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Salmhofer[Commun. Math. Phys194, 249 (1998] recently developed a new renormalization-group
method for interacting Fermi systems, where the complete flow from the bare action of a microscopic model to
the effective low-energy action, as a function of a continuously decreasing infrared cutoff, is given by a
differential flow equation which is local in the flow parameter. We apply this approach to the repulsive
two-dimensional Hubbard model with nearest- and next-nearest-neighbor hopping amplitudes. The flow equa-
tion for the effective interaction is evaluated numerically on a one-loop level. The effective interactions diverge
at a finite-energy scale which is exponentially small for small bare interactions. To analyze the nature of the
instabilities signaled by the diverging interactions we extend Salmhofer’'s renormalization group for the cal-
culation of susceptibilities. We compute the singlet superconducting susceptibilities for various pairing sym-
metries, and also charge- and spin-density susceptibilities. Depending on the choice of the model parameters
(hopping amplitudes, interaction strength, and band filliwg find commensurate and incommensurate anti-
ferromagnetic instabilities od-wave superconductivity as leading instability. We present the resulting phase
diagram in the vicinity of half-filling, and also results for the density dependence of the critical energy scale.

[. INTRODUCTION completely unbiased selection of Feynman diagrams that
takes into account all possible particle-particle and particle-
One of the striking aspects of high-temperature supercomiole channels on equal footing would require at least the
ducting cuprates is the sensitive dependence of their physicaklf-consistent summation of all parquet diagramich is
properties on the charge-carrier concentration in the coppestill beyond present numerical possibilities for sufficiently
oxide planes, which can be continuously varied by dopindarge systems and low temperatures.
the interplane region. In the doping—temperature phase dia- Renormalization-grougRG) methods are presently the
gram one generically finds an antiferromagnetic insulatomost promising and best controlled approach to low-
and a superconducting phase withwave symmetry, with a dimensional Fermi systems with competing singularities at
strongly doping-dependent transition temperature in eacleak coupling. Such methods were developed long ago for
caset one-dimensional systems where, combined with exact solu-
The two-dimensional Hubbard modés a promising pro- tions of fixed-point models, they have been a major source of
totype model for the electronic degrees of freedom in thephysical insighf’ Early RG studies of two-dimensional sys-
copper-oxide planes. It has an antiferromagnetically orderetems started with simple but ingenious scaling approaches to
ground state at half-filling, and is expected to become dhe 2D Hubbard model, very shortly after the discovery of
d-wave superconductor at moderate doping away fromhigh-T, superconductivitf'° These studies focused on
half-filling.> dominant scattering processes between van Hove poilds in
Although the Coulomb interaction in the cuprates is cer-space, for which a small number of running couplings could
tainly rather strong, there has been considerable recent intelbe defined and computed on a one-loop level. Spin-density
est in theweakcoupling sector of the two-dimension@D) and superconducting instabilities were identified from diver-
Hubbard model. Besides the applicability(semjanalytical ~ gencies of the corresponding correlation functions. Recently,
methods at weak coupling and the general experience th#éte early scaling approaches were revisited by various au-
many strongly interacting systems are more or less continuthors to extract further physical properties, such as a possible
ously connected to corresponding weak-coupling systems, pinning of the Fermi level at the van Hove singularity,
major reason for this interest is that even the weakly interextended saddle points!?and a possible gap formation on
acting 2D Hubbard model exhibits an extraordinarily rich parts of the Fermi surface near the van Hove pdinScal-
behavior as a function of the carrier density and other modeihg theories with few running couplings have also been used
parameters. Conventional perturbation theory breaks dowto analyze instabilities associated with flat Fermi-surface
for densities close to half-filling, where numerous competingpieces*®and inflection points on the Fermi surfale.
infrared divergences appear as a consequence of Fermi- A major complication in two-dimensional systems com-
surface nesting and van Hove singularities. These divergempared to 1D systems is that the effective interactions cannot
cies can in principle be treated by suitable self-consistenbe parametrized accurately by a small number of running
resummations of perturbative contributions to all orders incouplings, even if irrelevant momentum and energy depen-
the coupling constant. Most notably the so-calleddences are neglected, since the tangential momentum depen-
fluctuation-exchange approximatibiurned out to be able to dence of effective interactions along the Fermi “surfada”
describe various expected physical properties. However, Ene in two-dimensionsis strong and important in the low-
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energy limit. This has been demonstrated in particular in dems, present the explicit flow equations for effective two-
one-loop RG study for a model system with two parallel flatparticle interactions on a one-loop level, and also derive the
Fermi-surface piece<.In an impressive series of recent pa- flow equations for susceptibilities. In Sec. Il we first discuss
pers Zanchi and Schdfzdeveloped a new renormalization- how the one-loop flow equations are solved, and then present
group approach for interacting Fermi systems, which isnumerical results for the Hubbard model with a discussion of
based on a ﬂOW equation derived by Poichiﬁ%iﬂ the con- their phySical content. Section IV closes the presentation
text of local quantum field theory. In this RG version the With @ short summary of major results and some ideas for
complete flow from the bare action of an arbitrary micro- further developments.

