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A numerical method to find the bound states of a low-dimensional quantum system is described. The method
is used to calculate the energy levels and the wave functions of three-dimensional systems. In particular, the
electronic level structure of self-assembledGa; ,As/GaAs quantum dots is studied.

INTRODUCTION wave functions are importafit® as in the case of stacked
QD's.” A further feature of this technique is that, in some
Recent growth techniques, as molecular-beam epitaxgases, we can factorize the short-time propagator as a tenso-
(MBE) and atomic layer molecular-beam epitadt MBE ), rial product of one-dimensional free propagators and a diag-
permit the fabrication of semiconductor microstructures thapnal tensor, with a huge gain in terms of computation and
have aroused enormous interest both for their fundamentahemory requirements. In the following, we refer to this
properties and potential applications in micro- and optoelecmethod as “Green-function deterministic numerical diago-
tronics. Quantum well§QW’s), quantum wires, and quan- nalization” (GFDND).
tum dots(QD’s) allow one to attain one-, two-, and three-  The main goal of this work is to show the application of
dimensional confinement of charge, respectively. Thdéhe GFDND to the computation of the transition energies in
increasing amount of experimental data, coming from photoQD structures. For the sake of simplicity, we use the one-
luminescencéPL) observations, needs a systematic theoretband effective-mass approximation; therefore the Schro
ical analysis of the electronic levels of many different struc-dinger equations for electron, heavy hole, and light hole are
tures. A widely used approach to perform these calculationsompletely decoupled. Since here only ground-state energy
is the envelope function approximation with a multibdng calculations are performed, this approximation is justifiéd.
Hamiltonian. In this case, the problem is to solve a set of The paper consists of four sections and two appendixes.
eventually coupled Schdinger equations. Therefore, it In Sec. | we describe the numerical method. In Sec. Il we
clearly arises the need of efficient numerical methods. define the potential model employed. In Sec. Ill we compare
The available techniques for the computation of boundour numerical results with those obtained by photolumines-
states of a quantum system fall into two main categories: theence analysis of jGa, _,As/GaAs QD samples. The fourth
first one is based on the Hamiltonian operator, while thesection is the conclusion. In Appendixes A and B, we further
second category is based on the kernel of the Qthger discuss some details of the potential and the numerical
equation for an infinitesimal time stejghort-time propaga- method, respectively.
tor). The bound states can be obtained both by ‘determinis-

tic’ and Monte _Carlo methods. The Iatt.er have. the import_ant I. NUMERICAL METHOD
feature of facing problems with arbitrary dimensionality _ _
(see, for instance, Refs. 1 any] But a fundamental limit is The short-time propagatoK(x,y;e), determines the evo-

the need of high statistics, and then large CPU time, to relution of the quantum system in a small time interva),
duce the statistical errors. On the other hand, deterministitelating the wave function at the timg+e¢ to the wave
methods can be very accurate and relatively fast. function at the timeto,

In this paper, we describe a deterministic technique that
belongs to the second category and has good stability, good N
convergence properties, and a precision at least equivalent to ’ﬂ(x;t0+8):f - J Kxye)g(ytodly, (1)
that of efficient Hamiltonian methodsee, for instance, Ref.
3, for a comparison with a Fourier grid Hamiltonian whereN is the number of degrees of freedom. Since we are
method. In particular, it gives very high accuracy in delicate interested in the bound states only, we can use the Euclidean
tunneling problems, where the localization properties of thdormulation. Then the oscillatory factors in the propagator
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become Gaussians, and the numerical integrations are more M: Mn o ) )
stable and accurate. Therefoeeis the imaginary time, and 2 Ki,, . iy(Xe) '(}X')""'N:e*SEad,(a)(x),
K(x,y;e) denotes the Euclidean propagator, which is given 171 n=1
in Cartesian coordinates by 6)
where
K(xyie) = oo p{ T )
X,Y;€)= ———— exp — 5— xP— x4— ~
V= ey 2 pd XYY R . iN(x;s>=f f KoGyse)li (yD), - i (V)
x dNy 7

—f(X,y;s)], )

