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Coulomb drag between parallel ballistic quantum wires

0. RaicheV¥
Institute of Semiconductor Physics, National Academy of Sciences, 45 Prospekt Nauki, Kiev 252650, Ukraine

P. Vasilopoulos
Concordia University, Department of Physics, 1455 de Maisonneuve Ouest, WlpQuébec, Canada H3G 1M8
(Received 31 August 1999

The Coulomb drag between parallekllistic quantum wires is studied theoretically in the presence of a
perpendicular magnetic fielB. The transresistancBy, shows peaks as a function of the Fermi level and
splitting energy between the one-dimensional subbands of the wires. The sharpest peaks appear when the
Fermi level crosses the subband extrema so that the Fermi momenta are small. Two other kinds of peaks appear
when eitherintra- or inter-subband transitions of electrons have maximum probability;int@-subband
transitions correspond to a small splitting enerBy. depends on the fiel@ in a nonmonotonic fashion: it
decreases witB, as a result of the suppression of backscattering, and increases sharply when the Fermi level
approaches the subband bottoms and the suppression is outbalanced by the increase of the Coulomb matrix
elements and of the density of states.

I. INTRODUCTION tems investigated in the “directional coupler” problém.
Two closely spaced quantum wires, numbered 1 and 2 and
Experimentally and theoretically momentum transfer centered at; andy,, are contacted independently to four
between spatially separated electron layers or Coulomb drégads atx=0 andx=L, wherelL is the length of the wires.
has been stqdied mo_stly between two-dimensitbﬁ_b lay-  The leads have chemical DOtentiaﬁl,z(O):MIz and
ers. Theoretically, this drag has also been studied betwee,’rgl'z(L):Miz_ Applying a biasV=(uj —pu;)le to the

vir.yr:otrkl]g one—?imephs_iqna(llD)hl?yers (qttfiamltjf:n wires ir; leads of wire 2(drive wire) we obtain the currenit flowing
which Ihe wire 1engtil- IS much fonger than the mean free through it. This current induces a voltag¥p=(u;

pathl; (diffussiveregimé) and recently between 1D layers of _ u)le in wire 1 (drag wird. This is the typical setup for

lengthL <1, , in which the electron motion along the layer, at 1 .
low temperatures, is mostly ballisti¢, (ballistic regime. drag measurementd/Ne assume that the barrier between the

Even when most of the electrons pass along the wires withWires is high enough to allow the neglect of tunneling.

out collisions, a few of them experience backscattering due Below we assume that the electrons in each wire are
to interaction with the electrons of the other wire and thisparabolically ~ confined by the potentialsU;=&
modifies the time-averaged distribution functions in such a+m*sz(y—yj)2/2, j=1,2. In the presence of a perpendicu-
way that the drag effect occurs. In both regimes the dragar magnetic fieldB, introduced through the vector potential
response is found to be maximal when the subbands in tha=(—By,0,0), the normalized wave functions are
two wires line up preC|_ser. It is important that in the ballis- ‘I’jnk(xyy)Ze'kx){jnk(y), Xjnk(Y)Z(Wl/2|j2nn!) 21 [ (y

tic regime thg transresistance is determined only by the Cou- Y,—)/Ij]exr[—(y—Yj)ZIZI jz]' where n is the 1D subband
omb nteracto beteen the clecifons and Such U2Si0 YO mber he wave Uectr of electron, aht(x) th Her
does not include the relaxation characteristics of the systen) ite polynomials. Neglecting spin splitting the correspond-

such as scattering times. Therefore, the ballistic regime pro'—ng energy spectruna;n(k) reads

vides the possibility to obtain more direct information about

the Coulomb interaction in 1D electron systems. eie=e0+ ho (n+1/2) + (B22m) (k—y; 122 (1)
Motivated by the results of Refs. 4 and 5 we undertook an e : ) e

extended theoretical study of the drag in the ballistic regime,

without tunneling between the wires, but in the presence of &lere w’= w3+ Q7 w,=eB/m* is the cyclotron frequency,

