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Electronic-level calculations for semiconductor quantum dots: Deterministic numerical method
using Green’s functions
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A numerical method to find the bound states of a low-dimensional quantum system is described. The method
is used to calculate the energy levels and the wave functions of three-dimensional systems. In particular, the
electronic level structure of self-assembled InxGa12xAs/GaAs quantum dots is studied.
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INTRODUCTION

Recent growth techniques, as molecular-beam epit
~MBE! and atomic layer molecular-beam epitaxy~ALMBE !,
permit the fabrication of semiconductor microstructures t
have aroused enormous interest both for their fundame
properties and potential applications in micro- and optoe
tronics. Quantum wells~QW’s!, quantum wires, and quan
tum dots~QD’s! allow one to attain one-, two-, and thre
dimensional confinement of charge, respectively. T
increasing amount of experimental data, coming from pho
luminescence~PL! observations, needs a systematic theo
ical analysis of the electronic levels of many different stru
tures. A widely used approach to perform these calculati
is the envelope function approximation with a multibandk•p
Hamiltonian. In this case, the problem is to solve a set
eventually coupled Schro¨dinger equations. Therefore,
clearly arises the need of efficient numerical methods.

The available techniques for the computation of bou
states of a quantum system fall into two main categories:
first one is based on the Hamiltonian operator, while
second category is based on the kernel of the Schro¨dinger
equation for an infinitesimal time step~short-time propaga-
tor!. The bound states can be obtained both by ‘determi
tic’ and Monte Carlo methods. The latter have the import
feature of facing problems with arbitrary dimensional
~see, for instance, Refs. 1 and 2!, but a fundamental limit is
the need of high statistics, and then large CPU time, to
duce the statistical errors. On the other hand, determin
methods can be very accurate and relatively fast.

In this paper, we describe a deterministic technique t
belongs to the second category and has good stability, g
convergence properties, and a precision at least equivale
that of efficient Hamiltonian methods~see, for instance, Ref
3, for a comparison with a Fourier grid Hamiltonia
method!. In particular, it gives very high accuracy in delica
tunneling problems, where the localization properties of
PRB 610163-1829/2000/61~11!/7536~9!/$15.00
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wave functions are important,4–6 as in the case of stacke
QD’s.7 A further feature of this technique is that, in som
cases, we can factorize the short-time propagator as a te
rial product of one-dimensional free propagators and a d
onal tensor, with a huge gain in terms of computation a
memory requirements. In the following, we refer to th
method as ‘‘Green-function deterministic numerical diag
nalization’’ ~GFDND!.

The main goal of this work is to show the application
the GFDND to the computation of the transition energies
QD structures. For the sake of simplicity, we use the o
band effective-mass approximation; therefore the Sch¨-
dinger equations for electron, heavy hole, and light hole
completely decoupled. Since here only ground-state ene
calculations are performed, this approximation is justified8,9

The paper consists of four sections and two appendix
In Sec. I we describe the numerical method. In Sec. II
define the potential model employed. In Sec. III we comp
our numerical results with those obtained by photolumin
cence analysis of InxGa12xAs/GaAs QD samples. The fourt
section is the conclusion. In Appendixes A and B, we furth
discuss some details of the potential and the numer
method, respectively.

I. NUMERICAL METHOD

The short-time propagator,K(x,y;«), determines the evo
lution of the quantum system in a small time interval,«,
relating the wave function at the timet01« to the wave
function at the timet0,

c~x;t01«!5E •••E K~x,y;«!c~y;t0!dNy, ~1!

whereN is the number of degrees of freedom. Since we
interested in the bound states only, we can use the Euclid
formulation. Then the oscillatory factors in the propaga
7536 ©2000 The American Physical Society
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become Gaussians, and the numerical integrations are m
stable and accurate. Therefore,« is the imaginary time, and
K(x,y;«) denotes the Euclidean propagator, which is giv
in Cartesian coordinates by

K~x,y;«!5
AdetGpq

~2p«!N/2
expH 2

1

2«
Gpq~xp2yp!~xq2yq!

