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Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping
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In the present paper, we propose a doubly orbitally degenerate narrow-band model with correlated hopping.
The peculiarity of the model is taking into account the matrix element of electron-electron interaction, which
describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the
effective hopping integral. The cases of the strong and weak Hund’s coupling are considered. By means of a
generalized mean-field approximation the single-particle Green function and quasipatrticle energy spectrum are
calculated. Metal-insulator transition is studied in the model at different integer values of the electron concen-
tration. With the help of the obtained energy spectrum, we find energy gap width and criteria of metal-insulator
transition.

l. INTRODUCTION boson method®*3the variational methodf* the limit of in-
The electron-electron interaction-driven metal-insulatorfinite dimension™>

transition(MIT) has fascinated theorists and experimentalists The results of work§~® show the possibility of the
for many years. This transition is named after Sir Nevill metal-insulator transition in the doubly degenerate Hubbard
Mott, being one of the pioneers who laid down the founda-model. However the criteria of the transition obtained in the
tions of our physical understanding of this phenomehdn. noted works are substantially different. In particular,nat
Despite a large amount of papers devoted to study of thig®1, J=0 (here in all the case$=0 K and the rectangular
transition(e.g., see a revietvthe construction of consistent densny of states are con3|de}red Refs. 11 and 12 the cn-
theory of MIT is still far from carrying out and constitutes t€rion of MIT is U/w=4.95, in Ref. 14 -U/w=5.18, in

one of the most challenging problems in condensed mattdRef: 15 —U/w=3.0; atn=1,J=0.1 in Ref. 10 —-U/w
physics. =3.04; atn=2,J=0 in Refs. 11,12 -U/w=6.0, in Ref. 10

U/w=4.0, in Ref. 14 —-U/w=9.0, in Ref. 15 —U/w
=3.7. In addition in Ref. 10 abh=1 MIT of first order is
hféJund, but in Refs. 12 and 14 — MIT of second order. Con-
sequently a further investigation of MIT in narrow-band
models with orbital degeneration is necessary.

The simplest model describing MIT in materials with nar-
row energy bands is the Hubbard mo@iéthis model de-
scribes a single nondegenerate band of electrons with t
local Coulomb interaction. The model Hamiltonian contains

tvyo energy parameters: the matrix eIngplbemg th(.:‘ hop- Another way of the Hubbard model generalization which
ping integral of an electron from one site to anottigri¢ N0t 5165 to describe the essential peculiarities of transition
dependent on occupation of sites involved in the hoppingneta| compounds is taking into account the correlated hop-
procesyand the parametey being the intraatomic Coulomb  ing The necessity of taking into consideration correlated
repulsion of two electrons of the opposite spins. This modehgpping is caused by two reasons. Firstly, theoretical
is studied intensivelyfor recent reviews see Refs. 5 anl 6 analysid® points out the inapplicability of the Hubbard

Theoretical analyses, on the one hand, and available exnodel for the description of real strongly correlated electron
perimental data, on the other hand, point out the necessity @&fystems, in some compounds.g., see the estimation in
the Hubbard model generalization. As a rule this generalizaRefs. 17—2]1the matrix element of electron-electron interac-
tion is perfomed by two means: taking into account the ortion describing correlated hopping is of the same order that
bital degeneration or correlated hoppitiig the present paper the hopping integral or on-site Coulomb repulsion. Secondly,
we do not consider the generalization of the Hubbard modelising the idea of correlated hopping and caused by it the
by taking into account the inter-atomic Coulomb and ex-electron-hole asymmetry we can interpret the peculiarities of
change interactions some physical properties of narrow-band materiaté®

A model of nondegenerate band has to be generalized by Now two ways are commonly used to generalize the
taking into account the orbital degeneration being a characsingle-band Hubbard model by taking into account correlated
teristic of the transition-metal compounds, which exhibithopping. One of them has been proposed in Ref. 16. Hirsch
MIT. First the degenerate Hubbard model was introduced foshowed that in contrast to the hopping integral of the Hub-
description of transition metal compounds in papers ofbard model(which is not dependent on occupation of sites
Roth, Kugel' and Khomski Cyrot and Lyon-Caen.In involved in the hopping procegshis integral of a general-
these works, in particular, the importance of intra-atomic exized Hubbard model had to depend on occupation of sites
change interactiod, which stabilizes the localized magnetic involved in the hopping process. Hamiltonian of the gener-
moments in accordance with the Hund’s rule was investi-alized in such a way Hubbard model is written as
gated.

The intensive study_ of MIT in the degenerate Hubbard H:_E tﬁaitrajﬁuz Ny (1.1)
model has begun only in few recent years by use of the slave ijo i
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tf=taa(1=ni)(1=nj5) +tag(Nig+nio—2nN;5) concentration of doubly occupied sites have been found. In
Refs. 30,31 and 35-37 the authors have obtained the follow-
+1tgeNioNjs - (1.2 ing criterion of MIT:

In recent few years Hamiltoniafl.1) is widely used to
study MIT in narrow energy bands:3!

In Refs. 17 and 27 the necessity of the Hubbard model
generalization by taking into account the matrix element ofn agreement with the Mott's general physical idéaBy
electron-electron interaction describing intersite hoppings omeans of the slave bosons metfitithas been found in Ref.
electrons had been pointed out. The Hamiltonian of the gen38 that MIT occurs atl;=4z|t+ X|; however here there is a
eralized Hubbard model with correlated hopping is problem of discrepancy of this result with the exact MIT

criterion (1.6).
Considering the above arguments on the necessity of the
H= —,uz ait;aia—’—t(n)E’ ait;aj(; Hubbard model generalization by taking into account orbital
' ne degeneration, on the one hand, and correlated hopping, on
the other hand, in the present paper we propose a doubly
+X2" (a,a5,Niy+H.c)+UX nini;, (1.3 orbitally degenerate narrow-band model with correlated hop-
e ' ping. The structure of this paper is the following. Section Il
with is devoted to the model formulation and model Hamiltonian
construction, the representation of the Hamiltonian of a dou-
bly orbitally degenerate model with correlated hopping in the

Uc=2(|tanl +tes]) =2z(|to| +[to+ 2X]) €.

t(n)=to+n>, J(ikjk) (1.4)  electron and Hubbard operators is given. In Sec. Il metal-
K| insulator transition in the model at different integer values of
ki the electron concentration is studied. The cases of the strong

being the effective hopping integral of electrons betweerfnd weak Hund’s coupling are considered. The absence of a
nearest-neighbor sites of latticé=J(iiij ); n=N./N is the  natural small expansion parameter in the region near the MIT

electron concentrationN, is the number of electrongy is  requires to find the nonperturbative approaches; in such a
the number of lattice sitgs situation methods of mean-field type are useful. We shall use
one of these methods, a variant of the generalized Hartree-
) Fock approximatiod®*! which has been proposed in Refs.
27 and 42. The approach gives the exact band and atomic
[r—r’] limits in the single-band Hubbard model and describes MIT.
, , The method reproducdsee Ref. 3y the exact result§cri-
X|@(r' =Ry)|[*drdr (1.9 terion of MIT (1.6) and ground-state enerfjfor the case of
a half-filled nondegenerate band in a generalized Hubbard
model with correlated hopping &= — X. By means of the
generalized mean-field approximation the single-particle
Green function and quasiparticle energy spectrum are calcu-
Sated. With the help of the obtained energy spectrum we find
energy gap width and criteria of metal-insulator transition.
Finally, Sec. IV is devoted to the conclusions and the com-
parison of our results with those of other authors.

e

J(ikjk>=f f o (1—R)e(r—R))

¢(r—R;) is the Wannier function, the prime at the sums
signifies thati # .

