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Many-body theory versus simulations for the pseudogap in the Hubbard model
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The opening of a critical-fluctuation-induced pseudogap~or precursor pseudogap! in the one-particle spectral
weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte
Carlo simulations, may be obtained from many-body techniques that use Green functions and vertex correc-
tions that are at the same level of approximation. Self-consistent theories of the Eliashberg type~such as the
fluctuation exchange approximation! use renormalized Green functions and bare vertices in a context where
there is no Migdal theorem. They do not find the pseudogap, in quantitative and qualitative disagreement with
simulations, suggesting these methods are inadequate for this problem. Differences between precursor
pseudogaps and strong-coupling pseudogaps are also discussed.
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I. INTRODUCTION

The two-dimensional Hubbard model is one of the k
paradigms of many-body physics and is extensively stud
in the context of the cuprate superconductors. While ther
now a consensus that at half filling (n51) the ground state
has long-range antiferromagnetic~or spin-density-wave!
order,1,2 the route to this low-temperature phase is still
matter of controversy when the system is in the weak-
intermediate-coupling regime. In this regime, we know th
the Mermin-Wagner theorem precludes a spin-density-w
phase transition at finite temperature but the issue of whe
there is, or is not, a precursor pseudogap at finite tempera
in the single-particle spectral weightA(kF ,v) is still unre-
solved. Different many-body approaches givequalitatively
different answers to this pseudogap question. In particu
the widely used self-consistent fluctuation exchange~FLEX!
approximation3 does not find a pseudogap in thed52 repul-
sive Hubbard model for any filling. A study4 of lattices of up
to L5128 found that as the temperature is reduced the q
siparticle peak inA(kF ,v) smears considerably while re
maining maximum atv50, signaling a deviation from the
Fermi liquid behavior but no pseudogap. The same qua
tive answer is found for attractive models. By contrast,
many-body approach that has given to date the best ag
ment with simulations of both static5 and imaginary-time
quantities6 indicates the existence of a precursor sing
particle pseudogap in the weak-to intermediate-coupling
gime, for both the attractive and repulsived52 Hubbard
model, whenever the ground state has long-range or
While we will restrict ourselves to thed52 repulsive model
at half filling, our results will be relevant to the more gene
question of the pseudogap since small changes in filling
changes from the repulsive to the attractive case7,8 do not
generally necessitate fundamental changes in methodol
and the question of many-body methodology is one of
PRB 610163-1829/2000/61~12!/7887~6!/$15.00
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main concerns here. Further comments on the regime w
not address here, namely, the strong-coupling regime, ap
in the concluding paragraphs.

One may think that numerical results have already
solved the pseudogap issue defined above, but this is no
Early quantum Monte Carlo~QMC! data analytically contin-
ued by the maximum entropy method concluded that prec
sors of antiferromagnetism inA(k,v) were absent at any
nonzero temperature in the weak- to intermediate-coup
regime (U,8t, whereU is the Coulomb repulsion term an
t the hopping parameter!.9 A subsequent study in which
singular value decomposition technique was used instea
maximum entropy found the opening of a pseudogap
A(kF ,v) at low temperatures.10 Each of the two technique
has limitations. The singular value decomposition c
achieve a better resolution at low frequencies, but we fi
that the quality of the spectra is influenced by the pro
function introduced to limit the range of frequencies. A
other difficulty is that it leads to negative values ofA(k,v).
As far as the maximum entropy method is concerned, rec
advances,11 which we will use here, have made this meth
more reliable than the classic version applied in Ref. 9.

