
PHYSICAL REVIEW B 15 MARCH 2000-IVOLUME 61, NUMBER 11
Renormalization-group analysis of the two-dimensional Hubbard model

Christoph J. Halboth and Walter Metzner
Institut für Theoretische Physik C, Technische Hochschule Aachen, Templergraben 55, D-52056 Aachen, Germany

~Received 31 August 1999!

Salmhofer @Commun. Math. Phys.194, 249 ~1998!# recently developed a new renormalization-group
method for interacting Fermi systems, where the complete flow from the bare action of a microscopic model to
the effective low-energy action, as a function of a continuously decreasing infrared cutoff, is given by a
differential flow equation which is local in the flow parameter. We apply this approach to the repulsive
two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping amplitudes. The flow equa-
tion for the effective interaction is evaluated numerically on a one-loop level. The effective interactions diverge
at a finite-energy scale which is exponentially small for small bare interactions. To analyze the nature of the
instabilities signaled by the diverging interactions we extend Salmhofer’s renormalization group for the cal-
culation of susceptibilities. We compute the singlet superconducting susceptibilities for various pairing sym-
metries, and also charge- and spin-density susceptibilities. Depending on the choice of the model parameters
~hopping amplitudes, interaction strength, and band filling! we find commensurate and incommensurate anti-
ferromagnetic instabilities ord-wave superconductivity as leading instability. We present the resulting phase
diagram in the vicinity of half-filling, and also results for the density dependence of the critical energy scale.
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I. INTRODUCTION

One of the striking aspects of high-temperature superc
ducting cuprates is the sensitive dependence of their phy
properties on the charge-carrier concentration in the cop
oxide planes, which can be continuously varied by dop
the interplane region. In the doping–temperature phase
gram one generically finds an antiferromagnetic insula
and a superconducting phase withd-wave symmetry, with a
strongly doping-dependent transition temperature in e
case.1

The two-dimensional Hubbard model2 is a promising pro-
totype model for the electronic degrees of freedom in
copper-oxide planes. It has an antiferromagnetically orde
ground state at half-filling, and is expected to become
d-wave superconductor at moderate doping away fr
half-filling.3

Although the Coulomb interaction in the cuprates is c
tainly rather strong, there has been considerable recent i
est in theweak-coupling sector of the two-dimensional~2D!
Hubbard model. Besides the applicability of~semi!analytical
methods at weak coupling and the general experience
many strongly interacting systems are more or less cont
ously connected to corresponding weak-coupling system
major reason for this interest is that even the weakly in
acting 2D Hubbard model exhibits an extraordinarily ri
behavior as a function of the carrier density and other mo
parameters. Conventional perturbation theory breaks d
for densities close to half-filling, where numerous compet
infrared divergences appear as a consequence of Fe
surface nesting and van Hove singularities. These diverg
cies can in principle be treated by suitable self-consis
resummations of perturbative contributions to all orders
the coupling constant. Most notably the so-call
fluctuation-exchange approximation4 turned out to be able to
describe various expected physical properties. Howeve
PRB 610163-1829/2000/61~11!/7364~14!/$15.00
n-
al
r-

g
ia-
r

h

e
d
a

-
er-

at
u-
, a
r-

el
n

g
i-

n-
nt
n

a

completely unbiased selection of Feynman diagrams
takes into account all possible particle-particle and partic
hole channels on equal footing would require at least
self-consistent summation of all parquet diagrams,5 which is
still beyond present numerical possibilities for sufficien
large systems and low temperatures.

Renormalization-group~RG! methods are presently th
most promising and best controlled approach to lo
dimensional Fermi systems with competing singularities
weak coupling. Such methods were developed long ago
one-dimensional systems where, combined with exact s
tions of fixed-point models, they have been a major sourc
physical insight.6,7 Early RG studies of two-dimensional sys
tems started with simple but ingenious scaling approache
the 2D Hubbard model, very shortly after the discovery
high-Tc superconductivity.8–10 These studies focused o
dominant scattering processes between van Hove pointsk
space, for which a small number of running couplings co
be defined and computed on a one-loop level. Spin-den
and superconducting instabilities were identified from div
gencies of the corresponding correlation functions. Recen
the early scaling approaches were revisited by various
thors to extract further physical properties, such as a poss
pinning of the Fermi level at the van Hove singularity,11

extended saddle points,11,12 and a possible gap formation o
parts of the Fermi surface near the van Hove points.13 Scal-
ing theories with few running couplings have also been u
to analyze instabilities associated with flat Fermi-surfa
pieces14,15 and inflection points on the Fermi surface.16

A major complication in two-dimensional systems com
pared to 1D systems is that the effective interactions can
be parametrized accurately by a small number of runn
couplings, even if irrelevant momentum and energy dep
dences are neglected, since the tangential momentum de
dence of effective interactions along the Fermi ‘‘surface’’~a
line in two-dimensions! is strong and important in the low
7364 ©2000 The American Physical Society
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energy limit. This has been demonstrated in particular i
one-loop RG study for a model system with two parallel fl
Fermi-surface pieces.17 In an impressive series of recent p
pers Zanchi and Schulz18 developed a new renormalization
group approach for interacting Fermi systems, which
based on a flow equation derived by Polchinski19 in the con-
text of local quantum field theory. In this RG version th
complete flow from the bare action of an arbitrary micr
scopic model to the effective low-energy action, as a fu
tion of a continuously decreasing infrared energy cutoff,
given by an exact differential flow equation. Zanchi a
Schulz applied this approach to the 2D Hubbard model~with
nearest-neighbor hopping! in a one-loop approximation, with
a discretized tangential momentum dependence of the e
tive two-particle interaction. The presence of antiferroma
netism andd-wave superconductivity as major instabilities
the model close to half-filling was thereby confirmed.

The development of continuous renormalization-gro
methods for interacting Fermi systems has made fur
progress with a recent work by Salmhofer.20 By expanding
the effective action in Wick-ordered monomials instead
bare monomials, he obtained an exact flow equation for
effective interactions with a particularly convenient stru
ture: Theb function is bilinear in the effective interaction
and local in the flow parameter, i.e. it does not depend
effective interactions at higher-energy scales.

In this work we apply Salmhofer’s RG version to th
two-dimensional Hubbard model with nearest- and also n
nearest-neighbor hopping amplitudes, concentrating on
most interesting electron-density regime near half-filling. W
evaluate the flow of effective~two-particle! interactions on a
one-loop level, neglecting the irrelevant energy depende
and also the irrelevant normal momentum dependence,
keeping the important tangential momentum dependence
in previous RG calculations, the effective interactions
verge at a finite-energy scale, which is exponentially sm
for a small bare interaction. To analyze the physical natur
the instabilities signaled by the diverging interactions,
extend Salmhofer’s RG version for a calculation of the s
ceptibilities. We compute charge and spin susceptibilit
and singlet superconducting susceptibilities for various p
ing symmetries. Depending on the choice of the model
rameters, hopping amplitudes, interaction strength, and b
filling, we find commensurate or incommensurate antifer
magnetic instabilities ord-wave superconductivity as th
leading instabilities, in qualitative agreement with previo
calculations with other RG versions. We present the resul
phase diagram of the two-dimensional Hubbard model n
half-filling, and results showing how the critical energy sca
decreases away from the half-filled perfect nesting case.

