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Tip orbitals and the atomic corrugation of metal surfaces in scanning tunneling microscopy

William Sacks
Groupe de Physique des Solides, Universite´s Paris 7 et Paris 6, Unite´ Mixte de Recherche C.N.R.S. (UMR 75 88), 2 place Jussieu

75251 Paris Cedex 5, France
~Received 27 July 1999!

When atomic resolution is achieved, the scanning tunneling microscope~STM! image of a dense metal
surface shows a giant amplitude, i.e., between one and two orders of magnitude larger than expected from an
s-wave tip. To date, no satisfactory explanation has been given. Using our earlier nonperturbative formalism
for the tunnel current, we reconsider the corrugation problem with a single atom tip havings, p, or d orbitals,
or a combination. Particular emphasis is on the value of the corrugation as a function of the tunnel resistance
D l ,m(R). Results show that the corrugation, observed over the wide range (1052108V), is inconsistent by
nearly two orders of magnitude with thes-orbital theory, and by one order of magnitude with thedz2 one. We
also can put aside tip-surface interactions. Tip states, such aspz anddz2 , give basicallys-wave behavior in
D l ,m(R). However, those with axial symmetry, such asdxz1 idyz and having a nodal line orthogonal to the
surface, give an enhanced corrugation. Finally, in tip states with a nodal plane, such asdx22y2, the enhance-
ment effect is much more pronounced. Identical results are obtained by considering separately the nearly free
electron model, and a new method of atomic orbital superposition, for the metal surface.
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I. INTRODUCTION

The wide impact of STM on the study of surface stru
tures and their local electronic properties is well establish
The outstanding atomic scale resolution achieved sugg
that the focusing of the tunneling current is due to a sm
cluster of atoms at the tip, or even just one atom. Ea
studies of the current very close to~or at! contact between
the tip and sample,1–4 and more recently in Refs. 5,6, lead
the interpretation of a quantum size contact between
infinite reservoirs. The ideal resistance isRc51/s0N where
N is the number of parallel channels, ands052e2/h. One
concludes that the STM could be the smallest macrosc
cally controlled tunneling junction, i.e., a single atom tip a
a surface.

Still, an outstanding problem for the last decade has b
to explain the anomalously high corrugation observed
compact metal surfaces, where the electrons are very d
calized and the density variation due to the atoms is kno
to be very small in the vacuum region. On the basis of
s-wave tip model of Tersoff and Hamann,7 it was not ex-
pected to resolve the atoms on metal surfaces in compar
to semiconductors or layered semimetals.8 First observed by
Hallmark et al.9 and Winterllin et al.,10,11 atomic resolution
on metal surfaces is often achieved under optimal surf
and tip conditions, and thus in UHV. Various interesti
mechanisms have been proposed to explain
phenomenon.12–16

To state the problem in a general way, and for the ze
bias limit, the conductance has the forms(r0)5s0T(r0),
where T(r0) is usually a complicated transmission coef
cient, dependent on the location of the tipr0 ~Fig. 1!. In the
STM constant current mode, one imposess(x0 ,z0)51/R,
and the tip follows the constrained pathz05 z̄1D(x0 ,z̄),
wherez̄ is the average height, andD is the corrugation. The
transmission coefficient can be separated into two termT
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5T01dT, where the surface structure leads to a lateral va
tion dT(x0 ,z0), over the background term,T0(z0). Keeping
only to linear order, the constraint imposes

D~x0 ,z̄!52
dT~x0 ,z̄!

dT0~ z̄!/dz
~1!

R5
1

s0 T0~ z̄!
. ~2!

In a simple way, these equations express in which direc
to look for an enhancement of the corrugation: In addition
the expecteddT term in Eq.~1!, we see that the backgroun
transmissionT0( z̄), in particular its slope, could also affec
the corrugation. Inversion of Eq.~2! gives the average tip
height for a given resistance.

FIG. 1. Schematic of the STM model considered in this wo
The Green’s functions for the two independent electrodes repre
propagation paths of the type 1 and 2, for the surface, and 1, 3,
4, for the tip. Propagation in the coupled system must includ
combination of these~Sec. II!. The corrugated surface is treated
both the nearly free electron model~Sec. III! and a new muffin-tin
superposition method~Sec. IV!.
7656 ©2000 The American Physical Society
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Based on the work of Chen,12,17,18 it is commonly be-
lieved that a hypotheticaldz2 tip orbital, taking its symmetry
axis ~z! perpendicular to the sample surface, is at the ori
of this atomic resolution. The curious theoretical point is th
neither a single atom tip with ans orbital, nor even with the
dz2 orbital, can account for the observed data. Indeed
glance at Fig. 2, showing the orbital density plots in t
(x,z) plane, indicates that these two states have a sim
asymptotic behavior into the vacuum along the tunnel
axis. Moreover, at some distance from the tip~i.e., relevant
to the STM situation! the dz2 orbital is not much more
‘‘sharp’’ than thes orbital.

Given the complex atomic structure of a real tip, which
possibly unstable, and certainly nonreproducible, there
neither an priori choice of symmetry axis, nor a particulad
orbital to favor. The tip state, and in the vicinity of the Ferm
level, should be a linear combination of alld orbitals. The
final spectral weight is expected to be the result of the lo
chemical bonding of the tip extreme atom to its near
neighbors. Even if adz2 character is dominant, it could in
deed be oriented arbitrarily with respect to the surface. N
ertheless, Chen17,18 considers the effects ofmÞ0 tip states,
such as those in Fig. 2, and in the geometry shown. Th
states reveal a nodal line~or nodal plane! oriented orthogona
to the surface, and in this work we consider their possi
role in the giant corrugations.

The precise value of the background transmission coe
cient, as Eqs.~1! and~2! suggest, may strongly influence th
corrugation. Hence, in this work, we shall put the tunneli
resistanceR back into the picture. Not only isR the experi-
mentally controlled and accurate parameter, but the dista
z0 between tip and sample, defined as in Fig. 1, is unkno
More specifically, we will show that the resistance as a fu
tion of z̄, or R( z̄), is different depending on the tip orbital i
question. For example, the lobe of thedz2 orbital, as in Fig.
2, gives a shifted weight towards the surface, compare

FIG. 2. Isolated tip local density, Imgtip , calculated using the
tip Green’s function, derived in Sec. II. Plotted in thexz plane, four
of the five orbitals considered in the text are compared. Both
grey level, corresponding to a fixed logarithmic scale, and the c
tours, reveal distinctly the nodal lines for themÞ0 tip states along
the z axis.
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the s orbital. Thus for some fixed tip-surface separation, a
assuming equal spectral weight, the tunneling curren
higher in the case of thedz2 tip. In the orientation proposed
in Fig. 2, themÞ0 states, having a nodal line along th
tunneling axis, give a reduced tunneling probability andR is
much larger than thedz2 case. Even more care is needed
the case of linear combinations ofd states.

As a consequence, if we now takeR as thefixedparam-
eter, then different tips will be at different relative heigh
above the surface. Then, it is meaningless to compare t
retical corrugations for different tip orbitalsD l ,m( z̄) for the
same value ofz̄. Yet, this is what is frequently done in th
literature.19 Instead, one should compare corrugations fo
given value of the resistance, and computeD l ,m(R) by elimi-
natingz̄ in Eq. ~1! using Eq.~2!. This is more difficult, since
the same model calculation must be reliable for the ba
ground transmission coefficient as well as the corrugation
closer look at some perturbation methods7,12,17,18,20shows
that the current is known up to a multiplicative consta
Therefore, in this work we reexamine both the resistance
corrugation problems fors and d orbital tips using a single
approach.