2 f ~x,y;«!J , ~2!

where\51, Gpq is the ‘‘mass’’ tensor, andxp, yp are the
components ofx, y, respectively. The first term in the expo
nential corresponds to the kinetic part of the Hamiltonia
while the function f (x,y;«) represents the potential term
The explicit expression of the latter depends on the presc
tion chosen: the last point rulef (x,y;«)5«V(x), for ex-
ample, gives a short-time propagator correct up toO(«),
while the symmetric expression«@V(x)1V(y)#/2 is correct
up to O(«2) ~see, for instance, Ref. 2!. A systematic expan-
sion of the short-time propagator in powers of« is also
possible.5,6,10

If Ea and c (a)(x) are the eigenvalues and the eigenve
tors of the Hamiltonian, respectively, then Eq.~1! becomes

E •••E K~x,y;«!c (a)~y!dNy5e2«Eac (a)~x!, ~3!

which is an eigenvalue integral equation. Its solution yie
directly the energy levels and the wave functions of
Hamiltonian. Equation~3! can be solved numerically as fo
lows ~finite interpolation method!.3 Let us expand the un
known wave functionc (a)(x) on some basis of interpolatin
functions. In the multidimensional case, it is convenient
choose a basis given by the tensorial product of o
dimensional functions. Thus, in general,

c (a)~x!. (
i 151

M1

••• (
i N51

MN

a(a)
i 1 , . . . ,i Nw i 1

~x1!, . . . ,w i N
~xN!.

~4!

In particular, as one-dimensional interpolating functions,
use piecewise polynomials of ordern even. More precisely
since high-order Lagrange polynomials may lead to
wanted oscillations, we take only the piece between the
central interpolation points. Then we repeat the process o
all inner points, while the initial and final points are interp
lated by the left and right side of the Lagrange polynomia
respectively. Let us denote such polynomials with the sy
bols l i(x). Thus expression~4! becomes

c (a)~x!. (
i 151

M1

••• (
i N51

MN

c (a)
i 1 , . . . ,i Nl i 1

~x1!, . . . ,l i N
~xN!,

~5!

where now the coefficientsc (a)
i 1 , . . . ,i N are just the values o

the function c (a)(x) in the interpolating points
(xi 1

1 , . . . ,xi N
N ). If we substitute this expression in Eq.~3!, we
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i 151

M1

••• (
i N51

MN

K̃i 1 , . . . ,i N
~x;«!c (a)

i 1 , . . . ,i N.e2«Eac (a)~x!,

~6!

where

K̃ i 1 , . . . ,i N
~x;«!5E •••E K~x,y;«!l i 1

~y1!, . . . ,l i N
~yN!

3dNy. ~7!

Since the functionsl i(x) are given, integral~7! can be ex-
plicitly calculated by analytical or numerical technique
We can now find the coefficientsc (a)

i 1 , . . . ,i N by selectingM1

3•••3MN distinct grid points (xi 1
1 , . . . ,xi N

N ) and solving

the following eigenvalue problem~collocation method!,

(
j 151

M1

••• (
j N51

MN

K̃i 1 , . . . ,i N , j 1 , . . . ,j N

« c (a)
j 1 , . . . ,j N.e2«Eac (a)

i 1 , . . . ,i N ,

~8!

where

K̃ i 1 , . . . ,i N , j 1 , . . . ,j N

« [K̃ j 1 , . . . ,j N
@~xi 1

1 , . . . ,xi N
N !;«#. ~9!

The multidimensional tensorK̃ i 1 , . . . ,i N , j 1 , . . . ,j N

« becomes

very large as the degrees of freedom of the system incre
in practice, already the case of three degrees of freedo
quite difficult to handle. However, for a wide range of phys
cal systems, the mass tensorGpq is constant and diagona
Moreover, since the time step« can be chosen very small,3

we can takef (x,y;«)5«V(x), and the potential term can b
put out of the integrals. In this case, the numerical problem
much simpler because expression~9! simplifies as

K̃ i 1 , . . . ,i N , j 1 , . . . ,j N

«

[K̃ i 1 j 1

1,«
•••K̃ i Nj N

N,« exp$2«V@~xi 1
1 , . . . ,xi N

N !#%,

~10!

where

K̃ i pj p

p,« 5EA mp

2p«
expH 2

mp

2«
~xi p

p 2y!2J l j p
~y!dy ~11!

and

mp5Gpp . ~12!

Therefore, we can factorize the propagator as a tenso
product of one-dimensional free propagator matrices mu
plied by the diagonal tensor corresponding to the poten
term. This means that, if we solve the eigenvalue problem
iterative techniques, we need much less effort both in te
of computation and memory requirements, and it becom
possible to deal also with three or four-dimensional pro
lems.