We finally note that powerful renormalization-group tec
niques with a discrete successive reduction of the infra
cutoff have recently opened the way toward a rigorous n
perturbative control of interacting Fermi systems for a su
ciently small yet finite coupling strength.21 Significant rigor-
ous results have already been derived for 2D system22

These mathematical works show in particular that all we
coupling instabilities in interacting Fermi systems can be
tained systematically from a renormalization-group analy

This paper is organized as follows. In Sec. II we brie
review Salmhofer’s RG for general interacting Fermi sy
a
t
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tems, present the explicit flow equations for effective tw
particle interactions on a one-loop level, and also derive
flow equations for susceptibilities. In Sec. III we first discu
how the one-loop flow equations are solved, and then pre
numerical results for the Hubbard model with a discussion
their physical content. Section IV closes the presentat
with a short summary of major results and some ideas
further developments.

II. RENORMALIZATION-GROUP EQUATIONS

In this section we review Salmhofer’s renormalizatio
group approach for general interacting Fermi system
present the explicit flow equations for effective two-partic
interactions on a one-loop level, and finally derive one-lo
flow equations for several susceptibilities, which will later
used for our stability analysis of the 2D Hubbard model.

A. Functional integral representation

We consider a system of interacting spin-1
2 fermions with

a single-particle basis given by states with a~crystal! mo-
mentumk, a spin projectionsP$↑,↓%, and a kinetic energy
ek . The properties of the system are determined by an ac

S@c,c̄#5(
K

~ ik02jk!c̄KcK2V@c,c̄#, ~1!

whereK5(k0 ,k,s) is a multi-index containing the Matsub
ara frequencyk0 in addition to the single-particle quantum
numbers;c̄K and cK are Grassmann variables associa
with creation and annihilation operators,jk5ek2m is the
single-particle energy relative to the chemical potential, a
V@c,c̄# is an arbitrary many-body interaction. The noninte
acting single-particle propagator of the system is given b

C~K !5
1

ik02jk
. ~2!

All connected Green functions can be obtained from the g
erating functional23

G@h,h̄#5 logH E dmC@c,c̄#e2V[c,c̄]e(c̄,h)1(h̄,c)J , ~3!

with the normalized Gaussian measure

dmC@c,c̄#

5)
K

dcKdc̄Ke(c̄,C21c)Y E )
K

dcKdc̄Ke(c̄,C21c).

~4!

Here we have introduced the shorthand notation (x,c)
5(KxKcK and (C21c)K5C21(K)cK for arbitrary Grass-
mann variablesxK andcK . Note the identity

E dmC@c,c̄#e(c̄,h)1(h̄,c)5e2(h̄,Ch), ~5!

which implies thatG@h,h̄#52(h̄,Ch) in the noninteracting
caseV@c,c̄#50. The connectedm-particle Green functions
are given by
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Gm~K18 , . . . ,Km8 ;K1 , . . . ,Km!

5~21!m^cK
18
•••cK

m8
c̄Km

•••c̄K1
&c

5
]m

]h̄K
18
•••]h̄K

m8

]m

]hKm
•••]hK1

G@h,h̄#U
h5h̄50

,

~6!

where ^•••&c is the connected average of the product
Grassmann variables between the brackets.

The renormalization-group equations are most con
niently formulated for another generating functional, theef-
fective interaction24

V@x,x̄ #52 logH E dmC@c,c̄#e2V[c1x,c̄1x̄] J . ~7!

A simple substitution of variables yields the relation

2V@x,x̄ #5~ h̄,Ch!1G@h,h̄# where x5Ch, x̄5Ch̄.
~8!

Hence functional derivatives ofV@x,x̄ # generate connecte
Green functions divided by C(K1)•••C(Km)C(K18)
•••C(Km8 ), i.e., ~noninteracting! propagators are amputate
from external legs in the corresponding Feynman diagra
The term (h̄,Ch) cancels the noninteracting part ofG@h̄,h#

such thatV@x,x̄ #50 for V@c,c̄#50. Hence the noninteract
ing propagator is subtracted from the one-particle Gr
function generated byV.

B. Wick-ordered continuous RG

We now briefly review the derivation of a continuou
renormalization-group equation for Wick-ordered~ampu-
tated! Green functions, as first derived in the context of
teracting Fermi systems by Salmhofer.20 The original system
is endowed with an infrared cutoff at an energy scaleL.0
by replacing the bare propagatorC(K) with

CL~K !5
Q.

L ~k!

ik02jk
. ~9!

Here Q.
L (k) is a function that vanishes forujku!L and

tends to one forujku@L. In this way the infrared singularity
of the propagator atk050 andjk50 ~corresponding to the
non-interacting Fermi surface ink space! is cut off at scale
L. A simple choice forQ.

L (k), which we will later adopt in
our numerical calculations, is

Q.
L ~k!5Q~ ujku2L!, ~10!

whereQ is the usual step function. With this choice singl
particle states close to the Fermi surface are strictly exclu
from the theory. Alternatively, one may also use a smo
cutoff function.

The generating functional for connected Green functio
and the effective interaction constructed withCL ~instead of
C) will be denoted byG L@h,h̄# andV L@x,x̄ #, respectively.
The original functionalsG and V are recovered in the limi
f

-

s.

n

-

d
h

s

L→0. It is not hard to show that the effective interactio
satisfies the following exact renormalization group
equation20,25

]

]L
V L@x,x̄ #5(

K
ĊL~K !

]2V L@x,x̄ #

]xK]x̄K

2(
K

ĊL~K !
]V L@x,x̄ #

]xK

]V L@x,x̄ #

]x̄K

,

~11!

whereĊL(K)5]CL(K)/]L. With the initial condition

V L0@x,x̄ #5V@x,x̄ #, ~12!

this equation determines the flow ofV L uniquely for all L
,L0. The initial value L0 must be chosen such tha
Q.

L (k)50 for all k andL.L0. For the step-function cutoff
introduced above,L0 is the maximal value ofujku.

An expansion of the functionalV L@x,x̄ # in the
renormalization-group equation~11! in powers ofxK andx̄K
would lead to Polchinski’s19 flow equations for amputated
connected Green functions, which have been applied to
2D Hubbard model by Zanchi and Schulz.18 Alternatively,
one can also expand with respect toWick-orderedmonomi-
als

V L@x,x̄ #5 (
m50

`
1

~m! !2 (
K1 , . . . ,Km

(
K18 , . . . ,Km8

3Vm
L~K18 , . . . ,Km8 ;K1 , . . . ,Km!e2DDL

3)
j 51

m

x̄K
j8
xK j

. ~13!

