

gs,ss!1~U82J!(
is

Xi
ss1Hab , ~3.2!

where

Hab5(
i j

8t i j ~2Xi
↑↑,a↑Xj

0,b↑1Xi
↑↑,b↑Xj

0,a↑1Xi
↓↓,b↓Xj

0,a↓

2Xi
↓↓,a↓Xj

0,b↓1H.c.!. ~3.3!

For calculation of quasiparticle energy spectrum and po
state concentrationc[^Xi

0& 2 holes, d↑[^Xi
↑↑&, d↓

[^Xi
↓↓& being the Hund’s doublons we use the method of

retarded Green functions. For the Green function

Gpp8
(1)

~E!5^^Xp
a↑,0uXp8

0,a↑&& ~3.4!

we have the equation

~E2m!^^Xp
a↑,0uXp8

0,a↑&&5
dpp8
2p

^Xp
01Xp

a↑&1^^@Xp
a↑,0 ,H0#

1@Xp
a↑,0 ,Hab#uXp8

0,a↑&&, ~3.5!

where

H05 (
i j gs

8t i j ~Xi
gs,0Xj

0,gs1Xi
ss,gsXj

gs,ss!. ~3.6!

To break off the sequence of equations for Green fu
tions we apply a variant42 of the generalized mean fiel
approximation40,41

@Xp
a↑,0 ,H0#5( 8

j
e~p j !Xj

a↑,0 ,

~3.7!

@Xp
a↑,0 ,Hab#5( 8

j
e1~p j !Xj

↑↑,b↑ ,

where e(p j), e1(p j) are the nonoperator expressions, t
method of its calculation will be given below. The represe
tation ~3.7! of commutators in Eq.~3.5! is defined by the
operator structure ofH0 andHab .

Using the approximation~3.7! Eq. ~3.5! for the Green
function Gpp8

(1) (E) can be written as

n
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~E2m!^^Xp
a↑,0uXp8

0,a↑&&

5
dpp8
2p

^Xp
01Xp

a↑&1( 8
j

e~p j !^^Xj
a↑,0uXp8

0,a↑&&

1( 8
j

e1~p j !^^Xj
↑↑,b↑uXp8

0,a↑&&. ~3.8!

For the Green function

Gpp8
(2)

~E!5^^Xp
↑↑,b↑uXp8

0,a↑&& ~3.9!

we write the analogous equation

~E2m1U82J!^^Xp
↑↑,b↑uXp8

0,a↑&&

5(
j
8ẽ~p j !^^Xj

↑↑,b↑uXp8
0,a↑&&1( 8

j
e2~p j !

3^^Xj
a↑,0uXp8

0,a↑&&, ~3.10!

where the non-operator expressionsẽ, e2 are defined by the
formulas

@Xp
↑↑,b↑ ,H0#5(

j
8ẽ~p j !Xj

↑↑,b↑ ,

~3.11!

@Xp
↑↑,b↑ ,Hab#5(

j
8e2~p j !Xj

a↑,0 .

Thus, we obtain the closed system of equations for functi
Gpp8

(1) (E) andGpp8
(2) (E).

To calculatee(p j), e1(p j), ẽ(p j), e2(p j) we use the
procedure proposed in paper.42 The values of
e(p j), e1(p j), ẽ(p j), e2(p j) we find by anticommutation
of Eqs.~3.7! and~3.11! with the operatorsXp8

0,a↑ andXp8
b↑,↑↑ ,

respectively

~Xp
01Xp

a↑!e~pp8!5$Xp8
0,a↑ ;@Xp

a↑,0 ,H0#%,

~Xp
b↑1Xp

↑↑!e1~pp8!5$Xp8
b↑,↑↑ ;@Xp

a↑,0 ,Hab#%,

~3.12!
~Xp

b↑1Xp
↑↑!ẽ~pp8!5$Xp8

b↑,↑↑ ;@Xp
↑↑,b↑ ,H0#%,

~Xp
01Xp

a↑!e2~pp8!5$Xp8
0,a↑ ;@Xp

↑↑,b↑ ,Hab#%.

We rewriteXi
kl-operator in the formXi

k,l5a ik
1a i l , where

a ik
1 , a i l are the operators of creation and destruction foruk&-

and u l &-states on i-site respectively~with the constraint
(ka ik

1a ik51); thus Xi
05a i0

1a i0 , Xi
ss5a iss

1 a iss , Xi
gs

5a igs
1 a igs . Let us substitutea-operators byc-numbers

~here there is a partial equivalence with the slave bo
method39!. At n51 in a paramagnetic state

d[d↑5d↓5c/2, ^Xi
a↓&50.252d,

a i0
15a i05c1/2; a iss

1 5a iss5d1/2; ~3.13!

a igs
1 5a igs5~0.252d!1/2.
s

n

The proposed approximation is based on the follow
physical idea. When the lower and upper Hubbard subba
overlap weakly~the case of a paramagnetic Mott-Hubba
semimetal! u0& and uss& states almost do not influence o
ugs& states thenugs& subsystem can be considered as
quasiclassical subsystem~an analogue of the thermodynam
reservoir!. In this case one can substitutea operators through
c numbers. We extend this ideology to determination
e(p j), e1(p j), ẽ(p j), e2(p j). Thus we substitute the cre
ation and destruction operators ofu0&, uss&, andugs& states
through respective quasiclassical expressions. Actually,
proposed procedure is equivalent to a separation of
charge and spin degrees of freedom.

Then we obtain the formulas ink representation

e~k!5
20.5c210.5c20.25

0.2510.5c
tk , e1~k!5~1.5c1c2!tk ,

~3.14!

ẽ~k!5~c21c20.5!tk , e2~k!5
0.25c210.375c

0.2510.5c
tk .

From system of Eqs.~3.8! and ~3.10! we have

Gk
(1)~E!5

0.5c10.25

2p

E2m1U82J2 ẽ~k!

