
PHYSICAL REVIEW B 15 MARCH 2000-IVOLUME 61, NUMBER 11
Self-consistent first-principles calculations based on the embedded atomic sphere method
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Department of Instrumentation Engineering, Keio University, Yokohama 223-8522, Japan

~Received 16 June 1999; revised manuscript received 1 November 1999!

We present a self-consistent embedded atomic sphere method. The embedded atomic sphere method is
linearized for the easy calculation of wave functions. The coefficients of linearized basis sets inside spheres are
determined to satisfy the continuity of the logarithmic derivatives between the inside and the outside of the
sphere. We have applied this method to the hydrogen atom. It is shown that the calculated energy converges as
the ratio of the sphere radius to the grid spacing increases. We implemented a self-consistent calculation for
analysis of fcc hydrogen and the H2 molecule. The calculated density of states of fcc hydrogen and the
equilibrium interatomic distance of the H2 molecule were found to be in good agreement with the results of
conventional methods.
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I. INTRODUCTION

In the past two decades, nonperiodic systems, such
surfaces, interfaces, and thin films, have attracted a g
amount of attention from the viewpoints of nanoscale
vices and microscopic material design. These systems s
different properties from bulk materials. In these system
quantum mechanical effects play an important role. Thus
these systems in-depth knowledge of the electronic struc
is of great scientific and technological importance. The
culiar characteristics of surfaces can be derived from the
of symmetry or from a decrease in the number of neighb
ing atoms. Some authors have formulated the Green’s fu
tion approach for treating infinite systems such as surfac1

In recent years, approaches to electronic structure ca
lations with a real-space basis have been reported by s
authors,2–4 a few of which utilize the finite difference~FD!
in real space to achieve the linear-size scaling method or
order N method. These methods can exclude the restric
of periodicity and allow flexibility in the treatment of variou
boundary conditions and the realization of large-scale ca
lations. However, a large number of dense grids is neces
to calculate the electronic structure of transition metal s
tems even if pseudopotentials and curvilinear coordinates
used.5

Thijssen and Inglesfield proposed electronic structure
culation in real space for transition metal systems.6 Atomic
spheres are embedded into the finite difference grids. H
ever, it is difficult to solve the wave functions because of
use of energy-dependent basis sets in the atomic sphere
venting the implementation of a self-consistent fir
principles calculation. Moreover, they proposed a ze
derivative basis set to avoid the ambiguities regard
degeneracy.7 However, more than 100 basis sets we
needed to obtain satisfactory results, and calculating th
basis sets can be very time consuming.

In this paper, we first introduce the linearization of ener
for the base inside the sphere and its connection conditio
order to overcome the difficulties of solution of the wa
functions, which includes the constraint minimization tec
nique that is often used in pseudopotential calculations.8 Sec-
ond, we solve the Poisson equation using a pseudoch
PRB 610163-1829/2000/61~11!/7378~5!/$15.00
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distribution for the embedded atomic sphere in the FD gri
A self-consistent calculation can be implemented with
resulting effective potential. Last we apply this method to f
hydrogen and H2 and implement the self-consistent calcul
tion.

II. METHODOLOGY

A. Linearized embedded atomic sphere method

Consider the calculation region as shown in Fig. 1~a!. The
calculation region is divided into uniform grids. The pote
tial for the transition metals is very deep around the atom
core region even if a pseudopotential and curvilinear coo
nates are used,5 and wave functions vary rapidly. It is
pointed out that the grid points must be dense enough
obtain an exact solution, which requires large calculat
power. In order to reduce the number of grid points, Thijss
and Inglesfield proposed that the grids inside the core reg
where the potential rapidly varies, be replaced by an ato
sphere with radiusR. Wave functionsc(r ) inside the atomic
spheresn are solved using a numerical technique based o
linear combination of radial functions of energyE in the
original method.

Outside the spheres, the Kohn-Sham equation is appr
mated by the following finite difference equation:

(
m521

1

Cm@c~r p1mdî !1c~r p1mdĵ !1c~r p1mdk̂!#

1veff~r p!c~r p!2ec~r p!50, ~1!

whereveff is the effective potential of the Kohn-Sham equ
tion, r p indicates the grid point,d is the spacing of the grid
and î , ĵ ,k̂ are the unit vectors along thex,y,z directions.Cm
is the expansion coefficient of the Laplacian, whereC615
21/d2 andC052/d2 for uniform grids.