The method of Sacks and Noguera21–23 gives the tunnel-
ing current between a quite general surface and a single a
tip analytically, in the low bias and zero temperature limi
The resulting transmission coefficient, for the particular ca
of the s orbital tip, reads

T~r0!54
Im l tip $2Im dgs~r0 ,r0!%

u11l tipdgs~r0 ,r0!u2
, ~3!

wherel tip is the tip reflection amplitude, anddgs(r ,r 8) is the
nonsingular part of thesurfaceGreen’s function. This ap-
proach to the tunneling problem is quite different, avoidi
perturbative methods such as the Bardeen approximatio24

and is valid in the thin barrier limit. Indeed, in Ref. 22 w
showed how the denominator (11l tipdgs) accounts for the
tunneling through new states of the coupled tip-surface s
tem. It is tempting to consider these states as a poten
source of giant corrugations, a problem we did not purs
further. Here, the main goal is to apply thisT(r0), and its
generalization to higher tip angular momenta.

In the thick barrier limit, the coupling becomes small, a
the factorl tipdgs→0. We thus recover qualitatively the re
sult of Tersoff and Hamann~TH!: T(r0)}Im dgs(r0 ,r0),
which is directly the local density of states~LDOS! of the
sample, at the location of the tip:

Im dgs~r0 ,r0!52pr~r0 ,EF!. ~4!

Thus, in the TH model, the pertinent quantities are the ba
ground densityr0, and its modulationdr, and their ratio
determines the corrugation.

Even in the nearly-free electron model, the calculation
dr can be quite delicate.7,12,18,25More recently, the work of
Ref. 26 gives the LDOS for a selection ofd band metals. As
is well known, the spectral representation
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7658 PRB 61WILLIAM SACKS
r~r0 ,EF!5(
n

ucn~r0!u2d~En2EF! ~5!

gives the exponential law for the background densityr0

}e22kz0 with k5A2mf/\'1 Å21 the decay constant
Equivalently, the resistance increases by one order of m
nitude per Å increase in separation, for a typical work fun
tion f. TH and other authors7,8,25,27,28also showed that for a
corrugation of wavelengtha52p/G, the decay constant o
dr is aG/25A(G/2)21k2. Thus the ratio~1! gives the
asymptotic dependence of the corrugationDs(z0)}e22gz0

5e22(aG/22k)z0. Evaluating the new decay constantg for a
simple metal surface, one finds one order of magnitu
change inDs for a change of;2 Å in separation. Both
decays depend quite sensitively on the physical parame
however.

To show that atomic resolution on metals is an order
magnitude question, consider the original data of Winter
et al.11 on Al(1,1,1) where a corrugation ofD'0.8 Å is
found forR'106V. What does thes-wave tip model give as
an order of magnitude? Taking a limiting value at ‘‘co
tact,’’ and assuming only a single channel, the resistanc
Rc;104V and the corrugation7,29 should be smaller than
0.1 Å. Therefore at 106V the s corrugation should be
smaller than 0.01 Å. The measurement therefore repres
a truly giant corrugation. In a perturbation approach to
tunneling current, and using an asymptotic formula for
corrugation term, Chen12 concludes that adz2 tip gives an
enhancement factor of about 20, relative to ans tip. We find,
plotting both hypothetical corrugations as a function of t
junction resistance, that thedz2 corrugation is typically less
than an order of magnitude higher than thes one. Further-
more, our asymptotic expressions show that allm50 states
give basicallys wave behavior, and no giant corrugation
found.

The higherm tip states, i.e., those presenting nodal lin
orthogonal to the surface, were considered by Chen18 as a
mechanism for image contrast inversion. We do not con
this possibility for some tip configurations. Still, ou
asymptotic expressions give very different results for b
the resistance and the corrugation for these states. In par
lar, with the approximations used in Refs. 17,18, the aut
concludes that individualmÞ0 states give both a vanishin
conductance, and an unphysical infinite corrugation. Quit
the contrary, our work shows that the strength of the no
depending on the term of the tip multipole expansion, le
to a finite resistanceR(z)}(kz)m11e2kz. Its influence on the
corrugation is to lower the denominator in Eq.~1!. The nodal
lines, or planes, also have the effect of increasing the mo
lation termdT in Eq. ~1!. Thus, we find that higherm tip
states can give a greatly enhanced corrugation, nearly
orders of magnitude higher than fors.

An overview of the paper is as follows. In Sec. II w
summarize the model, and describe the quantities releva
the corrugation on metals. In Sec. III, we develop the ar
ments above concerning the resistance of the junction for
different tip states. The corrugation is then calculated us
first the nearly free electron approximation~Sec. IV! fol-
lowed by a straightforward muffin-tin atom superpositi
method~Sec. V!. Concluding remarks are in Sec. VI.
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II. METHODS AND DEFINITIONS

Our formalism introduced some time ago21 can account
for a single atom tip, or a small cluster,s, p, or d orbitals, and
a quite arbitrary surface structure. Its principal aim was
obtain an expression for small tip to surface separations,
thus to include multiple reflections in the barrier omitted
lowest order perturbation theory. A second aim was to ve
TH’s theory by proceeding in a totally different approac
Here we clarify those quantities entering the expressions
the tunneling current that are relevant to the corrugat
problem.

The tip atom, or cluster, is modeled by muffin-tin pote
tials and the tunneling current is solved analytically in ter
of the Green’s functiongs(r ,r 8) of the free surface. In Refs
21,23 we used a square well tip, however all the results
independent of the particular choice of muffin-tin potenti
The current is obtained from the total wave functionC of the
entire tip-surface system,30 and in the zero temperature
ohmic limit, reads

I 52e2V(
n
E dS• j nd~En2EF!, ~6!

wherej n5(\/m)Im$C* ¹C% is the current density. Thus a
the outset, the method makes no assumption on the coup
strength across the barrier, in contrast to the Bard
formula.24 In the following, we describe the surface and t
tip as independent electrodes, at equilibrium, prior to treat
the coupled system.

A. Surface Green’s function

If r and r 8 are two points in the vacuum~Fig. 1!, the
solution gs(r ,r 8) to the one-electron inhomogeneous equ
tion

~Hs2E!gs~r ,r 8!52d~r2r 8!, ~7!

is assumed to describe the free surface. We thus maintain
same generality as TH and, for example, the surface LD
can be immediately found using Imgs(r ,r )52pr(r ,E). In
the vacuum region, one can separategs into two termsgs
5g01dgs , whereg0 is the singular part, and propagates
free particle from the source pointr 8 to r ~or vice versa!:

g0~r ,r 8!52
m

2p\2

e2kur2r8u

ur2r 8u

5
km

2p\2
h0

1~ ikur2r 8u!. ~8!

Hereh0
1 is the spherical Hankel function and, forE relative

to the vacuum energy,k5(22mE/\2)1/2. Sinceg0 has no
imaginary part, all LDOS information is only in the surfac
termdgs , i.e., precisely the quantity appearing in the tunn
ing current.