@E1E1~k!#@E1E2~k!#
,

~3.15!

Gk
(2)~E!5

0.5c10.25

2p

e2~k!

@E1E1~k!#@E1E2~k!#
,

~3.16!

where the expressions

E1,2~k!52m2
e~k!2 ẽ~k!1~U82J!

2

7
1

2
$@e~k!1 ẽ~k!2~U82J!#214e~k!~U82J!

14@e1~k!e2~k!2e~k!ẽ~k!#%1/2 ~3.17!

are the quasiparticle energy spectrum.E2(k) describes the
electron spectrum in the 0-as subband~an analogue of the
lower Hubbard subband!, E1(k) describes the electron spe
trum in theas-ss subband~an analogue of the upper Hub
bard subband!. The computation of the quasiparticle ener
spectrum in the 0-bs andbs-ss subbands gives the sam
Eq. ~3.17!.

The energy gap width~difference of energies betwee
bottom of the upper and top of the lower bands! is

DE5E2~2w!2E1~w!. ~3.18!

The peculiarity of the obtained energy spectrum and
ergy gap width is their dependence on the hole concentra
c. With decrease of temperature or rise of the parame
(U2J)/(2w) the holes concentration decrease smoothly.

The energy gap widthDE as a function of the parameter
(U82J)/(2w) and (kT)/(2w) is presented in Figs. 3 and 4
respectively. With a change of the parameter (U8
2J)/(2w) system undergoes the transition from an insul
ing to a metallic state~negative values of the energy ga
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width correspond to the overlapping of the Hubbard s
bands!. In the model under consideration atT50 K
insulator-metal transition atn51 occurs when (U8
2J)/(2w)50.75 ~Fig. 3, the lower curve! @in the single-
band Hubbard model the respective parameter isU/(2w)
51].42

The transition from a metallic to an insulating state w
increase of temperature at given value of the param
(U82J)/(2w) is also possible~Fig. 4!. It can be explained
by the fact that energy gap widthDE ~3.18! increases at
increasing temperatureT which is caused by the rise of pola
states concentration at constantw, (U82J).

FIG. 3. The dependence of energy gap widthDE/(U82J) on
the parameter (U82J)/(2w): the upper curve–(kT)/(2w)50.1;
the middle curve–(kT)/(2w)50.05; the lower curve–(kT)/(2w)
50.

FIG. 4. The dependence of energy gap widthDE/(U82J) on
the parameter (kT)/(2w): the upper curve – (U82J)/(2w)
50.74; the lower curve – (U82J)/(2w)50.72.
-

er

2. The limit of the weak Hund’s coupling

Let us consider the MIT at electron concentrationn51. If
the exchange interaction is small comparatively to the C
lomb interactionJ!U then we can takeJ into account in the
mean-field approximation~see, e.g., Ref. 10!. The corre-
sponding terms of the Hamiltonian~2.12! can be written as

22J(
is

niasnibs̄23J(
is

niasnibs

522J(
is

~^nias&nibs̄1nias^nibs̄&!

23J(
is

~^nias&nibs1nias^nibs&!

525J^nigs&(
igs

nigs . ~3.19!

The Hamiltonian~2.12! takes the form

H52m̃(
igs

aigs
1 aigs1 ( 8

i j gs
t i j ~n!aigs

1 aj gs

1 ( 8
i j gs

~ t i j8 aigs
1 aj gsni ḡ1H.c.!

1 ( 8
i j gs

~ t i j9 aigs
1 aj gsnigs̄1H.c.!

1U(
isg

~nigsnigs̄1nigsni ḡs̄1nigsni ḡs!, ~3.20!

wherem̃5m15J^nigs&.
Considering MIT at the electron concentrationn we can

take into account in the Hamiltonian only the states of s
with n21, n, n11 electrons~the analogous simplification
has been used in Refs. 11 and 13!. In the vicinity of the
transition point at the electron concentrationn51 the con-
centrations of sites occupied by three and four electrons
small. Neglecting the small amounts of these sites we
write the electron operators in the form:

aia↑
1 5Xi

a↑,01Xi
↑↑,b↑1Xi

↑↓,b↓1Xi
a2,a↓ ,

aia↓
1 5Xi

a↓,01Xi
↓↓,b↓1Xi

↓↑,b↑2Xi
a2,a↑ ,

~3.21!
aib↑

1 5Xi
b↑,02Xi

↑↑,a↑2Xi
↓↑,a↓1Xi

b2,b↓ ,

aib↓
1 5Xi

b↓,02Xi
↓↓,a↓2Xi

↑↓,a↑2Xi
b2,b↑ .

Hamiltonian ~3.20! in the configurational representatio
takes the form:

H52m̃F(
igs

Xi
gs12(

is
~Xi

ss1Xi
ss̄!12(

ig
Xi

g2G
1US (

is
Xi

ss1(
is

Xi
ss̄1(

ig
Xi

g2D 1H11H2 , ~3.22!

where the kinetic part of the Hamiltonian is
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H15(
i , j

S t i j (
gs

Xi
gs,0Xj

0,gs1~ t i j 12t i j9 !(
gs

Xi
g2,gsXj

gs,g2

1~ t i j 12t i j8 !H(
gs

Xi
ss,gsXj

gs,ss1(
s

@Xi
ss̄,asXj

as,ss̄

1Xi
ss̄,bs̄Xj

bs̄,ss̄1~Xi
ss,asXj

as̄,s̄s1Xi
ss,bsXj

bs̄,ss̄

1H.c.!#J 1~ t i j 1t i j8 1t i j9 !F(
gs

hshḡXi
ss,gsXj

ḡs̄,ḡ2

1(
s

hs~Xi
ss̄,bs̄Xj

as̄,a21Xi
ss̄,asXj

bs,b2!1H.c.G D ,

~3.23!

H25(
i , j

H ~ t i j 1t i j8 !F(
gs

~hgXi
gs,0Xj

ḡs,ss1H.c.!