In this paper, we address the issue of the pseudogap in
d52, n51 Hubbard model at weak to intermediate co
pling, but it will be clear that the general conclusions a
more widely applicable. We present QMC results and sh
that the finite-size behavior obtained forA(kF ,v) is cor-
rectly reproduced by the method of Ref. 7. We also introdu
a slight modification of the latter approach that makes
agreement even more quantitative. This many-body appro
allows us to extrapolate to infinite size and show that
pseudogap persists even in lattices whose sizes are gr
than the antiferromagnetic correlation lengthj, contrary to
the statements made earlier.9 These sizes cannot be reach
by QMC simulation when the temperature is too low. W
confirm that at low enough temperatures, the peak atv50 at
7887 ©2000 The American Physical Society
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7888 PRB 61S. MOUKOURI et al.
the Fermi wave vector is replaced by a minimum cor
sponding to the opening of a pseudogap7 and by two side
peaks that are precursors of the Bogoliubov quasiparticle
contrast, we find that theA(kF ,v) values calculated by the
FLEX approximation on small lattices arequalitatively dif-
ferent from those of the QMC method and do not have
correct size dependence. Since all many-body technique
volve some type of approximation, their reliability should
gauged by their capacity to reproduce, at least qualitativ
the Monte Carlo results in regimes where the latter are
from ambiguities. We thus conclude that Eliashberg-type
proaches such as FLEX are unreliable in the absence
Migdal theorem and that there is indeed a pseudogap in
weak- to intermediate-coupling regime at half filling. It
likely, but not yet unambiguously proven, that consisten
between the Green functions and vertices used in the m
body calculation is crucial to obtaining the pseudogap.

II. MANY-BODY APPROACH

Many-body techniques of the paramagnon type12 do lead
to a pseudogap but they usually have low-temperature p
lems because they do not satisfy the Mermin-Wagner th
rem. No such difficulty arises in the approach of Ref. 7. T
method proceeds in two stages. In the zeroth order step
self-energy is obtained by a Hartree-Fock-type factorizat
of the four-point function with theadditional constraintthat
the factorization is exact when all space-time coordina
coincide.13 Functional differentiation, as in the Baym
Kadanoff approach,14 then leads to a momentum- an
frequency-independent irreducible particle-hole vertex
the spin channel that satisfies5 Usp5U^n↑n↓&/(^n↑&^n↓&).
The irreducible vertex for the charge channel is too com
cated to be computed exactly, so it is assumed to be con
and its value is found by requiring that the Pauli principle
the form^ns

2&5^ns& be satisfied. More specifically, the sp
and charge susceptibilities now take the formsxsp

21(q)
5x0(q)212Usp/2 and xch

21(q)5x0(q)211Uch/2 with x0

computed with the Green functionGs
0 that contains the self

energy whose functional differentiation gave the vertic
This self-energy is constant, corresponding to the Hartr
Fock-type factorization.15 The susceptibilities thus satisf
conservation laws,14 the Mermin-Wagner theorem, as well a
the Pauli principlê ns

2&5^ns& implicit in the following two
sum rules:

T

N (
q

xsp~q!5^~n↑2n↓!2&5n22^n↑n↓&, ~1!

T

N (
q

xch~q!5^~n↑1n↓!2&2n25n12^n↑n↓&2n2,

wheren is the density. We use the notation,q5(q,iqn) and
k5(k,ikn) with iqn and ikn respectively bosonic and ferm
onic Matsubara frequencies. We work in units wherekB
51, \51, and lattice spacing and hoppingt are unity. The
above equations, in addition to5 Usp5U^n↑n↓&/(^n↑&^n↓&),
suffice to determine the constant verticesUsp andUch . This
two-particle self-consistent approach will be used through
this paper, unless we refer to FLEX calculations.
-
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Once the two-particle quantities have been found
above, the next step of the approach of Ref. 7 consist
improving the approximation for the single-particle se
energy by starting from an exact expression where the h
frequency Hartree-Fock behavior is explicitly factored o
One then substitutes in the exact expression the irreduc
low-frequency verticesUsp and Uch as well asGs

0(k1q)
and xsp(q),xch(q) computed above. In the origina
approach6 the final formula reads

Ss
( l )~k!5Un2s1

U

4

T

N (
q

@Uspxsp~q!

1Uchxch~q!#Gs
0~k1q!. ~2!

Irreducible vertices, Green functions, and susceptibilities
pearing on the right-hand side of this expression are all at
same level of approximation. They are the same as th
used in the calculations of Eq.~1!; hence they are consisten
in the sense of conserving approximations. The result
self-energySs

( l )(k) on the left-hand side, though, is at th
next level of approximation so it differs from the self-ener
entering the right-hand side.