A connection condition between inside and outside
sphere was proposed by Thijssen and Inglesfield.6 Briefly,
their method utilized a radial function of energyE inside the
sphere. A link across the sphere surface was considere
shown in Fig. 1~b!, wherer p̄ and ra indicate the grid point
vectors just outside and just inside the sphere, respectiv
7378 ©2000 The American Physical Society
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The pseudo-inner-product~PIP! between two functionsf (r )
andg(r ) is defined as follows:

^ f ug&B[ (
( p̄,a)

f ~r p̄!g~ra!, ~2!

where (p̄,a) is the link through the sphere’s surface
shown in Fig. 1~b!. First, the matrixSLL8

(n) (E) was constructed
from the PIP of the energy-dependent basis setsxnL(r n ,E).
The coefficients of the basis sets were determined by m
plying the PIP between the energy-dependent basis in
and the trial function outside the sphere by the inverse of
matrix SLL8

(n) (E). Since the energy for the radial function mu
equal the eigenenergy, this energy was iteratively de
mined, requiring a loop to determine the eigenenergy. T
method generated difficulties of degeneracy ambiguit
This energy searching requires great calculation time, w
this energy dependence constitutes a challenge in implem
ing a self-consistent calculation. Thus, it is necessary that
additional energy loop should be removed to determine
eigenenergy and to implement a self-consistent calculati

We expand the radial functionxnL(r n ,E) for the
energy parameterEnL as xnL(r n ,E)'xnL(r n ,EnL)1(E
2EnL)ẋnL(r n ,EnL), whereL stands for the index (l ,m) of
the harmonics expansion andẋnL(r n ,EnL) is the energy de-
rivative of the radial functionxnL(r n ,EnL).9 Thus, the wave
function only inside the atomic spheren is

FIG. 1. ~a! The embedded atomic spheres in the finite differen
grid. The grid spacing isd and the radius of the atomic spheren is
Rn . ~b! The links across the sphere’s surface. The closed cir
and open circles indicate the grids inside and outside the sph
respectively. The bold lines are the links through the sphere’s
face.
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c~r !5(
L

@anLxnL~r n ,EnL!1bnLẋnL~r n ,EnL!#YL~r n̂!

[(
L

@anLfnL~r ,EnL!1bnLḟnL~r ,EnL!# ~3!

wherern5r2Rn , Rn is the position of the atomn.
We proposed a different connection condition to det

mine the coefficients of the radial function in order to r
move the additional energy loop. We expand the key id
and generate the energy-independent PIP,

S(n)[FSLL8
(n) SLL̇8

(n)

SL̇L8
(n)

SL̇L̇8
(n) G , ~4!

and

SLL8
(n) [ (

( p̄,a)

fnL~r p̄ ,EnL!fnL8~ra ,EnL!,

SLL̇8
(n)

[ (
( p̄,a)

ḟnL~r p̄ ,EnL!fnL8~ra ,EnL!,

SL̇L̇8
(n)

[ (
( p̄,a)

ḟnL~r p̄ ,EnL!ḟnL8~ra ,EnL!.

If the vectors

C(n)5@ . . . ,anL , . . . ,bnL , . . . #T ~5!

and

P(n)5@ . . . ,^cufnl8m8&B , . . . ,̂ cuḟnl8m8&B , . . . #T ~6!

are defined, the coefficients of the basisfnL ,ḟnL can be
calculated using the inverse of the energy-independent P

C(n)5S(n)21P(n). ~7!

This operation includes the following:~i! the trial function
on the grids is decomposed into components of each ang
momentum, and~ii ! two radial functions with the same an
gular momentumxnL and ẋnL are weighted to satisfy the
continuity condition. On the solution of the wave functio
from Eq. ~7! the coefficients of basis sets inside the sphe
are obtained for a proper trial function such as the atom
wave function. As a result, the wave function inside t
sphere and Eq.~1! can be calculated. In this study, the co
straint minimization technique, which is often used
pseudopotential calculations, is utilized to solve the wa
functions and eigenenergies.8 Consider the Hamiltonian op
eration of Eq.~1! to the gridr p̄ just outside the sphere. Thi
operation is partly written as

•••1
2

d2
c~r p̄!2

1

d2
c~ra!1veff~r p̄!c~r p̄!5ec~r p̄!. ~8!

Since the wave function inside the spherec(ra) is
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c~ra!5(
L

@anLfnL~ra!1bnLḟnL~ra!#

5@ . . . ,fnL~ra!, . . . ,ḟnL~ra!, . . . #3S(n)21

3F . . . ,(
(q̄,b)

c~r q̄!fnL8~rb!, . . . (
(q̄,b)

c~r q̄!

3ḟnL8~rb!, . . . GT

, ~9!

the left-hand side of Eq.~8! is energy independent, wher
(q̄,b) is the link through the sphere’s surface. On the ot
hand, the relation between grids just outside is energy de
dent when the same Hamiltonian operation is conside
This energy-independent relation enables one to utilize
iterative minimization and to easily perform the orthogon
ization.