The exponent in the Wick-ordering operator is the differe
tial operator

DDL5(
K

DL~K !
]2

]xK]x̄K

, ~14!

with the propagator

DL~K !5C~K !2CL~K !5
Q,

L ~k!

ik02jk
, ~15!

whereQ,
L (k)512Q.

L (k). Note thatDL contributes in the
infrared regime excluded fromCL. The Wick-ordered mo-
nomials reduce to pure monomials in the limitL→0, since
DL(K)→0 in that limit. Hence the functionsVm

L tend to the
usual amputated connected Green functions forL→0.

Inserting expansion~13! for V L@x,x̄ # on the left-hand
side of the RG equation~11! yields two terms, with theL
derivation acting on the coefficientsVm

L or on the Wick-
ordered monomials, respectively. Since
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FIG. 1. Diagrammatic representation of th
flow equation for the Wick-ordered amputate
Green functionsVm

L . The internal line with a

slash corresponds toḊL, and the others toDL; all
possible pairings leavingm ingoing andm outgo-
ing external legs have to be summed.
n

ts

f
er
rs

in

he
e

io

e

s
b

the

hat

-

in a
of

e

]

]L
e2DDL)

j 51

m

x̄K
j8
xK j

52(
K

ḊL~K !
]2

]xK]x̄K

3e2DDL)
j 51

m

x̄K
j8
xK j

~16!

and ḊL52ĊL, the second term on the left-hand side ca
cels the first term on the right-hand side of Eq.~11!. Only the
second term, quadratic inV L, remains. Expanding this term
with respect to Wick monomials and comparing coefficien
one can express theL derivative ofVm

L as abilinear form of
all the other functionsVn

L .20 A graphical representation o
these flow equations is shown in Fig. 1. The precise gen
equation forVm

L has rather complicated combinatorial facto
and will not be written here, since we will compute onlyV2

L

in a one-loop approximation. Note that one internal line

Fig. 1 corresponds toḊL, and the others to thelow-energy
propagatorDL. Note also that the flow equations arelocal in
L.

C. One-loop equations

To detect dominant instabilities of the system in t
weak-coupling limit, it is sufficient to truncate the infinit
hierarchy of flow equations described by Fig. 1 at aone-loop
level, and neglect all components of the effective interact
except the two-particle interactionV2

L . Since self-energy
corrections are also neglected,V2

L reduces to the one-particl
irreducible two-particlevertex function, and will therefore be
denoted byGL from now on. Summing all possible pairing
of two vertices in a one-loop diagram as in Fig. 2, one o
tains theflow equation

FIG. 2. Flow equation for the vertex functionGL in a one-loop
approximation with the particle-particle channel~BCS! and two
particle-hole channels~ZS and ZS’!.
-

,

al

n

-

]

]L
GL~K18 ,K28 ;K1 ,K2!

5
1

bV (
K,K8

]

]L
@DL~K !DL~K8!#

3F1

2
GL~K18 ,K28 ;K,K8!GL~K,K8;K1 ,K2!

2GL~K18 ,K;K1 ,K8!GL~K8,K28 ;K,K2!

1GL~K28 ,K;K1 ,K8!GL~K8,K18 ;K,K2!G , ~17!

whereb is the inverse temperature andV is the volume of
the system. The three terms on the right-hand side are
contributions from the Cooper~or BCS! channel and the two
zero-sound channels~ZS and ZS’!. Note that for translation
invariant systems momentum conservation implies t
GL(K18 ,K28 ;K1 ,K2)Þ0 only if k11k25k181k28 , so that the
sum overk andk8 in Eq. ~17! is reduced to a single energy
momentum sum.

For a spin-rotation invariant system thespin structureof
the vertex function can be written as

GL~K18 ,K28 ;K1 ,K2!5Gs
L~k18 ,k28 ;k1 ,k2!Ss

18 ,s
28 ;s1 ,s2

1G t
L~k18 ,k28 ;k1 ,k2!Ts

18 ,s
28 ;s1 ,s2

,

~18!

where

Ss
18 ,s

28 ;s1 ,s2
5

1

2
~ds1s

18
ds2s

28
2ds1s

28
ds2s

18
!,

Ts
18 ,s

28 ;s1 ,s2
5

1

2
~ds1s

18
ds2s

28
1ds1s

28
ds2s

18
! ~19!

are the projection operators on singlet and triplet states
two-particle spin space, respectively. The antisymmetry
GL with respect toK1↔K2 or K18↔K28 implies thatGs

L is
symmetric andG t

L antisymmetric under exchange of th
variablesk1 andk2 or k18 andk28 . Carrying out the spin sum
in the flow equation, one obtains

]LGa
L~k18 ,k28 ;k1 ,k2!5 (

i 5s,t
(

j 5s,t
@Ca i j

BCSb i j
BCS~k18 ,k28 ;k1 ,k2!

1Ca i j
ZS b i j

ZS~k18 ,k28 ;k1 ,k2!

1Ca i j
ZS8b i j

ZS8~k18 ,k28 ;k1 ,k2!# ~20!

for a5s,t, where the coefficientsCa i j can be grouped in
matrices
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Cs
BCS5S 1

0
0
0D , Cs

ZS52Cs
ZS85

1

4 S 21
3

3
3 D

~21!

Ct
BCS5S 0

0
0
1D , Ct

ZS5Ct
ZS85

1

4 S 1
1

1
5D

and the ‘‘b functions’’ are given by

b i j
BCS~k18 ,k28 ;k1 ,k2!5

1

2bV (
k,k8

]L@DL~k!DL~k8!#

3G i
L~k18 ,k28 ;k,k8!G j

L~k,k8;k1 ,k2!,

b i j
ZS~k18 ,k28 ;k1 ,k2!52

1

bV (
k,k8

]L@DL~k!DL~k8!#

3G i
L~k18 ,k;k1 ,k8!G j

L~k8,k28 ;k,k2!

b i j
ZS8~k18 ,k28 ;k1 ,k2!52b i j

ZS~k28 ,k18 ;k1 ,k2!. ~22!

We finally list some useful relations for the vertex fun
tion following from generalsymmetries. Time-reversal in-
variance implies that

GL~K18 ,K28 ;K1 ,K2!

5s18s28s1s2GL~RK1 ,RK2 ;RK18 ,RK28! ~23!

whereRK5(k0 ,2k,2s) for K5(k0 ,k,s), and the number
1 (21) is assigned tos5↑(↓) in the prefactor. Assuming in
addition spatial reflection invariance and spin rotation inva
ance, one obtains

GL~K18 ,K28 ;K1 ,K2!5GL~K1 ,K2 ;K18 ,K28!. ~24!

From the behavior under complex conjugation

ḠL~K18 ,K28 ;K1 ,K2!5GL~K̄1 ,K̄2 ;K̄18 ,K̄28!, ~25!

with K̄5(2k0 ,k,s), one can then deduce that the vert
function GL(K18 ,K28 ;K1 ,K2) is real, if all the energy vari-
ables vanish.