There is, however, an ambiguity in obtaining the se
energy formula Eq.~2!. Within the assumption that onlyUsp
and Uch enter as irreducible particle-hole vertices, the se
energy expression in the transverse spin fluctuation cha
is different. To resolve this paradox, consider the exact f
mula for the self-energy represented symbolically by the d
gram of Fig. 1. In this figure, the square is the fully reducib
vertexG(q,k2k8,k1k82q). In all the above formulas, the
dependence ofG on k1k82q is neglected since the particle
particle channel is not singular. The longitudinal version
the self-energy Eq.~2! takes good care of the singularity ofG
when its first argumentq is near (p,p). The transverse ver
sion does the same for the dependence on the second
ment k2k8, which corresponds to the other particle-ho
channel. One then expects that averaging the two possi
ties gives a better approximation forG since it preserves
crossing symmetry in the two particle-hole channels. F
thermore, one can verify that the longitudinal spin fluctu
tions in Eq.~2! contribute an amountU^n↑n↓&/2 to the con-
sistency condition6 1

2 Tr(S ( l )G0)5U^n↑n↓& and that each of
the two transverse spin components also contribu
U^n↑n↓&/2 to 1

2 Tr(S (t)G0)5U^n↑n↓&. Hence, averaging Eq
~2! and the expression in the transverse channel also
serves rotational invariance. In addition, one verifies num
cally that the exact sum rule7 2*dv8Im@Ss(k,v8)#/p
5U2n2s(12n2s) determining the high-frequency behavio
is satisfied to a higher degree of accuracy. As a consiste
check, one may also verify that1

2 Tr(S (t)G(t)) differs by only

FIG. 1. Formally exact diagrammatic representation of the s
energy in the Hubbard model. The square is the fully reduci
four-point vertex.
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a few percent from1
2 Tr(S (t)G0). We will thus use a self-

energy formula that we call ‘‘symmetric’’:

Ss
(s)~k!5Un2s1

U

8

T

N (
q

@3Uspxsp~q!

1Uchxch~q!#Gs
0~k1q!. ~3!

Ss
(s)(k) is different from so-called Berk-Schrieffer-typ

expressions12 that do not satisfy7 the consistency condition
between one- and two-particle properties,12 Tr(SG)
5U^n↑n↓&.

In comparing the above self-energy formulas with FLE
results, it is important to note that the same renormali
vertices and Green function appear in both the conserv
susceptibilities and the self-energy formula Eq.~3!. In the
latter, one of the external vertices is the bareU while the
other is dressed (Usp or Uch depending on the type of fluc
tuation exchanged!. This means that the fact that Migdal
theorem does not apply here is taken into account. This te
nique is to be contrasted with the FLEX approximati
where all the vertices are bare ones, as if there was a Mi
theorem, while the dressed Green functions appear in
calculation. The irreducible vertex that is consistent with
dressed Green function is frequency and momentum de
dent, in contrast to the bare vertex appearing in the FL
self-energy expression. In this Eliashberg-type se
consistent approach, then, the Green functions are treat
a high level of approximation while all the vertices are ba
zeroth order ones. In other words, the basic elements of
perturbation theory are treated at extremely different lev
of approximation.

III. MONTE CARLO VERSUS MANY-BODY
CALCULATIONS

Our Monte Carlo results were obtained with the determ
nantal method2 using typically 105 Monte Carlo updates pe
space-time point. The inverse temperature isb55, the inter-
action strength isU54, and periodic boundary conditions o
a square lattice are used. Other details about the simula
may be found in the figure captions. Our detailed analysi
for the single-particle spectral weightA(k,v) at the wave
vectork5(0,p) but other wave vectors will also be show
in the last figure of the paper. The Monte Carlo results
influenced by the statistical uncertainty, by the system
error introduced through imaginary-time discretization,Dt,
and by the finite sizeL of the system. The two calculation
with Dt51/10 in Fig. 2~a! show that increasing the numbe
of QMC sweeps~smaller s, defined in Fig. 2! leads to a
more pronounced pseudogap.~Too larges may even wash
out the pseudogap.! The same figure also shows calculatio
with the sames but different values ofDt @systematic error
is of order (Dt)2]. For Dt;1/10, the decrease in pseudog
depth with decreasingDt becomes less than the accura
achievable by the maximum entropy inversion. If t
pseudogap persists whenL→` at fixed s and fixed Dt
51/10 it should be even more pronounced with a lar
number of QMC sweeps~smallers). The size analysis need
to be done in more detail, however, since increasing the
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tem sizeL at fixeds andDt leads to a smaller pseudogap,
shown on the top left panel of Fig. 3~a!.