An important example is the asymptotic expression
the Green’s function outside a plane free-electron metal u
by Hurault.31 For z andz8 much larger thank21, he obtains
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dgs~r ,r 8!'
m

2p\2
r s

e2kA%21(z1z8)2

A%21~z1z8!2
, ~9!

where %5x2x8, and r s is the reflection amplitude:r s
5( ikF1k)/( ikF2k). Here we have putE5EF , i.e., for the
case of tunneling at small bias. The quantitydgs above rep-
resents the propagation fromr 8 to r but with the further
reflection due to the surface~path 2 in Fig. 1!. The LDOS for
the perfectly plane surface follows:

r~r ,EF!52
1

p
Im dgs~r ,r !

5
m

2p2\2

kFk2

kF
21k2

e22kz

kz
, ~10!

providedkz@1. Note that the usual barrier exponential d
cay term has a power law (kz)n denominator. This addi-
tional asymptotic behavior, also found in Ref. 25, plays
significant role in the case of higher tip angular momen
The correction of this LDOS due to the atomic corrugation
derived in Sec. IV.

B. Tip Green’s function

In Ref. 21 we considered the tip wave function, howev
here we give a derivation using the tip Green’s function
has the advantage of stressing the symmetric aspects o
tip and surface quantities, and giving a more general de
tion for l tip . Our formulation can then be connected to
recent propagator-source theory32 of the STM. Finally, the
atom superposition method of Sec. V uses the same relat

We suppose a single muffin tin is at the positionr0, and
similarly write the tip Green’s function in the formgtip5g0
1dgtip1dg8, with g0 the usual vacuum term anddgtip con-
taining reflection terms from the tip extreme atom~path 3,
Fig. 1!. Then,dg8 is the term reflected from the remainder
the tip ~path 4!, whose contribution to the tunneling curre
will be neglected. The method consists in solving Dyso
equation forgtip analytically:

gtip~r ,r 8!5g0~r ,r 8!1E
V

g0~r ,r 9!Vtip~r 9!gtip~r 9,r 8!dr 9,

~11!

whereVtip is the muffin-tin potential, andV its volume.
The problem becomes tractable if bothg0 and gtip are

expanded in spherical functions about the tip center, of ar
ment u5r2r0. Then, for fixedr 8, g0(r ,r 8) has the formal
expansion

g0~r ,r 8!5(
l ,m

Dl ,mj l~ iku!Y l ,m~ û!, ~12!

wherej l is the spherical Bessel function, and the coefficie
Dl ,m are implicitly dependent onr 8. Inversion of this expan-
sion for the setDl ,m is given in Ref. 21. As in Chen’s
theory,17 they are determined by a differential operator

D̂l ,m5 f S ]

]x
,

]

]y
,

]

]zD ,
-

a
.

s

r
t
the
i-

ns.

s

u-

s

leading to a derivative of orderl, which acts on the function
to be expanded, in this caseg0:

Dl ,m5 lim
r→r0

$D̂l ,mg0~r ,r 8!%5D̂l ,mg0~r0 ,r 8!. ~13!

SelectedD̂l ,m operators are listed in Table I, noting that th
l 50,m50 one is just the identity. Then the first coefficie
in the expansion~12! for g0 is

D0,05A4pg0~r0 ,r 8!,

i.e., just a sphericals-wave evaluated at the tip center. Usin
standard methods, one can show that theD̂l ,m operators act-
ing on g0 generate the spherical solutions to Schro¨dinger
equation

D̂l ,m* g0~r ,r0!5
2km

\2
hl

1~ iku!Y l ,m~ û!, ~14!

about the siter0. We shall use the convention thatD̂l ,m and
D̂l ,m* always act on the first and second arguments ofg(r ,r 8),
respectively. The real orbitals are obtained using the app
priate linear combination of theD̂l ,m operators, but with a
factor A2 for normalization.

With these techniques, and after integration, Dyso
equation for the tip gives

gtip~r ,r 8!5g0~r ,r 8!2(
l ,m

l l ,mD̂l ,m* g0~r ,r0!D̂l ,mg0~r0 ,r 8!.

~15!

We stress the very convenient ‘‘d function’’ property of
Vtip , i.e., the above solution contains terms of the formD̂g0
evaluated at the tip centerr0. However, note that the facto
gtip in the integrand of Eq.~11! has also been replaced b
D̂g0. This follows from the matching method in Ref. 21

TABLE I. Relevant quantities for the calculation of the bac
ground densityr l ,m(z)5Cal ,m(z)e22kz for selected tip orbitals and

a metal surface. Columns 2 and 3 show theD̂ operator and the
plane-wave eigenvalue squaredu f l ,m(k)u2, respectively. The latter
functions behave ask2m in the k→0 limit, and as a result the
asymptotic form ofal ,m(z), final column, is 1/(kz)m11.

tip state D̂l ,m
u f l ,m(k)u2 al ,m(z)

s A4p 4p 1
kz

dz2 2
A5p

k2 S 3
]2

]z2
2k2D 5p

k4
~3ak

22k2!
5

kz

dxz1 idyz

A30p

k2 S ]

]x
2 i

]

]yD ]

]z

30p

k4
k2ak

2
15

2

1

~kz!2

dxy 2
A15p

k2

]2

]x]y

60p

k4
kx

2ky
2

15

4

1

~kz!3

dx22y2

A15p

k2 S ]2

]x2
2

]2

]y2D 15p

k4
~kx

22ky
2!2

15

4

1

~kz!3
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where only theincidentpart of the total wave should appe
in this term. In the present case, the incident part ofgtip is
just g0 ~neglectingdg8).

The functions l l ,m are the tip reflection coefficients
which will depend notably on the interaction of the tip ato
with its nearest neighbors, and thus on the local electro
structure. For the formal solution of the tunneling current
consider Eq.~15! above as thedefining equationof l. This
quantity has been explicitly calculated, for example in t
case of an adsorbate on a jellium.22 For ans orbital, one finds
that l is approximately

ls5
cs

E2Es2 iGs
, ~16!

wherecs andGs give the strength and width of the resonan
at Es . Thus Iml l ,m is proportional to the projected DO
onto the orbitall ,m of the tip atom. Consulting more realisti
tip electronic structure calculations, such as in Ref. 33,
approximation forl should be adequate.

In principle all angular momenta will participate in th
tunnel current, as proved by Eq.~15!. At the Fermi level,
however,l is expected to be very small except for the ne
est resonance states. For example, if the extreme atom h
singles state, the tip Green’s function reduces to

gtip~r ,r 8!'g0~r ,r 8!24plsg0~r ,r0!g0~r0 ,r 8!, ~17!

however Eq.~15! should be used for degenerate orbitals. T
above equation also provides the starting point for
muffin-tin superposition method of Sec. V.

C. Coupled tip-surface system

The total wave functionC for the coupled system is writ
ten in two ways. First, superposition in the barrier regi
allows one to writec5c i1c r , wherec i and c r are the
total incident (e1kz) and reflected (e2kz) waves, respec-
tively. Second, the scattered wave can be expressed in
gral form as the Lippman-Schwinger equation

C~r !5cs~r !1E gs~r ,r 8!Vtip~r 8!C~r 8!dr 8, ~18!

where cs is the unperturbed surface wave function. Usi
the same expansion method, the integration leads to

C~r !5cs~r !2(
l ,m

l l ,mD̂l ,m* gs~r ,r0!D̂l ,mc i~r0!, ~19!

where theD̂l ,m are the identical operators, but here they
on surfacequantities. Using this result, the tunnel condu
tance,s5I /V, is found by direct integration over the curre
density~6!:

s54ps0(
l ,m

Im l l ,m(
n

uD̂l ,mc i~r0!u2d~En2EF!.

~20!