D. Susceptibilities

To identify possible instabilities of the system we com
pute various susceptibilities, i.e. the linear response of
system to small external fields. Application of an extern
field h leads to an additional contribution to the action

V8@h;c,c̄#52(
q

@ h̄~q!O~q!1h~q!Ō~q!#, ~26!

whereO(q) is a bilinear form in the Grassmann variable
Ō(q) is its Hermitian conjugate, andh̄(q) is the complex
conjugate ofh(q). We will compute the response to field
coupling to thecharge density,

r~q!5(
k,s

c̄k2q,sck,s , ~27!

and thespin densityin the z direction,
-

e
l

,

sz~q!5(
k

@c̄k2q,↑ck,↑2c̄k2q,↓ck,↓#, ~28!

and also the response to pairing fields coupling to thesinglet
pair operator,

D~q!5(
k,s

sd~k!ck1q,sc2k,2s , ~29!

where d(k) is a function with even parity specifying th
orbital symmetry of the pairing operator (s wave, d wave,
etc.!. The linear response of the expectation value

m~q!5V21^O~q!&5
1

V

] logZ@h#

]h̄~q!
, ~30!

with the partition function

Z@h#5E dmC@c,c̄#e2V[c,c̄] 2V8[h;c,c̄] , ~31!

is given by the susceptibility

x~q!5
]m~q!

]h~q!
U

h50

5V21^O~q!Ō~q!&uh50 . ~32!

We consider only systems which are translation invaria
spin rotation invariant, and charge conserving in the abse
of the external fieldh. In the normal~not symmetry-broken!
phase the expectation values^O(q)& then vanish forh(q)
→0, except for the expectation value^r(0)&, which yields
the average particle number of the system.

The renormalization-group equation~11! is not affected
by the presence of the additional termV8 in the bare action,
since an arbitrary many-body interaction was allowed in a
case. Only the initial condition of the flow is modified to

V L0@h;x,x̄ #5V@x,x̄ #1V8@h;x,x̄ #, ~33!

which leads to an h-dependent effective interactio
V L@h;x,x̄ #. When a pairing field is coupled to the system
the expansion ofV L@h;x,x̄ # with respect to Wick-ordered
monomials will also contain monomials where the number
creation and annihilation variables is not equal, and Eq.~13!
must be generalized to

V L@h;x,x̄ #5 (
m,n50

`
1

m!n! (
K18 , . . . ,Km8

(
K1 , . . . ,Kn

3Vmn
L ~@h#;K18 , . . . ,Km8 ;K1 , . . . ,Kn!

3e2DDLx̄K
18
•••x̄K

m8
xKn

•••xK1
~34!

To obtain thelinear response of the system, we expa
the effectivem-body interactionsVm

L ~or its generalization
Vmn

L ) in powers ofh. The effective zero-body interaction ca
be expanded as

V0
L@h#5V0

L2V(
q

xL~q!h̄~q!h~q!1O~h3!. ~35!
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Note thatV0
L@h# converges to the grand-canonical potent

V@h#52 logZ@h# for L→0, andxL(q) converges to the
susceptibilityx(q). If h couples to the charge density, the
is also a linear contribution2NL@h(0)1h̄(0)# in the expan-
sion of V0

L@h#, whereNL converges to the average partic
number forL→0. For a field coupling to charge or spi
density, the effective one-body interaction becomes

V1
L~@h#;K8;K !5V1

L~K8;K !2(
q

@RL~q;K8;K !h̄~q!1H.c.#

1O~h2! ~36!

The spin structure of the renormalized vertexRL is

RL~q;K8;K !5ds8sRC
L~q;k8;k! ~37!

for the charge vertex, and

RL~q;K8;K !5sds8sRS
L~q;k8;k! ~38!

for the spin vertex. For a pairing field,V1
L has only quadratic

terms inh, but the off-diagonal effective interactions

V0,2
L ~@h#;K1 ,K2!522(

q
RL~q;K1 ,K2!h̄~q!1O~h2!,

V2,0
L ~@h#;K18 ,K28!522(

q
R̄L~q;K18 ,K28!h~q!1O~h2!

~39!

have linear~and higher-order! contributions. The spin struc
ture of the renormalized singlet pairing vertex is

RL~q;K1 ,K2!5s1ds1 ,2s2
Rs

L~q;k1 ,k2!. ~40!

Effective two- and many-body interactions can be expan
similarly. Inserting the expansions of the effective intera
tions Vmn

L into the flow equations and comparing the coe
cients of contributions with equal powers in the extern
field, one obtains flow equations for these coefficients, es
cially for xL andRL.

We will again truncate the infinite hierarchy of flow equ
tions at a one-loop level, and neglect~zero-field! self-energy
terms by settingV1

L(K8;K)50. To obtain the linear-
response susceptibility it is then sufficient to solve the t
flow equations for the susceptibilityxL and the renormalized
charge, spin, or pairing vertexRL represented diagrammat
cally in Fig. 3. If h couples to the charge or spin densit
these equations read

FIG. 3. Flow equations for~a! the susceptibilitiesxL and~b! the
response verticesRL in a one-loop approximation.
l

d
-

l
e-

o

]

]L
xL~q!5

1

bV (
K,K8

]L@DL~K !DL~K8!#

3RL~q;K8;K !RL~2q;K;K8! ~41!

and

]

]L
RL~q;K18 ;K1!52

1

bV (
K,K8

]L@DL~K !DL~K8!#

3RL~q;K8;K !GL~K18 ,K;K1 ,K8!,

~42!

with the initial conditionRL0(q;K8;K)5ds8sdk2k8,q for the
charge andRL0(q;K8;K)5sds8sdk2k8,q for the spin vertex
part. Note thatRL(q;K8;K)Þ0 only if k85k2q. If h
couples to pair creation and annihilation operators, the fl
equations become

]

]L
xL~q!52

2

bV (
K1 ,K2

]L@DL~K1!DL~K2!#

3RL~q;K1 ,K2!R̄L~q;K1 ,K2! ~43!

and

]

]L
RL~q;K1 ,K2!5

1

2bV (
K18 ,K28

]L@DL~K18!DL~K28!#

3RL~q;K18 ,K28!GL~K18 ,K28 ;K1 ,K2!

~44!

with the initial condition RL0(q;K1 ,K2)
5s1ds1 ,2s2

dk11k2 ,qd@(k12k2)/2#. Note that

RL(q;K1 ,K2)Þ0 only if k11k25q. The initial condition
for the susceptibility isxL0(q)50 in all cases.

The vertex functionGL is obtained by solving the flow
equations~17! in the absence of a perturbing field. One c
then solve the linear differential equation forRL, and finally
integrate the flow equation forxL. Note that for the specia
case of a flat fermi surface these one-loop equations have
same structure as the so-called fast parquet equations,17 but
here the flow variable is the cutoffL instead of an externa
energy or momentum variable.

III. APPLICATION TO THE 2D HUBBARD MODEL

We will now apply the general renormalization-grou
method derived in Sec. II to the two-dimensional Hubba
model, the main aim being an analysis of the leading ins
bilities of the system at weak coupling.