perpendicular magnetic fiell. In Secs. Il and Ill, we gen- m;=m* w]?/sz, | = (h/m* w;)Y? is the magnetic IengtH,—2

eralize the theory of Ref. 4 to include the effects of intersub-— /m* wj, and Y, =(Qj2yj +ﬁa)ck/m*)/a)1-2 are the

band transitions in electron-electron collisions and accounk-dependent centers of the oscillators. The expressions for

for the influence of a magnetic field on the Coulomb drag; ane kinetic energies #212my) (k—y; 12)2 of the electrons

limited accpunt of this |.nfluence, valld' when only the_ lowest .an pe simplified by a gauge invariant transformation result-

subbands in the two wires are occupied, appeared in Ref. §,4 in a shift ofk by an arbitrary constant. Since we neglect

Concluding remarks follow in Sec. IV. tunneling, we do not consider electron transitions between

the wires and can make such shifts independently for each

wire; this does not affect the kinetic equations written below.
We use a model of a four-terminal double-quantum-wireExplicitly, we will shift the wave vectors in the mannkr

system, as shown schematically in Fig. 1, similar to the sys—y; /I2—k for wire 1 andk—y,/I2—k for wire 2. Then the

Il. GENERAL FORMALISM
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wherex is the dielectric constant ari¢l, the modified Bessel
H’Zr function.

My

f 1= fiklk=0 andf;j = ficlk<o, respectively. For these func-

Buttiker approach byf i, (0)=f(&jn— ou;) and f; (L)

=f(gjnk— Opj ), Wheredu; = u; — u,u is the equilibrium
chemical potentialf(¢)=[el*"#/*6T+1]71 and T is the
temperature. Foj=1 andj=2, Eq.(2) gives two coupled

unknown potentialsu; and . through the fixedu, and
w, values and thereby calculate the transresistance.

IIl. RESULTS

order approximation givesf;,,(x)=f(gjn— du;") and
fink(X)=f(&jnk—du; ). Substitution of these functions in

wire also contribute to the collision integral of E) (if

“’ 11
o . lation q=k—k’ following from the momentum and energy
_ FIG. 1. Schematic diagram of a coupled-quantum-wire de-conseryation rulgs However, within the iterative approach
vice.

o L _ o2 . lisions on the distribution functions of the drive layef (
kinetic energies in Eq(1) will read #°k“/2m; and the oscil-

lator centersY; =y, + (fiw/m* w?)k. the intralayer collisions do not modify considerably the dis-
If the distribution functionsf;, (x)=fj, change over dis- tripution functions of the drag layerj €1) becauseu;

tances much longer than both the electronic wavelemgth — w7 is assumed to be much smaller th@f'—,uz_ _and the

and the characteristic radius of the interaction potential, We ain effect onf(x) results from the interlayer Coulomb

can write the Boltzmann kinetic equations as interaction. Considering only contributions linear ) we
substitute the equilibrium Fermi-Dirac functionis ()
- 4_77 2 2 |Mii’j’i (k,k',q)|? =f(e1n) In the collision integral and obtain
ﬁ L L

r'nt
nlnln n

ik 9fjni(X)

m] X

i’k’q nn’nqn/

o Fi0 = F (10— O ) — MMy KON G(K)X,  (4)
X5(8jnk+8j’n’k’_Sjnl,qu_sj’ni,kurq)
XX =i, k- Frnre (L= Fjrns o vq)

~Fin k(T Find frns v g(X=Fme) I,

1) =f(e1n— 1) +eVm /AK)N (= k) (Xx=L), (5)

where the factor

Am 1221 , 2
) M= T 2 kZ (M (kK 0))
nin'ng k'q
where the collision integral accounts only for electron- X 8( + B B )
electron scattering. The Coulomb matrix elements E1nkT E2n'k T #1ny k=g 820 K +q
ii'i’i ’ ;
Mnlnin’n(k’k ,q) are given by Xf(glnk)[l_f(alnlqu)]

