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The opening of a critical-fluctuation-induced pseudo@apprecursor pseudogaim the one-particle spectral
weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte
Carlo simulations, may be obtained from many-body techniques that use Green functions and vertex correc-
tions that are at the same level of approximation. Self-consistent theories of the Eliashbefgutfpas the
fluctuation exchange approximatjonse renormalized Green functions and bare vertices in a context where
there is no Migdal theorem. They do not find the pseudogap, in quantitative and qualitative disagreement with
simulations, suggesting these methods are inadequate for this problem. Differences between precursor
pseudogaps and strong-coupling pseudogaps are also discussed.

[. INTRODUCTION main concerns here. Further comments on the regime we do
not address here, namely, the strong-coupling regime, appear
The two-dimensional Hubbard model is one of the keyin the concluding paragraphs.

paradigms of many-body physics and is extensively studied One may think that numerical results have already re-
in the context of the cuprate superconductors. While there isolved the pseudogap issue defined above, but this is not so.
now a consensus that at half filling€ 1) the ground state Early quantum Monte Carl@QMC) data analytically contin-
has long-range antiferromagneti@r spin-density-wave ued by the maximum entropy method concluded that precur-
order!? the route to this low-temperature phase is still asors of antiferromagnetism iA(k,») were absent at any
matter of controversy when the system is in the weak- tmonzero temperature in the weak- to intermediate-coupling
intermediate-coupling regime. In this regime, we know thatregime U <8t, whereU is the Coulomb repulsion term and
the Mermin-Wagner theorem precludes a spin-density-wave the hopping parametet A subsequent study in which a
phase transition at finite temperature but the issue of whethesingular value decomposition technique was used instead of
there is, or is not, a precursor pseudogap at finite temperaturaaximum entropy found the opening of a pseudogap in
in the single-particle spectral weighi(kg , ) is still unre-  A(kg,) at low temperature®¥. Each of the two techniques
solved. Different many-body approaches giyealitatively  has limitations. The singular value decomposition can
different answers to this pseudogap question. In particulatachieve a better resolution at low frequencies, but we find
the widely used self-consistent fluctuation excha(igeEX)  that the quality of the spectra is influenced by the profile
approximatiori does not find a pseudogap in the 2 repul-  function introduced to limit the range of frequencies. An-
sive Hubbard model for any filling. A stuflyf lattices of up  other difficulty is that it leads to negative valuesAfk, w).
to L=128 found that as the temperature is reduced the quaAs far as the maximum entropy method is concerned, recent
siparticle peak inA(kg,w) smears considerably while re- advances! which we will use here, have made this method
maining maximum aw=0, signaling a deviation from the more reliable than the classic version applied in Ref. 9.
Fermi liquid behavior but no pseudogap. The same qualita- In this paper, we address the issue of the pseudogap in the
tive answer is found for attractive models. By contrast, thed=2, n=1 Hubbard model at weak to intermediate cou-
many-body approach that has given to date the best agrepling, but it will be clear that the general conclusions are
ment with simulations of both staficand imaginary-time more widely applicable. We present QMC results and show
quantitie§ indicates the existence of a precursor single-that the finite-size behavior obtained féi(kg,®) is cor-
particle pseudogap in the weak-to intermediate-coupling rerectly reproduced by the method of Ref. 7. We also introduce
gime, for both the attractive and repulsigde=2 Hubbard a slight modification of the latter approach that makes the
model, whenever the ground state has long-range ordeagreement even more quantitative. This many-body approach
While we will restrict ourselves to theé=2 repulsive model allows us to extrapolate to infinite size and show that the
at half filling, our results will be relevant to the more generalpseudogap persists even in lattices whose sizes are greater
question of the pseudogap since small changes in filling othan the antiferromagnetic correlation lengthcontrary to
changes from the repulsive to the attractive é4sdo not  the statements made earlfeFhese sizes cannot be reached
generally necessitate fundamental changes in methodologhy QMC simulation when the temperature is too low. We
and the question of many-body methodology is one of ourconfirm that at low enough temperatures, the peak-ab at

0163-1829/2000/612)/78876)/$15.00 PRB 61 7887 ©2000 The American Physical Society



7888 S. MOUKOURI et al. PRB 61

the Fermi wave vector is replaced by a minimum corre- K’y
sponding to the opening of a pseudofand by two side Q
peaks that are precursors of the Bogoliubov quasiparticles. In @
contrast, we find that thA(kg ,w) values calculated by the