As a final remark, we note that in Eq.~8! there are not
restrictions on the choice of the distribution of grid poin
Therefore, we can choose an appropriate distribution,
cording to the shapes of the wave functions, in order to
tain a better accuracy with the same number of points. T
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is equivalent to saying that we can choose an appropr
transformation of variables that maps the original interval
integration onto a new one and then discretize the new v
ables. In particular, we can map an infinite interval onto
finite one. Thus we have the further advantage to take
rectly into account the boundary conditions by simply requ
ing that the wave functions vanish on the border of the
terval.

Cylindrical coordinates

The previous discussion is limited to the Cartesian co
dinates. We now consider the case of a three-dimensi
potential with a cylindrical symmetry. Then we can separ
one angular variable, and the propagator can be written in
following way ~see, for example, Ref. 11!

K~r ,r 8;«!5 (
m52`

1`
1

Arr8
gm~r,z,r8,z8;«!

1

2p
eim(u2u8),

~13!

wherer[(r,u,z) are the cylindrical coordinates. Since th
quantum system has a cylindrical symmetry, the azimu
quantum numberm is conserved. Thus the contributions
different values ofm can be separated. If we define the c
lindrical wave functionsf (am)(r,z) by

c (am)~r !5
f (am)~r,z!

Ar

eimu

2p
, ~14!

where c (am)(r ) are the complete eigenfunctions of th
Hamiltonian, they satisfy the integral equation

E gm~r,z,r8,z8;«!f (am)~r8,z8!dr8dz8

5e2«E(am)f (am)~r,z!. ~15!

The short-time cylindrical propagatorgm(r,z,r8,z8;«) is
given by

gm~r,z,r8,z8;«!5km
r ~r,r8;«!kz~z,z8;«!e2 f (r,z,r8,z8;«).

~16!
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f
ri-
a
r-
-
-

r-
al
e
he

al

As usual,f (r,z,r8,z8;«) depends on the prescription chos
for the potential, while

km
r ~r,r8;«!5A mr

2p«
A2pmr

rr8

«
e2mrrr8/«I mS mr

rr8

« D
3e2mr(r2r8)2/2«, ~17!

kz~z,z8;«!5A mz

2p«
e2mz(z2z8)2/2«, ~18!

and I m(x) are the modified Bessel functions. Again, if w
choose the last point prescription for the potential term, a
we substitute expression~16! in Eq. ~15!, the resulting eigen-
value equation can be written as a tensorial product of o
dimensional matrices multiplied by a diagonal tensor, as
the Cartesian case. Then we can find the eigenvalues an
eigenfunctions of the Hamiltonian in the usual way.

II. In xGa1ÀxAsÕGaAs QUANTUM DOTS

The simplest model for describing a sing
InxGa12xAs/GaAs QD is an envelope function approxim
tion using a one-band Hamiltonian with constant effect
masses and a three-dimensional potential, which has
same geometrical shape of the QD and includes a consta12

or numerically computed13 strain contribution. More recen
models are based on multibandk•p Hamiltonians and real-
istic strain distributions.8,9,14,15 Furthermore, an alternative
approach is based on pseudopotential calculations.16–18 Fi-

FIG. 1. Schematic cross section of the InAs cluster in the~100!
plane through the top of the dot.
FIG. 2. Hydrostatic~solid line! and biaxial~dotted line! components of the strain, and electron~solid line!, heavy-hole~dashed line!, and
light-hole ~dotted line! confinement potential (h58 ML, d51.5 ML, L50 ML! for line scans in the@001# direction: ~a!,~d! along a line
through the top of the dot;~b!,~e! and ~c!,~f! along lines at distancesRt/2 andRt from the center of the dot, respectively.



PRB 61 7539ELECTRONIC-LEVEL CALCULATIONS FOR . . .
FIG. 3. Hydrostatic~solid line! and biaxial~dotted line! components of the strain, and electron~solid line!, heavy-hole~dashed line!, and
light-hole ~dotted line! confinement potential (h58 ML, d51.5 ML, L51.5 ML! for line scans in the@001# direction:~a!,~d! along a line
through the top of the dot;~b!,~e! and ~c!,~f! along lines at distancesRt/2 andRt from the center of the dot, respectively.
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nally, the indium segregation effects, and the Coulomb in
action must be considered.