It is customary to analytically continue imaginary-tim
QMC results using the maximum entropy algorithm.11 To
provide a faithful comparison with the many-body a
proaches, we use the imaginary-time formalism for the
methods and analytically continue them for the same num
of imaginary-time points, using precisely the same maxim
entropy approach as for the QMC method. While the rou
off errors in the many-body approaches are very small, i
preferable to artificially set them equal to those in the cor
sponding QMC simulations to have the same degree
smoothing. Many-body results from the symmetric se
energy formulaS (s), Eq. ~3!, for an infinite system are
shown in Fig. 2~b!. The thin solid line is a direct real
frequency calculation in the infinite-size limit. Maximum en
tropy inversions of theL→` value of the many-bodyG(t)
shown on the same figure illustrate that with increasing
curacy the real-frequency result is more closely appro
mated. This confirms that the maximum entropy algorith

FIG. 2. For U54, b55, n51, k5(0,p), effect of various
other calculational parameters.~a! QMC results forL56. Thick
dotted line is forDt51/10 ands51.4%. The latter is the averag
of the error onG(t) normalized byG(t) itself. Calculations with
the sames but for Dt51/5 and 1/16 are also shown. Thin dash
line is for Dt51/10 buts54.2% onG(t). ~b! Thin solid line is a
real-frequency calculation using Eq.~3!, for an infinite system. Also
shown, maximum entropy inversion ofG(t) with sames as in Fig.
3 below and a smaller one.

FIG. 3. Size-dependent results for various types of calculati
for U54, b55, n51, k5(0,p), L54,6,8,10, and average rela
tive errorss53.4% onG(t). Upper panels showA(k,v) obtained
from G(t) shown on the corresponding lower panels, by apply
the maximum entropy method. EachG(t) has 50 points.~a! QMC.
~b! Many-body using Eq.~3!. ~c! FLEX.
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simply smooths the results when artificially large errors
introduced in the analytical results.16 For this parameter
range, the effects are appreciable but do not change th
sults qualitatively. Even the widths of the peaks are not
badly reproduced by the maximum entropy method. The
ror bars are obtained from the maximum entropy Bayes
probability for different regularization parametersa.11 They
are clearly a lower bound.

In Fig. 3, we show the spectra obtained for three te
niques for system sizesL54, 6, 8, and 10. The left-han
panel is the QMC data, the middle panel is obtained fr
S (s), Eq. ~3!, while the last panel is for the FLEX approx
mation. The latter results for much larger lattices are
much different from those for the 838 system. Since

G~k,t!52E dv

2p

e2vt

e2bv11
A~k,v!,

the nearly flat (t-independent! portion in G(k,t) of the
lower right-hand panel leads, in the FLEX approximation,
a maximum inA(k,v) at v50, contrary to the Monte Carlo

FIG. 4. U54, b55, n51, k5(0,p), ands53.2% in maxi-
mum entropy inversion.~a! For L56, thick solid line for QMC
results and many-body approach using two different self-ene
formulas: dashed line for symmetric, Eq.~3!, and thin solid line for
longitudinal, Eq.~2!. ~b! Size-dependent results obtained from sy
metric version Eq.~3! for L56,8,10,16,32,64 and infinite siz
~dashed line!. The size dependence is monotonic.
e

re-
o
r-
n

-

t

results. By contrast, as can be seen by comparing the mi
and left panels, the agreement between Eq.~3! and QMC
data is very good, except for the height of the peaks. T
finite-size dependence of the pseudogap for both QMC si
lations and Eq.~3! is similar: as the size increases, the dep
of the pseudogap decreases. Some of the finite-size ef
are present in the verticesUsp andUch .