In contrast to either the TH or Chen theories, the curr
is related to amodifiedLDOS, where the unperturbed surfac
wave functioncs is replaced by the quantityD̂c i , i.e., de-
rivatives of the total incident wave at the tip center. T
ic
e

e

is

-
s a

e
e

te-

t
-

t

problem is therefore reduced to finding the unknown com
nentsD̂l ,mc i at the positionr0 . Taking only the incident part
of Eq. ~19!, and applyingD̂ on the left, leads to an infinite se
of coupled equations

D̂l 8,m8c i~r0!5D̂l 8,m8cs~r0!

2(
l ,m

l l ,mD̂l 8,m8D̂l ,m* dgs~r0 ,r0!D̂l ,mc i~r0!,

~21!

for the componentsD̂c i . Although quite complex, this se
represents the multiple reflections across the barrier, inv
ing all degenerate tip orbitals. Closer inspection reveals t
in addition to ‘‘direct’’ terms~with a givenl l ,m), there are
also interferenceterms.

In the simplest case, one only needs the solution fo
single orbital:

D̂c i5D̂cs2l$D̂D̂* dgs%D̂c i ,

5
D̂cs

11lD̂D̂* dgs

, ~22!

with an important ‘‘renormalization’’ step, and the condu
tance reads

s~r0!5s0

4 Iml$2Im D̂D̂* dgs~r0 ,r0!%

u11lD̂D̂* dgs~r0 ,r0!u2
. ~23!

An analytical solution for the three-dimensional tunneli
problem can be obtained for a cluster tip, even taking i
account degenerate orbitals, but is necessarily more com
cated to write. Notice that the final result is a true transm
sion coefficient, i.e., of the forms5s0T, where T tends
towards unity in the thin barrier limit. An equation havin
this property was obtained by Ferreret al. in the tight-
binding approach.3

III. JUNCTION RESISTANCE

The problem for the remainder of this work is to evalua
our general conductance equation~23!, specifically applied
to the resistance and corrugation equations~1! and ~2!. In
this Section we only discuss the lowest order term for
resistance,R(z)51/s(z), which corresponds to a singl
atom tip and a plane metal surface, leaving the corruga
term for Sec. IV. Even in this case, the conductance~23!
depends on thereal part of dgs , which is absent in the TH
and Chen models. A second point we treat is the role of
D̂ operator, pertinent to each type of orbital. If one ignor
multiple reflections in the barrier, which amounts to taki
D̂D̂* dgs→0, the conductance depends asymptotically o
on the imaginary part again. Thus the largekz limit should
give back Chen’s results12,17,18 for the tunneling current in-
volving higher tip angular momenta, and based on
Bardeen transfer Hamiltonian.24 This is not the case, as th
asymptotic formulas reveal.
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A. R„z… for s and d tip orbitals

Although the quantityD̂D̂* dgs has never been consid
ered,dgs has arisen in the problem of an impurity within
perfectly tunneling planar junction.31 In the nearly free elec-
tron approximation, neglecting the corrugation implies th
only theplanar part of dgs(r ,r 8) is required. Thus, follow-
ing Hurault,31 we write this quantity as

dgs~r ,r 8!5
m

~2p\!2E 1

ak
r ~k!c0~x,z!c0~x8,z8!* d2k,

~24!

wherec0 is the plane-wave vacuum solution

c0~x,z!5eik•xe2akz,

having the familiar decay constantak5Ak21k2, andr (k) is
the surface reflection coefficient. The free-electron c
r (k)5( ik'1ak)/( ik'2ak), with k,k' the parallel and per-
pendicular wave vectors, should be a reasonable approx
tion. Neglecting thek dependence inr (k), i.e., takingr (k)
'r (0)5r s , leads to a standardk integral and gives approxi
mation~9! to dgs discussed previously. The subscript den
ing the tip position will be dropped.

For the lÞ0 tip states Eq.~24! can be used to comput
D̂D̂* dgs directly. While the differential form ofD̂l ,m is simi-
lar to Chen’s,17 the constant prefactor is not. One can eith
use the direct formula forD̂ in Ref. 21, or deduce the con
stant using the identity~14!. The orbital coefficientls for the
s wave tip was fitted to the sodium/jellium model of Ref. 3
and an equal spectral weight will be assumed for all orbit
The simple values,k50.5 a.u. andkF51 a.u. were chosen
for the remaining constants.

We compare the resistance as a function of distance
for the two tipss anddz2 in Fig. 3. The asymptotes, esse
tially equivalent to the perturbation limit, are shown to d
part from the trueR(z) curves whenz gets sufficiently small,

FIG. 3. R(z) curves for the two tip orbitals,s anddz2, using the
‘‘exact’’ conductance equation~23! and assuming equal tip spectr
weight. Herez is the distance between the surface and the
muffin-tin center. The asymptotes, equivalent to the perturba
limit, are shown to be accuratefor both orbitalsfor R.105V. For
a fixed resistance thedz2 tip must be further away from the surfac
than thes tip. This shift has the effect of lowering the expecteddz2

corrugation.
t

e

a-

-

r

s.

st

-

i.e., z,4 Å for the s tip andz,5 Å for the dz2 one. Note
that in the former case, the current saturates toR'Rc for z
5zc'2.5 Å. As evident in the figure, the asymptotes f
both tips have the same slope, and thus the same or
decay into the vacuum. What is equally important is that
R(z) curve for dz2 is shifted with respect to thes curve,
towards a larger distance, by nearly a Bohr. This is due to
shifting of the center of gravity of the tipdz2 orbital away
from the tip center~visible in Fig. 2!, an effect apparently
overlooked in Refs. 12,18. In particular, for a barrier thic
ness of 4 Å thes orbital tip gives a resistance of 105V,
while thedz2 tip is close to ‘‘contact.’’ Thus the compariso
of the corrugations for the two types of tips should clea
not be done at a given value ofz, as in Ref. 12, but at a given
value ofR. Our results show that shifting thedz2 orbital tip
away from the surface, to keep the same value forR, has the
effect of reducing the corrugation. This puts immedia
doubt on its possible origin of the atomic resolution.

A further point is remarkable from Fig. 3. The curve
portions for both tips, where the perturbation approximat
breaks down, correspond to resistance values less than 15V
in both cases. It is agreed that short range forces are expe
when the surface and tip states couple strongly,3,13,15,16,21,22

i.e., the denominator in the conductance Eq.~23! becomes
significant. Figure 3 shows that they can be safely neglec
for the common experimental range of 1052108V. We
therefore expect that the effect of multiple reflections e
pressed by the complex Eq.~21!, should be negligible in the
problem of a simple metal surface. This conclusion sho
not be hastily extended to the non-ohmic situation, or one
which the surface has a more complex structure, such a
adsorbed molecule. We finally note that, based on the e
value ofT(z) for the s orbital, it is possible to approximate
the asymptote ofR(z) as

logS R

Ro
D52k~ loge!~z2zo! ~25!

with Ro'105V andzo'4 Å. One cannot replaceRo andzo
by Rc and zc without making the error of a shifted asymp
tote.

As described in the Introduction, Chen worked out t
tunneling matrix elements for individuald orbital tip states,
and in the geometry of Fig. 2. In addition, he suggested t
the mÞ0 tip states are the possible cause of image cont
inversion. We propose to show that anmÞ0 tip orbital can
give a very large corrugation enhancement, even compa
to the usually accepteddz2 one. Note that even a ‘‘pure’’dz2

orbital could be oriented at an arbitrary angle with respec
the surface. Then in the surface coordinate system, i
equivalent to the addition of higherm components.