FLEX approximation on small lattices arpialitatively dif- kt
ferent from those of the QMC method and do not have the k-qt
correct size dependence. Since all many-body techniques in-
volve some type of approximation, their reliability should be energy in the Hubbard model. The square is the fully reducible
gauged by their capacity to reproduce, at least qualitativelyf,our_Iooint vertex. '

the Monte Carlo results in regimes where the latter are free
from ambiguities. We thus conclude that Eliashberg-type ap-
proaches such as FLEX are unreliable in the absence ofgb

Migdal theorem and that there is indeed a pseudogap in thﬁ‘nproving the approximation for the single-particle self-

weak- to intermediate-coupling regime at half filling. It is energy by starting from an exact expression where the high-
likely, but not yet unambiguously proven, that COnSIStenCyfrequency Hartree-Fock behavior is explicitly factored out.

between the Gret_an func_:tlons and_vgrt|ces used in the MaN¥sne then substitutes in the exact expression the irreducible
body calculation is crucial to obtaining the pseudogap. low-frequency verticedJ, and U, as well asGO(k+q)
(o8

and xsp(Q),xch(d) computed above. In the original

FIG. 1. Formally exact diagrammatic representation of the self-

Once the two-particle quantities have been found as
ove, the next step of the approach of Ref. 7 consists in

Il. MANY-BODY APPROACH approach the final formula reads
Many-body techniques of the paramagnon fymo lead UuT
to a pseudogap but they usually have low-temperature prob- zg)(k): un_,+-—— 2 [Uspxsp(@)
lems because they do not satisfy the Mermin-Wagner theo- 4 N %

rem. No such difficulty arises in the approach of Ref. 7. This 0
method proceeds in two stages. In the zeroth order step, the FUenxen(@]G,(k+a). @
self-energy is obtained by a Hartree-Fock-type factorizationrreducible vertices, Green functions, and susceptibilities ap-
of the four-point function with thedditional constrainthat  pearing on the right-hand side of this expression are all at the
the factorization is exact when all space-time coordinatesame level of approximation. They are the same as those
coincide™® FUﬂCtiOﬂﬂ differentiation, as in the Baym- used in the calculations of E¢l); hence they are consistent
Kadanoff approach] then leads to a momentum- and in the sense of conserving approximations. The resulting
frequency-independent irreducible particle-hole vertex forself-energyEET')(k) on the left-hand side, though, is at the

the spin channel that satisffels,=U(n;n )/((n;)(n;)).  next level of approximation so it differs from the self-energy
The irreducible vertex for the charge channel is too comph-emering the right-hand side.

cated to be computed exactly, so it is assumed to be constant There is, however, an ambiguity in obtaining the self-

and its value is found by requiring that the Pauli principle in energy formula Eq(2). Within the assumption that only,
the form(n2)=(n,) be satisfied. More specifically, the spin and U, enter as irreducible particle-hole vertices, the self-
and charge susceptibilities now take the formépl(q) energy expression in the transverse spin fluctuation channel
=Xo(q)‘1—USp/2 and Xc_hl(q)=X0(q)‘1+ Ucn/2 with xo is different. To resolve this paradox, consider the exact for-
computed with the Green functiota?, that contains the self- mula for the self-energy represented symbolically by the dia-
energy whose functional differentiation gave the verticesgram of Fig. 1. In this figure, the square is the fully reducible
This self-energy is constant, corresponding to the HartreevertexI'(g,k—k’,k+k’—q). In all the above formulas, the
Fock-type factorization® The susceptibilities thus satisfy dependence df onk+k’—q is neglected since the particle-
conservation laws? the Mermin-Wagner theorem, as well as particle channel is not singular. The longitudinal version of
the Pauli principlg(n?)=(n,) implicit in the following two  the self-energy Eq2) takes good care of the singularity Bf
sum rules: when its first argumeny is near @r, 7). The transverse ver-
sion does the same for the dependence on the second argu-
ment k—k’, which corresponds to the other particle-hole
> xsp(@=((n;—n)?=n-2(nin), (1) channel. One then expects that averaging the two possibili-
a ties gives a better approximation fdr since it preserves
crossing symmetry in the two particle-hole channels. Fur-
thermore, one can verify that the longitudinal spin fluctua-
tions in Eq.(2) contribute an amouri/(n;n )/2 to the con-
sistency conditioh 3 Tr(2(G% =U(n;n,) and that each of
wheren is the density. We use the notatiays=(q,iq,) and the two transverse spin components also contributes
k= (k,ikn) with ig, andik, respectively bosonic and fermi- U{n,n)/2 to 3 Tr(X(VG%=U(n;n,). Hence, averaging Eq.
onic Matsubara frequencies. We work in units whége (2) and the expression in the transverse channel also pre-
=1, ~=1, and lattice spacing and hoppibgre unity. The serves rotational invariance. In addition, one verifies numeri-
above equations, in addition®®J,=U(n;n)/({n;){n;)), cally that the exact sum ruie—fde’'IM2,(ko’)]/mT
suffice to determine the constant vertitgég, andU.y,. This = U2n_,(1—n_,) determining the high-frequency behavior
two-particle self-consistent approach will be used throughouts satisfied to a higher degree of accuracy. As a consistency
this paper, unless we refer to FLEX calculations. check, one may also verify thafr(=(VGWY) differs by only

