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Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties
of perovskites
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~Received 25 August 1999!

We present an approach to the implementation of the virtual crystal approximation~VCA! for the study of
properties of solid solutions in the context of density-functional methods. Our approach can easily be applied
to any type of pseudopotential, and also has the advantage that it can be used to obtain estimates of the atomic
forces that would arise if the real atoms were present, thus giving insight into the expected displacements in the
real alloy. We have applied this VCA technique within the Vanderbilt ultrasoft-pseudopotential scheme to
predict dielectric and piezoelectric properties of the Pb(Zr0.5Ti0.5)O3 solid solution in its paraelectric and
ferroelectric phases, respectively. Comparison with calculations performed on ordered alloy supercells and
with data on parents compounds demonstrates the adequacy of using the VCA for this perovskite solid
solution. In particular, the VCA approach reproduces the anomalous Born effective charges and the large value
of the piezoelectric coefficients.
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I. INTRODUCTION

The application of first-principles electronic ban
structure methods to the study of disordered alloys and s
solutions requires some approximation for the treatmen
the alloy disorder. A ‘‘direct’’ approach is to make use of th
supercell approximation, i.e., to study one or more dis
dered configurations in a supercell with artificially impos
periodic boundary conditions. Such calculations generally
quire the use of very large supercells in order to mimic
distribution of local chemical environments, and tend to
computationally very demanding. A much simpler and co
putationally less expensive approach is to employ the vir
crystal approximation~VCA!,1 in which one studies a crysta
with the primitive periodicity, but composed of fictitiou
‘‘virtual’’ atoms that interpolate between the behavior of t
atoms in the parent compounds. This technique has s
wide use in band-structure calculations.2–11 Another possible
approach would be to make use of the coherent poten
approximation~CPA!,12 but unfortunately the CPA is gene
ally not well suited for use in first-principles total-energ
methods. A different way to go beyond the VCA is to car
out a systematic perturbation expansion in the difference
tween the true and VCA potentials, an approach that is so
times referred to as ‘‘computational alchemy.’’2–4 However,
this method is much more complicated than the usual VC
requiring the use of density-functional linear-response te
niques.

Clearly the VCA has the advantages of simplicity a
computational efficiency, if two possible concerns can
addressed. First and foremost is the question of the accu
of the VCA approximation. Previous work has demonstra
PRB 610163-1829/2000/61~12!/7877~6!/$15.00
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good accuracy for the VCA in some semiconductor and f
romagnetic materials,2–7 but it was found to be inadequat
for an accurate treatment of the electronic structure of so
unusual semiconductor systems.8–10Until the recent pioneer-
ing work of Ramer and Rappe,11 nothing was known abou
the ability of the VCA to describe the properties of an im
portant class of materials, the ferroelectric perovskite so
solutions. Their work strongly suggests that these alloys
good candidates for modeling with the VCA, since it repr
duces the strain-induced transitions of ordered supercell
Pb(Zr0.5Ti0.5)O3. However, it is not known whether th
VCA is good enough to predict the anomalous dielectric a
piezoelectric properties of perovskite solid solutions.

A second concern is more technical. By its nature,
VCA is closely tied to the pseudopotential approximatio
Indeed, unless pseudopotentials are used, it is hopeles
apply the VCA to the usual case of isoelectronic substitut
~i.e., atoms belonging to the same column but different ro
of the Periodic Table!. However, as pseudopotential metho
have matured, it has become less obvious what is the co
or optimal way to implement the VCA. For the case of loc
pseudopotentials, the implementation is straightforward:8 the
potential of the virtual system made from the (A12xBx)C
alloy is generated simply by compositionally averaging t
potentials of the parentAC andBC compounds,

VVCA~r !5~12x!VAC~r !1xVBC~r !. ~1!