XF(ean i) [1=f(&2n71 +9) ik >0k +q<0

2e?
MJJ ];J,(k,k,, ):_fd fd /K( _ /)
nyn;n’n q K y Y Ro |q||y y | _[ - ']k’<0,k’+q>0} (6)

It is convenient to write separately the distribution func-
tions for the forward- and backward-moving electrons as

tions the boundary conditions are given in the Landauer-

kinetic equations whose solution allows us to express the

If most of the electrons move through the wires ballisti-
cally, Eq.(2) can be solved by simple iterations. The zero-

the collision integral gives a nonzero contribution for back-
scattering collisions between the electrons of different wires.
This is the main contribution which will be considered in

detail in the following. If more than a single subband in a
wire is occupied, the intersubband transitions within one

““lr only the lowest subband is occupied, the intralayer part of
the collision integral completely vanishes because of the re-
used here, we can neglect the influence of the intralayer col-

=2), since the transport regime is nearly ballistic. Further,

X Xink(Y) Xjrnrkr (YY) is determined by the Coulomb matrix elements and the equi-

% , 3 librium distribution functions only. The current flowing in
Xingkr+aY Xingk-a¥): ) the drag wire is given by
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! 2 r_ A 212
E3 [ dkkIm [0~ 01 ) XO (KK +w*(n+n'=ny—np/0A?)

XIMZ (k= K Q)T (8100 T(220k)

Ip does not depend onx due to the property

S \(K)dk=0, which follows from detailed balance. X[1=f((e1nkt e2nr) 2+ A(KK)/2)]
Substituting Eqs(4) and(5) into Eq.(7), using the require- _ _ /
ment ID=(§], zgnd defining the tgansresistzfn% aquD X[ (sanict eannic)2= Ak KDI2)],
=—Vp/l through the ballistic current=V/Ry, where
Ry=h/2e?N is the ballistic resistance of wire 2 adithe  \yhere p(k,k")=[(k+k") %4+ w2(n+n"—n;—n})/
number of occupied subbands, we finally obtain 0212142, q=(k+k')2+p(k,k'), and A(kk)=A
B +ho(n,—n;)—(Q/w)?h2p(k,k")(k—k')/m* . The statisti-
R — hL j dk’j q f dk cal factor in Eq.(10) is small unlesse 1n— ul,|€ank — u.
D™ NNpe?kgT n n1 0 im0 g and|A(k,k")| are small enough and comparable&kgd . This
allows the integrals ovetandk’ to be carried out in narrow
><||\/|r112§1n (kK Q)2 regions around,, andk, , respectively. We used the same
property to reduce the contributidR(Dl) to expression(9).
X 8(& 1kt E2nk ~ E1n, k—q ™ E2n! k' +q) Although the requirementA (k,k’)|~kgT imposes certain
restrictions on the values @f, A, andw, the processes with
Xf(e1n[1=F(e1nk-o) If(e2n)[ 1= (€20 49)].  n+n’#ni+n] can give a considerable contribution Ry,

g  ©specially for|A+%w(n—n})|>ksT and RY small. We
(8) stress that the previous theoretical wbdn the Coulomb

Here Np is the number of occupied subbands in the dragdrag in the ballistic reg|me took into account only the pro-

wire (wire 1). Note that the introduction of botN and N cesses W'tml nll afnd n’ Enlb thus neglictmg other lprOI-
assumes that the theory is valid when the Fermi engrgy CESS€S completely from the beginning. The numerical calcu-

e%—fw;(n+1/2) with respect to the highest occupied lations given below demonstrate that this limitation is

level is larger tharkgT. This, of course, implies that the 1D considerable in many cases. N .

subband separatiorfisv; and% w, are much larger thakgT . If only the Iowest,subbands are opcup|ed in each wire,

and is true afT~1 K for electrostatically defined electron € forn=n1fn =n1=.0’ t.h.e calculatll)on of t'he transresis-

channels. tance is considerably S|mpllf|ed. OnR/D contributes taRp
Below we consider the case of identical wireig=0, and Eq.(9) can be rewritten as

=, which entailsw;=w,=w, |1=1,=I, andm;=m,. To

further evaluate expressidB), it is convenient to detach the

contribution RYY from Rp that expresses the equality _ 2e’'m*3e®LkgT (A/2kgT)?