1(
s

~Xi
as,0Xj

bs̄,ss̄2Xi
bs,0Xj

as̄,s̄s1H.c.!G
1~ t i j 1t i j9 !(

gs
~hsXi

gs,0Xj
gs̄,g21H.c.!J , ~3.24!

whereh↑5ha51, h↓5hb521.
The processes that form energy subbands are include

the HamiltonianH1, the processes of hybridization of the
subbands are included in the HamiltonianH2.

The single-particle Green function can be written as

^^apa↑uap8a↑
1 &&5^^Xp

0,a↑uXp8
a↑,0&&1^^Xp

0,a↑uYp8
1 &&

1^^YpuXp8
a↑,0&&1^^YpuYp8

1 &&. ~3.25!

Here we have introduced the following notation:Yp

5Xp
a↓,a21Xp

b↑,↑↑1Xp
b↓,↑↓ . The functions ^^Xp

0,a↑uXp8
a↑,0&&

and ^^Xp
0,a↑uYp8

1 && satisfy the equations:

~E1m̃ !^^Xp
0,a↑uXp8

a↑,0&&5
^Xp

01Xp8
a↑&

2p
d i j

1^^@Xp
0,a↑ ;H11H2#uXp8

a↑,0&&,
~3.26!

~E1m̃2U !^^YpuXp8
a↑,0&&5^^@Yp ;H11H2#uXp8

a↑,0&&.

For calculation of these functions we use the generali
mean-field approximation.42 Let us take the commutators i
Eq. ~3.26! in the form:

@Xp
0,a↑ ,H1#5( 8

j
e~p j !Xj

0,a↑ ,

@Xp
0,a↑ ,H2#5( 8

j
ẽ~p j !Yj , ~3.27!

@Yp ,H1#5( 8
j

z~p j !Yj , @Yp ,H2#5( 8
j

z̃~p j !Xj
0,a↑ ,

wheree(p j),ẽ(p j),z(p j),z̃(p j) are the nonoperator expre
sions.
in

d

After transition to k representation the system of Eq
~3.26! taking into account~3.27! has the solutions:

^^Xp
0,a↑uXp8

a↑,0&&k5
^Xp

01Xp
a↑&

2p

E1m̃2U2z~k!

@E2E1~k!#@E2E2~k!#
,

~3.28!

^^YpuXp8
a↑,0&&k5

^Xp
01Xp

a↑&
2p

z̃~k!

@E2E1~k!#@E2E2~k!#
.

Here,E1,2(k) is the quasiparticle energy spectrum:

E1,2~k!52m̃1
U

2
1

e~k!1z~k!

2

7
1

2
$@U2e~k!1z~k!#214ẽ~k!z̃~k!%1/2.

~3.29!

The same expression for the quasiparticle energy sp
trum we obtain from the functionŝ ^Xp

0,a↑uYp8
1 &&k and

^^YpuYp8
1 &&k . The values ofe(p j),ẽ(p j),z(p j),z̃(p j) we

find by anticommutation of Eq.~3.27! with the operators
Xp8

a↑,0 andYp8
1 :

~Xp
01Xp

a↑!e~pp8!5$Xp8
a↑,0 ;@Xp

0,a↑ ,H1#%,

~Xp
a↓1Xp

b↑1Xp
b↓1Xp

↑↑1Xp
↑↓1Xp

a2!ẽ~pp8!

5$Yp8
1 ;@Xp

0,a↑ ,H2#%,

~3.30!
~Xp

a↓1Xp
b↑1Xp

b↓1Xp
↑↑1Xp

↑↓1Xp
a2!z~pp8!

5$Yp8
1 ;@Yp ,H1#%,

~Xp
01Xp

a↑!z̃~pp8!5$Xp8
a↑,0 ;@Yp ,H2#%.

By use of the mean-field approximation analogously to
above, in the case oftk85tk9 we obtain

e~k!5tkF ~c1b!1
3b2

c1bG23 t̃ k

6d2

c1b
,

ẽ~k!5
tk1 t̃ k

2 F ~c1b!2
b2

d1b
1

6d2

d1bG ,
~3.31!

z~k!52tk

6d2

d1b
1 t̃ kF3~d1b!1

b2

d1b
1

8d2

3~d1b!G ,
z̃~k!5

tk1 t̃ k

2 F ~d1b!2
b2

c1b
1

6d2

c1bG ,
here c, b, d are the concentrations of the holes and si
occupied by one, two electrons, respectively, connected
the relations

c56d, b5
1

4
23d; ~3.32!

and
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t̃ k5tk12tk8 . ~3.33!

In the point of transition, when the concentrations of t
holes and doublons are equal to zero, the energies of
electrons within the subbands are

E1~k!52m̃1tk ,
~3.34!

E2~k!52m̃1U1 t̃ k .

The energy gap in this case is

DE5U2w2w̃50, ~3.35!

where w5zut i j u, w̃5zu t̃ i j u. From the Eq.~3.35! we obtain
the criterion of MIT

U5w1w̃. ~3.36!

In the partial casetk85tk950 ~in this casetk5 t̃ k) we have

U

2w
51. ~3.37!

In Fig. 5 the energy gap for different values of the correla
hopping atT50 is plotted. With the increase of the corr
lated hopping at the fixed value of parameterU/2w the en-

FIG. 5. The dependence of energy gap widthDE/U on the
parameterU/(2w) for n51 at different values of the parameterk
5t i j8 /t i j : the lower curve –k50; the middle curve –k50.2; the
upper curve–k50.6.
he

d

ergy gap width increases and the region of values ofU/2w at
which the system is in a metallic state, decreases.