In practice this is usually done in Fourier space by averag
VAC(G) and VBC(G). In the case of semilocal~e.g,
Hamann-Schlu¨ter-Chiang13! pseudopotentials, a similar ave
aging of the radial potentialsVA, l(r ) andVB,l(r ) can be done
7877 ©2000 The American Physical Society
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separately in each angular momentum channell. However,
with the fully non-local Kleinman-Bylander type separab
pseudopotentials14 that are most commonly used in the cu
rent generation of electronic-structure calculations,
implementation of the VCA is neither straightforward n
unique. For example, Ramer and Rappe11 discuss four differ-
ent ways of implementing the VCA for such pseudopote
tials, each of them providing different physical results. Sim
larly, the best way of applying the VCA to the case
ultrasoft pseudopotentials15 is less obvious still.

The purpose of the present paper is to report progres
addressing both of the above concerns. Taking them in
verse order, we first present a first-principles VCA approa
which is easily implemented for any type of pseudopotent
The method is demonstrated and tested in the contex
calculations on Pb(ZrxTi12x)O3 ~PZT!, an important perov-
skite solid solution. Our approach also has the advantage
it can easily be used to obtain estimates of the atomic fo
that would arise if the real atoms were present, thus giv
insight into the expected displacements in the real all
Such information, which for example is highly relevant
many properties of ferroelectric systems, is not provided
the usual VCA techniques.

Second, we use our new approach to evaluate the qu
of the VCA approximation for predicting the unusual diele
tric and piezoelectric properties in ferroelectric perovsk
alloys. Perovskite compounds are known to exhibit anom
lous dielectric properties. For example, they display anom
lously large values of the Born effective charges, result
from hybridization between the transition-metald and oxy-
gen 2p orbitals.16,17 Similarly, piezoelectric coefficients ar
large, compared to other classes of materials, both becau
the large Born effective charges and because of the la
microscopic reaction of the internal atomic coordinates
macroscopic strain.18–20 Using Pb(ZrxTi12x)O3 with x50.5
for our test system, Born effective charges and piezoelec
coefficients are calculated using our VCA approach toge
with the modern theory of polarization.21,22 We find that the
VCA can be used with fair confidence to predict dielect
and piezoelectric properties of Pb(Zr0.5Ti0.5)O3 alloys. As a
matter of fact, our VCA technique yields large Born effecti
charges that are very nearly equal to the average betwee
effective charges of the parent compounds. Furtherm
comparison with calculations performed on order
Pb(Zr0.5Ti0.5)O3 supercells demonstrates the ability of t
VCA to mimic piezoelectric coefficients of perovskite sol
solutions.

The paper is organized as follows. In Sec. II, we imp
ment our VCA approach in the context of density-function
theory, emphasizing the advantages of the approach. Se
III reports the predictions of this new VCA technique for th
Born effective charges and piezoelectric coefficients of
Pb(Zr0.5Ti0.5)O3 solid solution in its paraelectric and ferro
electric phases, respectively. We conclude in Sec. IV wit
discussion of perspectives and future directions. The App
dix contains details about the implementation of our VC
technique within the Vanderbilt ultrasoft-pseudopoten
scheme.15

II. THE VCA IMPLEMENTATION

Within a pseudopotential approach to density-functio
theory, the total energy ofNv valence electrons can be wri
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ten in terms of the one-particle wave functionsf i as

Etot@$f i%,$RI%#5U~$RI%!1(
i

^f i u2
1
2 ¹21Vextuf i&

1
1

2E E dr dr 8
n~r !n~r 8!

ur2r 8u
1EXC@n#,

~2!

where

Vext~r ,r 8!5(
I

Vps
I ~r2RI ,r 82RI !, ~3!

RI is the location of the siteI, andVps
I are the pseudopoten

tials. Here,n(r ) is the electron density,EXC is the exchange
and correlation energy,U($RI%) is the ion-ion interaction
energy, and atomic units are used throughout. Alocal
pseudopotential takes the formVext(r ,r 8)5Vext(r ) d(r
2r 8), while anon-localpseudopotential is written as a su
of projectors.

In either case, it is possible to derive a ‘‘VCA’’ operato
equation by simply averaging the pseudopotentials of
alloyed elements on siteI,

Vps
I ~r ,r 8!5~12x!Vps

A ~r ,r 8!1xVps
B ~r ,r 8!, ~4!

where, e.g.,A5Ti and B5Zr in Pb(ZrxTi12x)O3. For the
sites occupied by the nonalloyedC elements@Pb or O in
Pb(ZrxTi12x)O3], one simply takes

Vps
I ~r ,r 8!5Vps

C ~r ,r 8!. ~5!