+n’=n,+n; for which the energy conservation law gives w12 k208K Ky (kg + Ky ) SinfA(A/2kgT)

g=k—k’. Then we haveRp =R+ RZ) with

X @ (0c/©)?12(ky +ky1)?

2

*3k TL 6 ND_l N-1 5 +n’,n,+n’ o
B - T f du e V2K of (ky+ky)|d+1ul]] . (1D

m
R(l):— E - -
” NNpA®e2Q® nir0 4 7o Kok (Ky+ Ky

2
Ann |
X——— M
smthnn

Expression(11) is convenient for assessing the magnetic-
field dependence of the transresistafgge It directly dem-
onstrates a significant reductibof the drag effect by the

, ) magnetic fieldB, mostly due to the exponential factor. The
Here A, o, =[A+Aw(n—n;)]/2kgT and A=el-edisthe  Gecrene ORp, starts afRRp(B) —Rp(0)~ — B2 and becomes
interwire spllttlng energy between the lowest subbands. Furexponential with increasing. The physical reason for this
ther, k,=(w/Q){2m*[ 12— ed-hw(n+1/2)]/4%Y2 and  decrease is the suppression of backscattering in electron-
Kn = (0/Q){2m* [ n— 82 ho(n'+1/2)]/42)}Y? are the electron collisions as the oscillator centers for forward- and
Fermi wave numbers for the states1land 2n’, respec- backward-moving electrons are pulled apart by the magnetic
tively. The partR,(DZ), corresponding to+n’#n,+ny, is field. The characteristic fielB, for this suppression depends

1221
n n n’n

(Kn,—knr Kotk )[2 (9)

obtained as on the position of the Fermi levaely and is estimated as
Bo~ (m*/e)(m* Q%4)Y2/(k;+ky.). If e is not far from
m* L w2 N - the subband bottom8&,, is big and the suppression is weak.
R(D2)_— 2 f dkf dk’ (100 If er is wellin between the 1D subbandgy is estimated as
2ANNpe?kgTQ? niip=0 n’.n}=0 1 T for typical wire parameters. However, whep, with the

increase ofB, approaches the subband bottom, the opposite
effect takes place: the transresistance increases because the

x(1- 5”+”"“1+“i)/p(k'k ) wave vectork,, k;,, andq become progressively smaller
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FIG. 2. Dependence of the transresistaRgeon the position of FIG. 3. Dependence dRp on the magnetic field, with one

the Fermi level for@) aligned,A=0, and(b) shifted,A=1 meV, (2=3.5 meV) and two £-=8 meV) populated 1D subbands, at

levels in quantum wires. The dashed and solid curves correspond %ZO (@ andA=1 meV (b).

B=0 andB=1 T, respectively. The other parameters are listed in ) )
the text. Figure 4 shows the dependenceRy on the level split-

ting A at several constant values pf—s(f=s,:—A/2. This

and the suppression of backscattering becomes less impdR€ans that the subband positions of wire 1 remain constant

tant than the increase of the Coulomb matrix element and d'ith respect to the Fermi level but those of wire 2 do not,
the density of states. this can be experimentally achieved, for example, by chang-

Below we present numerical results for the transresistancl?9 the voltage of the gate adjacent to wire 2 while keeping
Rp, expressed in units of the fundamental resistaRge the gate adjacent to wire 1 at a constant voltage. The curves
—h/2e?, at T=1.3 K, L=0.4 um, d=|y;—y,/=50 nm, &% plotted for onga) or two (b) subbands populated in wire

