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Self-consistent first-principles calculations based on the embedded atomic sphere method
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We present a self-consistent embedded atomic sphere method. The embedded atomic sphere method is
linearized for the easy calculation of wave functions. The coefficients of linearized basis sets inside spheres are
determined to satisfy the continuity of the logarithmic derivatives between the inside and the outside of the
sphere. We have applied this method to the hydrogen atom. It is shown that the calculated energy converges as
the ratio of the sphere radius to the grid spacing increases. We implemented a self-consistent calculation for
analysis of fcc hydrogen and the, Hnolecule. The calculated density of states of fcc hydrogen and the
equilibrium interatomic distance of the,Hinolecule were found to be in good agreement with the results of
conventional methods.

[. INTRODUCTION distribution for the embedded atomic sphere in the FD grids.
A self-consistent calculation can be implemented with the

In the past two decades, nonperiodic systems, such aesulting effective potential. Last we apply this method to fcc
surfaces, interfaces, and thin films, have attracted a gre&tydrogen and kland implement the self-consistent calcula-
amount of attention from the viewpoints of nanoscale detion.
vices and microscopic material design. These systems show
different properties from bulk materials. In these systems, Il. METHODOLOGY
guantum mechanical effects play an important role. Thus, in
these systems in-depth knowledge of the electronic structure
is of great scientific and technological importance. The pe- Consider the calculation region as shown in Fi@) 1The
culiar characteristics of surfaces can be derived from the lackalculation region is divided into uniform grids. The poten-
of symmetry or from a decrease in the number of neighbortial for the transition metals is very deep around the atomic
ing atoms. Some authors have formulated the Green’s funagsore region even if a pseudopotential and curvilinear coordi-
tion approach for treating infinite systems such as surfacesnates are uset,and wave functions vary rapidly. It is

In recent years, approaches to electronic structure calcuointed out that the grid points must be dense enough to
lations with a real-space basis have been reported by sonmbtain an exact solution, which requires large calculation
authors’™* a few of which utilize the finite differencé D)  power. In order to reduce the number of grid points, Thijssen
in real space to achieve the linear-size scaling method or thand Inglesfield proposed that the grids inside the core region,
order N method. These methods can exclude the restrictionvhere the potential rapidly varies, be replaced by an atomic
of periodicity and allow flexibility in the treatment of various sphere with radiu® Wave functions/(r) inside the atomic
boundary conditions and the realization of large-scale calcuspheres are solved using a numerical technique based on a
lations. However, a large number of dense grids is necessatinear combination of radial functions of enerdy in the
to calculate the electronic structure of transition metal syseoriginal method.
tems even if pseudopotentials and curvilinear coordinates are Outside the spheres, the Kohn-Sham equation is approxi-
used® mated by the following finite difference equation:

Thijssen and Inglesfield proposed electronic structure cal-
culation in real space for transition metal systén#somic . . -
spheres are embedded into the finite difference grids. How- m:2—1 Crl ¢(rptmdi) + gh(rp+mdj) + ih(rp+ mdk) ]
ever, it is difficult to solve the wave functions because of the
use of energy-dependent basis sets in the atomic sphere, pre- Fven(rp) W(rp) — €p(rp) =0, (1)
venting the implementation of a self-consistent first- ) ) )
principles calculation. Moreover, they proposed a zeroWherevei is the effective potential of the Kohn-Sham equa-
derivative basis set to avoid the ambiguities regardingion: I'p indicates the grid pointi is the spacing of the grid,
degeneracy. However, more than 100 basis sets wereandi,jk are the unit vectors along they,z directions.C,,
needed to obtain satisfactory results, and calculating thege the expansion coefficient of the Laplacian, wheére;=
basis sets can be very time consuming. —1/d? and Cy=2/d? for uniform grids.

In this paper, we first introduce the linearization of energy A connection condition between inside and outside the
for the base inside the sphere and its connection condition isphere was proposed by Thijssen and Inglesfiediefly,
order to overcome the difficulties of solution of the wave their method utilized a radial function of energyinside the
functions, which includes the constraint minimization tech-sphere. A link across the sphere surface was considered as
nique that is often used in pseudopotential calculatfd®sc-  shown in Fig. 1b), wherer; andr, indicate the grid point
ond, we solve the Poisson equation using a pseudochargectors just outside and just inside the sphere, respectively.

A. Linearized embedded atomic sphere method
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wherer,=r—R,, R, is the position of the atom.