Here we adopt the following approach. We use a o
band Hamiltonian with constant effective masses. Moreo
an analytical approximation of a realistic strain distributi
is used, and also the indium segregation is taken into
count. Finally, the Coulomb interaction is comput
perturbatively.19 The one-band approximation gives signi
cative differences in the calculation of the excited states,
only small corrections for the ground states.8,9 Since here we
are interested only in the latter, this simplified approach
justified.

The potential is defined as follows. We suppose that
QD has a cylindrical symmetry and a Gaussian height pro
with standard deviations and maximum heighth ~in fact, the
shape and the dimension of the QD’s depend on the gro
conditions, and, for example, QDs with eith
cylindrical20–22 or pyramidal13,14,23 symmetries can be ob
tained!. Moreover, we must take into account that the Q
resides on a continuous wetting layer with thicknessd. Thus,
if we define the aspect ratio,Q5h/4s, the height profile of
the QD is

S~r!5H he28Q2r2/h2
if r,Rt

d if r>Rt . ~19!

The parameterRt is the distance between the dot’s axis a
the point where the QD merges in the wetting layer, and i
given by

Rt5
h

4Q
A2 ln

h

d
~20!

~a schematic drawing of the dot is shown in Fig. 1!. Then we
write the confinement potential as

Ve~r,z!5Ec$x@z,S~r!#,z,S~r!%2Ec@0,z,S~r!#, ~21!

Vhh~r,z!5Ev
hh@0,z,S~r!#2Ev

hh$x@z,S~r!#,z,S~r!%,
~22!
r-
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c-

ut
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Vlh~r,z!5Ev
lh@0,z,S~r!#2Ev

lh$x@z,S~r!#,z,S~r!%.
~23!

wherex@z,S(r)# is the indium composition, depending bo
on the nominal compositionx0 and the indium segregatio
length24 L, while the functionsEc , Ev

hh , and Ev
lh are the

FIG. 4. Confinement potential (h58 ML, d51.5 ML, L50
ML ! for electrons~a!, heavy holes~b!, and light holes~c! in the
~100! plane through the top of the dot. The gray scale is the sa
for all plots.
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edges of the energy bands of the InxGa12xAs. All previous
functions are defined in Appendix A. In Figs. 2, and 3 w
plot the confinement potentials along line scans in the@001#
direction. In Figs. 4, and 5 we show their density plots.

After the potential has been defined, the transition en
gies are computed asDEa5Ea

e1Ea
hh( lh)1Eg

GaAs1EC ,
whereEa

e andEa
hh( lh) are the single-particle confinement e

ergies,Eg
GaAs is the energy gap between the valence and c

duction bands of the GaAs, andEC is the Coulomb energy.

III. RESULTS

In this section we study one particular structure
InxGa12xAs/GaAs QD’s. A layer of InAs was grown by
MBE in the Stranski-Krastanow mode on a~001! GaAs wa-
fer, close to the two-dimensional to three-dimensio
transition.25,26 The substrate was not rotated during t
growth in order to have a continuous variation of InAs co
erage across the wafer from below to above the critical c
erage for the 2D–3D transition. After the deposition
580 °C of a GaAs buffer layer and a 210 s growth interru
tion, the dots were formed at 500 °C. Finally, the structu
was capped by a 20-nm-thick GaAs layer grown at 500
that acts as an upper confining layer.

The InAs coverage of the samples varies between ab
1.3 ML and 2.0 ML~see Refs. 21 and 22!. The analysis of

FIG. 5. Confinement potential (h58 ML, d51.5 ML, L51.5
ML ! for electrons~a!, heavy holes~b!, and light holes~c! in the
~100! plane through the top of the dot. The gray scale is the sa
for all plots.
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t
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ut

uncapped samples, grown under the same conditions
atomic force microscope~AFM! has shown that the QD
heightsh lie within the range 2–4 nm,27 while the aspect
ratios Q have a large experimental uncertainty but seem
increase with increasingh. Moreover, an x-ray analysis o
QW samples ~with d;1 ML), grown under similar
conditions,28,29 gives a value for the segregation lengthL
between 1.5 and 2 ML. This value also allows one to fit t
QW photoluminescence data by an envelope function
proach ~although the envelope function approximation f
ultrathin InAs layers could not be completely justified,30 it
has been shown that such an approximation can give q
accurate results31!.