A. Hubbard model and Fermi surface

The Hubbard model2 is a lattice electron model with the
simple Hamiltonian

H5(
i,j

(
s

t ijcis
† cjs1U(

j
nj↑nj↓ , ~45!

where cis
† and cis are the usual creation and annihilatio

operators for fermions with spin projectionsP$↑,↓% on a
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lattice sitei. We consider the Hubbard model with a repu
sive interactionU.0 on a~two-dimensional! square lattice
with a hopping amplitude

t ij 5H 2t if i and j are nearest neighbors

2t8 if i and j are next-nearest neighbors

0 otherwise.
~46!

The corresponding dispersion relation of noninteracting p
ticles is

ek522t~coskx1cosky!24t8~coskx cosky!. ~47!

This dispersion relation has saddle points atk5(0,p) and
(p,0), which lead to logarithmic van Hove singularities
the non-interacting density of states at the energye5evH
54t8. In Fig. 4 we show the Fermi surfaces of the nonint
acting system for various electron densitiesn for the case
without next-nearest-neighbor hopping (t850) and a case
with t8,0.

For a chemical potentialm5evH the Fermi surface con
tains the van Hove vH points. In this case a perturbat
calculation of the two-particle vertex function leads to se
eral infrared divergencies already at second order inU, i.e. at
a one-loop level~see the Feynman diagrams in Fig. 2!.8–10 In
particular, the particle-particle channel diverges as log2 for
vanishing total momentumk11k2, and logarithmically for
k11k25(p,p). The particle-hole channel diverges logarit
mically for vanishing momentum transfer; for momentu
transfer (p,p) it diverges logarithmically ift8Þ0 and as

FIG. 4. The Fermi surfaces of the noninteracting 2D Hubb
model witht850 ~a! andt8520.16t ~b! for various choices of the
chemical potentialm.
r-

-

e
-

log2 in the special caset850. Note thatm50 for t850
corresponds to half-filling (n51). For t850 there are also
logarithmic divergences for all momentum transfers para
to (p,p) or (p,2p) due to the strong nesting of the squa
shaped Fermi surface. FormÞevH only the usual logarithmic
Cooper singularity at zero total momentum in the partic
particle channel remains. However, the additional singul
ties atm5evH lead clearly to largely enhanced contributio
for small m2evH , especially ift8 is also small.

Hence, for smallm2evH one has to deal with competin
divergencies in different channels. This problem can
treated systematically by the RG method described in Sec

B. Parametrization of the vertex function

We now prepare for a computation of the one-loop flo
of the vertex function and susceptibilities. The flow equ
tions derived in Sec. II cannot be solved analytically. Eve
numerical solution is not possible with the full energy a
momentum dependence of the vertex function, which m
therefore be suitably simplified.

The dependence of the vertex function on energy v
ables can be neglected completely without much dama
because it is absent in the bare interaction, and irrelevan~in
the sense of power counting! in the low-energy limit~see, for
example, Ref. 26!. We therefore approximate

Ga
L~k18 ,k28 ;k1 ,k2!'Ga

L~k18 ,k28 ;k1 ,k2!. ~48!

The Matsubara sums on the right-hand side of the flow eq
tions can then be performed analytically. One thus obtain

]LGa
L~k18 ,k28 ;k1 ,k2!5 (

i 5s,t
(

j 5s,t
@Ca i j

BCSb i j
BCS~k18 ,k28 ;k1 ,k2!

1Ca i j
ZS b i j

ZS~k18 ,k28 ;k1 ,k2!

1Ca i j
ZS8b i j

ZS8~k18 ,k28 ;k1 ,k2!# ~49!

for a5s,t, where theb functions are now frequency inde
pendent and read

b i j
BCS~k18 ,k28 ;k1 ,k2!5

1

2V (
k,k8

]L@Q,
L ~k!Q,

L ~k8!#

3
f ~2jk!2 f ~jk8!

jk1jk8

G i
L~k18 ,k28 ;k,k8!

3G j
L~k,k8;k1 ,k2!,

b i j
ZS~k18 ,k28 ;k1 ,k2!52

1

V (
k,k8

]L@Q,
L ~k!Q,

L ~k8!#

3
f ~jk!2 f ~jk8!

jk2jk8

G i
L~k18 ,k;k1 ,k8!

3G j
L~k8,k28 ;k,k2!, ~50!

b i j
ZS8~k18 ,k28 ;k1 ,k2!52b i j

ZS~k28 ,k18 ;k1 ,k2!,

with the Fermi functionf (j)5@ebj11#21. Note that mo-
mentum conservation implies thatk and k8 are related by

d
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k1k85k11k2 in the Cooper channel, and byk1k185k8
1k1 in the zero sound channel, such that only one indep
dent momentum variable has to be summed.

For a step cutoff functionQ,
L (k)5Q(L2ujku), one has

]L@Q,
L ~k!Q,

L ~k8!#5d~L2ujku!Q~L2ujk8u!1k↔k8,
~51!

such that thek sum can be reduced to a one-dimensio
integral in the thermodynamic limit. To this end we subs
tute kx and ky by the new variablesj5jk and the anglef
betweenk and thex axis in k space, and use

1

V (
k

•••→E dkx

2p

dky

2p
•••

5
1

~2p!2E djE
0

2p

dfJ~j,f!•••, ~52!

whereJ(j,f) is the Jacobian associated with the transf
mation of variables. Since the integrand contains a fac
d(L2uju), thej integration can be performed by hand, lea
ing only the angular integral overf to be done numerically

The flow equation can be solved only if also the mome
tum dependence of the vertex function is simplified. At le
for weak coupling~in practice also for moderate ones!, the
vertex function acquires strong momentum dependen
only for momenta close to the Fermi surface. Note that
the Hubbard model the bare vertex functionGL0 does not
depend on momentum at all. Instabilities are signalled
divergencies of the vertex functionGL for momenta close to
the Fermi surface and smallL. Hence we will focus on the
flow of the vertex function with momenta close to the Fer
surface.

The intermediate momentak andk8 are constrained to a
momentum shell around the Fermi surface, sinceujku,ujk8u
<L @see Eq.~51!#. Hence the values of the vertex functio
at momenta within thatL shell govern their own flow.

For fixed finiteL, the dependence ofGa
L(k18 ,k28 ;k1 ,k2)

on jk1
etc., is regularized by the cutoff forujk1

u, . . . ,L.

For momenta within theL shell one may therefore approx
mate the vertex function by

Ga
L~k18 ,k28 ;k1 ,k2!'Ga

L~kF18 ,kF11kF22kF18 ;kF1 ,kF2!,
~53!

wherekF1, etc. are projections ofk1, etc. on the Fermi sur
face ~see Fig. 5!. Note that strong momentum dependenc
of the effective vertex are built up only by contributions wi
intermediate momentak andk8 ~on the right-hand side of the
flow equations! which are close to the Fermi surface, becau
for such momenta the fractions@ f (7jk)2 f (jk8)#/
(jk6jk8 ) can be large. Hence, for the most important m
menta, the error made by the projection is relatively sm
~even ifL is not small!, because these momenta are close
their projected counterparts. The projected vertex funct
can be parameterized by three anglesf1 , f2, andf3 asso-
ciated withkF1 , kF2, andkF18 , respectively, i.e.,

Ga
L~kF18 ,kF11kF22kF18 ;kF1 ,kF2!5Ga

L~f1 ,f2 ,f3!.
~54!
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The angular dependence turns out to be strong for smaL
and cannot be neglected.