We therefore examine the additionaldxz1 idxz orbital,
having axial symmetry alongz, dxy anddx22y2, taking thexy
plane parallel to the surface. These are illustrated in Fig. 2
contour plots of the tip local density, in thexz plane. The
lines corresponding to either nodal lines or nodal planes
clearly evident~the orbitaldx22y21 idxy has similar behavior
as dxz1 idxz , and will be omitted!. The resistance for the
case of these otherd orbitals, is calculated in an identica
way as thedz2 case discussed above, and the results
shown in Fig. 4. In principle, the sum over alld orbitals

p
n
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should give back spherical symmetry, assuming equal s
tral weight for each. The decay of the tunneling current w
tip-surface distance is shown to be quite different for th
mÞ0 states. We show below that this is principally due
the axial nodes.

B. Asymptotic formulas

The possible role of nodes in the tip wave functions c
best be seen in the asymptotic form of the conductan
Moreover, since multiple reflections can safely be neglec
for R.105V, the kz@1 limit should be sufficient for the
corrugation equation~1!. We therefore focus on the quantit

r l ,m52
1

4p2
Im D̂l ,mD̂l ,m* dgs , ~26!

where the extra factor of 4p assures that the usual LDOS
obtained for thes-wave case. To compare directly with th
results of Refs. 12,17,18, and to derive useful asympt
formulas, we consider thek representation ofr l ,m(z), which
follows immediately using expression~24! for dgs . It is con-
venient to callf l ,m(k) the eigenvalue of theD̂l ,m operator

D̂l ,mc0~r !5 f l ,m~k!c0~r !,

and the calculation proceeds with evaluating:

r l ,m~z!52
1

4p2

m

~2p\!2E Im r ~k!

ak
u f l ,m~k!u2e22akzd2k

~27!

where the relevantf l ,m(k) functions are given in Table I.
Exactly as in the TH theory, due to the exponential fac

e22akz, the background density is determined mainly fro
states near theG point of the surface Brillouin zone, or th
small k limit. In Refs. 12,18 Chen uses this property to ta
into accountonly those states, i.e., skipping the integral

FIG. 4. R(z) curves for each of the tipd orbitals, each having
the same spectral weight, and in the nearly free electron mode
the surface. These show a quite different asymptotic slope for
dz2 tip state, as compared to themÞ0 ones. Due to the near axia
symmetry of the surface,R(z) is the same for thedxy and dx22y2

cases. Analytical expressions are summarized in Table I. It follo
that a comparison of the corrugation at a fixedz will be different
than at fixedR.
c-

e

n
e.
d

ic

r

Eq. ~27!. This excludes particular cases where a directio
gap exists near theG point, or other type of singularity. Here
we use a method of steepest descent: The exponential a
ment is expanded aboutk50, and slowly varying factors
having a finite limit, are assumed constant. Thus one
write

r l ,m~z!'Cal ,m~z!e22kz, ~28!

whereC52km Im r s /(2p\)2, and the asymptotic form for
all l ,m is given by the simple dimensionless integral

al ,m~z!5
1

~2pk!2E u f l ,m~k!u2e2(z/k)k2
d2k. ~29!

Looking at the eigenvaluef l ,m(k) for the different states,
we first note that only thel 50 ones tend to a finite constan
in the smallk limit. Thus for thes anddz2 states discussed
above, the ratiof z

2 / f s
255(3ak

22k2)2/4k4 is a factor of 5
when k→0. The k integration then gives the prefacto
as(z)51/(kz) andaz2(z)55/(kz). One can show that thepz
tip state leads a similar prefactor. The conclusion is that
m50 tip states have the similar asymptotic formR(z)
}(kz)e2kz, for the resistance.

The problem is markedly different for themÞ0 states.
For example,f xz1 iyz}k and f x22y2}k2, i.e., these functions
vanishask→0. In real space, this is due to the nodal line
the tip wave function along the tunneling axis. In fact, w
find the power ofk in the smallk limit of f l ,m(k) to reflect
the strength of the node, i.e., the degree of shifting of the
orbital density away from thez axis, andf 2,m}km. The cor-
responding real space factors, summarized in Table I,
then of the forma2,m(z)51/(kz)m11. These results are remi
niscent of the multipole expansion in electrostatics. The
sistance asymptote then follows the general formR(z)
}(kz)m11e2kz, and it would be of interest to check this ex
perimentally.

IV. CORRUGATION

In this section, we consider the asymptotic corrugation
individual tip states

D l ,m~x,z!'2
dr l ,m~x,z!

dr l ,m /dz
, ~30!

which follows immediately from Eq.~1!, but we will also
treat the case of a superposition of orbitals. The general c
is important, since no special axis of symmetry is expec
for a real tip. In considering the above equation for the c
rugation, one should bear in mind thatR(z) is known, and
that the main objective is to calculateD(x,R).

The background densityr l ,m(z) can play a more impor-
tant role in the STM image than is generally thought. F
higherm states we have seen thatr(z) decays faster than th
m50 ones. In the analysis of Chen,12,18 the k integration
being ignored, his functionf l ,m(k) was evaluated only atk
50. The conclusions were therefore thatf (0)50, hence
r l ,m(z)50, resulting in aninfinite corrugation in this ap-
proximation. This would be true if the tip orbital could b
perfectly orthogonal to the surface wave function. As o
analysis shows, this is not the case, and the background
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sity just has a 1/(kz)m prefactor over the usuals wave case.
Thus, expression~30! must be reconsidered.

A. Nearly free electron approximation

The evaluation of the modulation term,dr l ,m(r ), in the
nearly free electron approximation is quite we
known,7,8,17,18,25and will be only briefly sketched here. Th
arguments we propose are not meant to cover metal surf
for which the plane-wave approximation is known to bre
down.26 However, the problem is still motivated by the wid
range of metals, and under a wide range of conditions,
give a giant corrugation. Moreover the results are in go
agreement with the simulated images using the muffin
surface approach, described in the following section, des
the difference in the treatment of the electronic structure

Our approach is very similar to Chen and TH in that t
modulation term is approximated by a single Bragg refl
tion. Thus we replacec0 in Eqs.~24! and~26! for r l ,m(r ) by
c01c1 where

c15uGei (k2G)•xe2ak2Gz,

G being the smallest nonzero reciprocal lattice vector, a
the decay constantak is the same as previously. We sha
consider only the square lattice to get the order of magnit
of the corrugation. The (1,1,1) surface, for example,
treated in Ref. 12.

Introducing the wave functionc01c1 in r l ,m(r ) , Eq.
~26!, evidently leads to three terms. The leading term}uc0u2
gives the previous background density, and has the de
constant 2ak . The cross-term gives the corrugation, i.
}2 Re$c0* c1%, having the decay constant (ak1ak2G).
Consequently, the largest contribution to the corrugat
term is fork5G/2 or theM point ~or the nearest point toM
allowed!. The last term}uc1u2 is a correction to the back
ground density, and will be dropped. We therefore can w

dr l ,m~x,z!5C8e22az(
n

$uGn
e2 iGn•xbl ,m~Gn ,z!1c.c.%

~31!

with, using the abbreviationaG/25a,

C852
k2m Im r ~G/2!

a~2p\!2
.