Q=4 meV, m* =0.067m,, and x=13. Figure 2 shows the 1 but for differentu, far from (solid) and close tqdashegl

dependence oRp on the Fermi energy g, defined aseg

=u—(e)+&9)/2, calculated aB=0 andB=1 T. The cal- o008

culations were done assuming that up to two subbands can (@)

be populated in each wire. As seen in fajt for A=0 there o004l B=1T
are pronounced sharp peaksRy¥ wheneg crosses the bot- o

toms of the first and second subbands. The sharpness of the &

peaks is explained by a strong enhancement of the Coulomb 0002k

collision probability wherk,,, k,,, andqg are small, cf. Egs.

(9) and(10). In Fig. 2b), for A=1 meV, one can see three

peaks; the middle one appears aftercrosses the bottom of 0.000 :
the second subband in wire 2. This peak exists due to the A (meV)
processes witn+n’#n;+n;. The third, most prominent 0.010
peak in Fig. 2b), appears aftes crosses the bottom of the :
second subband in wire 1, so that two subbands in both wires 0.008 (b)_
are populated. The processes with-n’#n,+n; give the ; )
main contribution to this peak as well.

The application of the magnetic field shifts the peaks to
higher Fermi energies, due to the increased confinement en- .:
ergy, and sharpens them due to the suppression of back- 0.002|
scattering in the regions far from the subband edges. The o
resulting decrease of the transresistance due to this suppres- 0000 e~ —
sion is illustrated in Fig. 3 for onesg=3.5 meV) and two A (meV)
(eg=8 meV) subbands populated. These dependences are rig, 4. Dependence R, on the level spliting energp at
nonmonotonic: when, with the increase®f e approaches B=1 T when one(a) or two (b) populated subbands of wire 1
the first or second subband bottorR, starts to grow remain constant with respect to the Fermi leval— A/2=const.
sharply. This dependence is essentially the same for both (a) er—A/2=3.5 meV (dashell and 4 meV(solid). (b) ep—A/2
=0 andA=1 meV. =7 meV (dashedl and 8 meV(solid).

0.006 |}

R,/R,

0.004 H

1 2 3



PRB 61 COULOMB DRAG BETWEEN PARALLEL BALLISTIC . .. 7515

the upper populated subband edge. Both curves of F&y. 4 with these transitions are usually weaker than those under
show two peaks: the sharp ones appear when the secosdbband alignment, they give a considerable contribution
subband of wire 2 becomes populated while the broad oneghich cannot be neglected. The described rich structure of
appear when the second subband of wire 2 is aligned witthe peaks is best seen in the level-splitting dependence of the
the first one of wire 1, ah=Aw=4.36 meV. A similar  transresistance shown in Fig. 4. _ _
behavior is seen in Fig.(d). At large negativeA only one A magnetic fieldB applied perpendicular to the wire
subband is populated in wire 2 while At= — 1.5 (solid) and ~ Plane reduces the overlap between the wave functions for
—0.5 meV(dashedlthe second subband of wire 2 becomesorward- and backward-moving electrons and thereby tends

populated as well. This transition is reflected by strong and© suppress electron-glectron scatter.ir_lg. This resqlts _in a de-
sharp peaks iRy, . Other strong peaks appear/st 0, when crease of the transresistance. In addition, the applicati@ of

the subbands are aligned: note that on the dashed curve Sug])pdifies the quantization energies and leads to a shift of the
a peak merges with that @t=—0.5 meV and is not re- subbands with respect to the Fermi level. Since the scattering

solved. The minor peaks in the regions of negative and posPrObab'“W increases when a subband gdge comes close to
tive A exist due to the intersubband transitions with the Fermi level, the transresistarRg may increase with the