Zl -

Zl 4

; Xen(@) ={(n;+n )% —n?=n+2(n;n)—n?,
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a few percent froms Tr(SMG%. We will thus use a self- 0.6 - A GMC by Many-Body S | e
energy formula that we call “symmetric”: I [ D)~ Many-Body
O=14% O=42% | 708
UT 04 — At=1116 ATA Ar1n107] - los
P At 1 N
SP00=Un_ o+ 55 2 [3Uspxsp(a) 2 s ]
0.4
0.2 - 1 |
+UchXen(0) Gk +0). 3 T2
E&s
J =6
Eff)(k) is different from so-called Berk-Schrieffer-type 0.0 50 = '0'0‘ = ‘50 oo Py ” 0.0
expressiong that do not satisfythe consistency condition h ' R ’ '
between one- and two-particle properties,Tr(2G) FIG. 2. ForU=4, B=5, n=1, k=(0,m), effect of various
=U(nn). other calculational parameter&) QMC results forL=6. Thick

In comparing the above self-energy formulas with FLEX dotted line is forA r=1/10 ando=1.4%. The latter is the average
results, it is important to note that the same renormalize@f the error onG(7) normalized byG(r) itself. Calculations with
vertices and Green function appear in both the conservinghe samesr but for A7=1/5 and 1/16 are also shown. Thin dashed
susceptibilities and the self-energy formula Eg). In the lineis for A7=1/10 buto=4.2% onG(r). (b) Thin solid line is a
latter, one of the external vertices is the barewhile the  real-frequency calculation using Eg), for an infinite system. Also
other is dressedL(sp or U, depending on the type of fluc- shown, maximum entropy inversion 6 7) with sameo as in Fig.
tuation exchanged This means that the fact that Migdal's 3 Pelow and a smaller one.
theorem does not apply here is taken into account. This tech-
nique is to be contrasted with the FLEX approximationtem sizelL at fixedo andA 7 leads to a smaller pseudogap, as
where all the vertices are bare ones, as if there was a Migdghown on the top left panel of Fig(a.
theorem, while the dressed Green functions appear in the It is customary to analytically continue imaginary-time
calculation. The irreducible vertex that is consistent with theQMC results using the maximum entropy algoritfinTo
dressed Green function is frequency and momentum depeRrovide a faithful comparison with the many-body ap-
dent, in contrast to the bare vertex appearing in the FLEXproaches, we use the imaginary-time formalism for these
self-energy expression. In this Eliashberg-type self-methods and analytically continue them for the same number
consistent approach, then, the Green functions are treated @timaginary-time points, using precisely the same maximum
a high level of approximation while all the vertices are bare €ntropy approach as for the QMC method. While the round-
zeroth order ones. In other words, the basic elements of theff errors in the many-body approaches are very small, it is

perturbation theory are treated at extremely different levelreferable to artificially set them equal to those in the corre-
of approximation. sponding QMC simulations to have the same degree of
smoothing. Many-body results from the symmetric self-

energy formulaZ(®, Eq. (3), for an infinite system are

lll. MONTE CARLO VERSUS MANY-BODY shown in Fig. 2b). The thin solid line is a direct real-
CALCULATIONS frequency calculation in the infinite-size limit. Maximum en-