Figure 4~a! compares three results for theL56 system:
QMC ~thick solid line!, and the many-body approach of Re
7 using either the symmetricS (s) @Eq. ~3!, dotted line# or the
longitudinalS ( l ) @Eq. ~2!, thin solid line# self-energy formu-
las. In imaginary time, the agreement between QMC a
S (s) data is striking. The position of the peaks in the QM
data also agrees better with the symmetric versionS (s), Eq.
~3!.

For the lattice sizes where the Monte Carlo data are qu
tatively similar to those of Ref. 9, and hence uncontrovers
Fig. 3 has shown that there is a many-body approach
gives good agreement with the simulations. Although t
many-body approach is not rigorous, especially deep in
pseudogap regime where it is mostly an extrapolat
method,7 these tests suggest that it can give an understan
of finite-size effects in QMC data. There are two intrins
lengths that are relevant, namely,j the antiferromagnetic
correlation length, andj th the single-particle thermal de Bro
glie wavelength defined byvF /T. In simulations,j may be
estimated from the momentum-space width of the spin str
ture factor andj th from the Fermi velocity estimated from
the maxima ofA(k,v) at different wave vectors. Forb55,
andL510 we havej;3. At the (p,0) point,j th essentially
vanishes since we are at the van Hove singularity; hence
conditionL.j th is satisfied. If we hadj th.L, we would be
effectively probing the finite-size zero-temperature quant
regime. When the conditionL.j th is satisfied, as is the cas
here, one has access to the finite-temperature effects we
looking for. Once agreement on the pseudogap in the Q
and analytical approaches has been established up to th
gime j th,L,j, the analytical approach7 can be used to
reach larger lattice sizes~such thatj th,j,L) with rela-
tively modest computer effort. In Fig. 4~b! we show the
spectra obtained by Eq.~3! for L56 to 64 and then forL
5` ~obtained from numerical integration!. We see that the
size dependence of the pseudogap becomes neglig

y

-

FIG. 5. Single-particle spectral weightA(k,v) for U54, b55, n51, and all independent wave vectorsk of an 838 lattice. Results
obtained from maximum entropy inversion of QMC data on the left panel and many-body calculations with Eq.~3! on the middle panel and
with the FLEX approximation on the right panel.~Relative error in all cases is about 0.3%.!
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aroundL532 and that the pseudogap is quite sizable e
though it is smaller than that in the largest size available
QMC calculations (L510). The size dependence of th
pseudogap is qualitatively similar when the longitudin
form of the self-energy is used. We thus conclude that
pseudogap exists in the thermodynamic limit, contrary to
conclusion of Ref. 9. The increase in QMC noise with
creasing system size in the latter work may partly explain
different conclusion.

The last figure, Fig. 5, showsA(k,v) obtained by maxi-
mum entropy inversion of Monte Carlo data~left panel!, of
the many-body approach Eq.~3! ~middle panel!, and of the
FLEX approximation~right panel!. Using the symmetry of
the lattice and particle-hole symmetry,A(k,v)
5A@k1(p,p),2v#, one can deduce from this figure th
results forall wave vectors of this 838 lattice. The detailed
agreement between the Monte Carlo and many-body
proaches is surprisingly good for all wave vectors, even
from the Fermi surface.

IV. DISCUSSION

There are two interrelated conclusions to our work. Fi
detailed analysis of QMC results along with compariso
with many-body calculations show that there is a pseudo
in the n51,d52 Hubbard model, contrary to results o
tained from previous Monte Carlo simulations9 and from
self-consistent Eliashberg-type methods such as the FL
approximation. Second, we have reinforced the case tha
many-body methodology described here is an accurate
simple approach for studying the Hubbard model, even as
enter the pseudogap regime. While any self-energy form
that takes the formS}(qx(q)G0(k1q) will in general ex-
trapolate correctly to a finite zero-temperature gap,17 and
hence show a pseudogap as long asx(q) contains a renor-
malized classical regime,7 all other approaches we know o
suffer from the following defects: they usually predict u
physical phase transitions, they do not satisfy as many e
constraints, and in addition they do not give the kind
quantitative agreement with simulations that we have exh
ited in Figs. 3 to 5. The same arguments apply to
pseudogap problem away from half filling and for the attra
tive Hubbard model as well.7,8,18,19 Since in the Hubbard
model there is no Migdal theorem to justify the neglect
vertex corrections, it is likely, but unproven, that to obtain
pseudogap in FLEX-type approaches, one would need to
clude vertex-correction diagrams that are at the same lev
approximation as the renormalized Green functions. It
been shown7 that without vertex correction diagrams, an
self-consistent FLEX-type approach cannot yield
pseudogap inA(k,v).