ThenVext can be written

Vext~r ,r 8!5(
I

(
a

wa
I Vps

a ~r2RIa ,r 82RIa!, ~6!

whereVps
a is the pseudopotential for an atom of typea and

wa
I is a ‘‘weight,’’ which specifies the statistical compositio

on site I. In cubic Pb(ZrxTi12x)O3, for example, we setw
51 for Pb andw50 otherwise at the cube-corner site;w
51 for oxygen andw50 otherwise at the three face-cent
sites; andw5x and w512x, respectively for Zr and Ti
~and zero otherwise! at the cube-center site. In other word
we think of this crystal as composed ofsix atoms in the
primitive cell: the usual one Pb and three oxygen atoms,
two ‘‘ghost’’ atoms~Zr and Ti! sharing thesamelattice site
~and having weightsx and 12x respectively!. We then treat
this unit cell containing six ‘‘atoms’’ in the usual first
principles pseudopotential approach, solving the Kohn-Sh
equations in the presence of the potential given by Eq.~6!.

This approach has the advantage of requiring only v
slight modifications to the usual first-principles pseudopot
tial code. One simply inputs the weightw, along with the
position and atom type, of each ‘‘atom’’ in the unit ce
These weights are then used in just a few places, e.g., in
construction of the total external potential~6!. Perhaps the
only subtlety is in the treatment of the Ewald energy23 in the
ion-ion interaction termU appearing in Eq.~2!. Here, we
clearly have to prevent any Coulomb interaction betwe
two ‘‘ghost atoms’’ on the same site, or else the Ewald e
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ergy would be infinite. In fact, the Ewald energy that w
calculate is that of a crystal having valence charge

z̄v
I 5(

a
wa

I zv
a ~7!

on siteI ~so that, in the case of isoelectronic substitution, t
is just the usual Ewald energy!. In practice, as long as th
same gaussian width is used for all species when splitting
real-space and reciprocal-space Ewald contributions, this
be done very simply by replacingzv

a → wazv
a inside the

program and deleting the infinite on-site interaction ter
that would occur in the real-space Ewald sum.

There are three definite advantages to this new VCA
proach. First of all, it is extremely easy to implement,
already indicated; only the minor modifications of Eqs.~6!
and ~7! have to be implemented when starting from a co
ventional first-principles pseudopotential code. Second
contrast to the approach of Ref. 11, there is no need to g
erate a pseudopotential for each virtual atom. Here,
pseudopotentials are created once and for all for each
atomic species; only the weights wI change when dealing
with a new composition of the solid solution. Third, the a
loyed elements are still considered as separate atomic sp
~with corresponding weights!, rather than creating a singl
virtual atom as a whole.

This last point is less trivial than it might seem. Becau
the two ‘‘ghost atoms’’ on a site are considered as sepa
‘‘atoms,’’ one can consider responses to the displacemen
just oneof these ‘‘atoms’’ alone. In fact, the program aut
matically reports the forces on all the ‘‘atoms’’ in the un
cell, including those on the two ghost atoms separately.
structures of low symmetry, these forces need not be
same.24 These forces can provide some hints about
atomic distortions that would occur in the true disorder
materials. Themagnitudesof the force differences also act a
a kind of internal diagnostic for the appropriateness of us
the VCA for the system of interest. A large magnitude wou
suggest that the VCA approximation is not expected to
very accurate, while a smaller value implies that the VC
can be used with fair confidence to mimic structural prop
ties of the disordered alloy under consideration.