In addition to neglecting thek dependence ofuG , we have
approximated perhaps abusivelyr (k)'r (G/2), which may
be a problem for particular electronic structures. The fu
tion bl ,m(G,z) is defined in dimensionless form, and giv
the prefactor of the modulation

bl ,m~G,z!5E d2q

~2pk!2
f l ,m~q2G/2!

3 f l ,m~q1G/2!* e2(k2z/a3)q2
. ~32!

While al ,m(z) was defined by approximatingk near theG
point, here the exponential argument has been expan
about theM point, i.e.,q5k2G/2. Thebl ,m(G,z) functions
are estimated by the leading term of the integral. Again
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note that in Ref. 18, Chen considers only a singlek point for
the asymptotic corrugation. We find that some of the eig
values of theD̂ operatorf l ,m(k) can still vanish even at the
M point, again due to the tip nodal plane, and thus the
plicit integration in Eq.~32! is unavoidable.

To proceed, we assume that thex direction of the tip
coincides with an atomic row of the surface lattice, for sim
plicity. As a result of imposing reflection symmetry, an
defining

F~x!5(
n

cos~Gn•x!,

in our example we have no phase shifts and the modula
reads

dr l ,m~x,z!52C8bl ,m~G,z!uG e22az F~x!. ~33!

Thus, in the results shown in Table II,bl ,m(G,z) depends
only on the magnitude ofG. Also, since we have neglecte
the band structure near the zone boundary, these shou
considered only as an order of magnitude. Similar assu
tions are found in the TH and Chen theories.

Examining the modulationdr l ,m , it shows the well-
known exponential lawdr}e22az, but with the prefactor
given bybl ,m(G,z). Consequently thedxy modulation decays
fastest withbxy(G,z)}1/(kz)2, whereas thedx22y2 anddxz
1 idyz orbitals both give the factor 1/(kz). The precisez
dependence seems to vary according to the orientation o
nodal plane with respect to the crystal axes, i.e., giving
notable difference between thedxy case anddx22y2. As the
negative sign ofb(G,z) indicates, bothdxz1 idyz and dxy
give anti-corrugations, i.e., an inverted image. We find t
asymptotically thedx22y2 gives a positive corrugation, in
sharp disagreement with Ref. 18. A more complete stu
taking into account the electronic structure of a selection od
metals, shows that even with ans wave tip, an anticorruga-
tion can exist.26 Therefore, in some complex situations in
volving a d orbital tip, it might be difficult to know the true
atomic positions from the image.

B. Corrugation enhancement

The difference between our value of the constant curr
corrugationD l ,m and those of other authors7,8,12,17,18,20,26is
thez dependence, as well as the numerical factors combin
the constantsG,a, andk ~Table II!. Using Eqs.~28! for the
background density and Eq.~33! for the modulation, the re-
sult is

D l ,m~x,z!5
C8uG

kC

bl ,m~G,z!

al ,m~z!
e22gz F~x!. ~34!

Again, we find the usual exponential decayD l ,m}e22gz, giv-
ing about 1 order of magnitude change in the corrugati
per 2 Å change inz, i.e., slower than the background de
sity. However, this value does depend sensitively onG/k,
which in our case is 2.75. Note that the ratio of the tw
constantsC andC8 is in theory

C8

C
5

k

a

Im r ~G/2!

Im r s
,
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TABLE II. Relevant quantities for the density modulationdr l ,m52C8bl ,m(G,z)uGe22az F(x), in the
nearly free electron approximation, where the functionsbl ,m(G,z), column 2, give the asymptotic form. Th
corrugationD l ,m(x,z) depends critically on the ratiobl ,m(G,z)/al ,m(z), and is given in column 3, up to the
constantC8uG /C. Finally the ‘‘enhancement’’ factor relative to thes orbital tip Al ,m5D l ,m /Ds is shown in
the last column. Note thatAl ,m is a constant for thedz2 tip, but has a (kz)n dependence for themÞ0 states,
which is a possible indication of a giant corrugation.

tip state bl ,m(G,z) D l ,m(x,z) Al ,m

s SakD3 1

kz

a3

k4
e22g z F~x! 1

dz2
5

4 SakD3S3a2

k2
21D2

1

kz

a3

4k4 S3a2

k2
21D2

e22g z F~x!
1

4 S 3a2

k2
21D 2

'15

dxz1 idyz 2
15

8

G2a5

k7

1

kz
2

G2a5

4k7
ze22g z F~x! 2

G2a2

4k3
z'25kz

dxy 2
15

8

G2a6

k8

1

~kz!2
2

G2a6

2k8
ze22g z F~x! 2

G2a3

2k4
z'218kz

dx22y2
15

64

G4a3

k7

1

kz

1

16

G4a3

k6
z2e22g z F~x!

1

16

G4a3

k2
z2'3.5~kz!2
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but is unknown without selecting a specific band structu
Looking for the possibility of corrugation enhancement, t
only candidate is the ratiobl ,m(G,z)/al ,m(z), since any giant
corrugation must persist in the perturbation limit, i.e., forR
@105V. Moreover, the previous section has shown the
nominator to behave in this limit asal ,m(z)51/(kz)m11, and
we can anticipate a possible amplification effect here.

To show this more clearly, the last column of Table
shows the ‘‘enhancement’’ factorA5D l ,m /Ds relative to the
s-wave theory. Thedz2 corrugation is found to be;15 times
larger, at a given tip surface separation. This is in reason
agreement with, but smaller than, Chen’s value of 19.6.
will show in the following numerical analysis, that this valu
is still insufficient to explain the experimental data. The e
hancement factors for the othermÞ0 states show the impor
tant feature of beingdependent on z, i.e., proportional to
(kz)n, an aspect that has been hitherto overlooked. For
ample, thedxy tip orbital, for a tip-surface separation of 5 Å
gives an enhancement over thes-tip by a factor of 100. It
seems clear that a very large amplification effect can oc
for tip states of higherm.

To compare with the experimental data, we focus only
the order of magnitude of the problem, and no data fitt
was considered. Our approach is to select reasonable pa
eters for thes wave problem, then thed orbital case is
known. Aside from the tip coefficientls used for the tunnel-
ing resistance in the previous Section, the only free par
eter isC8uG which can be deduced using typical values
the charge density modulation. We then compare in Fig
the corrugationD l ,m , but as a function of thejunction resis-
tancefor each of the different tip orbitals. The original da
of Winterllin et al.11 is shown just for comparison.

What is first striking in Fig. 5 is that thedz2 curve is more
than one order of magnitude below the experimental d
and less than an order of magnitude above thes line. The
calculation in Ref. 12 manages to fit thedz2 line through
these identical data points. Given that boths anddz2 orbitals
.
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ur
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g
m-

-
f
5

a,

give similar asymptotic expressions for the density, the la
approach cannot prove that thedz2 orbital is responsible for
the giant corrugation. Moreover, the previous section show
that for a given resistance, thedz2 tip is further away from
the surface than thes tip ~assuming equal tip spectra
weight!. Plotted as a function of resistance, the corrugat
enhancement ofdz2 over s is reduced to a factor of 8.