B. Self-consistent calculation

Our aim is to develop a self-consistent calculation meth
for nonperiodic systems. In general, the potential inside
sphere can be formulated as a boundary value problem u
a Green’s function,10

vc~r !5E
Sn

r~rn8!G~rn ,rn8!drn82
Rn

2

4p R
Sn

vc~jn8!
]G

]r n8
dVn8 ,

~10!

wherejn is a point on the spheren andRn is the radius of the
spheren. The Green’s functionG satisfies the equations

¹2G~rn ,rn8!52d~r2r 8!,

G~rn ,jn!50. ~11!

If the charge density everywhere and the boundary co
tion implied in the calculation region are given, the bounda
value on the sphere can be calculated numerically. Howe
the charge density around the core region oscillates rap
with higher frequencies than the resolution of the grid sp
ing d when a transition metal system is treated. If the c
charge density is projected onto the grids, an accurate s
tion cannot be obtained. In this work, a pseudocharge den
r̄(r ) is introduced, which is smooth enough to calculate
ing the standard FD method without the use of dense gr

The charge distributionr(r ) inside the sphere is given b
the multipole expansion,

r~r !5(
lm

rnlm~r n!Ylm~r n̂!. ~12!

The potential outside the sphere for the pseudocharge d
bution is the same as for the real charge distribution if
pseudocharge inside has the same multipole moment a
real charge. Thus, the real radial charge densityrnlm(r n)
inside the spheren can be replaced by a pseudochar
r̄nlm(r n) having the same multipole moment,
r
n-
d.
n
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E
0

Rn
r lrnlm~r n!r n

2drn5E
0

Rn
r l r̄nlm~r n!r n

2drn . ~13!

In this work, the pseudocharge is represented by a poly
mial function, which equals the real charge in the multipo
moment and matches the value on the sphere boundary
its nth derivatives.

The Coulomb potential in the whole region is calculat
by numerically solving the Poisson equation with the sta
dard FD in the appropriate boundary condition. The poten
on the whole region of space is obtained when the bound
value is given by interpolation from the potential on the g
points.

The adequacy of the introduced pseudocharge is veri
for solution of the Poisson equation. The potential only o
side the sphere is needed when the Poisson equatio
solved using the FD method. So, at least the outside pote
for the pseudocharge density must agree with that for the
charge. For the fcc hydrogen ion, two potentials are cal
lated using the FD method, where the lattice constanta is 4.3
a.u. and the sphere radiusR is 1.0 a.u. Figure 2 shows th
potential of the pseudocharge using the FD approach and
potential of the real charge calculated by a fast Fourier tra
form ~FFT! scheme with a cutoff energy of 500 Ry. Th
degrees of the polynomial for the pseudocharge are 1 or
Fig. 2. It is clearly found that the outside potential of th
pseudocharge density is in excellent agreement with tha
the real charge density.

III. APPLICATION

We apply the linearized embedded atomic sphere met
to the hydrogen atom without self-consistent calculation
order to investigate the effect of linearization. This proble
is modeled by a hydrogen atom positioned in the center o
cubic region having a side of 30 a.u. The boundary condit
is that wave functions are forced to be zero at the edge of
calculation region. This length of 30 a.u. is small enough
calculate wave functions for the principal numbern51 with
neglible influence from the calculation region. When the e
ergy parameter is shifted from the exact eigenva
21.0 Ry, the calculated energies are shown in Fig. 3. Si

FIG. 2. The solution of the Poisson equation for the fcc hyd
gen nucleus. The solid line indicates the potential of the real cha
density with the FFT scheme. The open and closed squares s
the potentials of the pseudocharge density with the FD sche
which are replaced by a linear function and a fifth order polynom
The dashed horizontal line indicates the sphere’s surface wi
radius of 1.0 a.u.
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the energy parameters are also calculated with self-consi
procedures, the energy parameters of the next step shou
closer to the exact eigenvalue.

The accuracy of the eigenvalues in this method is chan
by varying the grid spacingd and the sphere radiusR. The
smaller the grid spacing, the more the eigenvalue approa
a constant value. In this method, the calculated eigenv
also depends on the sphere radius in addition to depen
on the grid spacing. So a quantityQ is defined asQ5R/d.
Suppose that the calculated eigenvalue forR55 a.u. andd
50.2 a.u., which correspond toQ525, is the standard
value, and consider the difference between the calcula
eigenvalue for variousQ’s and the standard value. Figure
shows the energy difference dependence on the quantiQ
for the hydrogen atom calculated using this method. T
quantityQ is varied by changing the sphere radiusR and the
grid spacingd. The energy difference of the hydrogen ato
converges as the quantityQ increases. The formalism of ou
method resembles the linearized augmented plane w
~LAPW! method except for the restriction of periodicity9

The valueRKmax is known to be a standard quantity of th
variation in the LAPW method. The accuracy of this meth
is thought to depend on the sphere radius and the grid s
ing. The quantity corresponding to that of LAPW in th
method is thought to beQ5R/d through analogy.

