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Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy
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When atomic resolution is achieved, the scanning tunneling micros(®pk!) image of a dense metal
surface shows a giant amplitude, i.e., between one and two orders of magnitude larger than expected from an
s-wave tip. To date, no satisfactory explanation has been given. Using our earlier nonperturbative formalism
for the tunnel current, we reconsider the corrugation problem with a single atom tip f&yngr d orbitals,
or a combination. Particular emphasis is on the value of the corrugation as a function of the tunnel resistance
A m(R). Results show that the corrugation, observed over the wide range- (08Q), is inconsistent by
nearly two orders of magnitude with tiseorbital theory, and by one order of magnitude with the one. We
also can put aside tip-surface interactions. Tip states, sugh asdd,2, give basicallyswave behavior in
A; m(R). However, those with axial symmetry, suchdg+id,, and having a nodal line orthogonal to the
surface, give an enhanced corrugation. Finally, in tip states with a nodal plane, sdgh as the enhance-
ment effect is much more pronounced. Identical results are obtained by considering separately the nearly free
electron model, and a new method of atomic orbital superposition, for the metal surface.

[. INTRODUCTION =Ty+ 6T, where the surface structure leads to a lateral varia-
tion 6T(Xg,2g), over the background terniy(zy). Keeping
The wide impact of STM on the study of surface struc-only to linear order, the constraint imposes
tures and their local electronic properties is well established.

The outstanding atomic scale resolution achieved suggests — 6T(Xg 2)

X ) X A(Xg,2)=— ——— ()]
that the focusing of the tunneling current is due to a small dTo(2)/dz
cluster of atoms at the tip, or even just one atom. Early
studies of the current very close for a contact between 1
the tip and sampl&;* and more recently in Refs. 5,6, lead to R= ———. )
the interpretation of a quantum size contact between two o0 To(2)

infi'nite reservoirs. The ideal resistanceHs= 1/002N where |, 4 simple way, these equations express in which direction
N is the number of parallel channels, aong=2e“/h. One {0 ook for an enhancement of the corrugation: In addition to
concludes that the STM could be the smallest macroscopine expectedT term in Eq.(1), we see that the background

cally controlled tunneling junction, i.e., a single atom tip andtransmissionTo(z), in particular its slope, could also affect

a sur.face. . the corrugation. Inversion of Eq2) gives the average tip
Still, an outstanding problem for the last decade has beeﬂeight for a given resistance.

to explain the anomalously high corrugation observed on
compact metal surfaces, where the electrons are very delo-
calized and the density variation due to the atoms is known
to be very small in the vacuum region. On the basis of the
swave tip model of Tersoff and Hamarrt was not ex-
pected to resolve the atoms on metal surfaces in comparison
to semiconductors or layered semimetairst observed by y
Hallmark et al® and Winterllin et al,*>* atomic resolution ° r r-
on metal surfaces is often achieved under optimal surface

and tip conditions, and thus in UHV. Various interesting 2 O O O @‘O O

mechanisms have been proposed to explain the
prenomenort i OO0O00O00

To state the problem in a general way, and for the zero-
bias limit, the conductance has the formry) = ooT(rg),
where T(r,) is usually a complicated transmission coeffi- FIG. 1. Schem_atic of the STM_modeI considered in this work.
cient, dependent on the location of the tip(Fig. 1. In the The Gregn‘s functions for the two independent electrodes represent
STM constant current mode, one impose&,zy) = 1/R, propagation paths of the type 1 and 2, for the surface, and 1, 3, and

. i — 4, for the tip. Propagation in the coupled system must include a
and the tip follows the constrained pa#3=z+A(X0,2),  combination of theséSec. I). The corrugated surface is treated in

wherez is the average height, andlis the corrugation. The both the nearly free electron mod@ec. Il)) and a new muffin-tin
transmission coefficient can be separated into two tefims: superposition metho(Sec. IV).

Surface
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the s orbital. Thus for some fixed tip-surface separation, and
assuming equal spectral weight, the tunneling current is
higher in the case of thd,. tip. In the orientation proposed
in Fig. 2, them#0 states, having a nodal line along the
tunneling axis, give a reduced tunneling probability &his
much larger than thd,> case. Even more care is needed in
the case of linear combinations dfstates.

As a consequence, if we now takeas thefixed param-
eter, then different tips will be at different relative heights
above the surface. Then, it is meaningless to compare theo-

retical corrugations for different tip orbitalﬁhm(?) for the

same value of. Yet, this is what is frequently done in the
literature® Instead, one should compare corrugations for a
given value of the resistance, and compie,(R) by elimi-
natingz in Eq. (1) using Eq.(2). This is more difficult, since
. the same model calculation must be reliable for the back-
dXZ"'ldYZ dXZ'YZ ground transmission coefficient as well as the corrugation. A
, , , closer look at some perturbation methotfs'”*82°shows
_ FIG. 2. Isolated tip local density, Iy, calculated using the 4 the current is known up to a multiplicative constant.
g? tﬁ;eﬁces ;‘igﬁ;ﬁ:’cgrﬁ;’i‘(’;‘:ég isnefhé"t;'(ct’t:‘i 'gob:'nm:?en de’ é%‘i; nJerefore, in this work we reexamine both the resistance and
. i R P : corrugation problems fogs andd orbital tips using a single
grey level, corresponding to a fixed logarithmic scale, and the con-

o ; . approach.
tours, reveal distinctly the nodal lines for the# 0 tip states along 03 .
the 2 axis. The method of Sacks and Nogu&r#: gives the tunnel-

ing current between a quite general surface and a single atom
tip analytically, in the low bias and zero temperature limits.
The resulting transmission coefficient, for the particular case
nof the s orbital tip, reads

Based on the work of Chelf;}"*8it is commonly be-
lieved that a hypothetical,. tip orbital, taking its symmetry
axis (z) perpendicular to the sample surface, is at the origi
of this atomic resolution. The curious theoretical point is that
neither a single atom tip with amorbital, nor even with the
d,2 orbital, can account for the observed data. Indeed, a T(ro):4|m)‘tip{_lm 59s(ro,ro)} 3)
glance at Fig. 2, showing the orbital density plots in the |1+)\tipags(ro,ro)|2
(x,2) plane, indicates that these two states have a similar
asymptotic behavior into the vacuum along the tunneling . ) ) ) "
axis. Moreover, at some distance from the (iig., relevant Where\yp is the tip reflection amplitude, angh(r,r’) is the

to the STM situatioh the d.> orbital is not much more nonsingular part of theurface Green’s function. This ap-
“sharp” than thes orbital. proach to the tunneling problem is quite different, avoiding

Given the complex atomic structure of a real tip, which isPerturbative methods such as the Bardeen approxim%ﬁion,
possibly unstable, and certainly nonreproducible, there ignd is valid in the thin parrler limit. Indeed, in Ref. 22 we
neither an priori choice of symmetry axis, nor a particuar Showed how the denominator ¢I;,595) accounts for the
orbital to favor. The tip state, and in the vicinity of the Fermi tunneling through new states of the coupled tip-surface sys-
level, should be a linear combination of alorbitals. The (€M It is tempting to consider these states as a potential
final spectral weight is expected to be the result of the locaf®uUrce Of giant corrugations, a problem we did not pursue
chemical bonding of the tip extreme atom to its nearesturther. Here, the main goal is to apply thigr), and its
neighbors. Even if al,» character is dominant, it could in- 9eneralization to higher tip angular momenta.
deed be oriented arbitrarily with respect to the surface. Nev- N the thick barrier limit, the coupling becomes small, and
ertheless, Chéf® considers the effects ah+0 tip states, the factor\,69s— 0. We thus recover qualitatively the re-
such as those in Fig. 2, and in the geometry shown. Thestlt of Tersoff and HamanrTH): T(ro)>Im 6gs(ro,ro),
states reveal a nodal lirier nodal plangoriented orthogonal Which is directly the local density of stat¢sDOS) of the
to the surface, and in this work we consider their possibleS@mPple, at the location of the tip:
role in the giant corrugations.