B. The limit of the weak Hund’s coupling at electron
concentration nÄ2

Let us consider the MIT at electron concentrationn52.
In the vicinity of the transition point in the case of two ele
trons per atom the concentrations of holes and sites occu
by four electrons are small. Neglecting the small amounts
these sites we can write the electron operators in the for

aia↑
1 5Xi

↑↑,b↑1Xi
↑↓,b↓1Xi

a2,a↓1Xi
a2↓,↓↓1Xi

a2↑,↓↑

1Xi
b2↑,b2 ,

aia↓
1 5Xi

↓↓,b↓1Xi
↓↑,b↑2Xi

a2,a↑2Xi
a2↓,↑↓2Xi

a2↑,↑↑

1Xi
b2↓,b2 ,

~3.38!

aib↑
1 52Xi

↑↑,a↑2Xi
↓↑,a↓1Xi

b2,b↓2Xi
b2↓,↓↓2Xi

b2↑,↑↓

1Xi
a2↑,a2 ,

aib↓
1 52Xi

↓↓,a↓2Xi
↑↓,a↑2Xi

b2,b↑1Xi
a2↓,a21Xi

b2↑,↑↑

1Xi
b2↓,↓↑ .

Let us rewrite the Hamiltonian~3.20! in the configurational
representation at electron concentrationn52. For the small
values of the intra-atomic exchange interaction (J!U) we
take J into account in the mean-field approximation~3.19!.
The Hamiltonian takes the form

H52m̃F(
igs

Xi
gs12(

is
~Xi

ss1Xi
ss̄!12(

ig
Xi

g2

13(
igs

Xi
g2sG1US (

is
Xi

ss1(
is

Xi
ss̄1(

ig
Xi

g2

13(
igs

Xi
g2sD 1H11H2 , ~3.39!

where the kinetic part of the Hamiltonian is
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H15(
i , j

S ~ t i j 12t i j9 !(
gs

Xi
g2,gsXj

gs,g21~ t i j 12t i j8 !H(
gs

Xi
ss,gsXj

gs,ss1(
s

@Xi
ss̄,asXj

as,ss̄1Xi
ss̄,bs̄Xj

bs̄,ss̄

1~Xi
ss,asXj

as̄,s̄s1Xi
ss,bsXj

bs̄,ss̄1H.c.!#J 1~ t i j 1t i j8 1t i j9 !F(
gs

hshḡXi
ss,gsXj

ḡs̄,ḡ21(
s

hs~Xi
ss̄,bs̄Xj

as̄,a2

1Xi
ss̄,asXj

bs,b2!1H.c.G1~ t i j 12t i j8 12t i j9 !F(
gs

Xi
g2s,ssXj

ss,g2s1(
s

~Xi
a2s,s̄sXj

s̄s,a2s1Xi
b2s,ss̄Xj

ss̄,b2s!G
1~ t i j 14t i j8 !(

gs
Xi

g2s,g2Xj
g2,g2s1~ t i j 12t i j8 12t i j9 !(

s
~Xi

a2s,ssXj
ss̄,a2s̄1Xi

b2s,ssXj
s̄s,b2s̄1H.c.!

1~ t i j 13t i j8 1t i j9 !(
gs

~hs̄hgXi
g2s,ssXj

ḡ2,ḡ2s̄1H.c.!1~ t i j 13t i j8 1t i j9 !

3(
s

hs~Xi
a2s,s̄sXj

b2,b2s2Xi
b2s,ss̄Xj

a2,a2s1H.c.! D ,

~3.40!

H25(
i , j

S ~ t i j 12t i j8 1t i j9 !H(
gs

~hsXi
ss,gsXj

s̄s̄,ḡ2s̄1hs̄Xi
g2,gsXj

ḡ2,ḡ2s̄!1(
s

@hs~Xi
ss,bsXj

s̄s,a2s1Xi
ss,asXj

ss̄,b2s

1Xi
ss̄,bs̄Xj

s̄s̄,a2s̄1Xi
ss̄,bs̄Xj

s̄s,a2s!1hs̄~Xi
ss̄,asXj

s̄s,b2s̄2Xi
ss̄,as̄Xj

s̄s̄,b2s̄!#J 1~ t i j 13t i j8 !F(
gs

hs̄Xi
ss,gsXj

g2,g2s

1(
s

~Xi
ss̄,bs̄Xj

b2,b2s2Xi
ss̄,asXj

a2,a2s̄!G1~ t i j 1t i j8 12t i j9 !F(
gs

hgXi
g2,gsXj

ss,g2s1(
s

~Xi
a2,asXj

ss̄,a2s̄

2Xi
b2,bsXj

s̄s,b2s̄!G1H.c.D .
n
b

a
k

-

s.
The processes that form energy subbands are included i
HamiltonianH1, the processes of hybridization of these su
bands are included in the HamiltonianH2.

Let us write the single-particle Green function as

^^apa↑uap8a↑
1 &&5^^YpuYp8

1 &&1^^ZpuYp8
1 &&1^^YpuZp8

1 &&

1^^ZpuZp8
1 &&. ~3.41!

Here the following notations have been introduced:

Yp5Xp
a↓,a21Xp

b↑,↑↑1Xp
b↓,↑↓ ,

Zp5Xp
↓↓,a2↓1Xp

↓↑,a2↑1Xp
b2,b2↑ .

The functions^^YpuYp8
1 && and ^^ZpuYp8

1 && satisfy the equa-
tions:

~E1m̃2U !^^YpuYp8
1 &&5

A

2p
d i j 1^^@Yp ;H11H2#uYp8

1 &&,

~3.42!

~E1m̃22U !^^ZpuYp8
1 &&5^^@Zp ;H11H2#uYp8

1 &&,

whereA5^Xp
a↓1Xp

b↑1Xp
b↓1Xp

↑↑1Xp
↑↓1Xp

a2&. On the anal-
ogy of the previous section we use the generalized me
field approximation to calculate these functions. Let us ta
the commutators in Eq.~3.42! in the form
the
-

n-
e

@Yp ,H1#5( 8
j

e~p j !Yj , @Yp ,H2#5( 8
j

ẽ~p j !Zj ,

~3.43!