For the tip orbitals of higher angular momentum, the c
rugation gains more than an order of magnitude for e

FIG. 5. Magnitude of the corrugation ford orbital tips, over the
s wave model, seen here as a function ofR. The corrugationD(R),
for the dz2 tip is more than one order of magnitude below the d
points Ref. 11, and less than one order of magnitude above ts
line. ThemÞ0 tip states give a corrugation with a very large e
hancement over thes tip, which also increaseswith resistance.
D(R) shows a gain of more than one order of magnitude, fordxz

1 idyz , or even two orders of magnitude, for thedxy or dx22y2 tips.
The curveS shows thedx22y2 corrugation reduced by the superp
sition of only 2 %dz2.
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increase inm, as Fig. 5 indicates. The previous argume
have shown that this enhancement effect is due to both
faster decay of the background density, and the increas
the modulation term. Furthermore, as Fig. 5 illustrates,
relative enhancement for themÞ0 tips ~as compared to thes
tip! increaseswith resistance. It should therefore prove us
ful to study the behavior of the corrugation as a function
R.

To make contact with experiment, we write approxima
formulas that are expected forD(R) on a log-log plot, and
for the case of tunneling to a single orbital. Thus using
approximateR(z) equation for thes-wave tip ~25!, together
with the asymptotic formulas for the corrugation, one has

logS Ds~R!

Do
D'2« logS R

Ro
D ~35!

with «5g/2k loge, andDo is the corrugation atRo'105V.
Here we neglected the (kz)21 prefactor in the background
transmissionT(z). Thedz2 tip gives the same line but shifte
by the additive constant Nz2'0.8. For tip states havingm
.0, we get the general form

logS D~R!

Do
D'N1M logF11~kzo!21logS R

Ro
D G

1 logS Ds~R!

Do
D , ~36!

where N is a constant shift~as in Fig. 5! and zo'4 Å,
defined in the previous section, is a little larger than a latt
constant. Finally the factorM depends on the tip orbital in
question, and we find explicitlyM5(11g),M5(112g)
and M52(11g) for the dxz1 idxz , dxy , anddx22y2 orbit-
als, respectively. Thus the first two terms of Eq.~36! com-
bined can give a factor larger than 2, or an enhancemen
more than two orders of magnitude above thes-wave case.

The calculations presented so far, involving tunneling t
single orbital tip, can be extended to the case of a lin
combination of degenerated orbitals. We write a new tota
tip coefficient in terms of the ‘‘individual’’d states as

Im l tot5(
i

b i Im l i ,

where b i is the relative weight, which could be deduce
from anab initio tip calculation. The total corrugation isnot
the sum of the ‘‘individual’’ corrugations, but rather

D tot~x,z!52(
i

b i

dr i~x,z!

dr tot /dz
. ~37!

Thus the correct corrugationD tot(R) requires both the tota
junction resistanceRtot(z) and total background densit
r tot(z). Consequently, we can check how fast thedx22y2 am-
plitude is lowered by adding adz2 component. The result
show~see Fig. 5!, that even the small admixture of a few %
of m50 reduces significantly the enhancement effect. Thi
quite as expected, since thedz2 orbital has a lobe towards th
surface that easily compensates for the axial node of thm
Þ0 states, in the geometry chosen. The further investiga
s
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of different tip structures may shed light on which proporti
of d orbitals is the most realistic.

V. MUFFIN-TIN SURFACE

The superposition of muffin-tin potentials is also a simp
way to implement a surface structure. In previous work
have used the muffin-tin model for an atom on a jelliu
surface,22 or a linear chain of atoms.23 The method outlined
below uses the same approach as for writing the Gree
function for the tip. Here we calculate the surface Gree
function for a finite number of ‘‘atoms’’ in a square lattice
and investigate the corrugation fors andd orbital tips.

A. General method

One can transpose the single atom tip argument, lead
to Eq. ~15!, and apply it to the surface. The mathematic
trick is to notice that one can solve the Dyson equation~11!
or Lippman-Schwinger equation~18! for a given muffin tin
with an arbitrary external source~what we called the ‘‘inci-
dent’’ wave in Sec. II!. This external wave can thus be th
reflected wave from all the other muffin tins of a cluster.

A simple recursion scheme is therefore possible solv
the Green’s function foradding the M th site, at the new
position r M , in terms of the solution forM21 sites, at the
positionsrm . The starting point to implement the method
the s-wave expression found for the single muffin tin

g1~r ,r 8!5g0~r ,r 8!2lsg0~r ,r1!g0~r1 ,r 8!, ~38!

wherer1 is the position of the first site, andls is approxi-
mated by

ls5
cs

E2Es2 ih
.

The propagation implied by Eq.~38! is illustrated in Fig. 1.
The nonsingular part of the Green’s function is the first ‘‘su
face’’ term

dg1~r ,r 8!52lsg0~r ,r1!g0~r1 ,r 8!, ~39!

and represents propagation fromr 8 to r1, followed byr1 to r .
The LDOS is found directly:

r~r ,E!5
1

p

csh

~E2Es!
21h2

g0~r ,r1!2,

which is a suitable approximation for a single atomics state.
The recursive relation we obtain for the Green’s functi

for adding theM th site to the problem is

gM~r ,r 8!5gM21~r ,r 8!2bM~E!gM21~r ,r M !gM21~r M ,r 8!,
~40!

with

bM~E!5
ls

11lsdgM21~r M ,r M !
. ~41!

Although succinct, this Green’s function contains all mu
tiple reflections within the system, i.e., including all neig
bors. When expanded in terms of a lower order, sayN,M ,
Eq. ~40! contains propagation terms, such as:gN(r ,r i) or
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gN(r i ,r 8), as well as coupling terms,gN(r i ,r j ). The quantity
bM represents the coupling of the last site to all other site
the system, an aspect which is very similar to the tig
binding approximation. Restriction to nearest neighbors
therefore very easy to impose.

In order to illustrate simply, consider only 2 sites wi
g1(r ,r 8) as the starting point, whileg2(r ,r 8) is obtained
from the recursion equation

g2~r ,r 8!5g1~r ,r 8!2b2~E!g1~r ,r2!g1~r2 ,r 8!. ~42!

Then the coefficientb2, with Eq. ~39! for dg1,

b25
ls

12ls
2g0~r2 ,r1!2

is seen to have new possible poles wheneverX561, where

X25ls
2g0~r1 ,r2!251.

Neglecting the imaginary part ofls , these poles occur at th
energies

E5Es6csug0~r1 ,r2!u,

which are the bonding and anti-bonding states of
‘‘dimer.’’ Looking more closely at the solution~42! for the
dimer shows that it contains interference terms, such
Xg0(r ,r1)g0(r2 ,r 8), which give rise to the spatial contra
between the bonding and anti-bonding states. In short,
~40! contains a simplified electronic structure of a collecti
of coupleds orbital ‘‘atoms’’ and at arbitrary locations. If we
neglect all interference terms of Eq.~40!, we do get the form
of a straight superposition of atomic orbitals

gM~r ,r 8!.g0~r ,r 8!2b~E!(
i 51

M

g0~r ,r i !g0~r i ,r 8!.

~43!

However, this is difficult to justify, and the original resu
~40! is almost as easy to implement.

B. Corrugation for d orbital tips

The ‘‘reciprocity principle’’ found by Chen17 for d tip
states is succinctly demonstrated in the present context.
tunneling current depends on the quantityD̂D̂* dgs , which
we have discussed at some length. Thus we can check
ans-wavesurfacegives with ad tip by directly operating on
the nonsingular part of Eq.~43! with D̂:

D̂l ,mD̂* l ,mdgs.b~E!(
i 51

M

$D̂l ,mg0~r ,r i !%$D̂l ,m* g0~r i ,r 8!%.

~44!