(n,n.,n’,n))=(0,1,0,0) and (1,0,0,0) andn{n,,n’,n’) increase ofB. Therefore, the dependence Rf on B is ba-
) ) 111)— 1Yy 1Yy Yy ) IARN

v . . ically nonmonotonic as shown in Fig. 3.
;;e(a?léyéc’:t)ura\r/]viérli’?lélli’l)) ;rziﬁeclzlvcilyéngg Tl?)))(";]gec;f tt:esé The results obtained here are valid when the 1D electron
3 ns™\n’/), . . 3

zero. Thus, the level-splitting dependencdrgfshows a rich gas in ejther wire is described as a normal Fermi liquid. We.
struéture c;f peaks indicating that boihtra- and inter- used this model because the wires are short, the transport is

subband transitions of electrons contributeRig. nearly ballistic, and the properties of the 1D electrons are

All calculations described in this section were re eatecfjetermineOI by those of the 2D reservoirs they are injected
) . . : . P rom. The case of the Coulomb drag between 1D electron
for different values of the interwire separatidnAn increase

of d considerably decreases the transresistaRgedrops by ;):asfte;ns described as Luttinger liquids has been studied in
more than one order of magnitude édsaries from 40 to 60 N

nm, mainly due to the dependence of the Bessel function o Concerning experimental results we are aware only of
o y P oo ose of Ref. 8 where the transresistafggwas measured
its argument. However, all qualitative features presente

above are preserved sa fgnction of side gate voltaggs controlling the confining

' potentials of the parallel, submicron-long quantum wires,
thus allowing change in the positions of the 1D subbands
with respect to the Fermi level, the interlayer subband split-

The treatment of the drag effect in the ballistic transportting A, the wire widthsw;, and the interwire distance. It
regime demonstrates the salient properties of electronas found thaRp shows sharp peaks when the Fermi level
electron collisions in double-layer quasi-1D electron sys-crosses the bottom of a 1D subband. When the gate adjacent
tems. The reduced dimensionality dramatically decreases tH@ the drag wire was kept at a constant voltage, correponding
scattering probabilities at low temperatures due to the restrid® one populated subband in it, the transresistance, as a func-
tions imposed by the momentum and energy conservatioHon of the voltage of the gate adjacent to the drive wire,
laws. As a result, the transresistance shows peaks as a furkilowed two peaks. The shape and position of these peaks
tion of either the Fermi level position or the interlayer level- Permit us to identify them with those of Fig(&, since the
splitting energy. The peaks always appear when the Fernfiituation described by Fig.(d corresponds roughly to this
level crosses the bottom of a subband, so that a new subbafP€ of measurement. These experimental results provide
nis involved in the scattering prosess; the Fermi wave numdualitative support for our theoretical predictions. However,
berk, for this subband is small, the density of states is high@s no formal connection is made in our model between the
and this results in a higher scattering probability. When subgate voltages and the parametess, A, d, and W, we
bandn is aligned to another one, the conservation rules allowfannot attempt a more detailed comparison. Such a connec-
electron transitions inside the subbamdthe corresponding tion requires a detailed knowledge of the gate-induced modi-
momentum transfefiq=2%k, is small, and the Coulomb fication _of the double-wire conf_mlng poten_t|al which could
matrix element is large, thus giving rise to an additional in-P€ obtained only by a self-consistent solution of the electro-
crease of the peak. Next, the peaks appear when two suftatic problem for the three-gate structure investigated in
bands from different layers are aligned; this favors transiRef. 8. We expect though that further experimental and the-
tions that conserve the sum of the subband numirets)’ orej[ical work will test sufficiently the drag in the ballistic
—n,+n], especially the transitions between the electrond®dime and our results.
inside the aligned subbanfisf. Eq.(9)]. Finally, peaks occur
under special conditions, fok(k,,k,)=0 [cf. Eq. (10)]; ACKNOWLEDGMENTS
this implies a maximum probability for intersubband transi-  The work of P.V. was supported by the Canadian NSERC
tions with n+n’#n,+n;. Although the peaks associated Grant No. OGP0121756.
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