Since the functiong;(x) are given, integral(7) can be ex-
wherefi=1, G, is the “mass” tensor, and®, yP are the plicitly calculated by analytical or numerical techniques.
components ok, y, respectively. The first term in the expo- We can now find the coefficienm'&z’)' N by selectingM
nential corresponds to the kinetic part of the Hamiltonian,X - - - X MN distinct grid points ((il, cen ,xiNN) and solving
while the functionf(x,y;&) represents the potential term. the following eigenvalue problerfcollocation methoy
The explicit expression of the latter depends on the prescrip-

tion chosen: the last point rulé&(x,y;e)=¢eV(x), for ex- M1 j J. £ :
ample, gives a short-time propagator correct updie), > -0 > Ki o5 W TN=eTTRe) :

A

while the symmetric expressiaf{ V(x) +V(y)]/2 is correct  '1~% ®
up to O(e?) (see, for instance, Ref)2A systematic expan-
sion of the short-time propagator in powers ofis also  where
possible>®10 ~ B
If E, and ,)(x) are the eigenvalues and the eigenvec- Kfl ,,,,, e J-NEKjl ,,,,, jN[(xill, cen ,x{\‘N);s]. 9

tors of the Hamiltonian, respectively, then Ef) becomes
The multidimensional tensd?'ifl ., becomes

very large as the degrees of freedom of the system increase;
in practice, already the case of three degrees of freedom is
quite difficult to handle. However, for a wide range of physi-
which is an eigenvalue integral equation. Its solution yieldscy| systems, the mass teng®p, is constant and diagonal.
directly the energy levels and the wave functions of theyjoreover, since the time stepcan be chosen very small,
Hamiltonian. Equationi3) can be solved numerically as fol- \ye can takef (x,y;e) =& V(x), and the potential term can be
lows (finite interpolation method® Let us expand the un- ¢ out of the integrals. In this case, the numerical problem is

known wave functionj,)(x) on some basis of interpolating mych simpler because expressi@ simplifies as
functions. In the multidimensional case, it is convenient to

choose a basis given by the tensorial product of one-
dimensional functions. Thus, in general,

f j K(X,y;S)lﬂ(a)(Y)dNy:e_SEalﬂ(a)(X). 3

N
'N

exp{—eV[(X, ... X

)1}
(10

(4)  where
In particular, as one-dimensional interpolating functions, we T m, M )

use piecewise polynomials of ordereven. More precisely, Kigip_J N 27e &P~ 5, (X —Y)7 1 (y)dy (11
since high-order Lagrange polynomials may lead to un-

wanted oscillations, we take only the piece between the tw@nd

central interpolation points. Then we repeat the process over (12

all inner points, while the initial and final points are interpo-

lated by the left and right side of the Lagrange polynomials;Therefore, we can factorize the propagator as a tensorial
respectively. Let us denote such polynomials with the symproduct of one-dimensional free propagator matrices multi-
bolsli(x). Thus expressiof4) becomes plied by the diagonal tensor corresponding to the potential
term. This means that, if we solve the eigenvalue problem by
iterative techniques, we need much less effort both in terms
of computation and memory requirements, and it becomes

mp=Gpp.

©)

where now the coefficient&i(i’)' N are just the values of

the function ) (x) in the interpolating points
(xill, . ,xiNN). If we substitute this expression in E@), we
obtain

possible to deal also with three or four-dimensional prob-
lems.

As a final remark, we note that in E() there are not
restrictions on the choice of the distribution of grid points.
Therefore, we can choose an appropriate distribution, ac-
cording to the shapes of the wave functions, in order to ob-
tain a better accuracy with the same number of points. This
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is equivalent to saying that we can choose an appropriate ?
transformation of variables that maps the original interval of

integration onto a new one and then discretize the new vari-

ables. In particular, we can map an infinite interval onto a

finite one. Thus we have the further advantage to take cor- |
rectly into account the boundary conditions by simply requir- I
ing that the wave functions vanish on the border of the in-q( l

terval. - x

FIG. 1. Schematic cross section of the InAs cluster in(@0)
plane through the top of the dot.