We proposed a different connection condition to deter-
mine the coefficients of the radial function in order to re-
move the additional energy loop. We expand the key idea

Atomic Sphere Atom Position

@ and generate the energy-independent PIP,
O Justoutside grid P IT S(n) S(n)
@ Justinsidegrid Ta b LL’ LL’
—— Link throngh sphere SM= S(n) S(n) , (4)

LL! LL’

Mesh

- and

B Sphere surface

S(LT_)/E _E d’nL(rEaEnL) ¢nL’(ravEnL)v

(p,a)

(b)

(n)_E ¢nL(rpi nL)¢nL’(ra1 nL)

FIG. 1. (@) The embedded atomic spheres in the finite difference St )
grid. The grid spacing igl and the radius of the atomic spherés
R,. (b) The links across the sphere’s surface. The closed circles

and open circles indicate the grids inside and outside the sphere, S(LT_)’_ E D1, En) dnu (ras Eny)-
respectively. The bold lines are the links through the sphere’s sur- (p,a)
face.

If the vectors

The pseudo-inner-produ¢PIP) between two function$(r) CW=[...am,...bo,...1" 5)

andg(r) is defined as follows:
and

P(n)Z[-..!lﬂﬁbn’m’ ""’¢¢n’m’ ’“.]T (6)
(flgye= 2 f(rp)g(ra), @ (W barm)e - - - (¥l birm)e

(p.2) are defined, the coefficients of the basis, ,¢, can be
calculated using the inverse of the energy-independent PIP,

where (p,a) is the link through the sphere’s surface as c(m = gm-1p(n) @
shown in Fig. 1b). First, the matri>6(L”L),(E) was constructed '

from the PIP of the energy-dependent basis 8gf¢rn,E). ~ This operation includes the following) the trial function
The coefficients of the basis sets were determined by multion the grids is decomposed into components of each angular
plying the PIP between the energy-dependent basis insid@omentum, andii) two radial functions with the same an-

and the tnal function outside the sphere by the inverse of thgyjar momentumy,,, and x,, are weighted to satisfy the
matrix (E) Since the energy for the radial function must continuity condition. On the solution of the wave function,
equal the eigenenergy, this energy was iteratively deterfrom Eg.(7) the coefficients of basis sets inside the spheres
mined, requiring a loop to determine the eigenenergy. Thisre obtained for a proper trial function such as the atomic
method generated difficulties of degeneracy ambiguitieswave function. As a result, the wave function inside the
This energy searching requires great calculation time, whilsphere and Eq.l) can be calculated. In this study, the con-
this energy dependence constitutes a challenge in implemergtraint minimization technique, which is often used in
ing a self-consistent calculation. Thus, it is necessary that theseudopotential calculations, is utilized to solve the wave
additional energy loop should be removed to determine théunctions and eigenenergiB<onsider the Hamiltonian op-
eigenenergy and to implement a self-consistent calculationeration of Eq.(1) to the gridr, just outside the sphere. This
We expand the radial functiony, (r,,E) for the operation is partly written as
energy parameterE,  as XnL(rnaE)NXnL(rnvEnL)"'(E

Enl)xnu(rn,Enl), whereL stands for the indexI(m) of B o B
the harmonics expansion angl,(r,,E,.) is the energy de- ot @'ﬂ(rp)_Ew(raHve”(rPW(rp)_ €ih(ry). (8)
rivative of the radial functiony, (r,,E,.).° Thus, the wave
function only inside the atomic sphereis Since the wave function inside the sphere ,) is
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_ . . . FIG. 2. The solution of the Poisson equation for the fcc hydro-
the lef-hand side of Eq(8) is energy independent, where gen nucleus. The solid line indicates the potential of the real charge

(a,b) is the link through the sphere’s surface. On the othelyensity with the FFT scheme. The open and closed squares show
hand, the relation between grids just outside is energy depefne potentials of the pseudocharge density with the FD scheme,
dent when the same Hamiltonian operation is consideredyhich are replaced by a linear function and a fifth order polynomial.
This energy-independent relation enables one to utilize amhe dashed horizontal line indicates the sphere’s surface with a
iterative minimization and to easily perform the orthogonal-radius of 1.0 a.u.

ization.