The precise value of the background transmission coeffi-
cient, as Eqs(1) and(2) suggest, may strongly influence the
corrugation. Hence, in this work, we shall put the tunneling
resistanceR back into the picture. Not only iR the experi-  Thus, in the TH model, the pertinent quantities are the back-
mentally controlled and accurate parameter, but the distan(*@(ound densitypo, and its modulationdp, and their ratio
zo between tip and sample, defined as in Fig. 1, is unknowngetermines the corrugation.

More specifically, we will show that the resistance as a func-  Even in the nearly-free electron model, the calculation of
tion of z, or R(2), is different depending on the tip orbital in 8p can be quite delicate!?'8?*More recently, the work of
question. For example, the lobe of tHg orbital, as in Fig. Ref. 26 gives the LDOS for a selection @band metals. As

2, gives a shifted weight towards the surface, compared te&s well known, the spectral representation

Im 694(rg,ro)=—mp(ro,Eg). (4)
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Il. METHODS AND DEFINITIONS

ro,Ep)= Aro)|?8(E,—E 5
p(ro.Er) Ev (Tl F) ©® Our formalism introduced some time &ja@an account

for a single atom tip, or a small clusteyp, or d orbitals, and

a quite arbitrary surface structure. Its principal aim was to

oz B T - obtain an expression for small tip to surface separations, and

Ee . lo Vftlllth ﬂ':_ 2F“t¢’ﬁ~.1 A theb decay %onsta]}nt. thus to include multiple reflections in the barrier omitted in
quivaiently, th€ resistance Increases by one order of Magg,,ast order perturbation theory. A second aim was to verify

nitude per A increase in separation, for a typical work fu”C'TH’s theory by proceeding in a totally different approach.

: 25.27,28
tion ¢. TH and other autho?_:? also showed that for a - o0 \we clarify those quantities entering the expressions of
corrugation of wavelength=27/G, the decay constant of he tynneling current that are relevant to the corrugation

8p is agp=+(G/2)?+ k% Thus the ratio(1) gives the problem.

asymptotic dependence of the corrugatiag(zo)=e 2o The tip atom, or cluster, is modeled by muffin-tin poten-
=e~?(®ez"9%, Evaluating the new decay constantfor a  tials and the tunneling current is solved analytically in terms
simple metal surface, one finds one order of magnitudgy the Green’s functioms(r,r') of the free surface. In Refs.
change inA; for a change of~2 A in separation. Both 21 23 we used a square well tip, however all the results are
decays depend quite sensitively on the physical parameterygependent of the particular choice of muffin-tin potential.

however. _ , _ The current is obtained from the total wave functibrof the
To show that atomic resolution on metals is an order ofgptire tip-surface systefd, and in the zero temperature,

magnitude question, consider the original data of Winterllingnmic jimit, reads

etall® on Al(1,1,1) where a corrugation af~0.8 A is

found forR~10°€). What does the-wave tip model give as

an order of magnitude? Taking a limiting value at “con- I=2e2VZ fds-jy5(Ey— Er), (6)
tact,” and assuming only a single channel, the resistance is v

R.~10°Q and the corrugatidrf® should be smaller than _ _ _

0.1 A. Therefore at 1) the s corrugation should be wherej,= (4/m)Im{¥*V¥} is the current density. Thus at
smaller than 0.01 A. The measurement therefore representd€ outset, the method makes no assumption on the coupling
a truly giant corrugation. In a perturbation approach to thestrength24across the barrier, in contrast to the Bardeen
tunneling current, and using an asymptotic formula for theformula”™ In the following, we describe the surface and the
corrugation term, ChéA concludes that > tip gives an tip as independent electrodes, at equilibrium, prior to treating
enhancement factor of about 20, relative tosaip. We find, ~ the coupled system.

plotting both hypothetical corrugations as a function of the

junction resistance, that thi2 corrugation is typically less A. Surface Green'’s function

than an order of magnitude higher than thene. Further-
more, our asymptotic expressions show thatad 0 states
give basicallys wave behavior, and no giant corrugation is

gives the exponential law for the background dengity

If r andr’ are two points in the vacuurtFig. 1), the
solution g4(r,r’) to the one-electron inhomogeneous equa-

tion
found.
The higherm tip states, i.e., those presenting nodal lines , ,
orthogonal to the surface, were considered by Ghes a (Hs—BE)gs(r,r’)=—d(r—r’), v

mechanism for image contrast inversion. We do not contest _ S
this possibility for some tip configurations. Still, our is assumed to describe the free surface. We thus maintain the

asymptotic expressions give very different results for botr5@Me generality as TH and, for example, the surface LDOS
the resistance and the corrugation for these states. In particG2n P& immediately found using lga(r,r) = —7p(r,E). In

lar, with the approximations used in Refs. 17,18, the authof’® Vacuum region, one can separgteinto two termsgs
concludes that individuan+0 states give both a vanishing ~ 90 99s, whereg, is the singular part, and propagates a
conductance, and an unphysical infinite corrugation. Quite /€€ particle from the source point tor (or vice versa

the contrary, our work shows that the strength of the node,

depending on the term of the tip multipole expansion, leads m e «r=rl

to a finite resistanc®(z) «<(kz) ™" e?*?. Its influence on the go(r,r')=— T

corrugation is to lower the denominator in Ed). The nodal 2mh® |r—r’|

lines, or planes, also have the effect of increasing the modu- «m

lation term 8T in Eq. (1). Thus, we find that highem tip =——hg(ik|r—r']). (8)

states can give a greatly enhanced corrugation, nearly two 2mh?

orders of magnitude higher than fer

An overview of the paper is as follows. In Sec. Il we Herehy is the spherical Hankel function and, fErrelative
summarize the model, and describe the quantities relevant to the vacuum energys=(—2mE/%2)Y2. Sinceg, has no
the corrugation on metals. In Sec. Ill, we develop the arguimaginary part, all LDOS information is only in the surface
ments above concerning the resistance of the junction for theerm 8gs, i.e., precisely the quantity appearing in the tunnel-
different tip states. The corrugation is then calculated usingng current.
first the nearly free electron approximatig8ec. 1V) fol- An important example is the asymptotic expression for
lowed by a straightforward muffin-tin atom superposition the Green’s function outside a plane free-electron metal used
method(Sec. VJ. Concluding remarks are in Sec. VI. by Hurault®! For zandz’ much larger thanc %, he obtains
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—_—
e~ Ko+ (z+2')?

m
ogq(r,r’)= r ,
9(r.r") 2mh? o2+ (z+2')?

where p=x—x', and rg is the reflection amplituderg

=(ikg+ k)/(ikg— k). Here we have put=Eg, i.e., for the
case of tunneling at small bias. The quanity, above rep-
resents the propagation fromi to r but with the further
reflection due to the surfadpath 2 in Fig. ). The LDOS for
the perfectly plane surface follows:

9)

1
p(riEF): - ;lm 5gs(rrr)

m k|:K2 e*ZKZ

2mh? kE+ k2 KZ

: (10

provided xkz> 1. Note that the usual barrier exponential de-dxy

cay term has a power lawkg)" denominator. This addi-

tional asymptotic behavior, also found in Ref. 25, plays a
significant role in the case of higher tip angular momentad,._.
The correction of this LDOS due to the atomic corrugation is K2

derived in Sec. IV.