Our Monte Carlo results were obtained with the determi-OPY Inversions of the.LHOC .value of the ma_my_—bodﬁ(_r)

nantal methoflusing typically 16 Monte Carlo updates per shown on the same figure |Ilustrat_e that with increasing ac-
curacy the real-frequency result is more closely approxi-

space-time point. The inverse temperaturgis5, the inter- : . . .
action strength i&) =4, and periodic boundary conditions on mated. This confirms that the maximum entropy algorithm

a square lattice are used. Other details about the simulations
may be found in the figure captions. Our detailed analysis is 1.0
for the single-particle spectral weight(k,») at the wave | a)
vectork=(0,7) but other wave vectors will also be shown i
in the last figure of the paper. The Monte Carlo results are Zg5
influenced by the statistical uncertainty, by the systematic<
error introduced through imaginary-time discretizatid,

and by the finite siz& of the system. The two calculations
with A7=1/10 in Fig. Za) show that increasing the number

of QMC sweeps(smaller o, defined in Fig. 2 leads to a
more pronounced pseudogdpoo largec may even wash g
out the pseudogapThe same figure also shows calculations
with the samer but different values ofA 7 [systematic error 05
is of order (A 7)?]. For A7~ 1/10, the decrease in pseudogap
depth with decreasind 7 becomes less than the accuracy g, 3. size-dependent results for various types of calculations
achievable by the maximum entropy inversion. If thefor y=4, g=5, n=1, k=(0,r), L=4,6,8,10, and average rela-
pseudogap persists when—c at fixed o and fixed A7 tive errorso-=3.4% onG(). Upper panels show(k,w) obtained
=1/10 it should be even more pronounced with a largeffrom G(r) shown on the corresponding lower panels, by applying
number of QMC sweepsmallero). The size analysis needs the maximum entropy method. Ea€{( ) has 50 points(a) QMC.

to be done in more detail, however, since increasing the sysb) Many-body using Eq(3). (c) FLEX.

Monte Carlo Many-Body 2® FLEX
R T e T

oo
(=N =]

0 B2 B0 pr2 B0 pr2 B
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T T T T T T T T ) Manymogy 30 6 T results. By contrast, as can be seen by comparing the middle
i L=s—>ﬁ\ N s and left panels, the agreement between &j.and QMC
/ — 1] data is very good, except for the height of the peaks. The
— 16

/ Y — finite-size dependence of the pseudogap for both QMC simu-

L /. e lations and Eq(3) is similar: as the size increases, the depth
- U _____ —+ of the pseudogap decreases. Some of the finite-size effects
1 / are present in the verticés;, andU,.

T YR Figure 4a) compares three results for the=6 system:
Las 7 QMC (thick solid ling, and the many-body approach of Ref.
' ] 7 using either the symmetrie® [Eq. (3), dotted ling or the
] longitudinal 2 (") [Eq. (2), thin solid ling self-energy formu-
| | las. In imaginary time, the agreement between QMC and
05 ‘ ‘ ‘ ‘ 3.9 data is striking. The position of the peaks in the QMC
data also agrees better with the symmetric ver&6h, Eq.

-2

FIG. 4. U=4, =5, n=1, k=(0,7), ando=3.2% in maxi-

mum entropy inversion(a) For L=6, thick solid line for QMC For the lattice sizes where the Monte Carlo data are quali-
results and many-body approach using two different self-energyyiyely similar to those of Ref. 9, and hence uncontroversial,
formulas: dashed line for symmetric, E&), and thin solid line for Fig. 3 has shown that there is a many-body approach that
longitudinal, Eq.(2). (b) Size-dependent results obtained from sym- oies g00d agreement with the simulations. Although this
Egztsr;]ce(;/ﬁf;o?hslli(zz er eLnZSHiél?élrgfr?é?:nignd infinite size many-body approach is not rigorous, especially deep in the
P ' pseudogap regime where it is mostly an extrapolation