The physical origin of the pseudogap in the tw
dimensional Hubbard model has been discussed at g
length previously:7 The precursors of antiferromagnetism
A(kF ,v) are preformed Bogoliubov quasiparticles that a
pear as a consequence of the influence of renormalized
sical fluctuations in two dimensions. They occur only in lo
dimension when the characteristic spin relaxation rate
smaller than the temperature and whenj/j th.1. With per-
fect nesting~or in the attractive Hubbard model! they occur
for arbitrarily small U. The ground-state gap value20 ~and
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corresponding single-particle pseudogap energy scale a
nite T) depends on coupling in a BCS-like fashion.

The previous results show that strong-coupling lo
particle-hole pairs arenot necessary to obtain a pseudoga
Such local particle-hole pairs are a different phenomen
They lead to a single-particle Hubbard gap well above
antiferromagnetically ordered state,in any dimensionbut
only whenU is large enough, in striking contrast with th
precursors discussed in the present paper. The Hubbard
also can exist without long-range order.21

From a methodological point of view, the strong-couplin
Hubbard gap is well understood, in particular within the d
namical mean-field theory22 or in strong-coupling perturba
tion expansion.23 However, the precursors of Bogoliubo
quasiparticles discussed in the present paper are unob
able in infinite dimension, where dynamical mean-fie
theory is exact, because they are a low-dimensional effec
remains to be shown if 1/d expansions or other extensions
infinite-dimensional methods will succeed in reproduci
our results.24

Experimentally, one can distinguish a strong-coupli
pseudogap from a precursor pseudogap~superconducting or
antiferromagnetic! as follows. Ideally, if one has access e
perimentally to the critical quantity~spin or pair fluctuations!
the difference between the two phenomena is clear since
cursors occur only in the renormalized classical regime
these fluctuations. If one has access only toA(k,v), there
are also characteristic signatures. The precursors are ch
terized by a ‘‘dispersion relation’’ that is qualitatively sim
lar to that in the ordered state.@However the intensity of the
peaks inA(k,v) does not have the full symmetry of th
ordered state.# By contrast, a strong-coupling pseudog
does not show any signs of the symmetry of the ordered s
at high enough temperature.21 Also, the temperature depen
dence of the two phenomena is very different since prec
sors of Bogoliubov quasiparticles disappear at sufficien
high temperature in a manner that is strongly influenced
the Fermi velocity because of the conditio
j/(vF /T).1.7,19,25 Hence, even with isotropic interaction
the precursor pseudogaps appear at higher temperature
points of the Fermi surface that have smaller Fermi veloc
even in cases when the zero-temperature value of the ga
isotropic. This has been verified by QMC calculations for t
attractive Hubbard model.8 By contrast, at sufficiently strong
coupling, the Hubbard gap does not disappear even at r
tively large temperatures, despite the fact thatA(k,v) may
rearrange over frequency ranges much larger t
temperature.26

The methods we have presented here apply with o
slight modifications to the attractive Hubbard model ca
where superconducting fluctuations18 may induce a
pseudogap8,19 in the weak- to intermediate-coupling regim
relevant for the cuprates at that doping.27 Recent time-
domain transmission spectroscopy experiments28 suggest
that the renormalized classical regime for the supercond
ing transition in high-temperature superconductors has b
observed. Concomitant peaks observed in photoemis
experiments29 persist above the transition temperature in t
normal state. They may be precursors of superconduc
Bogoliubov quasiparticles.8 At exactly half filling, on the
other hand, the paramagnetic state exhibits a strong-coup
~local particle-hole pairs! Hubbard gap.
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