B. Tip Green’s function
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TABLE I. Relevant quantities for the calculation of the back-
ground densit)p,'m(z)=Ca{'m(z)e’2"Z for selected tip orbitals and
a metal surface. Columns 2 and 3 show theoperator and the
plane-wave eigenvalue squargfg ,(k)|?, respectively. The latter
functions behave ak?™ in the k—0 limit, and as a result the
asymptotic form ofa ,(z), final column, is 1kz)™+1,

tip state Dim 1 m(K)[? am(2)
s N A i
KZ
doa V57 3&2 2| 5T a2 5
: 2\ ) alhae g
\30m
dy,+idy, 7 i)i S B
K2 \ox ady) oz K 2 (kz)?
2
R 607 bo 15 1
k% oxady P 4 (kz)®
V157 52 52 15 EL
- —(k2-K)H% 4 (kz)®
x> ay? )t

leading to a derivative of ordér which acts on the function

In Ref. 21 we considered the tip wave function, howeverto be expanded, in this cagg:
here we give a derivation using the tip Green’s function. It

has the advantage of stressing the symmetric aspects of the
tip and surface quantities, and giving a more general defini-
tion for A,. Our formulation can then be connected to a

recent propagator-source thetirpf the STM. Finally, the

atom superposition method of Sec. V uses the same relations.

We suppose a single muffin tin is at the positign and
similarly write the tip Green’s function in the formy,=go
+ 601ip+ 69, with g the usual vacuum term angly;, con-
taining reflection terms from the tip extreme atdpath 3,

Dy = lim{Dy no(r.,r)} =Dy mbo(ro.r").  (13)

r—ro

Selectedf)m operators are listed in Table I, noting that the
=0,m=0 one is just the identity. Then the first coefficient
in the expansiori12) for g, is

Do o=V4mGo(ro,r'),

i.e., just a sphericad-wave evaluated at the tip center. Using

Fig. 1). Then,&g’ is the term reflected from the remainder of standard methods, one can show thatﬁilp'e,] operators act-

the tlp (path 4, whose contribution to the tunneling current |ng on gy generate the Spherica| solutions to S"dimger
will be neglected. The method consists in solving Dyson’sequation

equation forg, analytically:

gﬁp(r,r’)=go(r,r’)+fﬂgo(r,r”)Vtip(r”)gup(r",r’)dr”,
(11

whereV, is the muffin-tin potential, an@) its volume.
The problem becomes tractable if bagly and gy, are

" 2km -
Dl,mgo(r,ro)=?h| (iku)Y| m(u), (14

about the site,. We shall use the convention thﬁt,m and
I " n always act on the first and second argumentg(ofr '),

respectively. The real orbitals are obtained using the appro-

expanded in spherical functions about the tip center, of argupriate linear combination of th@hm operators, but with a

mentu=r—rg,. Then, for fixedr’, go(r,r’) has the formal
expansion

go<r,r'>=§n Dy i (i €U) Y (D), (12)

wherej, is the spherical Bessel function, and the coefficients

Dy, are implicitly dependent on’. Inversion of this expan-

factor /2 for normalization.
With these techniques, and after integration, Dyson’s
equation for the tip gives

gﬂp<r.r')=go<r,r'>—§n M. DF mGo(r,F0) Dy mGo(ro.1").
(15)

sion for the setD, , is given in Ref. 21. As in Chen's We stress the very convenients*“function” property of

theory!’ they are determined by a differential operator

B g Jd d 9
I,m— 51515 ]

Vip, i.€., the above solution contains terms of the fdhgb
evaluated at the tip centep. However, note that the factor
ip in the integrand of Eq(11) has also been replaced by

f)go. This follows from the matching method in Ref. 21,
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where only thancidentpart of the total wave should appear problem is therefore reduced to finding the unknown compo-
in this term. In the present case, the incident parg@fis  nentsD, i at the positiorr . Taking only the incident part

just go (neglectingdg’). - e
The functions\, , are the tip reflection coefficients, 8]]: Egu(pllzzj Zgi:tri)g)rlw)gngD on the left, leads to an infinite set
which will depend notably on the interaction of the tip atom
with its nearest neighbors, and thus on the local electronic . .
structure. For the formal solution of the tunneling current we Di7,m' #i(ro) =Dir m/ihs(r o)
consider Eq(15) above as thaefining equatiorof . This

quantity has been explicitly calculated, for example in the =2 Ny DF 0960, T o) Dr mthi (o),

case of an adsorbate on a jelli#AFor ans orbital, one finds Lm

that\ is approximately (21)
e Cs (16)  for the component®y; . Although quite complex, this set

CE-E—ily’ represents the multiple reflections across the barrier, involv-

wherec, andT', give the strength and width of the resonance!”g all degenerate tip orbitals. Closer inspection reveals that,

at E,. Thus Im\, , is proportional to the projected DOS in addition to “direct” terms(with a given\, ), there are
onto the orbital ,m of the tip atom. Consulting more realistic alslomtherferen(‘ieterms. | ds th lution f
tip electronic structure calculations, such as in Ref. 33, this . nl t ebslr?p est case, one only needs the solution for a
approximation forA should be adequate. single orbital:

In principle all angular momenta will participate in the

tunnel current, as proved by E¢L5). At the Fermi level, Dify=Dips— \N{DD* 594} D,

however,\ is expected to be very small except for the near- R

est resonance states. For example, if the extreme atom has a -~ Dijs 22
singles state, the tip Green’s function reduces to 1 \DD* 595’ (22

(1.7 )~ Go(r.1") =47AsGo(1.F0)o(Fo.F"), (A7) ith an important “renormalization” step, and the conduc-
however Eq(15) should be used for degenerate orbitals. Thetance reads
above equation also provides the starting point for the
muffin-tin superposition method of Sec. V. 41ma{— Im DD* 89s(To.To)}
o(ro)=og

— (23)
C. Coupled tip-surface system |1+ NDD* 59s(ro,10)|*
The total wave functiont for the coupled system is writ- An analytical solution for the three-dimensional tunneling
ten in two ways. First, superposition in the barrier regionproblem can be obtained for a cluster tip, even taking into
allows one to writeyy=¢;+ ¢, , wherey; and ¢, are the account degenerate orbitals, but is necessarily more compli-
total incident "% and reflected € “*) waves, respec- cated to write. Notice that the final result is a true transmis-

tively. Second, the scattered wave can be expressed in intgion coefficient, i.e., of the formr=o0,T, whereT tends
gral form as the Lippman-Schwinger equation towards unity in the thin barrier limit. An equation having
this property was obtained by Ferret al. in the tight-