The previous discussion is limited to the Cartesian coor-
dinates. We now consider the case of a three'dimenSionﬂs usuaLf(p,Z,p"z’;s) depends on the prescription chosen
potential with a cylindrical symmetry. Then we can separatgor the potential, while
one angular variable, and the propagator can be written in the

Cylindrical coordinates

following way (see, for example, Ref. 11 \/ m, \/ op’ , op’
!. — —m &
o X k%(p,p ,8)— e Zwmp?e PP Im<mpT>
e\ Il N Aim(6—6")
K(rlr 18)_m:2_m ng(p,z,p ,Z ,8)27Telm , Xe—mp(p—p/)Z/ZE' (17)
(13
wherer=(p, 6,z) are the cylindrical coordinates. Since the k(2,2 ;)= lzrzzsefmz(z—z’)zlzs, (18)

guantum system has a cylindrical symmetry, the azimuthal
guantum numbem is conserved. Thus the contributions of
different values ofm can be separated. If we define the cy-
lindrical wave functionsp(,m)(p,2) by

and | ,(x) are the modified Bessel functions. Again, if we
choose the last point prescription for the potential term, and
we substitute expressiqa6) in Eq. (15), the resulting eigen-
value equation can be written as a tensorial product of one-
dimensional matrices multiplied by a diagonal tensor, as in
the Cartesian case. Then we can find the eigenvalues and the
eigenfunctions of the Hamiltonian in the usual way.

_ D(am)(P,2) elm?
Bamy(r)= T o (14
where ,m)(r) are the complete eigenfunctions of the

Hamiltonian, they satisfy the integral equation
Il. In ,Ga,_,As/GaAs QUANTUM DOTS

The simplest model for describing a single
In,Ga _,As/GaAs QD is an envelope function approxima-
tion using a one-band Hamiltonian with constant effective
masses and a three-dimensional potential, which has the
same geometrical shape of the QD and includes a cofh$tant
or numerically computéd strain contribution. More recent
models are based on multibakdp Hamiltonians and real-
istic strain distribution§:>*15 Furthermore, an alternative

J9m<Pv21P’,Z’;sw(am)(p',z')dp'dz'
=e *Bam,m(p,2). (15)

The short-time cylindrical propagatay,(p,z,p’,z’;€) is
given by

gm(p’zip/yZI;S):kﬁq(P:P';S)kZ(Z,Z/;S)e_f(p,z,p’,z’;S).

(16)  approach is based on pseudopotential calculafibrs.Fi-
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FIG. 2. Hydrostatidsolid line) and biaxial(dotted ling components of the strain, and electi@nlid line), heavy-holgdashed ling and
light-hole (dotted ling confinement potential(=8 ML, d=1.5 ML, A=0 ML) for line scans in th¢001] direction: (a),(d) along a line
through the top of the dotb),(e) and(c),(f) along lines at distance®,/2 andR, from the center of the dot, respectively.
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FIG. 3. Hydrostatidsolid line) and biaxial(dotted ling components of the strain, and electrgolid ling), heavy-holgdashed ling and
light-hole (dotted ling confinement potential(=8 ML, d=1.5 ML, A=1.5 ML) for line scans in th¢001] direction: (a),(d) along a line
through the top of the dotb),(e) and(c),(f) along lines at distance’,/2 andR, from the center of the dot, respectively.

nally, the indium segregation effects, and the Coulomb inter- /", 7)= Elvh[O,Z,S(p)]— E'Uh{X[Z,S(p)],Z,S(p)}.

action must be considered.

(23

Here we adopt the following approach. We use a one-
band Hamiltonian with constant effective masses. Moreoverynerex(z,S(p)] is the indium composition, depending both
an analytical approximation of a realistic strain distribution oy the nominal compositior, and the indium segregation

is used, and also the indium segregation is taken into aGengtt4
is computed

count. Finally, the Coulomb interaction

hh

v !

A, while the functionsE,, E"", andE!" are the

perturbatively:® The one-band approximation gives signifi-
cative differences in the calculation of the excited states, but
only small corrections for the ground stafesSince here we
are interested only in the latter, this simplified approach is
justified.