A photoluminescence analysis of these QD samples
already been reported in Refs. 21 and 22. The peak ene
of the deconvoluted bands of the PL spectra at 10 K of se
QD samples, under cw excitation at 632.8 nm, at an exc
tion power density of 50 W/cm2, are plotted in Fig. 6 as a
function of the InAs coverage~solid circles!. Moreover, the
peak positions of additional, less intense, PL bands cle
observed only under cw excitation below the GaAs band-
energy~crosses!, or for high excitation conditions~pluses!
are also reported. The experimental data show discrete e
sion bands for any given InAs coverage. Moreover, the
bands shift slightly to lower energies for increasing InA
coverage. The observed pattern of discrete emission ene
has been explained by assuming that, under the previo
described growth conditions, the QD’s nucleate in distin
families characterized by well-defined QD sizes. Cor
spondingly, for a given InAs coverage, the discrete emiss
bands can be attributed to radiative recombination from
ground states of QD’s belonging to different families. Th
interpretation is supported by PL time-resolved measu
ments, as reported in Refs. 21 and 22. The time-resol

e

FIG. 6. Experimental peak energies from the PL spectra at 1
after deconvolution into Gaussian components and theoretical
dictions for the transition energies for the different QD families,
a function of the InAs coverage. The solid circles refer to emissi
from the QD’s for excitation above the GaAs band gap. The cros
refer to PL bands observed after excitation below the GaAs b
gap. The pluses refer to additional emissions from the QD’s
high excitation conditions. The solid lines are the theoretical tr
sition energies between the electron and the heavy-hole gro
states. The dashed lines are the theoretical transition energie
tween the electron and the light-hole ground states.
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measurements show that for each sample with a given I
coverage the emissions at higher energies do not result
excited states, that, indeed, can be observed only after
excitation.

We show now that a numerical analysis of the electro
level structure strongly supports the hypothesis that the
served quantization pattern in the sizes of the self-assem
QD’s, and therefore in the emission spectra, can be basic
ascribed to the quantization of the QD heights at steps
ML.21,22

Accordingly with the previous considerations about t
QD structures, we assume that~i! the thickness of the InAs
wetting layer~WL!, which must be lower than the InAs cov
erage, increases linearly with the coverage fromd51.2 ML
to d51.8 ML. ~ii ! The QD’s have heights between 7 – 1
ML quantized with steps of 1 ML.~iii ! The aspect ratioQ
lies in the range 0.3–0.4, increases withh, and is quantized
with steps DQ50.027. ~iv! The segregation lengthL is
equal to 1.5 ML. In the following we describe the resu
obtained, while in Appendix B we discuss the stability a
the accuracy of the GFDND. The complete list of paramet
is given in Tables I and II.

In Fig. 7, we plot the transition energies without the Co
lomb corrections versus the QD height, for a fixed In
wetting-layer thicknessd51.2. This plot shows that ther
are no excited-state transitions in QD’s of these dimensio
while there are both electron-heavy-hole and electron-lig
hole ground-state transitions. Then, by taking into acco
the exciton binding energy and plotting the corrected tran
tion energies versus the InAs coverage, we obtain the gr
in Fig. 6. This shows a surprisingly good agreement betw
the observed transition pattern and the predicted one.
small difference in the slopes of the experimental and th
retical lines occurs also for QW samples grown under sim
conditions and can depend on the limits of the envelo
function approach for such ultra-thin QW’s. Finally we o
serve that, as shown by multiband calculations,8,9 excited
states cannot be completely excluded, especially in the l

TABLE I. Material properties of GaAs and InAs used in th
calculations. Symbols are explained in the text.

a0 ~nm! C11 (N/m2) C12 (N/m2) e r

GaAs 0.565325 11.88 5.38 12.5
InAs 0.60583 8.33 4.526 15.2

Ev,av
0 ~eV! ac ~eV! av ~eV! b ~eV!

GaAs 26.92 27.17 1.16 21.7
InAs 26.67 25.08 1.00 21.8

TABLE II. Effective masses used in the calculations.

mz(m0) mr(m0)

Electron 0.067 0.067
Heavy hole 0.45 0.11
Light hole 0.09 0.21
s
m
gh
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est QD’s. However, the presence of a few further transitio
should not change the main features of the pattern obtai

CONCLUSIONS

In this paper we have described a numerical meth
~GFDND!, based on the diagonalization of the short-tim
propagator, to solve the Schro¨dinger equation. We have dis
cussed the general multidimensional case and shown tha
some cases, we can factorize the short-time propagator
tensorial product of one-dimensional free propagators an
diagonal tensor. This gives a huge gain in terms of mem
requirements and allows one to attain quite easily proble
with 3–4 degrees of freedom.