In the model described by Hamiltonidft.3) an electron
hopping from one site to another is correlated both by th
occupation of the sites involved in the hopping prodggsh
the hopping integraX) and the occupation of the nearest-
neighbor sitegwith the matrix elemenf(ikjk) at k#i, k
#j] which we take into account in the Hartree-Fock ap-
proximation[Eq. (1.4)]. The peculiarity of mode(1.3) is the
concentration dependence of the hopping integ(a) in 1. MODEL HAMILTONIAN
contrast to similar models.

MIT in a generalized Hubbard model with correlated hop-  On the analogy of an orbitally non-degenerate mbjcl
ping has been studied in a number of recent wétk&€In  we start from the following generalization of the Hubbard
particular, at half-filling and,=— X (ortyg=0) some exact model for an orbitally degenerate band taking into account
results have been fourf@>2=34In a simple cubic lattice with the matrix element of electron-electron interaction, which
coordination numbez MIT occurs at describes intersite hoppings of electrofrrelated hop-

ping):
Uc=2([taattasl) =22|tol. (1.6

If U>U, the ground state of system is a paramagnetic Mott- 4 = —ME a’ a .t E ! a’ .
Hubbard insulator with the concentration of doubly occupied yo T e
sitesd=0, the ground state energy is equal to zero.

For an arbitraryty# — X (or t,g#0) the finding of MIT X ti;+2 I yky'j yky )Ny ajw+u2 NiyiNiyy
criterion and the description of this phenomenon in a gener- ky' iy
alized Hubbard model with correlated hopping still remain
an open problem. One of the steps to solve this task is recent ' R " -
paperd®31:35-38yhere criteria of MIT, ground state energy, U % MiaoMigs* (U J)é MiaoTigo @
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wherep is the chemical potentiaaﬁy(,,ai o are the creation C o B
and destruction operators of an electron of spin(o ijzw (I yiyjviy)aiy,a),6Ni e+ H.C)
=1,]; o denotes spin projection, which is oppositestpon

i-site and in orbita = «a, 3 denotes two possible values / . _
by (v B b +,2 (JI(iyiyjyi y)arwajwniﬁ H.c)

of orbital statey n;,,= arwai o 1S the number operator of iT5o

electrons of spino and in orbital y on i-site, nj,=n;,;

+n;,,; t;i is the hopping integral of an electron from ' ; ’ At 4

orbitgl ofjJ site to y orbital of i site (we neglect the electron +iijyra z JPKY I YRy )a508) 50y @9
hoppings betweerr and B orbitalg. In real systems the K#]|

electron hoppings between different orbitals can exist, in ad¢y= g if y=«, andy=a when y=g).

dition the hopping integrals are anisotropic gy orbitals. The first and third terms of Eq2.7) generalize correlated

This may have an effect on the orbital and magnetichopping introduced for an orbitally nondegenerate model
ordering®**** We, however, assume for simplicity;?  (e.g., see Ref. 27 The second term of expressi¢2.7) de-
=1;;8,4. This assumption considerably simplifies the analy-scribes correlated hopping of electrons being the peculiarity
sis of properties of the model under consideration and allow§f orbitally degenerate systems orilyis absent in a single-

to describe the physics of the metal-insulator transition. ~ band casg Among this type of processes one can separate
out three essentially differeffrom the energy point of viey

hoppings K<'-representation allows to have done this eas-
2

o e ily).
J(iyky'jyky )=f f @3 (r=R) @, (r—=Rj)—— The first and second sums of E@.7) describe the hop-
r—r'| pings of electrons, which are correlated by electron occupa-
X|goy/(r’—Rk)|2dl’dl’ ' (2.2) tion of sites involved in the hopping process. The third sum

describes the hoppings of an electron betwéerr) and

|j yo) states, which are dependent on the occupation number
n, of other k#i, k#j) sites. Let us take into account the
influence of occupation of these sites in the Hartree-Fock
approximation

(¢, is the Wannier functioy the prime at second sum in Eq.
(2.1) signifies thati #j,

2
e
U=f f |‘Py(r_Ri)|2|r_r,||‘Py(r,_Ri)|2drdr, ”2” > vk | vk 808 yoNkyr
(2.3 AR
is the intra-atomic Coulomb repulsion of two electrons of the 2”;; Ti(i))a,ea; 0 (2.9
opposite spins at the same orbifale assume that it has the .
same value at and g8 orbitals, wheren=(n;,+n;g) is the average number of electrons per
site,
2 HH H ! !
U= [ [Teutr=RoP—loptr - Ro[2arar Talii) =2 (i 7k 29
“ [r—r’| k#i
(2.4 K

[we supposd(i ykaj yka)=J(iykBjvkB) andT(ij) have

) ] ) ) the same value for both and 3 orbitals]. Assuming thatx-
is the intra-atomic Coulomb repulsion of two electrons of theg, g B-states are equivalent, denote:

opposite spins at the different orbitals,

Jiviyiviy) =t (i) =tp(i)=t;, (210
2 L noes noe "
‘J:J J go*(l’—R)goﬁ(r—R) € (Piﬁc(rr_R) J(|’)/|’)/J ’ylr)/):taa(”):tﬁﬁ(”):tij . (Zl:D
a I I ’ I
r=r’| So we can rewrite Hamiltonia2.1) in the following
X @,(r' —R;)drdr’ (2.5  form:

_ + 4 +
is the intra-atomic exchange interaction energy which stabi- H= _M% iy y(r+ig40 tij(N)&y558] yo
lizes the Hund's states forming the atomic magnetic mo-
ments. The parametersl, U’, J are connected by the

relatiorf® +i§0 (a8 yoNiy+ H.C)
'—1)— 4 "o+ _
U'=u-2J. (2.6 +%‘,0 (tijaiwajwninrH.c.)+Ui§;, NiyNiy|
In Hamiltonian (2.1) we rewrite the sum , _ ,
E’ J i vkv'ivky' (+) : he f +U E niaaniﬁa+(u _‘])2 nia(rniﬁ(rv (212)
iikyy oI (FYKY J¥YKY) 81, 6Nk, 18, in the form o o
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8 8 4 | where the anticommutato{A4;B}) has to be taken only if
A | ! ¥ both operators are fermionic, i.e., change the particle number
& — & ¥ by one(e.g.,X??° or X??”%, and the constraint
(0> lat> ledy 181> 18>
> XP=1, (2.15
P