The potential is defined as follows. We suppose that the
QD has a cylindrical symmetry and a Gaussian height profile
with standard deviatioor and maximum height (in fact, the
shape and the dimension of the QD’s depend on the growth
conditions, and, for example, QDs with either
cylindricaP®=2? or pyramidat®!423 symmetries can be ob-
tained. Moreover, we must take into account that the QD
resides on a continuous wetting layer with thicknés$hus,
if we define the aspect ratiQ=h/4c, the height profile of
the QD is

he 8% M if p<R,
S(p)=1 ¢ if p=R,. (19)

The parameteR; is the distance between the dot’s axis and
the point where the QD merges in the wetting layer, and it is

given by
h / | h
t 4Q d 20

(a schematic drawing of the dot is shown in Fig. Then we
write the confinement potential as

V&(p.2)=E{X[2.S(p)],2,S(p)} —E[02,S(p)], (21)

V'™(p,2)=EN"0.2,S(p)]1-EN"{X(2,S(p)],2,S(p)},
(22 for

6
5 (@)
4
o
g 3
N2
1
0
-10 0 5 10
X (nm)
6
5 (b)
4
g 3
N 2
' #
0
-10 0 5 10
X (nm)
6
5 (©
4
g,
N2
1
ol! f—
-10 0 5 10
X (nm)
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all plots.

(100 plane through the top of the dot. The gray scale is the same
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10 5 0 5 10 after deconvolution into Gaussian components and theoretical pre-
dictions for the transition energies for the different QD families, as
a function of the InAs coverage. The solid circles refer to emissions
from the QD'’s for excitation above the GaAs band gap. The crosses
(© refer to PL bands observed after excitation below the GaAs band
gap. The pluses refer to additional emissions from the QD’s for
high excitation conditions. The solid lines are the theoretical tran-
sition energies between the electron and the heavy-hole ground
states. The dashed lines are the theoretical transition energies be-
tween the electron and the light-hole ground states.
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uncapped samples, grown under the same conditions, by

X (nm) atomic force microscop€AFM) has shown that the QD
_ . heightsh lie within the range 2—4 nrfi, while the aspect
FIG. 5. Confinement potentiah=8 ML, d=1.5 ML, A=1.5  ratjos Q have a large experimental uncertainty but seem to
ML) for electrons(@), heavy holesb), and light holes(c) in the  jncrease with increasing. Moreover, an x-ray analysis of
(100 plane through the top of the dot. The gray scale is the sambw samples (with d~1 ML), grown under similar
for all plots. conditions?®®?° gives a value for the segregation length
. between 1.5 and 2 ML. This value also allows one to fit the
edges of the energy bands of the®a _,As. All previous  Qw photoluminescence data by an envelope function ap-
functions are defined in Appendix A. In Figs. 2, and 3 weproach (although the envelope function approximation for
plot the confinement potentials along line scans in[B®1]  yrathin InAs layers could not be completely justifitdi
direction. In Figs. 4, and 5 we show their density plots.  phas peen shown that such an approximation can give quite
After the potential has been defined, the transition eneryscyrate resultd).
gies are computed as\E,=ES+EN"M+ESHE., A photoluminescence analysis of these QD samples has
whereES andE"") are the single-particle confinement en- already been reported in Refs. 21 and 22. The peak energies
ergies,EgGaASis the energy gap between the valence and conef the deconvoluted bands of the PL spectra at 10 K of seven
duction bands of the GaAs, artt}: is the Coulomb energy. QD samples, under cw excitation at 632.8 nm, at an excita-
tion power density of 50 W/cf) are plotted in Fig. 6 as a
Il RESULTS function of the InAs coveragésolid circles. Moreover, the
peak positions of additional, less intense, PL bands clearly
In this section we study one particular structure ofobserved only under cw excitation below the GaAs band-gap
In,Ga, _,As/GaAs QD’s. A layer of InAs was grown by energy(crossey or for high excitation conditiongpluses
MBE in the Stranski-Krastanow mode on@01) GaAs wa-  are also reported. The experimental data show discrete emis-
fer, close to the two-dimensional to three-dimensionalsion bands for any given InAs coverage. Moreover, the PL
transition?®2® The substrate was not rotated during thebands shift slightly to lower energies for increasing InAs
growth in order to have a continuous variation of InAs cov-coverage. The observed pattern of discrete emission energies
erage across the wafer from below to above the critical covhas been explained by assuming that, under the previously
erage for the 2D-3D transition. After the deposition atdescribed growth conditions, the QD’s nucleate in distinct
580 °C of a GaAs buffer layer and a 210 s growth interrup-families characterized by well-defined QD sizes. Corre-
tion, the dots were formed at 500 °C. Finally, the structurespondingly, for a given InAs coverage, the discrete emission
was capped by a 20-nm-thick GaAs layer grown at 500 °Chands can be attributed to radiative recombination from the
that acts as an upper confining layer. ground states of QD’s belonging to different families. This
The InAs coverage of the samples varies between abolterpretation is supported by PL time-resolved measure-
1.3 ML and 2.0 ML(see Refs. 21 and 22The analysis of ments, as reported in Refs. 21 and 22. The time-resolved
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TABLE |. Material properties of GaAs and InAs used in the 1.55 d T - T y T
calculations. Symbols are explained in the text.
ao (I"Im) Cll (N/mz) Clz (N/mz) €
GaAs 0.565325 11.88 5.38 12.5 %
InAs 0.60583 8.33 4.526 15.2 :
&0
St
¥
EQ .. (eV) a. (eV) a, (ev) b (eV) &
GaAs —6.92 —-7.17 1.16 -1.7
InAs —6.67 —5.08 1.00 -1.8 b
1.25 L L L
3.0 50 7.0 9.0 110
measurements show that for each sample with a given InAs h (ML)