With the above projection procedure only functional d
pendences which are irrelevant in the low-energy limit ha
been neglected~see, for example, Ref. 26!. Approximation
~53! is asymptotically exact forL→0 ~for momenta within
theL shell! and, for the Hubbard model, also forL5L0. At
intermediate stages of the flow there are of course cor
tions. To assess their importance, we have refined the pa
etrization of the vertex function in some test runs by usin
second surface of constant energy in momentum space
target for momentum projections. In addition to the Fer
surface a canonical choice is thevan Hove surfacedefined by
ek5evH , whereevH is the energy at which the density o
states has a van Hove singularity due to saddle points ofek .
Momenta are then projected on that surface~Fermi or van
Hove! which is energetically closer. In this way scatterin
processes between van Hove points, which are particul
important at scalesL5uevH2mu, are treated more accu
rately. In addition to the three anglesf1 ,f2 ,f3 one needs
three binary variablesn1 ,n2, andn3 to label the closest pro
jection surface fork1 , k2, and andk18 .

The parametrization of the vertex partsRL required for
the computation of susceptibilities is done in a similar fas
ion. We concentrate onstatic susceptibilities (q050) and
neglect the~irrelevant! energy dependence ofRL. For the
charge and spin density vertex we approximate

RC,S
L ~q;k8;k!'RC,S

L ~q;kF2q;kF!, ~55!

wherekF is the projection ofk on the Fermi surface. The
pairing susceptibility is computed only for the most intere
ing case of vanishing total momentumq50. The correspond-
ing vertex part is approximated by

Rs
L~0;k,2k!'Rs

L~0;kF ,2kF!. ~56!

The projection approximation for the vertex parts is ag
exact forL5L0, and asymptotically exact forL→0. It can
also be improved for intermediateL by projecting momenta
either on the Fermi surface or on the van Hove surfa
whichever is closer.

The behavior of thecompressibilityxC5]n/]m5xC(0)
and thehomogeneous spin susceptibilityxS5xS(0) cannot
be obtained directly from the flow equations forxC,S

L (q).
The problem is thatxC,S

L (0) vanishes for allL.0 ~at zero
temperature!, since the infrared cutoff blocks particle-ho

FIG. 5. Projection of momenta on the Fermi surface; discreti
tion and labelling of angle variables.
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excitations with an infinitesimal momentum transfer. W
will therefore computexC andxS from the effective quasi-
particle interaction

f kFk
F8

ss8L
5ZkF

L Zk
F8

L
GL~kFs,kF8s8;kFs,kF8s8!. ~57!

Note that the forward scattering limit~zero momentum and
energy transfer! of the two-particle vertex is unique forL
.0, and converges to the quasi-particle interaction forL
→0 andkFÞkF8 .27 The wave-function renormalization fac
tor ZkF

L is 1 in our calculation because we have neglec

self-energy contributions. Following the usual Fermi-liqu
arguments,28 one obtains the compressibility and the hom
geneous spin susceptibility as

xC,S52E d2k

~2p!2
XkF

C,Sd~ek2m!, ~58!

whereXkF

C,S is the solution of the inhomogeneous linear in

gral equation

XkF

C,S12E d2k8

~2p!2
f kFk

F8
C,S

Xk
F8

C,Sd~ek82m!51, ~59!

with f kFk
F8

C,S
5 1

2 ( f kFk
F8

ss
6 f kFk

F8
s,2s

). In a noninteracting system on

would obtainXkF

C,S51. The quantity

]skF

]m
5

1

uvkF
u
XkF

C , ~60!

with the velocityvk5¹kek , describes the linear response
the Fermi surface inkF ~a shift along the normal vector! for
a small shift of the chemical potential.

For a concrete numerical solution of the flow equatio
the angular dependence of the vertex function is discretiz
with a finer mesh in the vicinity of the saddle points ofek , at
(p,0) and (0,p), as shown in Fig. 5. One is thus left with
finite ~though very large! number of flowing coupling con-
stants. If not stated otherwise, we have used 16 points on
Fermi surface to discretize the vertex function, correspo
ing to 672 independent~i.e., not symmetry-related! coupling
constants, if the Fermi level lies at the van Hove ene
evHS, and 846 couplings otherwise. With the addition of
points on the van Hove surface one has to deal with 4
flowing couplings.

C. Results

We have computed the flow of the vertex function and
susceptibilities for several choices of the bare interactionU
.0, the next-nearest-neighbor hopping amplitudet8<0, and
the chemical potentialm, wheret8 andm have been chose
such that the Fermi surface is on or close to the van H
points ofek , and the particle density is close to half-filling

In all cases the vertex function develops a strong mom
tum dependence for smallL with divergencies for severa
momenta at some critical scaleLc.0, which vanishes expo
nentially U→0. To see which physical instability is assoc
ated with the diverging vertex function we have compu
the following susceptibilities:~i! commensurate antiferro
d

-

-

s
d,

he
-

y

8

e

e

n-

d

magnetic spin susceptibilityxS(p,p); ~ii ! incommensurate
spin susceptibilityxS(q), with q5(p2d,p) and q5(1
2d)(p,p);29 ~iii ! commensurate charge susceptibili
xC(p,p); and ~iv! singlet pair susceptibilities with form
factors3

d~k!55
1 ~s wave!

1

A2
~coskx1cosky! ~extendeds wave!

1

A2
~coskx2cosky! ~d wavedx22y2!

sinkx sinky ~d wavedxy!.
~61!

Some of these susceptibilities diverge together with the v
tex function at scaleLc . Depending on the choice ofU, t8,
andm, the strongest divergence is found for the commen
rate or incommensurate spin susceptibility or for the p
susceptibility withdx2-y2 symmetry.