WO=9s0+ [ g Wigr)wirdr, g Dinding approach

where ¢ is the unperturbed surface wave function. Using I1. JUNCTION RESISTANCE

the same expansion method, the integration leads to . . .
P g The problem for the remainder of this work is to evaluate

~ . our general conductance equatit#8), specifically applied
W(r)=e(r) = 2 NmDFm0s(. o) Dy mii(re), (19 to the resistance and corrugation equatiéhisand (2). In
hm this Section we only discuss the lowest order term for the

where theD, ,, are the identical operators, but here they act®Sistance,R(z)=1/v(z), which corresponds to a single
on surfacequantities. Using this result, the tunnel conduc-20m tip and a plane metal surface, leaving the corrugation

tance,o=1/V, is found by direct integration over the current €M for Sec. IV. Even in this case, the conductafz®
density(6): depends on theeal part of g5, which is absent in the TH

and Chen models. A second point we treat is the role of the

_ - 2 D operator, pertinent to each type of orbital. If one ignores
‘7_477‘70% |m>\|,m§;, D m#i(ro)|“6(E, —Ep). multiple reflections in the barrier, which amounts to taking
(20 DD* 89— 0, the conductance depends asymptotically only

) ) on the imaginary part again. Thus the large limit should
In contrast to either the TH or Chen theories, the currengive back Chen’s resufts*”*for the tunneling current in-

is related to anodifiedLDOS, where the unperturbed surface yolving higher tip angular momenta, and based on the
wave functionys is replaced by the quantity; , i.e., de-  Bardeen transfer Hamiltoni&A.This is not the case, as the
rivatives of the total incident wave at the tip center. Theasymptotic formulas reveal.
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? i.e.,z<4 A for thestip andz<5 A for thed,2 one. Note
that in the former case, the current saturateR4oR. for z

é ’ =z.~2.5 A. As evident in the figure, the asymptotes for
- 7 both tips have the same slope, and thus the same orbital
a7 decay into the vacuum. What is equally important is that the
"o 6 S dZZ R(z) curve ford,z is shifted with respect to the curve,

%0 towards a larger distance, by nearly a Bohr. This is due to the
-3 shifting of the center of gravity of the tig,2 orbital away

from the tip center(visible in Fig. 2, an effect apparently
overlooked in Refs. 12,18. In particular, for a barrier thick-
ness of 4 A thes orbital tip gives a resistance of 1Q,
6 g8 10 12 14 16 while thed,2 tip is close to “contact.” Thus the comparison
z (au.) of the corrugation; for the two types of tips should glearly
not be done at a given value nfas in Ref. 12, but at a given
FIG. 3. R(2) curves for the two tip orbitals andd,z, using the ~ Value of R. Our results show that shifting the orbital tip
“exact” conductance equatiof23) and assuming equal tip spectral away from the surface, to keep the same valueRdnas the
weight. Herez is the distance between the surface and the tipeffect of reducing the corrugation. This puts immediate
muffin-tin center. The asymptotes, equivalent to the perturbatiorfloubt on its possible origin of the atomic resolution.
limit, are shown to be accurafer both orbitalsfor R>10°Q. For A further point is remarkable from Fig. 3. The curved
a fixed resistance the,2 tip must be further away from the surface portions for both tips, where the perturbation approximation
than thes tip. This shift has the effect of lowering the expecttd  breaks down, correspond to resistance values less th4h 10
corrugation. in both cases. It is agreed that short range forces are expected
when the surface and tip states couple strofgfy:>16:21:22
A. R(2) for sand d tip orbitals i.e., the denominator in the conductance E2B) becomes
significant. Figure 3 shows that they can be safely neglected
for the common experimental range of °t010°Q. We
therefore expect that the effect of multiple reflections ex-
tpressed by the complex E@1), should be negligible in the
problem of a simple metal surface. This conclusion should
not be hastily extended to the non-ohmic situation, or one in

Although the quantityDD* 8gs has never been consid-
ered, 5gs has arisen in the problem of an impurity within a
perfectly tunneling planar junctiott.In the nearly free elec-
tron approximation, neglecting the corrugation implies tha
only theplanar partof 8gs(r,r’) is required. Thus, follow-

. 31 . . .
ing Hurault,” we write this quantity as which the surface has a more complex structure, such as an
1 adsorbed molecule. We finally note that, based on the exact
S9(r.r')= f_r K X,Z X' .2/ )* d2k, value of T(z) for the s orbital, it is possible to approximate
9(r1") (27h)?) ax (k) ox,2) ol ) the asymptote oR(z) as
(24)
R
where i, is the plane-wave vacuum solution log| z-| =2«(loge)(z—2z,) (25
(0}
o(x,2) =€ Xe™ e, with R,~10°Q andz,~4 A. One cannot replacg, andz,

R ith ki h f hi -
having the familiar decay constant= Vk’+ «2, andr (k) is by R, andz; without making the error of a shifted asymp

the surface reflection coefficient. The free-electron case , : : .
As described in the Introduction, Chen worked out the
r(k)=(ik, + e)/(ik, — &), with k,k, the parallel and per-

tunneling matrix elements for individual orbital tip states,
dnd in the geometry of Fig. 2. In addition, he suggested that
the m#0 tip states are the possible cause of image contrast
inversion. We propose to show that am# 0 tip orbital can
give a very large corrugation enhancement, even compared

tion. Neglecting thek dependence imn(k), i.e., takingr (k)
~r(0)=rg, leads to a standaldintegral and gives approxi-
mation(9) to &g, discussed previously. The subscript denot-

ing the tip posmpn will be dropped. to the usually acceptedl,> one. Note that even a “puret,.
_ For thel+0 tip states Eq(24) can be used to compute o hjta| could be oriented at an arbitrary angle with respect to
DD* 59, directly. While the differential form oD, ,is simi-  the surface. Then in the surface coordinate system, it is
lar to Chen’st’ the constant prefactor is not. One can eitherequivalent to the addition of highen components.
use the direct formula foP in Ref. 21, or deduce the con- We therefore examine the additiond},+id,, orbital,
stant using the identity14). The orbital coefficienk s for the  having axial symmetry along d,, andd,2 2, taking thexy
swave tip was fitted to the sodium/jellium model of Ref. 34 plane parallel to the surface. These are illustrated in Fig. 2 as
and an equal spectral weight will be assumed for all orbitalscontour plots of the tip local density, in thez plane. The
The simple valuesg=0.5 a.u. ankz=1 a.u. were chosen lines corresponding to either nodal lines or nodal planes are
for the remaining constants. clearly evidentthe orbitald,2 ,2+id,, has similar behavior
We compare the resistance as a function of distance firss d,,+id,,, and will be omitteg. The resistance for the
for the two tipss andd,z in Fig. 3. The asymptotes, essen- case of these othat orbitals, is calculated in an identical
tially equivalent to the perturbation limit, are shown to de-way as thed,. case discussed above, and the results are
part from the trueR(z) curves wherz gets sufficiently small, shown in Fig. 4. In principle, the sum over all orbitals
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dxy dxz_ 5 Eq. (27). This excludes particular cases where a directional
g Y dtid gap exists near thE point, or other type of singularity. Here
xztilyy we use a method of steepest descent: The exponential argu-
= 715 ment is expanded abolt=0, and slowly varying factors,
o dz2 having a finite limit, are assumed constant. Thus one can
E 7 write
o pLm(2)~Cay m(2)e 2, (28)
) .
o) 6 whereC=—kmImr/(27#)?, and the asymptotic form for
= all I,m is given by the simple dimensionless integral
55
_ 2
3 8 10 12 14 am(2)= zf |f1 m(k)|?e™ @K g2k, (29
(27K)
z (au.)