coverage the emissions at higher energies do not result from FIG. 7. Theoretical transition energies vs QD height, without
excited states, that, indeed, can be observed only after highoulomb corrections, for fixed InAs wetting-layer thickness (
excitation. =1.2).

We show now that a numerical analysis of the electronic
level structure strongly supports the hypothesis that the obeSt QD’s. However, the presence of a few further transitions
served quantization pattern in the sizes of the self-assembledtould not change the main features of the pattern obtained.
QD'’s, and therefore in the emission spectra, can be basically
ascribed to the quantization of the QD heights at steps of 1 CONCLUSIONS

ML 222 ) ) ) ) ) In this paper we have described a numerical method
Accordingly with the previous considerations about the(GFDND), based on the diagonalization of the short-time
QD structures, we assume thak the thickness of the INAs  ,rqhagator, to solve the Scliager equation. We have dis-
wetting layer(WL), which must be lower than the InAs cov- ¢yssed the general multidimensional case and shown that, in
erage, increases linearly with the coverage fdm1.2 ML some cases, we can factorize the short-time propagator as a
to d=1.8 ML. (ii) The QD's have heights between 7 — 10 tensorial product of one-dimensional free propagators and a
ML quantized with steps of 1 ML(iii) The aspect rati®  diagonal tensor. This gives a huge gain in terms of memory
lies in the range 0.3-0.4, increases whthand is quantized requirements and allows one to attain quite easily problems
with stepsAQ=0.027. (iv) The segregation lengtih is  with 3—4 degrees of freedom.
equal to 1.5 ML. In the following we describe the results  \We have used the GFDND to solve a system of decoupled
obtained, while in Appendix B we discuss the stability andthree-dimensional Schdinger equations, which describes a
the accuracy of the GFDND. The complete list of parametersn Ga, _,As/GaAs QD with cylindrical symmetry and lying
is given in Tables | and I. on a thin wetting layer, in a one-band effective-mass ap-
In Fig. 7, we plot the transition energies without the Cou-proximation. The potential used takes into account both the
lomb corrections versus the QD height, for a fixed INAsstrain distribution in and around the QD and the indium seg-
wetting-layer thicknessl=1.2. This plot shows that there regation, while the exciton binding energy has been calcu-
are no excited-state transitions in QD’s of these dimensiongated in first-order perturbation theory and typically amounts
while there are both electron-heavy-hole and electron-lighttg 10—30 meV.
hole ground-state transitions. Then, by taking into account we have studied a particular structure of InAs/GaAs
the exciton binding energy and plotting the corrected transiQp’s, and we have found a quantization pattern that can be
tion energies versus the InAs coverage, we obtain the graphasically ascribed to the transition between electron-hole

in Fig. 6. This shows a surprisingly good agreement betweeground states in QD’s with quantized heights differing by 1
the observed transition pattern and the predicted one. ThegL.