Since the source point and field point can be interchange
the quantity D̂l ,mg0(r ,r 8), up to a sign, and furthermor
since theD̂l ,m operators generate the spherical solutions~as
shown in Sec. II!, then Eq.~44! is just the superposition ofd
orbitals with one at each of the surface sites. Thus the r
procity idea is due to the interchange of field point with t
source point.
in
-
is

e

s

q.

ur

hat

in

i-

It is remarkable that the ‘‘exact’’ equation for the muffin
tin surface~40! also verifies this reciprocity. Thus in Fig.
we show the STM current profile, for the selection of orbita
discussed in the nearly free electron approximation. M
precisely, we compute

r l ,m52
1

4p2
Im D̂l ,mD̂l ,m* dgs ,

as before. The plane of the figure is along the diagonal of
square unit cell, and the atom positions are clearly see
the case of thes tip. For thed orbitals, one notices that Eq
~40! does indeed lead to the superposition of the tip orb
type but on each surface site. The results for the corruga
in each case agree well with the previous Section, e
though the electronic structure is treated so differently.

A glance at Fig. 6 may give the impression of a largedz2

corrugation, even compared to those for themÞ0 tips. How-
ever, those contours highlighted in white, corresponding
the fixed resistance ofR5105V, provide a clear illustration
of the main point of this article. In particular, thedz2 is seen
to have only a slightly larger corrugation than thes tip, while
the other three cases of interestdxz1 iyz dxy , anddx22y2 are
significantly enhanced. The much weaker decay of the c
rugation along the nodal line orthogonal to the surface
quite distinctive. The details of the STM image depends
the orientation of the nodal planes, thus giving a mark
difference between thedxy and dx22y2 cases. In agreemen
with the previous asymptotic calculations, thedxz1 iyz and

FIG. 6. Grey level representation of the surface LDOS~the
quantityr l ,m , defined in the text! in the plane normal to the surface
for the five different tip orbitals, and using the proposed muffin-
superposition method. Thes wave case clearly indicates the ato
positions, along the diagonal of a square lattice, each atom con
uting a singles orbital. For thelÞ0 tip states, ourr l ,m verifies
Chen’s ‘‘reciprocity principle,’’ i.e., giving the apparent superpos
tion of a d orbital at the surface sites. The contours in white cor
spond to the same value of the resistance,R5105V. The corruga-
tion is slightly larger fordz2 but increasingly enhanced for th
orbitals of higherm, as the strong nodal lines normal to the surfa
clearly indicate.
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dxy tips give an inverted corrugation, while thedx22y2 re-
veals a positive one. These results are in sharp disagree
with Ref. 18. Finally we note that the simulated STM im
ages, in the case of adxz or dyz tip, shows a ‘‘striping’’
effect, due to a difference in corrugation along two orthog
nal directions parallel to the surface. The effect also occ
for some linear combinations ofd orbitals.

VI. CONCLUSION

The striking point concerning the large amplitude atom
corrugation on metals is that it occurs for such a wide vari
of surfaces, independent of their particular band struct
and for a variety of tunneling conditions. The problem h
nevertheless resisted to a simple explanation. In this work
have showed that one needs a theory capable of givin
reliable value of the junction resistanceR, as well as the
density modulationdr. We applied our somewhat differen
method of calculating the tunnel current, which has the
vantage of giving a suitable transmission coefficient, ea
applicable tolÞ0 states of the tip, and being for the mo
part analytical. We reviewed the asymptotic surface Gree
function in the nearly free electron model, and reconside
the effects of selectedd states of the tip.

It transpires that the resistance versus tip-surface sep
tion R(z) depends strongly on the tip electronic structure.
particular, for individual tip d states, we foundR(z)
}(kz)m11, over the usual exponential law, and in stro
disagreement with other works. We argued that one can
compare the corrugation for different tips at a fixed t
surface separation. Our analysis of the asymptotic corru
tion D l ,m(R) shows them50 states (pz , anddz2) to have
basically thes-wave behavior, with no striking enhanceme
The dz2 case is often attributed to the atomic resolution, b
it is not much more sharp than a singles orbital tip. Quite to
the contrary, themÞ0 tip states can give a corrugation wi
a very large enhancement over thes tip. We find inD l ,m(R)
a gain of more than one order of magnitude, fordxz1 idyz ,
or even two orders of magnitude, for thedxy or dx22y2. We
showed the combined effect of the increased average r
tance, and increased current modulation, was due to
nodal lines or nodal planes of these particular tip states.

Among the negative points, we note how easily the eff
is masked when a linear combination of degenerate orb
is considered, in particular putting back adz2 component.
Indeed the enhancement effect due to the tip nodes is
sensitive to the local electronic structure at the tip extrem
On the other hand, it predicts an enhancement for any typ
sample metal. We checked our asymptotic calculations w
the atom superposition method, which gives a Green’s fu
tion and LDOS for a system of coupleds orbital atoms, and
obtained identical results. This model allows one to visua
the significant effect of the nodal lines directly in the plots
the density~precisely in ImD̂D̂* dgs). This points to the
interesting prospect of intentionally preparing tips havi
this property, either with the intrinsic material, or with
small adsorbed molecule having a high symmetry.
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The effect of a node in thesurfacewave function was
used by Tersoff to explain giant corrugations on graphite20

There he found a singularD(z), again due to the treatment o
the asymptotic expressions for the LDOS. Later with Lang35

they found that the corrugation was sensitively dependen
the tip electronic states. The giant corrugations on grap
were also attributed to its compressibility under the influen
of tip-surface forces.36 Thus Zheng and Tsong14 proposed a
model of giant corrugations on metals in which the tip e
tremity is compressible, due to an hypothetical contami
tion, while the surface remains rigid.

We have considered the possibility of corrugation e
hancement due to tunneling through new states induced
the proximity of the tip to the surface. This is provided qu
directly via the coupled set of equations~21!, derived in Sec.
II, which account for multiple reflections across the barri
We have investigated how this situation of stronger coupl
between the electrodes results in significant changes in
the tip and the surface density of states. For example, s
pose at large separation we have a puredz2 orbital, but when
the tip is close to the surface a secondd-orbital gains spectra
weight at the Fermi level, saydxz1 idyz . Then the tunneling
current involves directdz2, anddxz1 idyz terms, but there are
also interference terms, involving bothdz2 and dxz1 idyz .
Although of some theoretical interest, our results show t
all of the multiple reflection terms are small in the expe
mental resistance range.

In fact, we have tried to relax the condition of the rigid t
by letting the tip atom positionr0 become a variable, in the
spirit of Ref. 14. Then the resonance energy is calcula
using thetotal DOS of the tip-surface system. As a cons
quence, the tip atom moves subject to the total force du
the two remaining electrodes. No giant corrugation is fou
principally due to the fact that, beyond 105V, the tip to sur-
face coupling is negligible. In the small resistance case,
corrugation could even be attenuated, i.e. the motion of
tip atom tends to compensate the lateral variation in the d
sity, rather than to amplify it.

In a ‘‘tour de force’’ Bracheret al.37 have derived the
Green’s function for tunneling in an electric field. Thus o
can check for a possible enhancement effect which we h
totally neglected.32 The electric field at the tip extremity
could be quite large, and we suggest that future calculati
of the spectral weight of the tipd orbitals would be even
more instructive if the field were taken into account. Anoth
important point we have neglected is self-consistency,
the tip and surface Hamiltonians (Hs and H tip) are consid-
ered as independent of each other. Therefore correlati
such as barrier lowering due to the image potential, have
been implemented. This remains true for all the STM mod
in the one-electron picture.
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