R, R,
| 24, _ | 2
B. Self-consistent calculation fo M onim(ra)rpdr,= fo Fpnm(ra)radr,. (13

Our aim is to develop a self-consistent calculation method _
for nonperiodic systems. In general, the potential inside thén this work, the pseudocharge is represented by a polyno-

sphere can be formulated as a boundary value problem usirgial function, which equals the real charge in the multipole
a Green's functior® moment and matches the value on the sphere boundary and

its nth derivatives.
R2 JG The Coulomb potential in the whole region is calculated
Uc(f)=f p(r)G(ry,rhydr! — _n % v(£)—dQ/, by numerically solving the Poisson equation with the stan-
Sh 4m Js, ary dard FD in the appropriate boundary condition. The potential
(100 on the whole region of space is obtained when the boundary

. ) ) ) value is given by interpolation from the potential on the grid
whereg, is a point on the sphemandR,, is the radius of the points.

spheren. The Green’s functiorG satisfies the equations The adequacy of the introduced pseudocharge is verified
for solution of the Poisson equation. The potential only out-

VZG(ry,rp)==38(r—r"), side the sphere is needed when the Poisson equation is

solved using the FD method. So, at least the outside potential

G(r,,&)=0. (11) for the pseudocharge density must agree with that for the real

charge. For the fcc hydrogen ion, two potentials are calcu-

If the charge density everywhere and the boundary condilated using the FD method, where the lattice considat4.3

tion implied in the calculation region are given, the boundary2-U- and the sphere radisis 1.0 a.u. Figure 2 shows the
value on the sphere can be calculated numerically. HowevePOtential of the pseudocharge using the FD approach and the
the charge density around the core region oscillates rapidl otential of the real chgrge calculated by a fast Fourier trans-
with higher frequencies than the resolution of the grid spaciorm (FFT) scheme with a cutoff energy of 500 Ry. The
ing d when a transition metal system is treated. If the coreél@grees of the polynomial for the pseudocharge are 1 or 5 in
charge density is projected onto the grids, an accurate soll#9- 2. It is clearly found that the outside potential of the
tion cannot be obtained. In this work, a pseudocharge densifyseudocharge density is in excellent agreement with that of

;(r) is introduced, which is smooth enough to calculate us- e real charge density.
ing the standard FD method without the use of dense grids.
The charge distributiop(r) inside the sphere is given by ll. APPLICATION

the multipole expansion, We apply the linearized embedded atomic sphere method

to the hydrogen atom without self-consistent calculation in
p(0)=> poim(Fn)Yim(Fn). (12)  order to investigate the effect of linearization. This problem
Im is modeled by a hydrogen atom positioned in the center of a
cubic region having a side of 30 a.u. The boundary condition
The potential outside the sphere for the pseudocharge distris that wave functions are forced to be zero at the edge of the
bution is the same as for the real charge distribution if thecalculation region. This length of 30 a.u. is small enough to
pseudocharge inside has the same multipole moment as tlgiculate wave functions for the principal numimer 1 with
real charge. Thus, the real radial charge denpify,(r,)  neglible influence from the calculation region. When the en-
inside the spheren can be replaced by a pseudochargeergy parameter is shifted from the exact eigenvalue
pnim(rn) having the same multipole moment, —1.0 Ry, the calculated energies are shown in Fig. 3. Since
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FIG. 3. Calculated eigenvalues from one self-consistent iteration F|G. 5. Density of states for fcc hydrogen. Solid line and dotted
for various energy parameters around an exact eigenvalueline are calculated using this meth¢BAS) and the conventional
—1.0 Ry for the principal numben=1. The vertical gray lines method(LMTO), respectively.
indicate the maximum permissible range to obtain the exact eigen-

value after self-consistent iterations. . . .
is 35. A self-consistent calculation for the energy parameters

, . and the total potential is implemented. In the original
the energy parameters are also calculated with self-c0n5|stemethod, a loop to determine the eigenenergy was needed in