Looking at the eigenvalug (k) for the different states,

FIG. 4. R(2) curves for each of the tigl orbitals, each having Wwe first note that only thé=0 ones tend to a finite constant
the same spectral weight, and in the nearly free electron model fan the smallk limit. Thus for thes andd,z states discussed
the surface. These show a quite different asymptotic slope for thabove, the ratiof2/f2=5(3af— x?)?/4x* is a factor of 5
d2 tip state, as compared to the+0 ones. Due to the near axial when k—0. The k integration then gives the prefactors
symmetry of the surfaceR(z) is the same for thel,, andd,2_,> a(z) =1/(xz) anda,2(z) =5/(«xz). One can show that the,
cases. Analytical expressions are summarized in Table I. It foIIowqip state leads a similar prefactor. The conclusion is that all
that a comparison of the corrugation at a fixedill be different m=0 tip states have the similar asymptotic forR(z)
than at fixedR «(kz)e2<, for the resistance.
The problem is markedly different for the+0 states.

should give back spherical symmetry, assuming equal speg=., examplef . 1y,7k andfxz_yzockz, i.e.. these functions

t_ral weight fo.r each, The decay of the tL.mne.Iing current Withvanishask—>0. In real space, this is due to the nodal line of
tip-surface distance is shown to be qu@e dn_‘fer_ent for thesqhe tip wave function along the tunneling axis. In fact, we
m=0 states. We show below that this is principally due ©find the power ofk in the smallk limit of f, (k) to reflect

the axial nodes. the strength of the node, i.e., the degree of shifting of the tip
orbital density away from the axis, andf,,,>k™. The cor-
responding real space factors, summarized in Table I, are
The possible role of nodes in the tip wave functions carthen of the forma, ,(z) = 1/(xz) ™" . These results are remi-
best be seen in the asymptotic form of the conductanceliscent of the multipole expansion in electrostatics. The re-
Moreover, since multiple reflections can safely be neglectegistance asymptote then follows the general foR(z)
for R>10°Q, the xz>1 limit should be sufficient for the = (xz)™"e?<?, and it would be of interest to check this ex-
corrugation equatiofil). We therefore focus on the quantity perimentally.

B. Asymptotic formulas

1 A A IV. CORRUGATION
pim=———Im DI,mDI*,mggSa (26)

42 In this section, we consider the asymptotic corrugation for
where the extra factor of# assures that the usual LDOS is individual tip states
obtained for thesswave case. To compare directly with the 51 (X.2)
results of Refs. 12,17,18, and to derive useful asymptotic A, m(xyz)m_p'vm—’, (30)
formulas, we consider thie representation of; ,,(z), which ’ dp,m/dz
follows immediately using expressiga4) for 5gs. Itis con-  yhich follows immediately from Eq(1), but we will also
venient to callf, (k) the eigenvalue of th®, ,, operator treat the case of a superposition of orbitals. The general case

is important, since no special axis of symmetry is expected

Dy mtpo(r) =F1 m(K) ¢ho(r), for a real tip. In considering the above equation for the cor-
and the calculation proceeds with evaluating: rugation, one should bear in mind tha(z) is known, and
that the main objective is to calculatqx,R).
1 m Imr (k) The background density, ,(z) can play a more impor-
pIm(2)=— a? (quh)zf @ |f) m(k)|?e™2*d%k tant role in the STM image than is generally thought. For

higherm states we have seen thdiz) decays faster than the

27 m=0 ones. In the analysis of Ch&A!® the k integration
where the relevant, (k) functions are given in Table I. being ignored, his functiof, (k) was evaluated only &

Exactly as in the TH theory, due to the exponential factor=0. The conclusions were therefore thi#t0)=0, hence
e 2w the background density is determined mainly fromp, (z)=0, resulting in aninfinite corrugation in this ap-
states near th€ point of the surface Brillouin zone, or the proximation. This would be true if the tip orbital could be
smallk limit. In Refs. 12,18 Chen uses this property to takeperfectly orthogonal to the surface wave function. As our
into accountonly those states, i.e., skipping the integral in analysis shows, this is not the case, and the background den-
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sity just has a 1/kz)™ prefactor over the usualwave case. note that in Ref. 18, Chen considers only a sirgleoint for

Thus, expressioi30) must be reconsidered. the asymptotic corrugation. We find that some of the eigen-
values of theD operatorf, (k) can still vanish even at the
A. Nearly free electron approximation M point, again due to the tip nodal plane, and thus the ex-

plicit integration in Eq.(32) is unavoidable.
To proceed, we assume that tRedirection of the tip
coincides with an atomic row of the surface lattice, for sim-
licity. As a result of imposing reflection symmetry, and
%fining

The evaluation of the modulation termip, (1), in the
nearly free electron approximation is quite well
known,817:18253nd will be only briefly sketched here. The
arguments we propose are not meant to cover metal surfac
for which the plane-wave approximation is known to break
down?® However, the problem is still motivated by the wide
range of metals, and under a wide range of conditions, that ®(x)=2, cogGy-x),
give a giant corrugation. Moreover the results are in good :
agreement with the simulated images using the muffin-tinn our example we have no phase shifts and the modulation
surface approach, described in the following section, despitgads
the difference in the treatment of the electronic structure.

Our approach is very similar to Chen and TH in that the 8p1.m(X,2)=2C'b; n(G,2)ug e~ 2?2 d(x). (33
modulation term is approximated by a single Bragg reflec-

tion. Thus we replacey, in Egs.(24) and(26) for p; n(r) by Thus, in the results shown in Table b, n(G,z) depends
Yo+ i, where only on the magnitude oB. Also, since we have neglected