= < =
ki S

on the sitei ensures the fulfilment of the anticommutation

| 1 t where XP=XP'X!'P is the operator of number dp) states
Tips

Hs It o2y |18 relations fora operators.
The model Hamiltonian in the configurational representa-
tion has the form:

} | | L
B ] ¥ K +- _ ,
a 4 a | _H_ H=—u .2 xr"+2i20 (X‘M’LX‘MHZ% X7

o2t [H1 182> IRL> 147 _

+3) X727 4+42, X+ (U =)D XIT+U' D, XO
FIG. 1. The possible configurations of the lattice sites. yo i io io

yvith the effective hppping integra|l(n)=tij+nT1(ij) be- _ +UE X?2+(U+2U’—J)E Xi72(r
ing the concentration-dependent in consequence of taking iy iyo

into account correlated hoppinig(ij).
The distinction of Hamiltonian(2.12) from models of +2(U+2U" =) X*H+H,, (2.16
narrow-band materials with orbital degeneracy is taking into i
account the matrix elemend(iyky'jyky') caused by o S
electron-electron interaction. This leads to the electron-hol&here the kinetic part of the Hamiltonian is
asymmetry(which is analogous one to the case of an nonde-
generate barfd?) and the dependence of hopping integral
on the average number of electrons per site. Thus, the
narrow-band model that are described by Hamiltoriat2)
shows much better physics than the Hubbard model withyjin n.m={0-yo, yo-oo, yo-oo, yo-y2, co-y20,
doubly orbital degeneration.

Hi=2> Ham (2.17)
n,m

. o . oo-y20, y2-y20, y20-4}.
In the model described by Hamiltonig.12) each site of The HamiltoniandH,,,, contain the processes which form

the lattice can be in one of 16 stateee Fig. 1 the energy subbandsnalogues of the Hubbard subbands

Let us pass to the configurational representation of HarnllI':md the processes of the hybridization of these subbands. In

tonian(2.12. Use the representation of the operators of cre-

i 4 destructi f elect th gﬁ' i f Fig. 2 the transitions between the states of the sites, which
ation and destruction ot electron tnrougty -operators of - ¢y the corresponding subbands are shown.
transition of sitei from the statd to the statek:

The different hopping integraty™ correspond to the tran-
B = X104 X[ TAT 4 X[ VAL x el 4 xa2blL g a2 ! T sitions within the different subbands,, or between the dif-

ferent subbandsl,,,, (n# m)
+ XE21 B2 X2l

byl 0y L 1AL w181 _ yo2al _ya2l 11 _ya2],1] tj =ty + (77, (2.189
— al, y N ac,a a N a ’
aiai—xi +X| +X| _Xi —Xi —Xi h
where
2|,B2 4,62
+XiB 1.8 —X B T,
(213 TO*yUZO, 700~ y2(r:ti/j+ti/lj ,
+ ,0 ,a ,a 2, 21, 27,
ai,BT_Xim _XiTT T_XilT l+xiﬁ ﬁl_xiﬁ lll_xiﬁ 7,71 .
_ Y — 4! "
4 X212 yha2l sy, TS A,
| e B (2.19
iy, = X0 X} el Xl - xB281 | xa2laZ y @211 PSRRIt
21, 4,02
+ XF2LAT — a2l YOVt 20—y 4 yn
ijo i
Such choice of representation with taking into account the
commutational rules The mutual placement and the overlapping of the noted
ol kit ot K subbands depend on the relations between the values of
{XPX= 61 (X + apXi), intra-atomic Coulomb repulsion parametetsU’, intra-

ol vkt o Kl atomic exchange interaction paramefeand the widths of
[XP X7 1= 61 (OuXi™ = SpXi™), (2149 subbands.
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2U+4U0-2J (in these formulas we have took into account only seven
possible statgs It should be emphasized that one have to
1204 consider all the possible site states in order to get the correct
anticommutation rules for electron operators.
U420 Let us calculate quasiparticle energy spectrum of the
model neglecting the correlated hoppitig=t{;=0, tj;(n)
220 |o6-120 |co-120 . We write the Hamiltonian in the form:
U
- — _ILLE (Xa(r+ Xﬁrr+ 2X(m')+ 2 tll(x'y(r OXO yo
|()'
u-J
+x;“"7"xj7‘”’“)+(u’—3)2 X77+H,g, (3.2
Y6-66| y0-00| yo—y2 io
0 where

o_yc o o o
HaB:iEj’tij(_Xiﬁ’ Tx?vﬁT_’_XiTTvBTx?, T+Xiu,ﬁlxl§)y !

_xiu,aixjo,ﬁu H.c.). (3.3

FIG. 2. Energy levels corresponding to the possible electron
configurations of sites and the transitions between them.

For calculation of quasiparticle energy spectrum and polar
state concentrationc=(X?) — holes, dT—(XT ), d
=(X!!) being the Hund’s doublons we use the method of the
retarded Green functions. For the Green function

IIl. METAL-INSULATOR TRANSITION

At integer values of electron concentratios1, 2, 3 in
the model described by the Hamiltoniéh16) MIT can oc-
cur. The possible metal-insulator transitions at some integer
values of the mean electron number per site will be consid-
ered below.

GO (E)=((Xa O X2 Th) (3.4
we have the equation
A. Metal-insulator transition at electron concentration n=1

1. The strong Hund’s coupling case @ 0, @ @
, d Ping €8 _ (E— (XX ) = Z2 X+ X 1)+ (X510, Ho]
Let us consider the case of the strong intra-atomic Cou-

lomb interactionU’>t;; and the strong Hund's coupling

HXATO H X2, (3.
U’'>U’'—-J (valuesU’ andJ are of the same orderThese % “B]| P 2 3.9
conditions allow us to neglect the states of site when ther(\=7vhere
are more than two electrons on the site and the “non-
Hund’s” doubly occupied states]|), ||T), |a2), |82)
(the analogous conditions are used for an investigation of Ho= 2 ty (X7 OXO 704 XTTITY 0T (3.6

magnetic properties of the Hubbard model with twofold or-
bital degeneration in Refs. 45— hus lattice sites can be
in one of seven possible states: a h@enon-occupied by
electron sitg¢ |0); a single occupied by electron site
|al), |al), |B1), |Bl); the Hund’'s doublon or site with
two electrons on the different orbitals with the same spin
11), 111

Let us pass to the configurational representation of the
Hamiltonian. Electron operators in terms of the transition
operatorsx®' of sitei from the statgl) to the statgk) are
expressed by the formulas:

II}/(T

To break off the sequence of equations for Green func-
tions we apply a variaft of the generalized mean field
sapproximatiof‘iO 41

(X" Hol=2" e

[X5" Hapl= 2" ea(ph)X| 4,

pj XaT 0
3.7

XDZT 04 XTT ﬁT

IaT aiozT:X?ﬂT_’—XiﬁT’TT y
Xal °+X“ Bl g =x0elyxALLl where €(pj), e1(pj) are the nonoperator expressions, the
'al ] = N i , h . - .
method of its calculation will be given below. The represen-
BLO_yi Tl VOB valil 3D tation (3.7 of commutators in Eq(3.5) is defined by the
IBT =X X g =X =X ' operator structure dfl, andH ;.
pLO_yi bl 0s! L Using the approximation3.7) Eg. (3.5 for the Green
|Bl =X Xi® Qg =X =X function G(l) (E) can be written as
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(E—M)<<XS‘T'O|X3’7T>> The proposed approximation is based on the following
physical idea. When the lower and upper Hubbard subbands
S, overlap weakly(the case of a paramagnetic Mott-Hubbard
__ PP 0 a 4 ; al,0]y 0,
= §<Xp+XpT>+Z e(PH(X]! Xor ")) semimetal |0) and |oo) states almost do not influence on
|yo) states thenyo) subsystem can be considered as a

/ . 11,8110l quasiclassical subsystef@n analogue of the thermodynamic
+ Z 61(pj)<<xi |Xp’ ) (38 reservoij. In this case one can substituteoperators through
¢ numbers. We extend this ideology to determination of
For the Green function e(pj), €1(pj), €(pj), ex(pj). Thus we substitute the cre-
ation and destruction operators|6f, |oco), and|yo) states
(2) _ . Oaf . . . .
Gy (B)=((XIPTIX ) (3.9 through respective quasiclassical expressions. Actually, the

proposed procedure is equivalent to a separation of the

we write the analogous equation ;
g g charge and spin degrees of freedom.

/ @ Then we obtain the formulas i representation
(E— U= 3)(XATXT) e v was e '
- —0.&2+O.50—0.25t = (15t 2t
= 2 epid((X| "X ) + 2 ealpl) W= ozsros e almdETOL,
| 1,0y Orl 0.252+0.375% (319
X(XETEXETY, (3.10 “K)=(c2+c— e
] p B G(k) (C +cC O.S)tk, Ez(k) 025+ 050 tk'
where the non-operator expressianse, are defined by the
formulas From system of Eq93.8) and(3.10 we have
N 0.5¢+0.25 E—u+U’—J—€(k)
11,81 NV piyxI 1.8 W(E)=
[Xp 71 o= 2 e(pix; S B [ErEOIE B0
(3.11) (3.19
[XET,BT ,Haﬁ]zglfz(pj)xfm- G(Z)(E)Z 0.5¢c+0.25 e>(K)
K 27 [E4+Ey(K)][E+ExK)]’
Thus, we obtain the closed system of equations for functions (3.16
1 2
Gép)/(E) and Gép)r(E)- _ where the expressions
To calculatee(pj), €1(pj), €(pj), €2(pj) we use the _ ,
procedure proposed in pap#r. The values of £y AK) = — e e(k)—e(k)+(U"=J)
e(pj), €1(pj), €(pj), ex(pj) we find by anticommutation L H 2
of Eqs(3.7) and (3.11) with the operatoré(f,i’,”‘T andX'g,T’TT , 1
respectively 5 {le(k)+e(k) = (U' =) ]*+4e(k) (U’ = J)
0 al " — O,aT . «al,0 -
(Xp+xp )E(pp ) {Xp' ;[Xp ,HO]}, +4[61(k)62(k)_6(k)€(k)]}l/2 (317)
(XgT-l-Xy)el(pp'):{Xﬂ,T'm ?[XST'O’HaB]}' are the quasiparticle energy spectrua3(k) describes the
P (3.12 electron spectrum in the @0 subbandan analogue of the
~ 1. ' lower Hubbard subbandg, (k) describes the electron spec-
(XE+ XY e(pp ):{ngﬁ,[xy,m,Ho]}, wer Hu ubbangdE, (k) [ p

trum in theao-oo subbandan analogue of the upper Hub-
bard subband The computation of the quasiparticle energy
spectrum in the 0Bo and Bo-o o subbands gives the same
o ) T Eq. (3.17).
We rewrite Xj"-operator in the fornXj"' = a; a; , where The energy gap widtidifference of energies between
;. , a; are the operators of creation and destructior{kd*  bottom of the upper and top of the lower bahis
and |l)-states oni-site respectively(with the constraint
Scarai=1); thus X’=ahaio, X9=a;" aj,o, XI° AE=E3(—w)—Eq(w). (3.18
I .
= iyoliyg. Lt US substitutex-operators byc-numbers The peculiarity of the obtained energy spectrum and en-
(here there is a partial equivalence with the slave boson idth is their dependence on the hole concentration
method®). At n=1 in a paramagnetic state €rgy gap width | P ;
c. With decrease of temperature or rise of the parameter
44 aly_ (U—J)/(2w) the holes concentration decrease smoothly.
d=d;=d,=ci2, (X")=025d, The energy gap width E as a function of the parameters
(U'=J)/(2w) and KT)/(2w) is presented in Figs. 3 and 4,
respectively. With a change of the parameted’(
. "™ —J)/(2w) system undergoes the transition from an insulat-
Ay = @iye=(0.25-d) ™% ing to a metallic statgnegative values of the energy gap

XS+ XD ea(pp') = (XS IXLT AT H ).

a$=ai0=cllz; a; =dv% (3.13

ico— %ioo
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2. The limit of the weak Hund’s coupling

Let us consider the MIT at electron concentrationl. If
the exchange interaction is small comparatively to the Cou-
lomb interactionJ<U then we can takd into account in the
mean-field approximatiorisee, e.g., Ref. 10 The corre-
sponding terms of the Hamiltonigi2.12) can be written as
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FIG. 3. The dependence of energy gap widik/(U’'—J) on

the parameter Y’ —J)/(2w): the upper curve-KT)/(2w)=0.1;

The Hamiltonian(2.12 takes the form

i — . ~ !
t:hg middle curve—-KT)/(2w)=0.05; the lower curve-KT)/(2w) H= _M% aiJrWai 7"+i;a tij(n)aierg—aj Vo
width correspond to the overlapping of the Hubbard sub- +i§,0, (tiljarygaj yohiytH.c)

bands. In the model under consideration ak=0 K
insulator-metal transition atn=1 occurs when U’