. o method’ these tests suggest that it can give an understandin
simply smooths the results when artificially large errors are ' 99 9 9

introduced in the analytical resul.For this parameter of finite-size effects in QMC data. There are two intrinsic

ranae. the effects are appreciable but do not change the rIe_ngths that are relevant, namely,the antiferromagnetic

ge, the et ppreci: 9 Correlation length, and;;, the single-particle thermal de Bro-
sults qualitatively. Even the widths of the peaks are not tog i | h defined by./ mulati b
badly reproduced by the maximum entropy method, The end & TRLACTT TTEE e BTG DO TR VS
ror bars are obtained from the maximum entropy Bayesian P P

probability for different regularization parameters! They Eﬁgen:zxcﬁ%aagfig& fro)rr;ttréif;eerrw|Vyae\llc;c:/t()alc<§§rt;m§ted:f5rom
are clearly a lower bound. ' © - F@=5,

In Fig. 3, we show the spectra obtained for tree techf Lol 8T8 TR 3. B B e ence the
niques for system sizels=4, 6, 8, and 10. The left-hand 9 Y,

panel is the QMC data, the middle panel is obtained fronconditionL> &, is satisfied. If we had,>L, we would be

3 Eq. (3), while the last panel is for the FLEX approxi- effgctwely probing the flnlte—5|ze .zero-.te'mperatL.Jre quantum
mation. The latter results for much larger lattices are no egime. When the Cond't'°h>.§‘h Is satisfied, as is the case
much different from those for the>88 system. Since ere, one has access to the finite-temperature e_ﬁects we are
looking for. Once agreement on the pseudogap in the QMC
Con and analytical approaches has been established up to the re-
Gk, 7)=— d_w e AK, ) gime &,<L<¢, the analytical approaéhcan be used to
' 27 @ Bogq o reach larger lattice sizetsuch thaté;,<é<L) with rela-
tively modest computer effort. In Fig.(d) we show the
the nearly flat ¢-independent portion in G(k,7) of the  spectra obtained by E¢3) for L=6 to 64 and then foL
lower right-hand panel leads, in the FLEX approximation, to=o> (obtained from numerical integratipnWe see that the
a maximum inA(k,w) atw=0, contrary to the Monte Carlo size dependence of the pseudogap becomes negligible

(r.0}

™
Monte Carlo %: Many-Body Flex
(0.0) (om

D ‘J\ J\J‘/\_A N\
iy - MG i -
— A= . =
— =
__/\ J e
(0,0) === —T L A B p T T L A
-5.00 0.00 5.00 -5.00 0.00 5.00 -5.00 0.00 5.00
ot

FIG. 5. Single-particle spectral weighik,») for U=4, =5, n=1, and all independent wave vectdof an 8X8 lattice. Results
obtained from maximum entropy inversion of QMC data on the left panel and many-body calculations wish &@ythe middle panel and
with the FLEX approximation on the right panéRelative error in all cases is about 0.3%.
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aroundL =32 and that the pseudogap is quite sizable everorresponding single-particle pseudogap energy scale at fi-
though it is smaller than that in the largest size available imite T) depends on coupling in a BCS-like fashion.
QMC calculations (=10). The size dependence of the The previous results show that strong-coupling local
pseudogap is qualitatively similar when the longitudinalparticle-hole pairs areot necessary to obtain a pseudogap.
form of the self-energy is used. We thus conclude that théSuch local particle-hole pairs are a different phenomenon.
pseudogap exists in the thermodynamic limit, contrary to thefhey lead to a single-particle Hubbard gap well above the
conclusion of Ref. 9. The increase in QMC noise with in- 2ntiferromagnetically ordered stat# any dimensionbut
creasing system size in the latter work may partly explain th@nly whenU is large enough, in striking contrast with the
different conclusion. plrecursors Q|fcqf€§3t |Ir;r§ger§rzzze2: arlper. The Hubbard gap
: ; ; . also can exist wi - :
e 2 e, .5 shove(lo) obtaned by e om 2 mthodlogicalpoin of vew, he tong-couping
the many-body approach E() (middle panel, and of the Hubbard gap is well understood, in particular within the dy-