We have implemented this method and tested it for
hydrogen. The unit cell is a simple cubic lattice consisting
four hydrogen atoms. The lattice constant is 4.3 a.u. T
number ofk points in 1/48 wedge of the Brillouin zone~BZ!

FIG. 3. Calculated eigenvalues from one self-consistent itera
for various energy parameters around an exact eigenval
21.0 Ry for the principal numbern51. The vertical gray lines
indicate the maximum permissible range to obtain the exact eig
value after self-consistent iterations.

FIG. 4. The dependence of energy difference on the quan
Q5R/d. The open circles, the triangles, and the squares shoR
53.0, 5.0, and 7.0 a.u., respectively, on various grid spacingsd.
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is 35. A self-consistent calculation for the energy parame
and the total potential is implemented. In the origin
method, a loop to determine the eigenenergy was neede
addition to the self-consistent loop. In our method, ene
parameters are determined on each self-consistent itera
from the center of the projected density of states in e
angular momentum of each atomic sphere. Determinatio
the energy parameter was carried out at the same time u
a self-consistent calculation. The initial guess for energy
rameters is atomic levels of21 Ry for the principal value
of n51. As the exchange-correlation potential, we emp
that parametrized by Perdew and Zunger11. For the wave
function and the effective potential inside the sphere,
maximal angular momentuml is l 52. Though this value is
smaller than that of the FLAPW method, the smaller sph
radius is favorable for this circumstance since the spher
component ofl 50 is dominant near the core region. Figu
5 shows the density of states~DOS! calculated using this
method and for comparison also shows that of the lin
muffin-tin orbital ~LMTO! method. The radius of the atomi
sphereR is 1.0 a.u. and the grid spacingd is a/20. The
calculated density of states of hydrogen is in good agreem
with that arrived at using the conventional method. Suc
satisfactory result cannot be obtained even if the same
spacing is used in conjunction with the simple FD metho

We have also applied our approach to the hydrogen m
ecule H2 as an example of a localized~nonperiodic! system.
We used a cubic supercell with a size of 10 a.u. The g
spacingd and the atomic sphere radiusR are 0.25 a.u. and
0.5 a.u., respectively. The sampling ofk points in the BZ is

FIG. 6. Three-dimensional representation of charge density
the H2 molecule with interatomic distancedH-H51.44 a.u. The
cross section is a plane including two hydrogen atoms.

n

n-

ty

FIG. 5. Density of states for fcc hydrogen. Solid line and dott
line are calculated using this method~EAS! and the conventiona
method~LMTO!, respectively.
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only at the G point. The criterion for convergence i
1026 Ry in the total energy. Figure 6 shows a thre
dimensional representation of the charge density of the2
molecule with a distanced of 1.44 a.u. between hydroge
atoms. The covalent bond of the H2 molecule is well repro-
duced using this method. Figure 7 shows the total energ
a function of interatomic distance. The standard value is
total energy for interatomic distanced51.44 a.u. The equi-
librium interatomic distance is estimated to be about 1
a.u., which agrees with other local-density approximation
sults ~1.44–1.45 a.u.!.12

IV. CONCLUSIONS

We have developed a self-consistent embedded ato
sphere method of calculating electronic structure using a
earized radial function of energy, improving on the previo
method. The linearized radial function leads to an ener

FIG. 7. Total energy of the H2 molecule with various inter-
atomic distancesdH-H . The energiesDE are shown related to the
standard value of total energy at a distance of 1.44 a.u.
ys
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independent relation among the grids and enables one to
lize iterative techniques of constraint minimization. On co
structing the Coulomb potential, a pseudocharge inside
atomic sphere is introduced in order to treat the charge
tribution oscillating near the core region. These techniq
lead to easy implementation of the self-consistent calcu
tion.

This method is applied to the hydrogen atom, demonst
ing the ease with which wave functions can be calculat
The eigenenergy variationally converges as the ratio betw
the sphere radiusR and grid spacingd increases. The metho
is applied also to fcc hydrogen and its efficiency is exa
ined. The calculated density of states of hydrogen is in go
agreement with that calculated by conventional metho
Our method requires a less dense grid than the finite dif
ence method without the atomic sphere. For the H2 molecule,
the covalent bond and the equilibrium interatomic distan
agree with those arrived at by other calculations.

This method has the advantages of both finite differe
and atomic sphere. The former can easily combine with
boundary condition such as Dirichlet and Neumann, which
important for calculating a nonperiodic system. The lat
allows one to treat systems including transition metals. T
method does not have the restriction of the periodicity o
wave function and has the advantage of being essentially
potential, thus allowing the study of nanoscale devices us
appropriate boundary conditions.
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