4 " A+ _
—J)/(2w)=0.75 (Fig. 3, the lower curve[in the single- “ﬂ%, (1iji568) yoNiyo+ H-C)
band Hubbard model the respective parametedf2w)
=1].42

iy . . : : + ivoNivet N Niet Nie N :
The transition from a metallic to an insulating state with Ugy (MiyoNiyo T NiyeNizet NiyeNine), (3.20

increase of temperature at given value of the parameter _

(U"=J)/(2w) is also possibldFig. 4). It can be explained whereu=u+53(n;,,).

by the fact that energy gap widthE (3.18 increases at Considering MIT at the electron concentratinrwe can
increasing temperatufBwhich is caused by the rise of polar take into account in the Hamiltonian only the states of site
states concentration at constant (U’ —J). with n—1,n, n+1 electrons(the analogous simplification
has been used in Refs. 11 and).1B the vicinity of the
transition point at the electron concentratios 1 the con-

0.06 - X ; X
3 centrations of sites occupied by three and four electrons are
3 small. Neglecting the small amounts of these sites we can
0.04 write the electron operators in the form:
: ah, =X O X[ TR X LA 2l
—~ 002 3
7 E af, = Xeh 04 x| LBl X[ 1B _ a2l
- 3 (3.21
~— 0.00 - :
S L By = XPT O] T - x|l x g2l
< 0.0z ajly = XPLO— x}hal_ x]bal_ xp261
3 Hamiltonian (3.20 in the configurational representation
—0.04 3 takes the form:
—0.08 -:-rrn-rrrn-rrrrrrn-n-rrrrrrrrn-rn-rn-n-n-rrrrrn-rn-| H= _;L 2 xiy(r'i_ 22 (xi(r<r+ xlrr(r) + 22 X?/Z}
0.00 0.02 0.04 0.06 0.08 0.10 iyo ir iy
KT/(2w) _
+ 90} o Y2+ H + .
FIG. 4. The dependence of energy gap width/(U’—J) on U % Xi % Xi Zy X HitHz,  (3.22

the parameter KT)/(2w): the upper curve — Y’ —J)/(2w)
=0.74; the lower curve -’ —J)/(2w)=0.72. where the kinetic part of the Hamiltonian is
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> Ou0 o , 2 vy v 92 After transition tok representation the system of Egs.
ZEJ ti > X X (2t )2 X{=rIxXy ey (3.26) taking into account3.27) has the solutions:
Yo
- -~ XptXsh)  E+m—U—-{(k)
’ OO0, Y0N\ VO ,00 00,00\ Q0,00 0,aT|yal, _< p p M
2] 2 XTI 2 X O X = FE— B TE— ]
_ L _ 0 5 (3.28
+XiO'O',EO'XjEO',(T(T+(Xi(TO',aUXJQO',O'O'_l_ XiUU,BUXjBO',O'O' < p XaT> g(k)

<<Yp|xaT 0>>k_ 2

[E-Ei(KI[E-Ex(K) ]

+H. c)]} + (bt Here,E, AK) is the quasiparticle energy spectrum:

)| 9y, X7 OXO
< oy j

£ 9 (XTTRIXET 02 4 X700 B2 ¢ ) , By k)=t %+ —dk);g(k)
(323 1 R
F5{[U—e(k)+ (k) 12+ de() Z(K)} 2
H2=iEj i(tij"'ti/j) 72 (ﬂyxiw’oxjw'w+H-C-) (3.29

The same expression for the quasiparticle energy spec-
trum we obtain from the functiong(Xp'[Y,,)) and

((YolY, ). The values ofe(pj),e(pi),£(pi),{(pj) we

(1 +t”)2 (7. X7 oxyg 2iH. c)} (3.24 ;rlglyob;/n:r:{tfommutatlon of Eq(3.27) with the operators
p’ P’

£ (XETOXPoT XPROIKETT 4 H c)

Wherem Na™— 1 n = 773:_1 X0+X0T € 1y — XaTxO. XO,O(T H
The processes that form energy subbands are included in (Xp+ X5 )e(pp") ={Xp 51X Hall,

the HamiltonianH,, the processes of hybridization of these al LBl Bl Tl L L a2y ,
subbands are included in the Hamiltoniels. (Xp + X+ Xp7+ X + X+ X% e(pp’)

The single-particle Green function can be written as —{Y X° af Ha 1),

((@patlag o)y = (R IX ) +(OGY;) (Xg !+ XET+XEH+ X+ X+ X5 ¢(pp') @20
YN+l Yp)) . (329

:{Y;—r y[Yp le]};
Here we have introduced the following notatiory., .
=Xgh 24 XPLTT 4 XBVTE - The functlons(<X°“T|X“T°>> (Xp+XeZ(pp" ) ={X5 %[ Y Ho}

0,7
and((X |Y " sat|sfy the equations: By use of the mean-field approximation analogously to the

0, val above, in the case df =t, we obtain
- 0al|yal (xp+xp,)
(E+m){(Xy|Xs ) =—5—"—; 2 2
p p 2 ] ~ 6d
e(k)=t | (c+b)+ — Tb 3tkm,
(X Hy+ HoI X)),
~ atl,0 at,0 (326) ~ tk+~k b2 6d2
(E+u=U){(Ypl X5 N =[YpiHi+HIIXE 7). ek)=—=—|(c+b)~ g5 Y arpl
For calculation of these functions we use the generalized (3.31
mean-field approximatioff. Let us take the commutators in 642 b2 8?2
Eq. (3.26 in the form: §(k):—tkm+tk 3(d+b)+ 97D + 3d+D)|’
[Xp*! Hil=2" e(pi)X]!, ) oy O 6
& )_ | (d+b) c+b  ctb)’
[Xg,aT ’HZ]:X’ }(pj)yj, (3.27) herec, b, d are the concentrations of the holes and sites

occupied by one, two electrons, respectively, connected by
the relations
[Yp Hi=2" LPDY;.  [YpHal=2" TPDX]T, .
c=6d, b=--3d; (3.32

~ ~ 4
wheree(pj),e(pj),L(pj),L(pj) are the nonoperator expres-

sions. and
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1.50 ergy gap width increases and the region of valueld £&2fv at
1 which the system is in a metallic state, decreases.
i B. The limit of the weak Hund’'s coupling at electron
. concentration n=2
1.00
- ] Let us consider the MIT at electron concentration 2.
- ] In the vicinity of the transition point in the case of two elec-
Lé ] trons per atom the concentrations of holes and sites occupied
] by four electrons are small. Neglecting the small amounts of
0.50 these sites we can write the electron operators in the form:
] aitw=XJT'BT+xi“’ﬁi+xr*2’“1+x?2w+x?2%”
0.00 -
0.00 1.00 2.00 3.00 4.00 5.00 +Xp2R
U/2w

FIG. 5. The dependence of energy gap widik/U on the
parametetd/(2w) for n=1 at different values of the parameter
:ti’j/tij . the lower curve «=0; the middle curve #=0.2; the

upper curve«=0.6. +Xi521,52,

+ s s a2,a a?l, a?l,
aialzx%lﬁl"'xium_xi T_Xi lTl_Xi .11

In the point of transition, when the concentrations of the ajy = — X[ 1T =X} Tl 4 xP2BL_ )2l — xp21.1)
holes and doublons are equal to zero, the energies of the

electrons within the subbands are +x@2haz,
Ei(k)=—pm+ty,
(3.349 ajly = = X{hb = X[ bl - xF2A1 4 xa2la2 . xp21.11
2,
+XP2LLT

E,(k)=—n+U+T,.