Y GPPTe , namical mean-field theof§ or in strong-coupling perturba-
FLEX approximation(right pane). Using the symmetry of , aynansiof® However, the precursors of Bogoliubov

the lattice and particle-hole — symmetry, A(k,w)  guasiparticles discussed in the present paper are unobserv-
=A[k+(m,m),~w], one can deduce from this figure the gpje i infinite dimension, where dynamical mean-field
results forall wave vectors of this 8 8 lattice. The detailed theory is exact, because they are a low-dimensional effect. It
agreement between the Monte Carlo and many-body afyemains to be shown if di/expansions or other extensions of
proaches is surprisingly good for all wave vectors, even faf,finite-dimensional methods will succeed in reproducing

from the Fermi surface. our result<
Experimentally, one can distinguish a strong-coupling
IV. DISCUSSION pseudogap from a precursor pseudogsyperconducting or

antiferromagneticas follows. Ideally, if one has access ex-

There are two interrelated conclusions to our work. Firstperimentally to the critical quantitfspin or pair fluctuations
detailed analysis of QMC results along with comparisonshe difference between the two phenomena is clear since pre-
with many-body calculations show that there is a pseudogapursors occur only in the renormalized classical regime of
in the n=1,d=2 Hubbard model, contrary to results ob- these fluctuations. If one has access onlyAtk, ), there
tained from previous Monte Carlo simulatidnand from  are also characteristic signatures. The precursors are charac-
self-consistent Eliashberg-type methods such as the FLEXerized by a “dispersion relation” that is qualitatively simi-
approximation. Second, we have reinforced the case that ther to that in the ordered statgdowever the intensity of the
many-body methodology described here is an accurate anskaks inA(k,w) does not have the full symmetry of the
simple approach for studying the Hubbard model, even as werdered stat¢.By contrast, a strong-coupling pseudogap
enter the pseudogap regime. While any self-energy formuldoes not show any signs of the symmetry of the ordered state
that takes the fornEMEq)((q)Go(kJr ) will in general ex-  at high enough temperatuteAlso, the temperature depen-
trapolate correctly to a finite zero-temperature §apnd  dence of the two phenomena is very different since precur-
hence show a pseudogap as longy&q) contains a renor- sors of Bogoliubov quasiparticles disappear at sufficiently
malized classical regimeall other approaches we know of high temperature in a manner that is strongly influenced by
suffer from the following defects: they usually predict un-the Fermi velocity because of the condition
physical phase transitions, they do not satisfy as many exagl/ (v /T)>1."1%?Hence, even with isotropic interactions,
constraints, and in addition they do not give the kind ofthe precursor pseudogaps appear at higher temperatures on
quantitative agreement with simulations that we have exhibpoints of the Fermi surface that have smaller Fermi velocity,
ited in Figs. 3 to 5. The same arguments apply to thesven in cases when the zero-temperature value of the gap is
pseudogap problem away from half filling and for the attrac-isotropic. This has been verified by QMC calculations for the
tive Hubbard model as wefl®'%%° Since in the Hubbard attractive Hubbard modé&IBy contrast, at sufficiently strong
model there is no Migdal theorem to justify the neglect ofcoupling, the Hubbard gap does not disappear even at rela-
vertex corrections, it is likely, but unproven, that to obtain atively large temperatures, despite the fact tAgk,w) may
pseudogap in FLEX-type approaches, one would need to inearrange over frequency ranges much larger than
clude vertex-correction diagrams that are at the same level @émperaturé®
approximation as the renormalized Green functions. It has The methods we have presented here apply with only
been showh that without vertex correction diagrams, any slight modifications to the attractive Hubbard model case
self-consistent FLEX-type approach cannot yield awhere superconducting fluctuatidfis may induce a
pseudogap iRA(k, o). pseudoga®® in the weak- to intermediate-coupling regime

The physical origin of the pseudogap in the two-relevant for the cuprates at that dopfrigRecent time-
dimensional Hubbard model has been discussed at gredbmain transmission spectroscopy experinf@nsuggest
length previously: The precursors of antiferromagnetism in that the renormalized classical regime for the superconduct-
A(kg ,w) are preformed Bogoliubov quasiparticles that ap-ing transition in high-temperature superconductors has been
pear as a consequence of the influence of renormalized clasbserved. Concomitant peaks observed in photoemission
sical fluctuations in two dimensions. They occur only in low experiment® persist above the transition temperature in the
dimension when the characteristic spin relaxation rate isiormal state. They may be precursors of superconducting
smaller than the temperature and whgg,,> 1. With per-  Bogoliubov quasiparticle.At exactly half filling, on the
fect nesting(or in the attractive Hubbard modehey occur  other hand, the paramagnetic state exhibits a strong-coupling
for arbitrarily smallU. The ground-state gap vakie(and  (local particle-hole paijsHubbard gap.
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