It is also straightforward, using our approach, to u
finite-difference methods to evaluate other kinds of respo
to the separate ghost-atom displacements. For example
Born effective charges can be defined as the first-order
larization changes with respect to first-order sublattice d
placements. As we will see in Sec. III, the contribution
each ghost atom to the Born effective charge of the wh
virtual atom can thus easily be calculated. To do the fin
difference calculation, we simply compute the change in
larization as the two ghost atoms are displaced to slig
different positions. Of course, to be meaningful, any r
physical quantity~e.g., the derivative of some observab
with respect to displacement! ultimately has to be evaluate
at the configuration of identical ghost-atom positions.

The discussion above has been limited to nor
conserving pseudopotentials, but the extension to the cas
Vanderbilt ultrasoft pseudopotentials15 is fairly straightfor-
s
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ward. This extension is discussed in the Appendix. In fa
all of our tests presented below have been carried out wi
the ultrasoft formulation.

III. APPLICATION TO PEROVSKITE SOLID SOLUTIONS

A. Born effective charges of the paraelectric
Pb„Zr 0.5Ti 0.5…O3 alloy

Our first goal is to determine the dynamical effecti
charges of the Pb(Zr0.50Ti0.50)O3 solid solution in its
paraelectric phase, as predicted by the VCA. This alloy
usually denoted as PZT. For this purpose, we first perfo
local-density approximation25 ~LDA ! calculations within the
Vanderbilt ultrasoft-pseudopotential scheme on the cu
perovskite structure, using our VCA technique. As detai
in Ref. 26, a conjugate-gradient technique is used to m
mize the Kohn-Sham energy functional. The Pb 5d, Pb 6s,
Pb 6p, Zr 4s, Zr 4p, Zr 4d, Zr 5s, Ti 3s, Ti 3p, Ti 3d, Ti
4s, O 2s, and O 2p electrons are treated as valence ele
trons. A weightw of 1 is assigned to Pb and oxygen atom
on their corresponding sites, whilew50.5 for both Ti and Zr
at the cube-center site@see Eqs.~6! and ~7!#. Consequently,
the VCA calculation includes 44 electrons per cell. We u
the Ceperley-Alder exchange and correlation27 as parameter-
ized by Perdew and Zunger.28 A ~6,6,6! Monkhorst-Pack
mesh29 is used in order to provide converged results.26 The
lattice parameter a0 is fully optimized by minimizing the
total energy, and is found to be very well described by V
gard’s law. In other words,a0 is very nearly equal to the
compositional average between the lattice constants of p
PbTiO3 and pure PbZrO3 given in Ref. 26.

To mimic the paraelectric phase, the atoms are kept in
ideal cubic positions. The dynamical effective charge Z33,a*
of each real and ghost atom is then calculated by using
formula

dPz5(
a

wa Z33,a* duz,a , ~8!

wheredPz is the change in polarization along thez direction
induced by the displacementsduz,a of thea atoms along the
z direction, andwa refers to the weight assigned to the a
oms. We allow the two ghost atoms to be at different atom
positions in order to compute the contribution of each
them on the Born effective charge of the whole virtual ato
We follow the procedure introduced in Ref. 21, which co
sists in directly calculating the spontaneous polarization a
Berry phase of the Bloch states. Technically, we use roug
660 Bloch states to assure a good convergence of the e
tive charges.