We have used the GFDND to solve a system of decoup
three-dimensional Schro¨dinger equations, which describes
InxGa12xAs/GaAs QD with cylindrical symmetry and lying
on a thin wetting layer, in a one-band effective-mass
proximation. The potential used takes into account both
strain distribution in and around the QD and the indium s
regation, while the exciton binding energy has been cal
lated in first-order perturbation theory and typically amou
to 10–30 meV.

We have studied a particular structure of InAs/Ga
QD’s, and we have found a quantization pattern that can
basically ascribed to the transition between electron-h
ground states in QD’s with quantized heights differing by
ML.
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APPENDIX A: POTENTIAL MODEL

If we assume that the indium composition is constant
side and zero outside the QD and we neglect the strain

FIG. 7. Theoretical transition energies vs QD height, witho
Coulomb corrections, for fixed InAs wetting-layer thicknessd
51.2).
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fects, the confining potential for the electrons~holes! is a
steplike function given by the difference in the absolute
ergy of the conduction-~valence-! band edges in InxGa12xAs
and GaAs. Actually, the strain modifies the InxGa12xAs
band gap.

For a strained QW, such modifications can be obtaine
the following way~see, for example, Refs. 32 and 33!. An
absolute energy scale for the semiconductor band offse
defined by giving the value of the unstrained average vale
bandEv,av

0 (x), wherex is the indium composition. The offse
of the unstrained conduction band isEc

0(x)5Ev,av
0 (x)

1@D0(x)#/31Eg(x), whereD0(x) is the spin-orbit splitting,
and Eg(x) is the unstrained energy gap. These quanti
depend on the indium composition:~a! the average valence
band position is derived by linear interpolation between
values for the pure materials,~b! D0(x)50.34120.09x
10.14x2, and ~c! Eg(x)51.51921.584x10.475x2 ~we ne-
glect small variations depending on the temperature!; in the
following, the indium composition dependence will be u
derstood. The strain-induced shift of the conduction ba
dEc depends only on the hydrostatic component of the st

dEc5ac~exx1eyy1ezz!, ~A1!

where exx , eyy , and ezz are the components of the stra
tensor given by

exx5eyy5
aGaAs2aInxGa12xAs

aInxGa12xAs
, ~A2!

ezz522
C12

C11
exx , ~A3!

aGaAs and aInxGa12xAs are the lattice constants, andC11 and

C12 are the elastic constants. Hence,

Ec5Ec
01dEc . ~A4!

Moreover, if we assume that the heavy-hole and the lig
hole bands can be completely decoupled, we have

Ev
hh5Ev,av

0 1
D0

3
1dEv,h2

1

2
dEv,b , ~A5!

Ev
lh5Ev,av

0 2
D0

6
1dEv,h1

1

4
dEv,b

1
1

2
AD0

21D0dEv,b1
9

4
~dEv,b!2, ~A6!

where

dEv,h5av~exx1eyy1ezz!, ~A7!

and dEv,b is related to the biaxial component of the stra
eb52ezz2exx1eyy by

dEv,b5beb . ~A8!

All lattice parameters, and the deformation potentialsac ,
av , andb, depend on the indium composition. They are o
tained by linear interpolation between the pure material
rameters, given in Table I.
-

in

is
ce

s

e

d
in

t-

-
-

In the case of a strained QD, a rigorous approach wo
require a numerical computation of the strain tensor in e
unit cell of the structure~see, Refs. 13 and 14!; however, we
adopt here a partially simplified approach. As a first appro
mation, we could assume that the dependence of the s
tensor on the lattice parameters is the same of a QW. In s
a case, the strain-induced correction, which is function of
indium composition, is constant inside and zero outside
QD. In fact, on the basis of the strain distributions repor
in Refs. 13, and 14, we note that~a! the hydrostatic compo-
nent of the strain is almost constant inside and zero out
the QD, and its value is almost the same of a strained Q
and ~b! the biaxial component of the strain is larger at t
bottom of the QD and decreases almost linearly towards
top. Therefore, according to these considerations, we ass
that ~a! the energy shift induced by the hydrostatic comp
nent of the strain is given by the Eqs.~A1!, ~A7!, and~A3!;
and~b! the energy shift induced by the biaxial component
the strain is given by Eq.~A8! with

eb[eb@z,S~r!#55
0 if z,0

eb
1@S~r!#2eb

0

S~r!
z1eb

0 if 0<z<S~r!