The energy gap in this case is ) o ) ) )
Let us rewrite the Hamiltoniaf3.20 in the configurational

representation at electron concentration2. For the small
values of the intra-atomic exchange interactidrsU) we

take J into account in the mean-field approximati¢®19.

The Hamiltonian takes the form

AE=U-w—w=0, (3.3

wherew=2|t;;|, w=2z(t;;|. From the Eq.3.35 we obtain
the criterion of MIT

B -7 yo 7T NoT) | 72
- (3.38 H M[E X723 (X{TEXT+22 XK

iyo o
. . . ~ 4 y2o + ooy '0;_’_ ¥2
In the partial case,=t, =0 (in this caset,=t,) we have 3% X v % Xi % Xi IEy X
izl. (3.37) +32 X727 +H i+ H,, (3.39
2w ivo

In Fig. 5 the energy gap for different values of the correlated
hopping atT=0 is plotted. With the increase of the corre-
lated hopping at the fixed value of paramettPw the en-  where the kinetic part of the Hamiltonian is
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2 Xia'a,ya'xij',O'O'_l_ ; [X;T;'angaa'o—;‘f' Xio';,ﬂ;XjB;,U;

Yo

J

H1:2]

(G +2t7) 2 XP27IX7 72+ (4 2t))
Yo

+ (X7 TORITTT 4 XTTPIXBNTT L HLC) T+ (bt )

J

2 ngn?(?'a,yaxjya,yZ_l_E 770(Xia'a',BtTXJQuT,012
Yo o

+ X7 OXPOP2) F H.C + (t + 2t + 2t])

J

20, 2 20,00y 00, a2 20,00y 00, B2
% le Uo’o’x]qo’y o’_}_; (xla a'a'o’qua'a 0+Xi8 O'U'ijq'a'ﬁ a')

+ (L + AL D XPPTTEXYRYRO (14 2t 4 2t)) D (X(MRNTIXI 0204 X200 70 B20 L 1 ¢ )
Yo o

+ (L 3t + ) D (75m, X2 TOXTET2T 4 Hoe) + (1 + 3t + )
yo

% E n”(xiaZ(r,;a'x,jBZ,,BZO'_ XFZU’U;XJQZ’QZU‘F HC)
o

(3.40
Ho= 2

i

(L + 2t +t7)

2 (no_xia'o,yoxlqo,yZU_‘_ 7];)(?/2'70—)(?,2'720)‘{‘ 2 [UU(XFU,BUXI{TU,Q’Z(T_{_ Xit)'o,aa'XJqU,BZO'

Yo o

+ X;J'U,BUX;J'U,a20+ XiO'U,BO'XIQ'O',aZO') + n;(Xio’o’,aO'XJg’a',BZU_ Xia'a,aO'X]Q'O',BZ(T)]] + (tlj + 3tlrj)[ 2 n;XiO'O',yUXJ_yZ.yZO'
yo

+ E (Xia'o,ﬁoxjﬁZ,BZO'_ xiO'O',aO'XjaZ,aZO') |
o

+ (t|] + ti,j + 2'[:,)[ % nyxi)/Z,YUX;)'U,720+ ; (XiaZ,aO'Xan',UzZU

_ XiBZ,BO'XJgTU,BZO')

+H.c.).

The processes that form energy subbands are included in the . . S~
HamiltonianH ;, the processes of hybridization of these sub-  [Yp.,H1]= Z e(p))Yj, [Yp.Hol= 2 e(pj)z;,
bands are included in the Hamiltonity. (3.43
Let us write the single-particle Green function as ’
[Zp,H=22" LpDZ;,  [ZpH =2 T(pD)Y;,
(@patl@g N =(Yol Yo ) +UZpY g )+ (YolZ0)) 2 2

+((Zp1Z,)). (3.41)  wheree(pj),€(pj),¢(pi).Z(pj) are the nonoperator expres-
sions, which we calculate using method of paffer.
Here the following notations have been introduced: After transition tok representation the system of Eqgs.

(3.42 taking into account Eq.3.43 has the solutions
_yal,a2 BT BL.TL
Yo=Xp o XE T+ X0 B
E+pu—2U— (k)

+ [ Je—
Z,=Xbha2lp xila2l | xB2 21 (YelY o) = 2 [E—E (O TTE- Ex(0T"
. + + . (3.49
The functions((Y,|Y_,)) and((Z,|Y,,)) satisfy the equa- ~
e p P N A £(k)
tions: (ZolY o =5 FECE (O TTE— Bk
27 [E-Ey(K)J[E-Ea(k)]
~ A
(E+,u—U)(<Yp|Y;,))=E Sij+(([Yp:H.+ H2]|Y;,>), Here,E; »(Kk) is the quasiparticle energy spectrum
(3.42
5 - 3U ek)+(k)
(E+m—2U)((Zp| Y, )y =(([Zp;H1+HoIlY ), Er k)=t 5+
whereA= (X&' + X8+ XE + X [T+ X [T+ X5?). On the anal- 1 o
ogy of the previous section we use the generalized mean- IE{[U—e(kHg(k)]2+4e(k)g(k)}1’2.

field approximation to calculate these functions. Let us take
the commutators in Eq3.42 in the form (3.45
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The same expression for the quasiparticle energy spec

trum we obtain from the functions((Y;|Z;,)). and

((ZplZy )i The values ofe(pj),e(pi).{(p).{(pi) we
find by anticommutation of Eq3.43 with the operatoré/;,

1
ande,

al BT Bl I I a2 ’
(XaL 4+ XE 4+ XBL 4 X [T+ X[+ X32) e(pp')

={Y2i[Yp Hal},

Ll T o B2 owea2l 4 a2l o wB2Tyg ’
(Xp +Xp' +Xp + Xg= + X5= + X, e(pp”)

={Z;:[Yp Halh,
(3.46
LLyel T xeB2 g yea2l | yea2| | yB2] /
(Xp"+Xp + X7+ X5+ X +X57) {(pp’)

={Z,3[Zp Hall,
(XSL‘F XpﬁT_;_xgl + X’T)T-i— X;l + XSZ)Z(DD’)

={Y},3[Zy Halh.

METAL-INSULATOR TRANSITION IN A DOUBLY ...