@Zp ,H1#5( 8
j

z~p j !Zj , @Zp ,H2#5( 8
j

z̃~p j !Yj ,

wheree(p j),ẽ(p j),z(p j),z̃(p j) are the nonoperator expres
sions, which we calculate using method of paper.42

After transition to k representation the system of Eq
~3.42! taking into account Eq.~3.43! has the solutions

^^YpuYp8
1 &&k5

A

2p

E1m̃22U2z~k!

@E2E1~k!#@E2E2~k!#
,

~3.44!

^^ZpuYp8
1 &&k5

A

2p

z̃~k!

@E2E1~k!#@E2E2~k!#
.

Here,E1,2(k) is the quasiparticle energy spectrum

E1,2~k!52m̃1
3U

2
1

e~k!1z~k!

2

7
1

2
$@U2e~k!1z~k!#214ẽ~k!z̃~k!%1/2.

~3.45!
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The same expression for the quasiparticle energy s
trum we obtain from the functionŝ ^YpuZp8

1 &&k and

^^ZpuZp8
1 &&k . The values ofe(p j),ẽ(p j),z(p j),z̃(p j) we

find by anticommutation of Eq.~3.43! with the operatorsYp8
1

andZp8
1

~Xp
a↓1Xp

b↑1Xp
b↓1Xp

↑↑1Xp
↑↓1Xp

a2!e~pp8!

5$Yp8
1 ;@Yp ,H1#%,

~Xp
↓↓1Xp

↓↑1Xp
b21Xp

a2↑1Xp
a2↓1Xp

b2↑!ẽ~pp8!

5$Zp8
1 ;@Yp ,H2#%,

~3.46!

~Xp
↓↓1Xp

↓↑1Xp
b21Xp

a2↑1Xp
a2↓1Xp

b2↑!z~pp8!

5$Zp8
1 ;@Zp ,H1#%,

~Xp
a↓1Xp

b↑1Xp
b↓1Xp

↑↑1Xp
↑↓1Xp

a2!z̃~pp8!

5$Yp8
1 ;@Zp ,H2#%.

By use of the mean-field approximation analogously to
above, in the case oftk85tk9 we obtain

e~k!5 t̃ kF3~d1b!1
b2

d1b
1

8d2

3~d1b!G2tk*
8b2

3~d1b!
,

ẽ~k!5
t̃ k1tk*

2 F3~d1b!2
8d2

3~d1b!
1

7b2

3~d1b!G ,
~3.47!

z~k!52 t̃ k

8b2

3~d1b!
1tk* F3~d1b!1

b2

d1b
1

8d2

3~d1b!G ,
z̃~k!5

t̃ k1tk*

2 F3~d1b!2
8d2

3~d1b!
1

7b2

3~d1b!G ,
with

t̃ k5tk12tk8 .
~3.48!

tk* 5tk14tk8 ;

hereb is the concentration of the sites occupied by one~or
three! electrons,d is the concentration of the doubly occu
pied sites, connected by the relation

b5
128d

6
. ~3.49!

In the point of transition, when the concentrations of t
singly and triply occupied sites are equal to zero, the qu
particle energy spectrum is
c-

e

i-

E1,2~k!52m̃1
3U

2
1

17

18

tk* 1 t̃ k

2

7
1

2 H FU1
17

18

tk* 2 t̃ k

2
G2

1F tk* 1 t̃ k

18
G2J 1/2

.

~3.50!

Using the quasiparticle energy spectrum~3.50! we find
the energy gap width. In the point of MIT the energy gap
equal to zero. From this condition we find the criterion
MIT. In the partial case oftk85tk950 ~in this casetk* 5 t̃ k) we
find

U

2w
52A2

3
. ~3.51!

In Fig. 6 the energy gap for different values of the correla
hopping atT50 is plotted. With the increase of the corre
lated hopping at the fixed value of parameterU/2w the en-
ergy gap width increases faster than atn51 and the region
of values ofU/2w at which the system is in the metalli
state, decreases, analogously to the casen51.

C. The limit of the weak Hund’s coupling at electron
concentration nÄ3

Let us consider the MIT at electron concentrationn53.
In the vicinity of the transition point in the case of thre
electrons per atom the concentrations of holes and sites
cupied by one electron are small. Neglecting the sm
amounts of these sites we can write the electron operato
the form:

aia↑
1 51Xi

a2↓,↓↓1Xi
a2↑,↓↑1Xi

b2↑,b21Xi
4,b2↓ ,

FIG. 6. The dependence of energy gap widthDE/U on the
parameterU/(2w) for n52 at different values of the parameterk
5t i j8 /t i j : the lower curve–k50; the middle curve–k50.1; the up-
per curve–k50.2.
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aia↓
1 52Xi

a2↓,↑↓2Xi
a2↑,↑↑1Xi

b2↓,b22Xi
4,b2↑ ,

~3.52!
aib↑

1 52Xi
b2↓,↓↓2Xi

b2↑,↑↓1Xi
a2↑,a21Xi

4,a2↓ ,

aib↓
1 51Xi

a2↓,a21Xi
b2↑,↑↑1Xi

b2↓,↓↑2Xi
4,a2↑ .

Let us rewrite the Hamiltonian~3.20! in the configura-
tional representation at electron concentrationn53. For the
small values of the intra-atomic exchange interactionJ
!U) we takeJ into account in the mean field approximatio
~3.19!. The Hamiltonian takes the form
n
b

er
n

H52m̃F2(
is

~Xi
ss1Xi

ss̄!12(
ig

Xi
g213(

igs
Xi

g2s

14(
i

Xi
4G1US (

is
Xi

ss1(
is

Xi
ss̄1(

ig
Xi

g2

13(
igs

Xi
g2s16Xi

4D 1H11H2 , ~3.53!

where the kinetic part of the Hamiltonian
H15(
i , j

H ~ t i j 12t i j8 12t i j9 !F(
gs

Xi
g2s,ssXj

ss,g2s1(
s

~Xi
a2s,s̄sXj

s̄s,a2s1Xi
b2s,ss̄Xj

ss̄,b2s1H.c.!G
1~ t i j 14t i j8 !(

gs
Xi

g2s,g2Xj
g2,g2s1~ t i j 12t i j8 12t i j9 !(

s
~Xi

a2s,ssXj
ss̄,a2s̄1Xi

b2s,ssXj
s̄s,b2s̄1H.c.!