procedures, the energy parameters of the next step should Bggition to the self-consistent loop. In our method, energy
closer to the exact eigenvalue. . parameters are determined on each self-consistent iteration
The accuracy of the eigenvalues in this method is changeflom the center of the projected density of states in each
by varying the grid spacind and the sphere raditR The  angylar momentum of each atomic sphere. Determination of
smaller the grid spacing, the more the eigenvalue approachgg.e energy parameter was carried out at the same time using
a constant value. In this method, the calculated eigenvalug sei_consistent calculation. The initial guess for energy pa-
also depends on the sphere radius in addition to dependingmeters is atomic levels of 1 Ry for the principal value
on the grid spacing. So a quantiis defined aQ=R/d. 4t h=1. As the exchange-correlation potential, we employ
Suppose that the calculated e|genvalueRef5 a.u. andd that parametrized by Perdew and ZurigeFor the wave
=0.2 a.u., which correspond t@=25, is the standard fynction and the effective potential inside the sphere, the
value, and consider the difference between the calculateg,sximal angular momentuthis | =2. Though this value is
eigenvalue for variou®'s and the standard value. Figure 4 gmajler than that of the FLAPW method, the smaller sphere
shows the energy difference dependence on the qualtity ragiys is favorable for this circumstance since the spherical
for the hydrogen atom calculated using this method. Theomponent of =0 is dominant near the core region. Figure
quantityQ is varied by changing the sphere radRiand the 5 shows the density of staté®OS) calculated using this
grid spacingd. The energy difference of the hydrogen atom yethod and for comparison also shows that of the linear
converges as the quanti€y increases. The formalism of our mfin-tin orbital (LMTO) method. The radius of the atomic
method resembles the linearized augmented plane WashereR is 1.0 a.u. and the grid spacirdyis a/20. The
(LAPW) method except for the restriction of periodicly. cajcylated density of states of hydrogen is in good agreement

The valueRKp,y is known to be a standard quantity of the yith that arrived at using the conventional method. Such a
variation in the LAPW method. The accuracy of this methodsisfactory result cannot be obtained even if the same grid

is thought to depend on the sphere radius and the grid spagpacing is used in conjunction with the simple FD method.
ing. The_ quantity corresponding to that of LAPW in this  \ye have also applied our approach to the hydrogen mol-
method is thought to b@=R/d through analogy. ecule H as an example of a localizédonperiodi¢ system.
We have implemented this method and tested it for fcaye ysed a cubic supercell with a size of 10 a.u. The grid
hydrogen. The unit cell is a simple cubic lattice consisting Ofspacingd and the atomic sphere radisare 0.25 a.u. and

four hydrogen atoms. The lattice constant is 4.3 a.u. Theys 4 .. respectively. The sampling lopoints in the BZ is
number ofk points in 1/48 wedge of the Brillouin zon(B2)
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FIG. 4. The dependence of energy difference on the quantity FIG. 6. Three-dimensional representation of charge density of
Q=R/d. The open circles, the triangles, and the squares dRow the H, molecule with interatomic distancd, =1.44 a.u. The
=3.0, 5.0, and 7.0 a.u., respectively, on various grid spaaings  cross section is a plane including two hydrogen atoms.
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FIG. 7. Total energy of the Himolecule with various inter-
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independent relation among the grids and enables one to uti-
lize iterative techniques of constraint minimization. On con-
structing the Coulomb potential, a pseudocharge inside the
atomic sphere is introduced in order to treat the charge dis-
tribution oscillating near the core region. These techniques
lead to easy implementation of the self-consistent calcula-
tion.

This method is applied to the hydrogen atom, demonstrat-
ing the ease with which wave functions can be calculated.
The eigenenergy variationally converges as the ratio between
the sphere radiuR and grid spacing increases. The method
is applied also to fcc hydrogen and its efficiency is exam-
ined. The calculated density of states of hydrogen is in good
agreement with that calculated by conventional methods.
Our method requires a less dense grid than the finite differ-

only at the I' point. The criterion for convergence is €nce method without the atomic sphere. For thertlecule,
1078 Ry in the total energy. Figure 6 shows a three-the covalent bond and the equilibrium interatomic distance

dimensional representation of the charge density of the Hagree with those arrived at by other calculations.
molecule with a distance of 1.44 a.u. between hydrogen  This method has the advantages of both finite difference

atoms. The covalent bond of the, Itholecule is well repro- and atomic sphere. The former can easily combine with any

duced using this method. Figure 7 shows the total energy agoundary condition su_ch as Dirichle_t ar_1d Neumann, which is
a function of interatomic distance. The standard value is thdnportant for calculating a nonperiodic system. The latter
total energy for interatomic distance=1.44 a.u. The equi- allows one to treat systems including transition metals. This

librium interatomic distance is estimated to be about 1.44M€thod does not have the restriction of the periodicity of a
a.u., which agrees with other local-density approximation reWave function and has the advantage of being essentially full
sults (1.44—1.45 a.).*2 potential, thus allowing the study of nanoscale devices using

appropriate boundary conditions.
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