We will now present explicit results for the flow of th
two-particle vertex and susceptibilities for a couplin
strengthU5t, which is much smaller than the bandwid
W58t and therefore safely in the weak-coupling regime. A
energy scales will be plotted in units oft. To exhibit the
interaction-induced renormalizations of the susceptibiliti
we plot the flow of the ratioxL/x0

L , wherex0
L is the sus-

ceptibility of the noninteracting system at scaleL, as ob-
tained from the flow equations forU50. We show examples
for the flow of x0

L in the Appendix. Note that the non
interacting susceptibilitiesx0

L are all finite forL.0, such
that a divergence ofxL at a finite scaleLc implies a diverg-
ing ratio xL/x0

L , and vice versa.
In Fig. 6 we show the flow fort850 and m520.005,

corresponding to a densityn50.995, i.e., almost at half-
filling. Here and in the following we plot the singlet part o
the vertex function for a selected choice of momenta on
Fermi surface, including those momenta for which the ver
function renormalizes most strongly. The singlet vertex fun
tion has its largest values for umklapp scattering along
diagonal of the Brillouin zone, but also forward and Coop
scattering of particles on opposite sides of the almost squ
Fermi surface are strongly enhanced. Scattering amplitu
for momenta near the van Hove points diverge a bit m
slowly. The triplet part of the vertex function is renormalize
mostly for forward and Cooper scattering, but genera
more weakly than the singlet part. The spin susceptibi
with an antiferromagnetic wave vector clearly domina
over pairing susceptibilities in this case. The incommen
rate spin susceptibilities are indistinguishable from the co
mensurate one for the parameters chosen in Fig. 6 bec
the incommensurability parameterd is almost zero so close
to half-filling ~see Ref. 29!. Note also that the susceptibilit
ratios for isotropic and extendeds-wave pairing are equa
here, and almost coincide with the charge-density susce
bility ratio. The non-interacting susceptibility for extende
s-wave pairing~and thusx) is however much smaller tha
the other two~see the Appendix!.

Decreasing the density~away from half-filling! one enters
a regime where pairing correlations withdx2-y2 symmetry
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dominate at sufficiently low-energy scales. This is seen
Fig. 7, where we show the flow fort850 andm520.02,
corresponding ton50.984. Note that for smallU the transi-
tion from antiferromagnetism to superconductivity occurs
ready at a critical densitync quite close to half-filling. For
increasingU the deviation ofnc from half-filling increases.
The flow in Fig. 7 exhibits a threshold atL52umu below
which the amplitudes for various scattering processes, e
cially umklapp scattering, renormalize only very slowly. T
flow of the antiferromagnetic spin susceptibility is cut off
the same scale. The infinite slope singularity in some of
flow curves at scaleL5umu is due to the van Hove singular
ity being crossed at that scale. The pairing susceptibility w
dx2-y2 symmetry is obviously dominant here~note the loga-
rithmic scale!. Following the flow of the vertex function an
susceptibilities, one can see that thedx2-y2 pairing correla-
tions develop in the presence of pronounced butshort-range
antiferromagnetic spin correlations, in agreement with ear
lier ideas ond-wave superconductivity.3

In Fig. 8 we show the (m,U) phase diagram fort850
obtained by identifying the dominant instability from th
flow for many different values ofm andU. Note thatm50
corresponds to half-filling. The regime with a leading co
mensurate antiferromagnetic spin density instability is se
rated from thed-wave pairing regime by a thin region whe

FIG. 6. ~a! The flow of the singlet vertex functionGs
L as a

function of L for several choices of the momentakF1 , kF2, and
kF18 , which are labeled according to the numbers in Fig. 5. T
model parameters areU5t and t850, and the chemical potentia
m520.005.~b! The flow of the ratio of interacting and noninte
acting susceptibilitiesxL/x0

L for the same system.
n

-

e-

e

h

-
a-

incommensurate spin-density fluctuations withq5(p,p
2d) dominate. Other incommensurate structures may
more favorable than the ones considered here. ForU→0 at
fixed densityn,1, the superconducting instability alway
dominates, because the bare particle-hole bubbles are fi
away from half-filling, while the Cooper channel always d
verges at least logarithmically. For smallU the region
around half-filling in which spin-density instabilities dom
nate is exponentially small.

The way the critical energy scaleLc varies as the system
is doped away from half-filling can be seen in Fig. 9 for

e

FIG. 7. Same as Fig. 6 forU5t, t850, andm520.02.

FIG. 8. The (m,U) phase diagram fort850 near half-filling; the
symbols represent the parameters for which the flow has been c
puted; the solid line separates the spin-density-wave regime f
the superconducting regime, and the dotted line separates the
mensurate and incommensurate spin-density regions.
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interaction strengthU5t. The different symbols show which
instability is leading atLc . The two straight lines represen
the linear functionsLc5umu andLc52umu, respectively. As
already observed by Zanchi and Schulz,18 the superconduct
ing instability is leading ifLc,umu. This may be related to
the fact that only pair fluctuations receive a singular e
hancement atL5umu ~see Fig. 7!, while spin fluctuations do
not. A commensurate spin-density-wave instability canno
favorable for Lc,2umu, since their flow is cut off atL
52umu ~see Fig. 7 once again!. Hence the incommensurat
spin-density wave is the leading instability forumu,Lc
,2umu. The sharp peak inLc at m50 ~half-filling! is due to
the van Hove singularity. For larger deviations from ha
filling, the critical energy scaleLc vanishes rapidly. Note
however, that for larger values ofU the regime with a sizable
scaleLc extends to larger values ofm, i.e., to larger doping.

In Figs. 10~a! and 10~b!, we show results for the com
pressibility and the homogeneous spin susceptibility, resp
tively, for two choices of the chemical potential, atU5t and
t850. We recall that these quantities have been obtai
from the forward-scattering vertex by using Fermi-liquid r
lations, as discussed above. The noninteracting compres
ity k0 and spin susceptibilityxs,0 in the plotted ratios are
defined without infrared cutoff. Hence the flow in Fig. 10
entirely due to the flow of the Landau function, starting
the simple random-phase-approximation result for the H
bard model atL5L0. Close to half-filling, where a spin
density-wave instability is leading, the compressibility
suppressed at low-energy scales, as expected for a sy
with a charge gap at or near the chemical potential. T
homogeneous spin susceptibility remains finite near the s
density-wave instability. By contrast, further away from ha
filling in the regime where thed-wave pairing instability is
leading, the compressibility diverges while the homogene
spin susceptibility is suppressed. A suppressed spin sus
tibility is expected as a precursor of the spin gap opening
any spin-singlet superconductor. Very close to the instab
the spin susceptibility flows through zero to negative valu
which implies that our one-loop calculation breaks down
this strong-coupling regime. A diverging compressibili
would indicate a tendency toward phase separation, but
increase ofk sets in quite abruptly only very close to th
instability, where the renormalized couplings are already

FIG. 9. The critical energy scaleLc as a function of the chemi
cal potentialm for U5t and t850. The different symbols indicate
whether the leading instability is a commensurate or incommen
rate spin-density wave ord-wave pairing instability; the straigh
lines represent the functionsLc5umu andLc52umu, respectively.
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large that the one-loop results are not reliable any more
any case the large charge fluctuations indicated byk→`
would only be a consequence of the pairing instability of t
Hubbard model, not a driving mechanism, since the pair
correlations appear already at a higher energy scale.