the band structure near the zone boundary, these should be
Y= uge K8 xg~ak-cZ, considered only as an order of magnitude. Similar assump-
tions are found in the TH and Chen theories.
G being the smallest nonzero reciprocal lattice vector, and Examining the modulationsp, ,,, it shows the well-
the decay constant, is the same as previously. We shall known exponential Iawa‘poce*Z“Z: but with the prefactor
consider only the square lattice to get the order of magnitudgiven byb; (G,z). Consequently the,, modulation decays
of the (_:orrugation. The (1,1,1) surface, for example, isfastest Withbxy(e,z)ocl/(,(z)% whereas thel,>_,2 andd,,
treated in Ref. 12. _ _ +id,, orbitals both give the factor 1g). The precisez
Introducing the wave functiomo+ ¢ in pym(r) , EQ.  dependence seems to vary according to the orientation of the
(26), evidently leads to three terms. The leading terhbo|*  nodal plane with respect to the crystal axes, i.e., giving a
gives the previous background density, and has the decayotable difference between tik, case andl_,2. As the
constant 2. The cross-term gives the corrugation, i.e.,negaﬁve sign ob(G,2) indicates, bothd,,+id,, and d,,
*2 Re{y 1}, having the decay constantw{+ay g).  give anti-corrugations, i.e., an inverted image. We find that
Consequently, the largest contribution to the corrugatiomasymptotically thed,2_,2 gives a positive corrugation, in
term is fork=G/2 or theM point (or the nearest point tM  sharp disagreement with Ref. 18. A more complete study,
allowed. The last terme| |2 is a correction to the back- taking into account the electronic structure of a selectiod of
ground density, and will be dropped. We therefore can writemetals, shows that even with arwave tip, an anticorruga-
tion can exist® Therefore, in some complex situations in-
a2z —iGp-x volving ad orbital tip, it might be difficult to know the true
opim(x2)=Ce ; {ue,e b1.m(Gn,2) FC.C atomic positions from the image.

31
with, using the abbreviatiorg,,= «, B. Corrugation enhancement
The difference between our value of the constant current
. «*mImr(G/2) corrugationd, , and those of other authdrg!?1718.2024g
T a(2mh)? thez dependence, as well as the numerical factors combining

the constant§&, @, and (Table 1l). Using Eqs(28) for the
In addition to neglecting th& dependence ofig, we have background density and E¢33) for the modulation, the re-
approximated perhaps abusivelfk)~r(G/2), which may sult is
be a problem for particular electronic structures. The func-
tion by (G,z) is defined in dimensionless form, and gives
the prefactor of the modulation

C'ug b n(G,2)

A= (@)

e 272 d(x). (34)
d%q Again, we find the usual exponential deaaymoce*ZVZ, giv-
b n(G,2)= f —2f|vm(q—G/2) ing about 1 order of magnitude change in the corrugation,
TK) per 2 A change irz, i.e., slower than the background den-
% o (2 ad)q? sity. However, this value does depend sensitivelyGix,
Xfim(q+Gl2)%e - (32 which in our case is 2.75. Note that the ratio of the two

While a, ,(z) was defined by approximatinig near thel' ~ constant<C andC" is in theory

point, here the exponential argument has been expanded cr | G/2

about theM point, i.e.,q=k—G/2. Theb ,(G,z) functions - L)
Im rg

K
are estimated by the leading term of the integral. Again we C «
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TABLE II. Relevant quantities for the density modulatidp,’m=ZC’bLm(G,z)uGe’z“ZCIJ(x), in the
nearly free electron approximation, where the functibpg(G,z), column 2, give the asymptotic form. The
corrugationA| ,(x,z) depends critically on the ratib, .,(G,z)/a, (z), and is given in column 3, up to the
constantC’ug /C. Finally the “enhancement” factor relative to tissorbital tip A| ,=A| ,/Ag is shown in
the last column. Note th&; , is a constant for the2 tip, but has a kz)" dependence for the+0 states,
which is a possible indication of a giant corrugation.

tip state b n(G,2) A m(x,2) Alm
a\®1 a®
/ K
J 5(al®(32 \1 o (32 12_2ﬂq) 1 (3a? 12 15
2 -_— - —_— J— _ = — —_—
’ 4\k) |2 e AR R 4| e
: 15G%° 1 2ad G2a?
+ _— J— — 2 — ~ —
dy tidy, 8 7 26 777 d(x) o 7z~ —5kZ
d 15G%® 1 G?a® or2g(x) G%a® 18
- — - ——2z€ X - z~—18kz
Y 8 K (kz2)? 2i8 2k*
1 G*?®
15G%* 1 1 G*? — ———7?~3.5kz)?
dy2_y2 = il il ~2yz 1 > .
Xy 64 7 xz 16,6 777 (x) 6
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but is unknown without selecting a specific band structuregive similar asymptotic expressions for the density, the latter
Looking for the possibility of corrugation enhancement, theapproach cannot prove that the orbital is responsible for

only candidate is the ratib, ,(G,z)/a, n(2), since any giant
corrugation must persist in the perturbation limit, i.e., Ror

the giant corrugation. Moreover, the previous section showed
that for a given resistance, thk: tip is further away from

>10°Q). Moreover, the previous section has shown the dethe surface than thes tip (assuming equal tip spectral

nominator to behave in this limit & ,(z) = 1/(kz)™" 1, and
we can anticipate a possible amplification effect here.

To show this more clearly, the last column of Table Il
shows the “enhancement” factéy=A, /A4 relative to the

s-wave theory. Thel,2 corrugation is found to be- 15 times

larger, at a given tip surface separation. This is in reasonable 1

agreement with, but smaller than, Chen’s value of 19.6. We

will show in the following numerical analysis, that this value

is still insufficient to explain the experimental data. The en- =

hancement factors for the other# 0 states show the impor- 7

tant feature of beinglependent on,z.e., proportional to i

(x2)", an aspect that has been hitherto overlooked. For ex \
. . . . (=

ample, thed,, tip orbital, for a tip-surface separation of 5 A =

gives an enhancement over tee¢ip by a factor of 100. It Q -2

seems clear that a very large amplification effect can occul

for tip states of highem.

To compare with the experimental data, we focus only on
the order of magnitude of the problem, and no data fitting
was considered. Our approach is to select reasonable parar
eters for thes wave problem, then th& orbital case is

0 ===

v
/

-

-3

S

/1)

known. Aside from the tip coefficients used for the tunnel-
ing resistance in the previous Section, the only free param-

eter isC'ug which can be deduced using typical values of
the charge density modulation. We then compare in Fig. §
the corrugatiom, ,,, but as a function of th@unction resis-

6

7

Log, [R (€2)]

-

N -]

weighy. Plotted as a function of resistance, the corrugation
enhancement afl,2 overs is reduced to a factor of 8.

For the tip orbitals of higher angular momentum, the cor-
rugation gains more than an order of magnitude for each

dx2_y2
dxy
pX

dxz+ idyz

dzZ

FIG. 5. Magnitude of the corrugation farorbital tips, over the
wave model, seen here as a functiorRofThe corrugatiom\ (R),
for the d,2 tip is more than one order of magnitude below the data

tancefor each of the different tip orbitals. The original data points Ref. 11, and less than one order of magnitude above the
line. Them+#0 tip states give a corrugation with a very large en-

of Winterllin et al'! is shown just for comparison.
What is first striking in Fig. 5 is that the,2 curve is more

hancement over ths tip, which alsoincreaseswith resistance.

than one order of magnitude below the experimental datas(R) shows a gain of more than one order of magnitude dfgr

and less than an order of magnitude above shime. The  +id
calculation in Ref. 12 manages to fit tlik2 line through
these identical data points. Given that betiandd,2 orbitals

yz)

or even two orders of magnitude, for ttg, or d,2_,2 tips.
The curveX shows thed,2_2 corrugation reduced by the superpo-
sition of only 2 %d,2.
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increase inm, as Fig. 5 indicates. The previous argumentsof different tip structures may shed light on which proportion
have shown that this enhancement effect is due to both thef d orbitals is the most realistic.