small difference in the slopes of the experimental and theo-
retical lines occurs also for QW samples grown under similar
conditions and can depend on the limits of the envelope
function approach for such ultra-thin QW's. Finally we ob- We would like to thank L. C. Andreani, M. Berti, F.
serve that, as shown by multiband calculatibisxcited Bogani, P. Borri, A. Bosacchi, M. Colocci, S. Franchi, S.
states cannot be completely excluded, especially in the largsanguinetti, and A. Zunger for many helpful discussions and
important suggestions. Work at LENS is supported by the
European Community under the TMR Program, Contract
No. ERBFMGECT950017. This work has also been sup-
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TABLE Il. Effective masses used in the calculations.

m,(mo) m, (M) ported by CNR-Progetto Finalizzato MADESS II.
Electron 0.067 0.067 APPENDIX A: POTENTIAL MODEL
Heavy hole 0.45 0.11
Light hole 0.09 0.21 If we assume that the indium composition is constant in-

side and zero outside the QD and we neglect the strain ef-
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fects, the confining potential for the electrofiwley is a In the case of a strained QD, a rigorous approach would
steplike function given by the difference in the absolute entequire a numerical computation of the strain tensor in each
ergy of the conductiontvalence} band edges in iGa, _,As  unit cell of the structurésee, Refs. 13 and Lhowever, we
and GaAs. Actually, the strain modifies the,@g,_,As  adopt here a partially simplified approach. As a first approxi-
band gap. mation, we could assume that the dependence of the strain
For a strained QW, such modifications can be obtained ittensor on the lattice parameters is the same of a QW. In such
the following way (see, for example, Refs. 32 and)32n  a case, the strain-induced correction, which is function of the
absolute energy scale for the semiconductor band offset imdium composition, is constant inside and zero outside the
defined by giving the value of the unstrained average valenc®D. In fact, on the basis of the strain distributions reported
bandEJ ,(x), wherex is the indium composition. The offset in Refs. 13, and 14, we note th@) the hydrostatic compo-
of the unstrained conduction band ES(X)= E(U),a\)(x) nent of the strain is almost constant inside and zero outside
+[Ag(x)1/3+E4(x), whereAy(x) is the spin-orbit splitting, the QD, and _|ts_value is almost the same of a strained QW
and E4(x) is the unstrained energy gap. These quantitiend (b) the biaxial component of the strain is larger at the
depend on the indium compositiofa) the average valence- bottom of the QD and decreases almost linearly towards the
band position is derived by linear interpolation between theop. Therefore, according to these considerations, we assume
values for the pure materialgp) Aqy(x)=0.341-0.0x  that (a) the energy shift induced by the hydrostatic compo-
+0.14¢2, and (¢) E4(x)=1.519-1.584+0.475> (we ne- nent of the strain is given by the Eq#\1), (A7), and(A3);
glect small variations depending on the temperaturethe ~ @nd(b) the energy shift induced by the biaxial component of
following, the indium composition dependence will be un-the strain is given by EqA8) with
derstood. The strain-induced shift of the conduction band

SE. depends only on the hydrostatic component of the strain 01 . if 2<0
e[ S(p)]—€p 0 if 0=z<
OE.=ac (et €yyt €9, (A1) er=6€[2,Sp)]= TZ-F e | =z=$Y(p)
where €xxr Eyy and €,, are the components of the strain eé[S(p)] if z>S(p),
tensor given by
(A9)
AGaas™ aInXGai_XAs
Exx— Eyy— a ) (A2) and
In,Ga _,As 1
€L S(p)]
€ :—2C—126 (A3) €n
ey Zl\t/)IL[d+2 ML—S(p)] if d=S(p)<d+2 ML
acaas anda, ga s are the lattice constants, aj; and =
C,, are the elastic constants. Hence, 0 if S(p)=d+2 ML.
E.=E%+ 6E,. (A4) (A10)
Moreover, if we assume that the heavy-hole and the lightThe parametee] is the biaxial strain inside a QW, ar®{p)
hole bands can be completely decoupled, we have is the QD height profile defined in Eq19). When S(p)
A 1 =d+2 ML, the function €,[z,S(p)] decreases linearly
_ 0 —