7903
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) ]
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Ll_I 4
< ]
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FIG. 6. The dependence of energy gap widik/U on the
parametetJ/(2w) for n=2 at different values of the parameter
=ti’j/tij : the lower curve+«=0; the middle curve#=0.1; the up-
per curve+«=0.2.

By use of the mean-field approximation analogously to the

above, in the case df =t, we obtain

k)=t 3(d+b L
()=t 3D+ 5t 370y | % 3(d+ D)
~k_7k+t.*: dih 8d?2 7b?
k)= 5|3+~ 5y T 3(d+b)
(3.47
2 b2 8d?
__ 7 *
00 ="tgrgrp) T 3D g T 3@
ik Tty dih 8d? 7h?
k)= =5 30+D) = i 5 * 3(dT ) |
with
T=t+2t; .
(3.49
tF =t + At ;

hereb is the concentration of the sites occupied by ¢oe
three electrons,d is the concentration of the doubly occu-
pied sites, connected by the relation

5 (3.49

E T 3U 178 +1,
A T

-+
18

-l

Using the quasiparticle energy spectr50 we find
the energy gap width. In the point of MIT the energy gap is
equal to zero. From this condition we find the criterion of
MIT. In the partial case of, =t} =0 (in this case} =t,) we
find

~ 12
+1_7t:—tk
18 2

2} 12

(3.50

(3.5)

In Fig. 6 the energy gap for different values of the correlated
hopping atT=0 is plotted. With the increase of the corre-
lated hopping at the fixed value of parametsPw the en-
ergy gap width increases faster thamat1 and the region

of values ofU/2w at which the system is in the metallic
state, decreases, analogously to the cesé.

C. The limit of the weak Hund’s coupling at electron
concentrationn=3

Let us consider the MIT at electron concentration 3.
In the vicinity of the transition point in the case of three
electrons per atom the concentrations of holes and sites oc-
cupied by one electron are small. Neglecting the small
amounts of these sites we can write the electron operators in

In the point of transition, when the concentrations of theth® form:
singly and triply occupied sites are equal to zero, the quasi-

particle energy spectrum is

Ayt = + X02h b4 xa21 11y xB21.62.4 4621,
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o w2l T ye2], 7 B21.B2 _ 44,827
a  =—X X + X! X ,
ial i i i i (352 H= _M[ZE Xoo+xoa +22 X72+3E X'Yzo'
Ay = — XP2L L XBITLy X021 02 a2l e
a2|,a2 2 2 4,02 +4 X4 +U X7+ X-";+ X7?
I,Bl +X L +XBTTT+XﬁlLT Xi T 2 % i % i ZY i
Let us rewrite the Hamiltoniari3.20 in the configura- oo 4
tional representation at electron concentration3. For the +3i2 X777+ 6Xi" | +Hi+Hy, (3.53
small values of the intra-atomic exchange interactidn ( 7
<U) we takeJ into account in the mean field approximation
(3.19. The Hamiltonian takes the form where the kinetic part of the Hamiltonian
:Z (t” +2t +2t//)[2 Xi)/ZO',O'o'X]gJ'O',y20'+E (XiaZ(T,U(TXJQ'O',aZU'_,’_ XiBZo’,a'UXJqo’,BZO'_i_ HC)
1] od

+ (AL D XPPTTEXYEYRO 4 (1 2] + 2 )2 (XE2oTX 720 4 X200y 204 )
Yo
+(tj;+ 3t +t”)2 (77, X727 OXI2P2T 4 H.C) + (1 + 3t +t")2 D (XE2TTOXB220 _ x(B20.00 5 02020 4 1 ¢ )

+ (b + 4t + 2t X 2OX 7 4],

Hz:iEj

(t; + 3t} +2t7) >
yo

nyxi)IZU,O'UXj)IZU,4+ 2 (XiaZO',o'UXjBZU'A_ XiBZo’,Ua'XjaZO'A)
o

+(tij+3t{j)720 7o X272 A Ho

The processes that form energy subbands are included in the —
HamiltonianH ;, the processes of hybridization of these sub- [X521% H,]= > "e(pi)z;, (3.59
bands are included in the Hamiltonity. '

Let us write the single-particle Green function as:

((@patlag, )= ((XEPHAXE2)) + ((XE242.)) [Zo.Hi1=X CpDZ;,  [Zp.Hal= S Upj)xF2e,
J J
+(ZXSP2 N +((Z,12,)). (354
Here the following notations have been introducdd: ~ Where e(pi),€(pi).{(pj).{(pj) are the non-operator ex-
_XU a2l L wlT, a2T+X,32 B21 The functions  Pressions.

gzu ap3) 482 After transition tok representation the system of EQs.
(X |X 2 and<<2p|x )) satisfy the equations: (3.59 taking into account Eq(3.56 has the solutions:

(E+—3U)((XE2H X P2))

XB2Lexy  E+p—2U- (k)
<XB2¢ X > X'BZM X4,’/321 :< p p M
S (X Ay Ry, (O e e e e
_ , (3.59

(E+m—2U)((Zp|X)P2 ) =(([Zp i Hi+ HR]IXE10). (3.57
On the analogy of the previous sections we use the general-
ized mean-field approximation to calculate these functions. (XBZ+X7) (k)

; 4,82|

Let us take the commutators {8.55 in the form: ((z p|X MW=

2m [E-Ef(KIE-Ex(k)]’

X,BZLA’H — 4 -X,'B21,4,
% 1] 2 «(P1)X, HereE, (k) is the quasiparticle energy spectrum:
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5U (k) +¢(k)

SEU e Y 5

(LU e+ 20 12+ 42000} 2

(3.58

The same expression for the quasiparticle energy spec>

trum we obtain from the functions

(XEPHAZ)), (Zp1Z50))- )
The values ofe(pj),e(pj).{(pj).¢(pj) we find by anti-
commutation of Eq(3.56) with the operatoré(g',le andzg,

(Xﬁzl + Xg) e(pp’) Z{X?)’,ﬁzl ;[ngl'4 Hil}
(XEH+ XA+ XB2 4+ Xe2T 4+ X024+ XB2T ) e(pp')

={Z,:[Xp" Hal,
(3.59
1l 11 B2 a2l a2] B21 ’
(XBE+ XL+ XB2 4 X021 4 X 2] 4 XB21) ¢ (pp')

={Z},:[Z, Hal},

(XE2 X Z(pp") ={X5) *:[Z, H1}.
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FIG. 7. The dependence of energy gap widtk/U on the
parametetJ/(2w) for n=3 at different values of the parameter
=1/,/tjj : the lower curve x=0; the middle curve »=0.1; the
upper curve «=0.15.