1~ t i j 13t i j8 1t i j9 !(
gs

~hs̄hgXi
g2s,ssXj

ḡ2,ḡ2s̄1H.c.!1~ t i j 13t i j8 1t i j9 !(
s

hs~Xi
a2s,s̄sXj

b2,b2s2Xi
b2s,ss̄Xj

a2,a2s1H.c.!

1~ t i j 14t i j8 12t i j9 !Xi
4,g2sXj

g2s,4J ,

H25(
i , j

H ~ t i j 13t i j8 12t i j9 !(
gs

FhgXi
g2s,ssXj

ḡ2s,41(
s

~Xi
a2s,s̄sXj

b2s̄,42Xi
b2s,ss̄Xj

a2s̄,4!G
1~ t i j 13t i j8 !(

gs
hsXi

g2s,g2Xj
g2s̄,41H.c.J .
-

s.
The processes that form energy subbands are included i
HamiltonianH1, the processes of hybridization of these su
bands are included in the HamiltonianH2.

Let us write the single-particle Green function as:

^^apa↑uap8a↑
1 &&5^^Xp

b2↓,4uXp8
4,b2↓&&1^^Xp

b2↓,4uZp8
1 &&

1^^ZpuXp8
4,b2↓&&1^^ZpuZp8

1 &&. ~3.54!

Here the following notations have been introduced:Zp

5Xp
↓↓,a2↓1Xp

↓↑,a2↑1Xp
b2,b2↑ . The functions

^^Xp
b2↓,4uXp8

4,b2↓&& and ^^ZpuXp8
4,b2↓&& satisfy the equations:

~E1m̃23U !^^Xp
b2↓,4uXp8

4,b2↓&&

5
^Xp

b2↓1Xp
4&

2p
d i j 1^^@Xp

b2↓,4 ;H11H2#uXp8
4,b2↓&&,

~3.55!
~E1m̃22U !^^ZpuXp8

4,b2↓&&5^^@Zp ;H11H2#uXp
a↑,0&&.

On the analogy of the previous sections we use the gen
ized mean-field approximation to calculate these functio
Let us take the commutators in~3.55! in the form:

@Xp
b2↓,4 ,H1#5(

j
8e~p j !Xj

b2↓,4 ,
the
-

al-
s.

@Xp
b2↓,4 ,H2#5(

j
8ẽ~p j !Zj , ~3.56!

@Zp ,H1#5(
j

8z~p j !Zj , @Zp ,H2#5(
j

8z̃~p j !Xj
b2↓,4 ,

where e(p j),ẽ(p j),z(p j),z̃(p j) are the non-operator ex
pressions.

After transition to k representation the system of Eq
~3.55! taking into account Eq.~3.56! has the solutions:

^^Xp
b2↓,4uXp8

4,b2↓&&k5
^Xp

b2↓1Xp
4&

2p

E1m̃22U2z~k!

@E2E1~k!#@E2E2~k!#
,

~3.57!

^^ZpuXp8
4,b2↓&&k5

^Xp
b2↓1Xp

4&
2p

z̃~k!

@E2E1~k!#@E2E2~k!#
.

HereE1,2(k) is the quasiparticle energy spectrum:
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E1,2~k!52m̃1
5U

2
1

e~k!1z~k!

2

7
1

2
$@U2e~k!1z~k!#214ẽ~k!z̃~k!%1/2.

~3.58!

The same expression for the quasiparticle energy s
trum we obtain from the functions
^^Xp

b2↓,4uZp8
1 &&, ^^ZpuZp8

1 &&.

The values ofe(p j),ẽ(p j),z(p j),z̃(p j) we find by anti-
commutation of Eq.~3.56! with the operatorsXp8

4,b2↓ andZp8
1

~Xp
b2↓1Xp

4!e~pp8!5$Xp8
4,b2↓ ;@Xp

b2↓,4 ,H1#%,

~Xp
↓↓1Xp

↓↑1Xp
b21Xp

a2↑1Xp
a2↓1Xp

b2↑!ẽ~pp8!

5$Zp8
1 ;@Xp

0,a↑ ,H2#%,

~3.59!

~Xp
↓↓1Xp

↓↑1Xp
b21Xp

a2↑1Xp
a2↓1Xp

b2↑!z~pp8!

5$Zp8
1 ;@Zp ,H1#%,

~Xp
b2↓1Xp

4!z̃~pp8!5$Xp8
a↑,0 ;@Zp ,H2#%.

By use of the mean-field approximation analogously to
above, in the casetk85tk9 we obtain

e~k!5tk
• F ~ t1 f !1

3t2

t1 f G23tk*
3d f

t1 f
,

ẽ~k!5
t* k1t •

k

2 F ~ t1 f !2
t2

d1t
1

d f

d1t G ,
~3.60!

z~k!52tk
• d f

d1t
1tk* F3~d1t !1

t2

d1t
1

4d2

~d1t !G ,
z̃~k!5

t* k1t •
k

2 F ~d1t !2
t2

t1 f
1

3d f

t1 f G ,
here

tk* 5tk14tk8 ,
~3.61!

tk
• 5tk16tk8 ;

d, t, f are the concentrations of the sites occupied by tw
three and four electrons, respectively, connected by the r
tions:

f 56d, t5
1

4
23d. ~3.62!

In the point of transition, when the concentrations of t
holes and single electrons are equal to zero, the energie
the electrons within the subbands are

E1~k!52m̃12U1tk* ,
~3.63!