Table I shows the Born effective charges of the differe
atoms predicted by the VCA approach, as well as the co
positional average between theZ33* of pure paraelectric
PbTiO3 and PbZrO3 as given in Ref. 16. The Born effectiv
charges of a centrosymmetric supercell ordered along
@001# direction~i.e. alternating sequence of Zr and Ti plan
along thez-direction! are also given for comparison. Thi
centrosymmetric supercell is chosen to have the same la
constant as the VCA paraelectric cell, while the atoms
allowed to relax to minimize the total energy. In this tab
the averaged transition-metal atom interpolating between
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and Ti is referred to aŝB&, and the oxygen atoms ar
grouped into two kinds: those denoted O3, located between
two ^B& atoms along thez direction; and those denoted O1,
located between two^B& atoms in the perpendicula
directions.19,30 One can first see that the VCA reproduc
very well the effective charges of Pb,^B& and O atoms found
in the centrosymmetric ordered supercell, as well as in o
paraelectric PZT solid solutions:31,32 Z33* is around 4,
22.5, and25.5 for Pb, O1 and O3 atoms, respectively
while the effective charge of thêB& atom is close to 6.5. In
fact, Table I shows that the VCA approximation essentia
averages the effective charges of the parent compound
Pb, O1 , O3 , and ^B&. The VCA approach is thus able t
mimic the weak and subtle interaction between thed orbitals
of the transition-metal atom, treated as a single atom, and
O 2p orbitals. This interaction is responsible for the anom
lous effective charges of both O3 and ^B& atoms.16 On the
other hand, Table I demonstrates that theZ* contributions of
the Zr or Ti ghost atoms in PbZr0.5Ti0.5O3 are not well ap-
proximated by theZ* ’s of the corresponding Zr or Ti atom
in the centrosymmetric relaxed ordered supercell as wel
in their parent (PbZrO3 and PbTiO3) compounds. There is
an enhancement of the effective charge of the Zr ghost a
in PbZr0.5Ti0.5O3 with respect to the effective charge of Zr
relaxed ordered alloy supercell or in PbZrO3. Conversely,
the effective charge of the Ti ghost atom in PbZr0.5Ti0.5O3 is
much smaller than the effective charge of Ti in the relax
ordered alloy supercell or in PbTiO3. Interestingly, the un-
derestimation for Ti cancels with the overestimation for Z
yielding an effective charge of the whole^B& atom which is
nearly equal to the average between the effective charge
the B atoms in the relaxed alloy supercell or in the pare
compounds.

B. Piezoelectric coefficient of the ferroelectric
Pb„Zr 0.5Ti 0.5…O3 alloy

We now apply the VCA procedure to determine the
ezoelectric coefficients ei j of the ferroelectric tetragona
P4mm ground state of the Pb(Zr0.50Ti0.50)O3 solid solution
as predicted by the VCA. We use here the lattice consta
minimizing the total energy of the ordered supercell of R
20; that is, the lattice parametera0 and the tetragonal axia

TABLE I. VCA dynamical effective chargesZ33* of paraelectric
Pb(Zr0.5Ti0.5O3), as compared with those of a paraelectric relax
supercell ordered along the@001# direction ~denoted ‘‘Ordered’’!,
as well as, with those of the parent compounds and their aver
Last two rows show the comparison of the individual VCAZ33*
values for Zr and Ti with those of the paraelectric relaxed orde
supercell and with those of the parent compounds~Ref. 16!.

Atom VCA Ordered PbZrO3 PbTiO3 Ave

Pb 3.92 3.86 3.92 3.90 3.91
^B& 6.47 6.40 5.85 7.06 6.46
O1 22.54 22.52 22.48 22.56 22.52
O3 25.28 25.22 24.81 25.83 25.32

B: Zr 9.62 6.43 5.85
B: Ti 3.32 6.37 7.06
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ratio c/a are equal to 3.99 and 1.0345 Å, respectively. T
atomic displacements are fully optimized by minimizing t
total energy and the Hellmann-Feynman forces, the la
being smaller than 0.05 eV/Å at convergence. During th
minimizations, the ghost atoms can move but always sh
the same position. The Hellmann-Feynman force on the
tual ^B& atom is simply the sum of the forces on the Zr a
Ti ‘‘ghost’’ atoms, i.e., having a weight of 0.5 in Eqs.~6!
and ~7!. In the ferroelectric VCA ground state of PZT, th
force on the Ti atom is along the polarization direction, i.
along thez axis. This force is exactly opposite to the force o
the Zr atom. The magnitude of these forces is found to be
eV/Å, which is less than three times larger than the fo
used to get convergent results in Ref. 33. This indicates
the VCA approach can be used with some confidence
describe the structural properties of PZT alloys. As a ma
of fact, Table II shows that the VCA can reproduce rema
ably well the atomic displacements leading to the appeara
of ferroelectricity in the ordered Pb(Zr0.50Ti0.50)O3 alloy.20

Once the ferroelectric ground state is determined,
modern theory of polarization21,22 is used to calculate the
piezoelectric coefficient of PZT within our VCA procedur
More precisely, the piezoelectric coefficients ei j can be com-
puted via34

ei j 5
1

2pV (
a

Ra,i

d

dh j
~VGa•P!, ~9!