eb
1@S~r!# if z.S~r!,

~A9!

and

eb
1@S~r!#

5H eb
0

2 ML
@d12 ML2S~r!# if d<S~r!,d12 ML

0 if S~r!>d12 ML.

~A10!

The parametereb
0 is the biaxial strain inside a QW, andS(r)

is the QD height profile defined in Eq.~19!. When S(r)
>d12 ML, the function eb@z,S(r)# decreases linearly
from the bottom (eb5eb

0) to the top (eb50) of the QD. In
the limit S(r)→d, it becomes constant and equal toeb

0 ~we
remind that the dependence on the indium compositionx is
still understood!. The hydrostatic and biaxial components
the strain along line scans in thez direction are plotted in
Figs. 2 and 3~cf. with Refs. 13 and 14!.

In conclusion, the confinement potentials for the electr
the heavy, and the light holes in a QD are given by t
differences between the energy bands of the GaAs and t
of the InxGa12xAs:

Ve~r,z!5Ec@x,z,S~r!#2Ec@0,z,S~r!#, ~A11!

Vhh~r,z!5Ev
hh@0,z,S~r!#2Ev

hh@x,z,S~r!#, ~A12!

Vlh~r,z!5Ev
lh@0,z,S~r!#2Ev

lh@x,z,S~r!#, ~A13!

where the dependence on the indium composition has b
explicitly written.

Until now the indium compositionx has been considere
constant inside and zero outside the QD. In fact, when
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InxGa12xAs structure is grown, a considerable amount of indium atoms in a lower layer segregate to the upper on
migration changes the profile of the indium composition, which, in the case of a QW, is usually approximated
exponential shape24

x~z!55
0 if z<0

x0@12exp~2z/L!# if 0 ,z<d

x0@12exp~2d/L!#expS 2
z2d

L D if z.d,

~A14!

wherex0 is the nominal indium composition,d is the QW thickness, andL is the segregation length. Thus we make t
hypothesis that the segregation in a QD structure can be described in the same way. The functionx is now given by

x@z,S~r!#55
0 if z<0

x0@12exp~2z/L!# if 0 ,z<S~r!

x0$12exp@2S~r!/L#%expS 2
z2S~r!

L D if z.S~r!,

~A15!

where the QW thicknessd has been replaced by the height profile of the QD,S(r). If we insert this expression into Eqs
~A11!, ~A12!, and~A13!, we obtain, finally, Eqs.~21!, ~22!, and~23!.

APPENDIX B: GFDND PARAMETERS

The accuracy of the GFDND method can be improved by the choice of an appropriate transformation of variables th
the infinite interval onto a finite one. We choose a transformation that has been proven to work very well.3,34 It maps the
intervals@0,1`! and ~2`,1`! onto @0,1! and ~0,1!, respectively, and it is given by

r̄512e2lrr ~B1!

z̄55
12

e2lzz

2
z>0

elzz

2
z,0,

~B2!

wherer andz are the original variables, andr̄ and z̄ are the new ones.
The parameterslr and lz can be varied to optimize the accuracy of the numerical solution. If these parameters a

large, there is a loss of accuracy in the interpolation of the tails of the wave functions. On the other hand, if they are to
there are too few grid points near the origin, where the wave functions and the potential change rapidly. Therefore,lr andlz
should be chosen in order to have the grid points distributed on the whole interval where the wave functions are sign
different from zero. In practice, this condition can be satisfied by observing the plots obtained for the wave functions
case, the numerical results are very stable for quite a large range of values~see, Refs. 3 and 34!. The number of grid points is
equal to 100 for both variables,r and z, and the time step« is equal to 0.1~we have checked that smaller values do n
significatively change the results!.

Finally, we point out that to solve the eigenvalue problem we use theARPACK package,35 based on a restarted Lanczo
Arnoldi method. The code runs on a PC in a few minutes.
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