faster decay of the background density, and the increase of

the modulation term. Furthermore, as Fig. 5 illustrates, the V. MUEEIN-TIN SURFACE

relative enhancement for tme+ 0 tips (as compared to the - o o ]

tip) increaseswith resistance. It should therefore prove use- 1he superposition of muffin-tin potentials is also a simple

ful to study the behavior of the corrugation as a function ofWay to implement a surface structure. In previous work we
R have used the muffin-tin model for an atom on a jellium

To make contact with experiment, we write approximateSurface’’ or a linear chain of aton. The method outlined
formulas that are expected far(R) on a log-log plot, and belov_v uses the same approach as for writing the Green’s
for the case of tunneling to a single orbital. Thus using thgunction for the tip. Here we calculate the surface Green's
approximateR(z) equation for theswave tip (25), together funct.|on fo'r a finite number pf “atoms” in a square lattice,
with the asymptotic formulas for the corrugation, one has and investigate the corrugation ferandd orbital tips.

A. General method

(39

Ay R)) ( R
A, | e log R, One can transpose the single atom tip argument, leading
_ ) ) to Eq. (15), and apply it to the surface. The mathematical
with &= y/2x loge, andA, is the corrugation aR,~10°Q.  trick is to notice that one can solve the Dyson equatioh
Here we neglected thexg) ~* prefactor in the background Lippman-Schwinger equatioii8) for a given muffin tin
transmissiorT (z). Thed 2 tip gives the same line but shifted \yith an arbitrary external sourcéwhat we called the “inci-
by the additive constant ~0.8. For tip states havingy  dent” wave in Sec. Ii. This external wave can thus be the
>0, we get the general form reflected wave from all the other muffin tins of a cluster.
AR) R A simple recursion scheme is therefore possible solving
. 1 " the Green’s function foladding the Mth site, at the new
Iog( A, )~N+M log 1+ (xZ,) Iog( ROH positionry,, in terms of the solution foM —1 sites, at the
positionsr,,. The starting point to implement the method is

+Iog( ASA(R)), (36) the swave expression found for the single muffin tin
[0}

) ) o g1(r,r")=go(r,r')—=NgQo(r,r1)go(r.,r'), (39
where N is a constant shifas in Fig. 5 and z,~4 A, . . . ) . .
defined in the previous section, is a little larger than a latticeVN€rer1 is the position of the first site, an is approxi-
constant. Finally the factov depends on the tip orbital in mated by
qguestion, and we find explicithiM =(1+y),M=(1+2%) c
andM=2(1+y) for the d,,+id,,, dyy, anddy2_2 orbit- )\S:—S,_
als, respectively. Thus the first two terms of E§6) com- E-Es—in
bined can give a factor larger than 2, or an enhancement ofhe propagation implied by Eq38) is illustrated in Fig. 1.
more than two orders of magnitude above $hgave case.  The nonsingular part of the Green’s function is the first “sur-

The calculations presented so far, involving tunneling to &ace” term

single orbital tip, can be extended to the case of a linear
combination of degeneratt orbitals. We write a new total 8g1(r,r")=—=Ng0o(r,r1)go(rq,r'), (39

tip coefficient in terms of the “individual'd states as and represents propagation frefto r, followed byr, tor.

The LDOS is found directly:
|m>\tm=2i BiimA\;,
Cs7
) . i A p(r,E)= - - 2
where B; is the relative weight, which could be deduced T(E-E9)+ 7

from anab initio tip calculation. The total corrugation st
the sum of the “individual” corrugations, but rather

290(r1r1)2!

which is a suitable approximation for a single atormistate.
The recursive relation we obtain for the Green'’s function

for adding theMth site to the problem is
8pi(%,2) 9 P

AtOt(X’Z):_Ei 'Bim' S gM(r’r,):ngl(rar,)_ﬁM(E)ngl(rvrM)ngl(rMrr(;]?é)

Thus the correct corrugatiof,,(R) requires both the total
junction resistanceR;,(z) and total background density
pw(2). Consequently, we can check how fast the 2 am- As

plitude is lowered by adding d,. component. The results Bu(E)= T TR
show(see Fig. 5, that even the small admixture of a few % s9Oum-1{Tm."m
of m=0 reduces significantly the enhancement effect. This ifAlthough succinct, this Green’s function contains all mul-
quite as expected, since the orbital has a lobe towards the tiple reflections within the system, i.e., including all neigh-
surface that easily compensates for the axial node ofrthe bors. When expanded in terms of a lower order, NayM,
#0 states, in the geometry chosen. The further investigatioiq. (40) contains propagation terms, such ag(r,r;) or

with

(41)
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an(ri,r'), as well as coupling termgy(r;,r;). The quantity
Bwu represents the coupling of the last site to all other sites in
the system, an aspect which is very similar to the tight-

B e W e TN
T
binding approximation. Restriction to nearest neighbors is g > |
therefore very easy to impose. .
In order to illustrate simply, consider only 2 sites with § N @& (& thaidy,

g4(r,r’) as the starting point, whilg,(r,r’) is obtained
from the recursion equation

9a(r,r")=0a1(r,r") = B2(E)ga(r,r2)gs(ro,r"). (42
Then the coefficienB,, with Eq. (39) for &g,
1—)\§go(r2,rl)2

is seen to have new possible poles whene{er+ 1, where

B2

Xzzxggo(rl,rz)zz 1.

Neglecting the imaginary part of;, these poles occur atthe  FIG. 6. Grey level representation of the surface LDQe
energies quantityp, ,, defined in the textin the plane normal to the surface,

for the five different tip orbitals, and using the proposed muffin-tin
E=E¢*Cdgo(ri.ro)l, superposition method. Thewave case clearly indicates the atom
positions, along the diagonal of a square lattice, each atom contrib-
which are the bonding and anti-bonding states of theiting a singles orbital. For thel #0 tip states, oup, ,, verifies
“dimer.” Looking more closely at the solutio42) for the  Chen’s “reciprocity principle,” i.e., giving the apparent superposi-
dimer shows that it contains interference terms, such asion of ad orbital at the surface sites. The contours in white corre-
Xdo(r,r1)do(r,,r’), which give rise to the spatial contrast spond to the same value of the resistarRe,10°). The corruga-
between the bonding and anti-bonding states. In short, Edjon is slightly larger ford,. but increasingly enhanced for the
(40) contains a simplified electronic structure of a collectionorbitals of highem, as the strong nodal lines normal to the surface
of coupleds orbital “atoms” and at arbitrary locations. If we clearly indicate.
neglect all interference terms of E@0), we do get the form
of a straight superposition of atomic orbitals It is remarkable that the “exact” equation for the muffin-
tin surface(40) also verifies this reciprocity. Thus in Fig. 6
M we show the STM current profile, for the selection of orbitals
gu(r.r)=go(r,r')=B(E) X, go(r.1)go(r;.r"). discussed in the nearly free electron approximation. More
=1 precisely, we compute

(43
However, this is difficult to justify, and the original result A
(40) is almost as easy to implement. Pim=" ﬁlm Dy mDJ' m09s
B. Corrugation for d orbital tips as before. The plane of the figure is along the diagonal of the