whereV is the cell volume anda51,2,3 runs over the three
real-space lattice vectorsRa and reciprocal lattice vector
Ga , andh j is the macroscopic strain. Equation~9! has re-
cently been derived in order to make the piezoelectric co
ficients independent of the choice of branch of the Be
phase.34 At the same time, Eq.~9! automatically eliminates
of the so-called ‘‘improper’’ terms19 as required to correctly
predict the piezoelectric coefficients.34 Technically, Eq.~9! is
evaluated by finite differences between two strained confi
rations: first that of the ferroelectric ground state, and th
for an additional 1% strain relative to this ground state.
the second run, the relative atomic coordinates naturally h
to be reoptimized in response to the applied strain.

As done in Ref. 18–20, and 35, the piezoelectric coe
cients can be decomposed into ‘‘clamped-ion’’ a
‘‘internal-strain’’ contributions,

d

e.

d

TABLE II. Structural parameters of ferroelectri
Pb(Zr0.5Ti0.5O3) within our VCA approach~denoted ‘‘VCA’’! and
for the ferroelectric supercell ordered along the@100# direction used
in Ref. 20~denoted ‘‘Ordered 1’’!. Dz are the ferroelectric atomic
displacements, inc-lattice units. Last two rows show theDz values
for Zr and Ti in the ‘‘Ordered 1’’ structure.

VCA Ordered 1

Dz~Pb! 20.0486 20.0480
Dz(^B&) 10.0076 10.0064
Dz(O1) 10.0790 10.0827
Dz(O3) 10.0585 10.0555

Dz(Zr) 10.0161
Dz(Ti) 20.0033
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e335e33,c1e33,i . ~10!

The ‘‘clamped-ion’’ or ‘‘homogeneous-strain’’ contributio
e33,c is given by Eq.~9! for the casei 5 j 53 andevaluated at
vanishing internal strain~that is,without allowing the addi-
tional relaxation of the relative atomic coordinates th
would be induced by the strain!. e33,c reflects electronic ef-
fects, measuring the extent to which the Wannier centers
to follow the homogeneous strain. The ‘‘internal-strain’’ pa
e33,i measures just those contributions to the piezoelec
response coming from internal distortions, i.e., reflecting
extent to which the ions fail to follow the homogeneo
strain. In practice,e33 and e33,c are computed, ande33,i is
then obtained from their difference.

The results fore33, e33,c and e33,i , as predicted by the
VCA, are shown in Table III and compared with variou
calculations on ordered supercells. One can first notice
the VCA is able to reproduce not only the magnitudes
also the signs of the piezoelectric coefficients of ordered
percells. In particular, the clamped-ion contribution, which
negative and independent of the ordering, is very well
scribed by the VCA approximation. Similarly, the VCA re
sults for e33,i and e33 lie between those of the different o
dered supercells, for which a larger spread exists. Ove
the results shown in Tables II and III confirm the adequa
of the VCA to mimic ferroelectric properties of PZT.

IV. CONCLUSIONS

In summary, we have developed a new first-princip
virtual crystal approach. This method~1! is easy to imple-
ment,~2! does not require the generation of pseudopotent
for each alloy composition, and~3! its outputs, via the com-
putation of the Hellmann-Feynman forces on the ‘‘ghos
alloyed elements, provide a hint about the ability of the VC
to mimic properties of the disordered alloys under consid
ation. This technique has been applied, within the Vander
ultrasoft-pseudopotential scheme,15 to predict dielectric and
piezoelectric properties of the Pb(Zr0.5Ti0.5)O3 solid solution
in its paraelectric and ferroelectric phase, respectively. C
parison with calculations performed on ordered superc
and with data on parent compounds demonstrates the
equacy of using the VCA for such properties. More work
needed to assess the ability of VCA to describe propertie
other isoelectronic perovskite solid solutions~e.g.,
Ba12xSrxTiO3), as well as heterovalent alloys,31,36 i.e., sys-
tems in which the alloyed elements belong to different c

TABLE III. Piezoelectric coefficients in C/m2 of
Pb(Zr0.5Ti0.5O3) within our VCA approach~denoted ‘‘VCA’’!, for
the supercell ordered along the@100# direction used in Ref. 20
~denoted ‘‘Ordered 1’’!, for the supercell ordered along the@001#
direction used in Ref. 18~denoted ‘‘Ordered 2’’!, and for the su-
percell ordered along the@111# direction used in Ref. 18~denoted
‘‘Ordered 3’’!.