Results for the flow of the vertex function and suscep
bilities for t8,0 andm5evH54t8 are shown in Figs. 11 and
12, with t8520.01 and20.05, respectively. The corre
sponding Fermi surfaces touch the saddle points at (p,0) and
(0,p) In the first case the density isn50.992, and in the
second onen50.959. For the bare interaction we have ch
senU5t as before. The major difference with respect to t
perfect nesting caset850 is that now the umklapp processe
near the diagonal of the Brillouin zone are much less
hanced at low-energy scales, such that scattering proce
with momenta near the van Hove points (p,0) and (0,p)
become most prominent. In this situation the simple scal
approaches which concentrated exclusively on the van H
points10,13 already provide a useful qualitative picture of th
important effective interactions and their renormalizatio
Antiferromagnetic correlations are now mostly driven
umklapp processes from (p,0) to (0,p), and vice versa
which, due to the equivalence of the points (p,0)5(2p,0)
and (0,p)5(0,2p) in the Brillouin zone, can also be
viewed as Cooper processes. Indeed, these processes ar
responsible ford-wave pairing correlations.

For the parameters chosen in Fig. 11, antiferromagn
correlations dominate over pairing. The incommensurate s
ceptibility with q5(p,p2d) is a bit larger than the othe
incommensurate candidate and the commensurate antif
magnetic susceptibility. Note that there may be other s
larger incommensurate susceptibilities among those not c
puted here. We have merely investigated two~frequently dis-

u-

FIG. 10. The flow of~a! the compressibility and~b! the homo-
geneous spin susceptibility as a function ofL for various choices of
m at U51 andt850; k0 andxs,0 are the corresponding noninte
acting quantities.
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cussed! incommensurate spin susceptibilities out of a vari
of infinitely many candidates. Moving further away fro
half-filling, as in Fig. 12, one finds again dominant pairin
susceptibilities, withdx2-y2 symmetry in each case.

The phase diagram in the (t8,U) plane withm54t8<0 is
shown in Fig. 13. Note that the chemical potential is alwa
situated at the van Hove singularity here and the den
decreases away from half-filling with increasingut8u. Since
we have no good guess for the optimal density depende
of the incommensurability vector fort8Þ0, we have not dis-
tinguished different spin density waves in Fig. 13. The b
havior ofLc as a function oft8,0 with m54t8 andU5t is
shown in Fig. 14. The decrease ofLc with increasingumu
~and thus increasing doping! is slower here than in Fig. 9
since the Fermi level remains on the van Hove singula
such that only the importance of nesting is weakened un
doping.

All the numerical results discussed above have been
tained by projecting momentum variables of the vertex fu
tion on 16 points on the Fermi surface, as shown in Fig
To see how much these results may be modified in a m
refined projection scheme, we have computed the flow
some typical model parameters with a projection on
points on the Fermi surface, and also with a projection on
Fermi surface points and 16 additional points on the v
Hove surface. It turned out that these refinements, wh
increase the computational effort considerablely, lead onl
a moderate reduction of the critical energy scale, with
changing the qualitative behavior of the vertex function a
susceptibilities. In Fig. 15 we show the dependence of

FIG. 11. Same as Fig. 6 forU5t, t8520.01, andm54t8.
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critical scaleLc as a function of the inverse number of di
cretization pointsN0 on the Fermi surface forN054, 8, 16,
and 32, and a fixed choice of model parameters. We see
the critical energy scale obtained from a discretization w
16 points has already the right order of magnitude.

IV. CONCLUSION

In summary, we have shown that the renormalizat
group method developed by Salmhofer20 with our extension
for the computation of susceptibilities can be used as a
tematic tool for detecting instabilities in a weakly interactin
Fermi system with several coupled infrared singulariti
Such a RG analysis is completely unbiased. The selectio
retained Feynman diagrams is dictated by the weak-coup

FIG. 12. Same as Fig. 6 forU5t, t8520.05, andm54t8.

FIG. 13. The (t8,U) phase diagram form54t8<0.
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expansion, and can be systematically improved by includ
higher orders in a loop expansion.

Evaluating the flow equations on a one-loop level for t
2D Hubbard model, we have found antiferromagnetic ins
bilities close to half-filling and dominant superconducti
instabilities with dx2-y2 symmetry at smaller densities~still
near half-filling!. Incommensurate spin structures can be
vorable in the antiferromagnetic regime near half-filling.

The critical energy scaleLc where vertex functions and
susceptibilities diverge, vanishes exponentially asU→0, but
becomes sizable for relatively weak coupling strengths~com-
pared to the bandwidth!, even in the superconducting regim
The appearance of strong pairing correlations withdx2-y2

symmetry in the 2D Hubbard model at physically interest
energy scales is thus well established at weak coupling.
flow of the vertex function and susceptibilities clearly sho
that the pairing instability is driven by short-range antiferr
magnetic correlations in the system. This supports ea
ideas and numerical results~for finite systems! suggesting
d-wave superconductivity driven by antiferromagnetic cor
lations in the Hubbard model.3 Note thatLc must not be
interpreted as a transition temperature for antiferrom
netism or superconductivity, but rather as an energy s
where bound particle-particle or particle-hole pairs a
formed. A Kosterlitz-Thouless transition to a supercondu
ing state may occur at a lower-energy scale, while antife
magnetic order is of course possible only in the ground s
of a two-dimensional system with spin-rotation invarianc
We finally outline some interesting extensions of the pres
work for the future.

FIG. 14. The critical energy scaleLc as a function oft8 for m
54t8,0 andU5t; the short dotted line separates the spin-den
regime from thed-wave pairing regime.

FIG. 15. The critical energy scaleLc as a function of the num-
ber of discretization pointsN0 on the Fermi surface, forU5t, t8
520.01t, andm54t8.
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~i! Nonlocal interactions:Nonlocal interactions may play
an important role even though they are usually much sma
than the local~Hubbard! interaction. They affect the RG flow
via a different initial condition for the vertex function, an
can thus be taken into account very easily.

y

FIG. 16. Free susceptibilities for~a! t850 andm520.005t, ~b!
t850 and m520.02t, ~c! t8520.01t and m54t8, and ~d! t85
20.05t and m54t8, corresponding to the examples in Figs. 6,
11, and 12, respectively.
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~ii ! Fermi-surface instabilities:The Fermi surface is gen
erally deformed by interactions. Computing a susceptibi
for Fermi surface deformations from the RG flow, one fin
that deformations breaking the discrete square lattice s
metry may occur.30

~iii ! Self-energy effects:It will be interesting to compute
self-energy contributions and see how they affect the in
bilities. The numerical effort for this is small on a one-loo
level, but a two-loop calculation also seems feasible. Kish
and Yonemitsu31 recently computed the renormalization
the quasi-particle weight on a two-loop level for two fl
Fermi-surface pieces, but the feedback of self-energy eff
on instabilities has not yet been treated.
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APPENDIX: NONINTERACTING SUSCEPTIBILITIES

Here ~see Fig. 16! we show results for the flow of the
noninteracting susceptibilitiesx0

L for the choices oft8 andm
corresponding to those in Figs. 6, 7, 11, and 12. The rea
may thus estimate the absolute scale ofxL by multiplying
x0

L with the results for the ratiosxL/x0
L in Sec. III.

The various spin-density susceptibilities and the char
density susceptibility lie too close together to be always
dividually seen. The extendeds-wave pairing susceptibility
is of the order of 1024, and therefore out of scale.
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