The energy gap in this case is

By use of the mean-field approximation analogously to the

above, in the cast =t; we obtain

=] (s t? g 3
6( )_tk (t+ )+m - tk m,
~ RSy . 2 df
L R |
3.6
k)=—t, df +t¥3(d+t)+ i + ad* oo
{(k)y=- kggg ik ( ) a+t T o)
Tk Ry g t>  3df
(k)= 5 ( +t)—m+m,
here
tg =t +4ty,
(3.6
t, =t + 6t ;

d, t, f are the concentrations of the sites occupied by two
three and four electrons, respectively, connected by the rel
tions:

l3d
Z .

f=6d, t= (3.62

In the point of transition, when the concentrations of the

holes and single electrons are equal to zero, the energies
the electrons within the subbands are

Ev(k)=—n+2U+t},
(3.63

Ex(k)=—n+3U+t;.

AE=U—-w*—-w'=0, (3.64

wherew* =z|t¥[, w'=Z|t}|.
From Eq.(3.64) we obtain the criterion of the MIT at the

electron concentration=3:
U=w*+w".

(3.69
In the partial cas¢, =t =0 (in this caset,=t,) we have

U

=L (3.66

This result coincides with the corresponding critical value at
the electron concentration=1 in the consequence of the
electron-hole symmetry of the model without the correlated
hopping.

In Fig. 7 the energy gap for different values of the corre-
lated hopping aff =0 is plotted. With the increase of the
correlated hopping at the fixed value of paramété2w the
energy gap width increases faster thamatl, n=2; and
the region of values oJ/2w at which the system is in a

%etallic state, decreases.

IV. DISCUSSIONS AND CONCLUSIONS

In the present paper we have proposed a doubly orbitally
degenerate narrow-band model with correlated hopping. The
gfculiarity of the model is taking into account the matrix

ement of electron-electron interaction, which describes in-
tersite hoppings of electrons. In particular, this leads to the
concentration dependence of the hopping integrals. Using the
representation of Hamiltonian of a doubly orbitally degener-
ate model with correlated hopping in terms of the Hubbard
operators the cases of the strong and weak Hund’s coupling
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0.0 1 B o e A B B e e FIG. 9. The electron vs interaction phase diagram showing the
o8 10 1.2 14 16 1.8 20 22 paramagnetic metal and paramagnetic insulator in absence of cor-
U/2W related hopping.

FIG. 8. The dependence of energy gap widik/U on the
parameterU/(2w) in the absence of correlated hopping =ty
=0): the lower curver=1, n=3; the upper curver=2.

trations are given in Fig. 8. One can see that in the case
=2 the MIT occurs at smaller value &f/2w then atn=1.
This result is in qualitative accordance with the results of

. , _work,’? in distinction from Refs. 13 and 15. Using the criti-
have been considered. By means of a generalized mean-fie | values of the parametel/ (2w) at which MIT occurs for

approximation we have calculated the single-particle GreeRittarent integer electron concentratiotsee Fig. 9 we can

function and quasiparticle energy spectrum. Metal-insulatof, e oret the fact that in the series of disulphides MBe

transition has been studied in the model at different mtege&osz (one electron withire, band corresponding to=1)
g

v%ltugs gf b electror; concentr:ationf. Wiéh the help of t%? nd Cu$ compoundgthree electrons withi, band corre-
obtained energy spectrum we have tound energy gap wi pondingn=3) are metals, and the NiScompound(two

an?_rc];rltena (;f m?tal"??ﬁlato): trransi|t|r(?n.f ; inarticl r1electrons withiney band corresponding=2) is an insula-
€ peculiarities ot the expressions for quasipartice eng, Really, for 0.94U/2w=1 at the electron concentration
ergy spectrum and energy gap are dependences on the c

: . =2 system described by the present model is an insulator
clectron and tple occupied stesrt 2: doublons and stes WeTE3S 0T the same values of the parametu at the

: P P ’ o electron concentrations= 1, 3 system is a metahccording
occupied by four electrons at=3), on the hopping inte-

: with the calculations of Ref. 51 the ratid$/2w in these

grals (thus on external pressyreAt given values ofU and
hopping integral§constant external pressiithe concentra-
tion dependence o E allows to study MIT under the action
of external influences. In particulatE(T)-dependence can
lead to the transition from a metallic state to an insulating  1.00
state with the increase of temperatsee Fig. 4 the de-
scribed transition is observed, in particular, in the 4gq
(V;_,Cr),0; compound“® and the Ni$_,Se, systen*®>°
The similar dependence of energy gap width can be observe.~
at change of the polar states concentration under the action ¢ > 0-80
photoeffect or magnetic field. The strong magnetic field can~__
lead, for example, to the decrease of polar state concentratio\D/oJo 2
(see Ref. 2B initiating the transition from a paramagnetic
insulator state to a paramagnetic metal state. Contrariwise

; ; ; 0.60
the increase of polar state concentration under the action o 3
light stimulates the metal-insulator transition, analogously to
the influence of temperature change. At the increase of band 0.50
width (for example, under the action of external pressure or
composition changeésthe insulator-to-metal transition can 0.40
occur. 0.00 0.02 004 006 008 010 0.12

The results allow to study the influence of the correlated K

hopping and orbital degeneracy on MIT. The dependences of F|G. 10. The dependence of critical valug/@w). on the pa-
energy gap width on the paramet@r2w in absence of the rameter of correlated hopping=tj;/t;; : the curve 1 -n=1; the
correlated hoppingt(=t,=0) at different electron concen- curve 2 -n=2; the curve 3 n=3.

1.10
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compounds have close valyes Thus both orbital degeneracy and correlated hopping are
We have found that in the case of the strong Hund’s couthe factors favoring the transition of system to an insulating
pling at n=1 metal-insulator transition occurs at smaller state in the case of half filing with the increase of intra-
value of the paramet¢ U —J)/2w],=0.75 than in the case atomic Coulomb repulsion in comparison with the single-

of the weak Hund's coupling(U —J)/2w].=1.

band Hubbard modelin this connection see Refs. 35 and

When the magnetically ordered states are taken into ac3y).

count the phase diagram of the considered mdeigl 9) can

In the present paper considering MIT we have neglected

be changed. In particular, with increase of correlationthe correlated hopping,. Taking into account; leads to
strength the transition from paramagnetic to magnetically oryhe concentration dependence of the hopping integrals and as

dered staft® (antiferromagnetic insulator or ferromagnetic
insulatoy can occur, similarly to the magnetic transition

found in Ref. 12 by use of slave-boson method for the dou

bly degenerate Hubbard model.
At nonzero values of correlated hopping the point of MIT
moves towards the values of paramédt#Pw (Figs. 5—7 at

a result to decreasing.. This effect shows itself the more
the larger is the value of electron concentrationA more

detailed analysis of the correlated hoppihginfluence will
be given in subsequent papers.

which system is a metal in proportion to correlated hopping

value (Fig. 10. From Fig. 10 one can see thaf f2w) de-
creases with increasing correlated hopping, and what is mo
at n=2 with the increase of the correlated hopping param
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