VCA Ordered 1 Ordered 2 Ordered 3

e33 4.4 3.4 4.8 3.6
e33,c 20.8 20.8 20.7 20.7
e33,i 5.2 4.2 5.4 4.3
t

il

ic
e

at
t

u-

-

ll,
y

s

ls

’

r-
ilt

-
ls
d-

of

-

umns of the periodic table@e.g., Pb(Sc0.5Nb0.5)O3 or
Pb(Mg1/3Nb2/3)O3].

The present study also strongly suggests that fi
principles derived effective-Hamiltonian methods, alrea
available for simple perovskite systems,37–43 can be used
with confidence to predict finite-temperature properties
lead zirconate titanate solid solutions, by modeling these
loys within the VCA approach.
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APPENDIX: IMPLEMENTATION OF THE VCA
APPROACH WITHIN THE VANDERBILT

ULTRASOFT-PSEUDOPOTENTIAL SCHEME

In this appendix, we indicate how Eq.~6! can be realized
when using the Vanderbilt’s ultrasoft pseudopotenti
scheme.15 In this approach, the external potentialVext of Eq.
~2! contains a local partVloc

ion and a fully nonlocal partVNL ,

Vext5Vloc
ion1VNL . ~A1!

The local part contains local ionic contributions

Vloc
ion~r !5(

I
Vloc

ion,I~ ur2RI u!, ~A2!

while the fully nonlocal part is given by

VNL5 (
nm,I

Dnm,I
(0) ubn

I &^bm
I u. ~A3!

The functionsbn
I as well as the coefficientsDnm,I

(0) character-
ize the pseudopotentials, and thus differ for different atom
species.

The electron density in Eq.~2! is given by

n~r !52(
i

F uf i~r !u21 (
nm,I

Qnm
I ~r !^f i ubn

I &^bm
I uf i&G ,

~A4!

where the augmentation functionsQnm
I (r ) are also provided

by the pseudopotentials and are strictly localized in the c
regions. The ultrasoft pseudopotential is thus fully det
mined by the functionsVloc

ion,I , Qnm
I andbn

I , and by the scalar
Dnm,I

(0) . The algorithm used to generate these quantities
described in Refs. 15 and 44. The wavefunctionsf i are
eigensolutions of:

Huf i&5e iSuf i&, ~A5!

whereS is an hermitian overlap operator given by



y-
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S511 (
nm,I

qnm
I ubn

I &^bm
I u ~A6!

with qnm
I 5*drQnm

I (r ), and where

H52 1
2 ¹21Veff1 (

nm,I
Dnm

I ubn
I &^bm

I u. ~A7!

HereVeff is the screened effective local potential

Veff~r !5
dEtot

dn~r !
5Vloc

ion~r !1E dr 8
n~r 8!

ur2r 8u
1mxc~r !

~A8!

with mxc5dEXC@n#/dn(r ), and
n,

v

tt.

Le
Dnm
I 5Dnm

(0)1E drVeff~r !Qnm
I ~r !. ~A9!

Equation~6!, which is the fundamental equation underl
ing our VCA approach, can thus be realized by simply
placing three ionic quantities provided by the ultras
pseudopotentials, namelyVloc

ion,a , Dnm,a
(0) , andQnm

a , by their
product with the corresponding atomic weightwa

Vloc
ion,a→wa Vloc

ion,a , ~A10!

Dnm,a
(0) →wa Dnm,a

(0) , ~A11!

Qnm
a →wa Qnm

a . ~A12!
ent
kite
his
–4
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ys.
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