E'U‘h: Eg,av+ ?0+ SE, n— §5Ev,b, (A5) from_ th_e bottom (st_)—eb) to the top €,=0) of the QD. In
the limit S(p)—d, it becomes constant and equalet@)(we
remind that the dependence on the indium composiia

Eh_g0 _ ﬂJr SE. .+ 15E still understoodl The hydrostatic and biaxial components of

v vavo g vh T g7=v.b the strain along line scans in tledirection are plotted in

Figs. 2 and 3cf. with Refs. 13 and 14

In conclusion, the confinement potentials for the electron,
the heavy, and the light holes in a QD are given by the
differences between the energy bands of the GaAs and those

1 2 9 2
5\ AFHASE, pt Z(SE, )% (AB)

where of the InGa, _,As:
OE, h=a,(€xyt €yt €7, (A7) Ve(p,2)=E[x,2,S(p)]—-E[0zS(p)], (All)
and 8E, , is related to the biaxial component of the strain hh hh hh
Eb:2€zz_ €xx+ Eyy by \ (pvz):Ev [O’Z’S(p)]_EU [X’Z’S(p)]' (A12)
SE, p=bep. (A8) VI"(p,2)=E;[02,S(p)]- Ef[x,2,S(p)], (AL3)

All lattice parameters, and the deformation potentials  where the dependence on the indium composition has been
a, , andb, depend on the indium composition. They are ob-explicitly written.

tained by linear interpolation between the pure material pa- Until now the indium compositiox has been considered
rameters, given in Table I. constant inside and zero outside the QD. In fact, when the
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In,Ga, _,As structure is grown, a considerable amount of indium atoms in a lower layer segregate to the upper one. This
migration changes the profile of the indium composition, which, in the case of a QW, is usually approximated by the
exponential shapé

(0 if z<0

Xo[1—exp(—2z/A)] if 0<z=d

X(z)={ (A14)

x0[1—exp(—d/A)]exp(—ZT) it z>d,

\
whereX, is the nominal indium compositiord is the QW thickness, and is the segregation length. Thus we make the

hypothesis that the segregation in a QD structure can be described in the same way. The fusatiow given by
(0 if z<0
Xol1—exp(—2z/A)] if 0<z=S(p)

z—3(p)

X[2,S(p)]=
xo{l—exq—S(p)/A]}exp(— : ) if 2>S(p),

(A15)

\

where the QW thicknesd has been replaced by the height profile of the @)). If we insert this expression into Egs.
(A11), (A12), and(A13), we obtain, finally, Eqs(21), (22), and(23).

APPENDIX B: GFDND PARAMETERS

The accuracy of the GFDND method can be improved by the choice of an appropriate transformation of variables that maps
the infinite interval onto a finite one. We choose a transformation that has been proven to work veYy \aihaps the
intervals[0,+0) and(—«,+«) onto[0,1) and(0,1), respectively, and it is given by

p=1—e M (B1)
e—)\ZZ
1— z=0
7= ehZ 0 (B2)
z<0,
2

wherep andz are the original variables, angandz are the new ones.

The parameters , and \, can be varied to optimize the accuracy of the numerical solution. If these parameters are too
large, there is a loss of accuracy in the interpolation of the tails of the wave functions. On the other hand, if they are too small,
there are too few grid points near the origin, where the wave functions and the potential change rapidly. Therafuta,
should be chosen in order to have the grid points distributed on the whole interval where the wave functions are significantly
different from zero. In practice, this condition can be satisfied by observing the plots obtained for the wave functions. In any
case, the numerical results are very stable for quite a large range of ysdgeRefs. 3 and 34The number of grid points is
equal to 100 for both variableg, and z, and the time step is equal to 0.1(we have checked that smaller values do not
significatively change the resujts

Finally, we point out that to solve the eigenvalue problem we usesirack package”™ based on a restarted Lanczos/
Arnoldi method. The code runs on a PC in a few minutes.
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