E2~k!52m̃13U1tk
• .
c-

e

,
la-

of

The energy gap in this case is

DE5U2w* 2w•50, ~3.64!

wherew* 5zut i j* u, w•5zut i j
• u.

From Eq.~3.64! we obtain the criterion of the MIT at the
electron concentrationn53:

U5w* 1w•. ~3.65!

In the partial casetk85tk950 ~in this casetk5 t̃ k) we have

U

2w
51. ~3.66!

This result coincides with the corresponding critical value
the electron concentrationn51 in the consequence of th
electron-hole symmetry of the model without the correla
hopping.

In Fig. 7 the energy gap for different values of the corr
lated hopping atT50 is plotted. With the increase of th
correlated hopping at the fixed value of parameterU/2w the
energy gap width increases faster than atn51, n52; and
the region of values ofU/2w at which the system is in a
metallic state, decreases.

IV. DISCUSSIONS AND CONCLUSIONS

In the present paper we have proposed a doubly orbit
degenerate narrow-band model with correlated hopping.
peculiarity of the model is taking into account the matr
element of electron-electron interaction, which describes
tersite hoppings of electrons. In particular, this leads to
concentration dependence of the hopping integrals. Using
representation of Hamiltonian of a doubly orbitally degen
ate model with correlated hopping in terms of the Hubba
operators the cases of the strong and weak Hund’s coup

FIG. 7. The dependence of energy gap widthDE/U on the
parameterU/(2w) for n53 at different values of the parameterk
5t i j8 /t i j : the lower curve –k50; the middle curve –k50.1; the
upper curve –k50.15.
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have been considered. By means of a generalized mean
approximation we have calculated the single-particle Gr
function and quasiparticle energy spectrum. Metal-insula
transition has been studied in the model at different inte
values of the electron concentration. With the help of
obtained energy spectrum we have found energy gap w
and criteria of metal-insulator transition.

The peculiarities of the expressions for quasiparticle
ergy spectrum and energy gap are dependences on the
centration of polar states~holes, doublons atn51; single
electron and triple occupied sites atn52; doublons and sites
occupied by four electrons atn53), on the hopping inte-
grals ~thus on external pressure!. At given values ofU and
hopping integrals~constant external pressure! the concentra-
tion dependence ofDE allows to study MIT under the action
of external influences. In particular,DE(T)-dependence can
lead to the transition from a metallic state to an insulat
state with the increase of temperature~see Fig. 4!; the de-
scribed transition is observed, in particular, in t
(V12xCrx)2O3 compound2,48 and the NiS22xSex system.49,50

The similar dependence of energy gap width can be obse
at change of the polar states concentration under the actio
photoeffect or magnetic field. The strong magnetic field c
lead, for example, to the decrease of polar state concentra
~see Ref. 26! initiating the transition from a paramagnet
insulator state to a paramagnetic metal state. Contrariw
the increase of polar state concentration under the actio
light stimulates the metal-insulator transition, analogously
the influence of temperature change. At the increase of ba
width ~for example, under the action of external pressure
composition changes! the insulator-to-metal transition ca
occur.

The results allow to study the influence of the correla
hopping and orbital degeneracy on MIT. The dependence
energy gap width on the parameterU/2w in absence of the
correlated hopping (tk85tk950) at different electron concen

FIG. 8. The dependence of energy gap widthDE/U on the
parameterU/(2w) in the absence of correlated hopping (tk85tk9
50): the lower curve–n51, n53; the upper curve–n52.
eld
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trations are given in Fig. 8. One can see that in the casn
52 the MIT occurs at smaller value ofU/2w then atn51.
This result is in qualitative accordance with the results
work,10 in distinction from Refs. 13 and 15. Using the crit
cal values of the parameterU/(2w) at which MIT occurs for
different integer electron concentrations~see Fig. 9! we can
interpret the fact that in the series of disulphides MS2 the
CoS2 ~one electron withineg band corresponding ton51)
and CuS2 compounds~three electrons withineg band corre-
spondingn53) are metals, and the NiS2 compound~two
electrons withineg band correspondingn52) is an insula-
tor. Really, for 0.94<U/2w<1 at the electron concentratio
n52 system described by the present model is an insula
whereas for the same values of the parameterU/2w at the
electron concentrationsn51, 3 system is a metal~according
with the calculations of Ref. 51 the ratiosU/2w in these

FIG. 9. The electron vs interaction phase diagram showing
paramagnetic metal and paramagnetic insulator in absence of
related hopping.

FIG. 10. The dependence of critical value (U/2w)c on the pa-
rameter of correlated hoppingk5t i j8 /t i j : the curve 1 -n51; the
curve 2 -n52; the curve 3 -n53.
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compounds have close values!.
We have found that in the case of the strong Hund’s c

pling at n51 metal-insulator transition occurs at small
value of the parameter@(U2J)/2w#c50.75 than in the case
of the weak Hund’s coupling@(U2J)/2w#c51.

When the magnetically ordered states are taken into
count the phase diagram of the considered model~Fig. 9! can
be changed. In particular, with increase of correlat
strength the transition from paramagnetic to magnetically
dered state8,9 ~antiferromagnetic insulator or ferromagnet
insulator! can occur, similarly to the magnetic transitio
found in Ref. 12 by use of slave-boson method for the d
bly degenerate Hubbard model.

At nonzero values of correlated hopping the point of M
moves towards the values of parameterU/2w ~Figs. 5–7! at
which system is a metal in proportion to correlated hopp
value ~Fig. 10!. From Fig. 10 one can see that (U/2w)c de-
creases with increasing correlated hopping, and what is m
at n52 with the increase of the correlated hopping para
eterk the value (U/2w)c decreases faster than at the electr
concentrationn51, and atn53 the value (U/2w)c de-
creases faster than atn51, n52. The non-equivalence o
the casesn51 andn53 is a manifestation of the electron
hole asymmetry which is a characteristic of the models w
correlated hopping.
.