The “reciprocity principle” found by cheH for d tip square unit cell, and the atom positions are clearly seen in

states is succinctly demonstrated in the present context. Olygg c;se of fjhs (tjlpl Fgrtthtehd orbitals, oq_e ”Otﬁis tthat Et?t I
tunneling current depends on the quantip* 5g,, which (40) does indeed lead to the superposition of the tip orbita

we have discussed at some lenath. Thus we can check wht%tpe but on each surface site. The results for the corrugation
gth. IN each case agree well with the previous Section, even

answavesurfacegives with adtip by directly operating on though the electronic structure is treated so differently.

the nonsingular part of Eq43) with D: A glance at Fig. 6 may give the impression of a latge
M corrugation, even compared to those for th& O tips. How-
N Ak - 2 i / ever, those contours highlighted in white, corresponding to
DimD ,,mﬁgs—,B(E)iZl (Dt m@o(r T H DT mo(Fi 1)} the fixed resistance @@= 10°Q), provide a clear illustration

(44)  of the main point of this article. In particular, tligz is seen

to have only a slightly larger corrugation than sgp, while

Since the source point and field point can be interchanged ifhe other tﬁ/ree Cgase)é ofgi]nteregtﬁ?yz dyy . andtg?z)_yz are
the quantity Dy ngo(r,r’), up to a sign, and furthermore sjgnificantly enhanced. The much weaker decay of the cor-
since thef),,m operators generate the spherical solutitas rugation along the nodal line orthogonal to the surface is
shown in Sec. ), then Eq.(44) is just the superposition af  quite distinctive. The details of the STM image depends on
orbitals with one at each of the surface sites. Thus the recithe orientation of the nodal planes, thus giving a marked
procity idea is due to the interchange of field point with thedifference between thd,, andd,2_,2 cases. In agreement
source point. with the previous asymptotic calculations, tbg,,;,, and
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dyy tips give an inverted corrugation, while titgz_,2 re- The effect of a node in theurfacewave function was
veals a positive one. These results are in sharp disagreemarged by Tersoff to explain giant corrugations on grapffite.
with Ref. 18. Finally we note that the simulated STM im- There he found a singula(z), again due to the treatment of
ages, in the case of d,, or dy, tip, shows a “striping”  the asymptotic expressions for the LDOS. Later with Lahg,
effect, due to a difference in corrugation along two orthogo-they found that the corrugation was sensitively dependent on
nal directions parallel to the surface. The effect also occurshe tip electronic states. The giant corrugations on graphite

for some linear combinations af orbitals. were also attributed to its compressibility under the influence
of tip-surface forces® Thus Zheng and Tsohgproposed a
VI. CONCLUSION model of giant corrugations on metals in which the tip ex-

o ) _ ) _ tremity is compressible, due to an hypothetical contamina-

The striking point concerning the large amplitude atomictjon, while the surface remains rigid.
corrugation on metals is that it occurs for such a wide variety \we have considered the possibility of corrugation en-
of surfaces, independent of their particular band structuregaancement due to tunneling through new states induced by
and for a variety of tunneling conditions. The problem hasine proximity of the tip to the surface. This is provided quite
nevertheless resisted to a simple explanation. In this work Wairectly via the coupled set of equatiof®l), derived in Sec.
have showed that one needs a theory capable of giving g which account for multiple reflections across the barrier.
reliable value of the junction resistané as well as the \ye have investigated how this situation of stronger coupling
density modulationsp. We applied our somewhat different petween the electrodes results in significant changes in both
method of calculating the tunnel current, which has the adihe tip and the surface density of states. For example, sup-
vantage of giving a suitable transmission coefficient, easil;bose at large separation we have a plgeorbital, but when
applicable tol #0 states of the tip, and being for the most the tip is close to the surface a secahdrbital gains spectral
part analytical. We reviewed the asymptotic surface Green'gyeight at the Fermi level, say,,+idy,. Then the tunneling
function in the nearly free electron m_odel, and reconsideregrrent involves diread,2, andd,,+id,, terms, but there are
the effects of selected states of the tip. also interference terms, involving both. and d,,+id,,.
~ It transpires that the resistance versus tip-surface separgithough of some theoretical interest, our results show that
tion R(z) depends strongly on the tip electronic structure. Ing|| of the multiple reflection terms are small in the experi-
particular, for individual tip d states, we foundR(z) mental resistance range.
<(x2)™"*, over the usual exponential law, and in strong |n fact, we have tried to relax the condition of the rigid tip
disagreement with other works. We argued that one cann@jy |etting the tip atom position, become a variable, in the
compare the corrugation for different tips at a fixed tip-gpjrit of Ref. 14. Then the resonance energy is calculated
surface separation. Our analysis of the asymptotic corrugassing thetotal DOS of the tip-surface system. As a conse-
tion Aj (R) shows them=0 states p,, andd,2) to have  quence, the tip atom moves subject to the total force due to
basically thes-wave behavior, with no striking enhancement. the two remaining electrodes. No giant corrugation is found,
Thed,2 case is often attributed to the atomic resolution, butyrincipally due to the fact that, beyond 0, the tip to sur-
it is not much more sharp than a singlerbital tip. Quite to  face coupling is negligible. In the small resistance case, the
the contrary, then#0 tip states can give a corrugation with corrygation could even be attenuated, i.e. the motion of the
a very large enhancement over thep. We find inA| n(R)  tip atom tends to compensate the lateral variation in the den-
a gain of more than one order of magnitude, dog+id,,, sity, rather than to amplify it.
or even two orders of magnitude, for thg, or d,2_,2. We In a “tour de force” Bracheret al®” have derived the
showed the combined effect of the increased average resigreen’s function for tunneling in an electric field. Thus one
tance, and increased current modulation, was due to thgan check for a possible enhancement effect which we have
nodal lines or nodal planes of these particular tip states. totally neglected? The electric field at the tip extremity

Among the negative points, we note how easily the effeckould be quite large, and we suggest that future calculations
is masked when a linear combination of degenerate orbitalgf the spectral weight of the tip orbitals would be even
is considered, in particular putting backdg component. more instructive if the field were taken into account. Another
Indeed the enhancement effect due to the tip nodes is velyhportant point we have neglected is self-consistency, and
sensitive to the local electronic structure at the tip extremitythe tip and surface Hamiltonian$i{ and H ip) are consid-
On the other hand, it predicts an enhancement for any type @red as independent of each other. Therefore correlations,
sample metal. We checked our asymptotic calculations witRuch as barrier lowering due to the image potential, have not

the atom superposition method, which gives a Green’s funcheen implemented. This remains true for all the STM models
tion and LDOS for a system of couplexbrbital atoms, and  in the one-electron picture.

obtained identical results. This model allows one to visualize
the significant effect of the nodal lines directly in the plots of
the density(precisely in ImDD* 8g,). This points to the
interesting prospect of intentionally preparing tips having The author gratefully acknowledges stimulating discus-
this property, either with the intrinsic material, or with a sions with D. Roditchev, T. Cren, M. Saint Jean, and J.
small adsorbed molecule having a high symmetry. Klein.
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