-

c-

r-

-

g

re
-

n

h

Thus both orbital degeneracy and correlated hopping
the factors favoring the transition of system to an insulati
state in the case of half filling with the increase of intra
atomic Coulomb repulsion in comparison with the singl
band Hubbard model~in this connection see Refs. 35 an
37!.

In the present paper considering MIT we have neglec
the correlated hoppingT1. Taking into accountT1 leads to
the concentration dependence of the hopping integrals an
a result to decreasingUc . This effect shows itself the more
the larger is the value of electron concentrationn. A more
detailed analysis of the correlated hoppingT1 influence will
be given in subsequent papers.
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JETP37, 725 ~1973!#.
9M. Cyrot and C. Lyon-Caen, J. Phys.~France! 36~3!, 253~1975!.

10A. Klejnberg and J. Spalek, Phys. Rev. B57, 12 041~1998!.
11J. P. Lu, Phys. Rev. B49, 5687~1994!.
12H. Hasegawa, Phys. Rev. B56, 1196 ~1997!; J. Phys. Soc. Jpn

66, 1391~1997!.
13R. Fresard and G. Kotliar, Phys. Rev. B56, 12 909~1997!.
14J. Bünemann and W. Weber, Phys. Rev. B55, R4011 ~1997!;

Physica B230-232, 412~1997!; J. Bünemann, Eur. Phys. J. B4,
29 ~1998!.

15M. J. Rozenberg, Phys. Rev. B55, R4855 ~1997!; Physica B
237-238, 78 ~1997!.

16J. E. Hirsch, Physica B199-200, 366 ~1994!.
17L. Didukh, Fiz. Tverd. Tela19, 1217 ~1977! @Sov. Phys. Solid

State19, 711 ~1977!#.
18S. Kivelson, W. P. Su, J. R. Schrieffer, and A. J. Heeger, Ph

Rev. Lett.58, 1899~1987!; 60, 72 ~1988!.
19D. Baeriswyl, P. Horsch, and K. Maki, Phys. Rev. Lett.60, 70

~1988!.
20J. T. Gammel and D. K. Campbell, Phys. Rev. Lett.60, 71

~1988!.
d.

ys.

21D. K. Campbell, J. T. Gammel, and E. Y. Loh, Phys. Rev. B42,
475 ~1990!.

22J. E. Hirsch, Physica C158, 326 ~1989!.
23J. E. Hirsch, Physica B163, 291 ~1990!.
24F. Marsiglio and J. E. Hirsch, Phys. Rev. B41, 6435~1990!.
25J. C. Amadon and J. E. Hirsch, Phys. Rev. B54, 6364~1996!.
26L. Didukh, preprint ICMP-92-9P~in Russian!.
27L. Didukh, Condens. Matter Phys.1, 125 ~1998!.
28L. Didukh and V. Hankevych, Fiz. Nizk. Temp.25, 481 ~1999!

@Low Temp. Phys.25, 354 ~1999!#.
29A. A. Aligia, L. Arrachea, and E. R. Gagliano, Phys. Rev. B51,

13 774~1995!.
30E. R. Gagliano, A. A. Aligia, L. Arrachea, and M. Avignon, Phys.

Rev. B51, 14 012~1995!; Physica B223-224, 605 ~1996!.
31L. Arrachea, E. R. Gagliano, and A. A. Aligia, Phys. Rev. B55,

1173 ~1997!.
32R. Strack and D. Vollhardt, Phys. Rev. Lett.70, 2637~1993!.
33A. A. Ovchinnikov, J. Phys.: Condens. Matter6, 11 057~1994!.
34J. de Boer and A. Schadschneider, Phys. Rev. Lett.75, 4298

~1995!.
35L. Didukh, V. Hankevych, and Yu. Dovhopyaty, J. Phys. Stud.2,

362 ~1998! ~in Ukrainian!.
36L. Didukh, V. Hankevych, and Yu. Dovhopyaty, Physica B259-

261, 719 ~1999!.
37L. Didukh and V. Hankevych, Phys. Status Solidi B211, 703

~1999!.
38B. R. Bulka, Phys. Rev. B57, 10 303~1998!; cond-mat/9703040.
39G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett.57, 1362

~1986!.
40L. M. Roth, Phys. Rev. Lett.20, 1431 ~1968!; Phys. Rev.184,

451 ~1969!.
41D. N. Zubarev and Yu. G. Rudoi, Usp. Fiz. Nauk163, 103~1993!

@Phys. Usp.36, 744 ~1993!#.
42L. Didukh, Phys. Status Solidi B206, R5 ~1998!.



.

P.

r

ter.

A.

7908 PRB 61DIDUKH, SKORENKYY, DOVHOPYATY, AND HANKEVYCH
43S. Ishihara, J. Inoue, and S. Maekawa, Phys. Rev. B55, 8280
~1997!.

44R. Shiina, T. Nishitani, and H. Shiba, J. Phys. Soc. Jpn.66, 3159
~1997!.

45C. Lacroix-Lyon-Caen and M. Cyrot, Solid State Commun.21,
837 ~1977!.

46K. Kubo, D. M. Edwards, A. C. M. Green, T. Momoi, and H
Sakamoto, cond-mat/9811286.

47H. Nakako, Y. Motome, and M. Imada, cond-mat/9905271.
48D. B. McWhan, J. B. Remeika, T. M. Rice, W. F. Brinkman, J.
Maita, and A. Menth, Phys. Rev. Lett.27, 941 ~1971!.

49J. A. Wilson, The Metallic and Nonmetallic States of Matte
~Taylor & Francis, London, 1985!.

50For recent reviews see J. M. Honig and J. Spalek, Chem. Ma
10, 2910~1998!, and references therein.

51A. E. Bocquet, T. Mizokawa, T. Saitoh, H. Namatame, and
Fujimori, Phys. Rev. B46, 3771~1992!.