scopic model to the effective low-energy action, as a func-

tion of a continuously decreasing infrared energy cutoff, is Il. RENORMALIZATION-GROUP EQUATIONS

given by an exact differential flow equation. Zanchi and

In this section we review Salmhofer’s renormalization-
Schulz applied this approach to the 2D Hubbard maéaéh

3 o e group approach for general interacting Fermi systems,
nearest-neighbor hoppinin a one-loop approximation, with  5resent the explicit flow equations for effective two-particle
a discretized tangential momentum dependence of the effegsiaractions on a one-loop level, and finally derive one-loop
tive two-particle interaction. The presence of antiferromagy,, equations for several susceptibilities, which will later be

netism andi-wave superconductivity as major instabilities of |,co 4 for our stability analysis of the 2D Hubbard model.
the model close to half-filling was thereby confirmed.

The development of continuous renormalization-group
methods for interacting Fermi systems has made further
progress with a recent work by Salmhof8By expanding We consider a system of interacting sgirfermions with
the effective action in Wick-ordered monomials instead ofa single-particle basis given by states withcaysta) mo-
bare monomials, he obtained an exact flow equation for thenentumk, a spin projectionre{7,|}, and a kinetic energy
effective interactions with a particularly convenient struc- €. The properties of the system are determined by an action
ture: Thepg function is bilinear in the effective interactions
andlocal in the flow parameter, i.e. it does not depend on —_ S eNT g -
effective interactions at higher-energy scales. St w]_; (tko™ &) = VLW ¥, @

In this work we apply Salmhofer's RG version to the ) . "
two-dimensional Hubbard model with nearest- and also nextWnereK = (ko ko) is a multi-index containing the Matsub-
nearest-neighbor hopping amplitudes, concentrating on thg'@ freque_nC)kO in addition to the single-particle quantum
most interesting electron-density regime near half-filling. Wenumbers;#x and ¢y are Grassmann variables associated
evaluate the flow of effectivewo-particl® interactions on a With creation and annihilation operatorg,=e,—u is the
one-loop level, neglecting the irrelevant energy dependenceingle-particle energy relative to the chemical potential, and
and also the irrelevant normal momentum dependence, bMt[ , ] is an arbitrary many-body interaction. The noninter-
keeping the important tangential momentum dependence. Agcting single-particle propagator of the system is given by
in previous RG calculations, the effective interactions di-
verge at a finite-energy scale, which is exponentially small
for a small bare interaction. To analyze the physical nature of iko— &’
the instabilities signaled by the diverging interactions, we i )
extend Salmhofer's RG version for a calculation of the susAll connected Green functions can be obtained from the gen-
ceptibilities. We compute charge and spin susceptibilitie€rating functiona’
and singlet superconducting susceptibilities for various pair- L
ing symmetries.. Depen(_:iing on_the chpice of the model pa- g[,?,;]:bgi i ducl w,@e—vw,w]e(w,nﬂ(n,w . (3
rameters, hopping amplitudes, interaction strength, and band
filling, we find commensurate or incommensurate antiferroith the normalized Gaussian measure
magnetic instabilities omd-wave superconductivity as the
leading instabilities, in qualitative agreement with previousdluc[,p,@
calculations with other RG versions. We present the resulting
phase diagram of the two-dimensional Hubbard model near — = =
half-filling, and results showing how the critical energy scale =11 diidyye®© ‘[’)/ i IT dydysec ™.
decreases away from the half-filled perfect nesting case. K « 4)

We finally note that powerful renormalization-group tech-
niques with a discrete successive reduction of the infraretHere we have introduced the shorthand notation
cutoff have recently opened the way toward a rigorous non= 3, xx ¥« and (€ 1¢)c=C 1(K)yy for arbitrary Grass-
perturbative control of interacting Fermi systems for a suffi-mann variablegx and ¢ . Note the identity
ciently small yet finite coupling streng® Significant rigor-
ous results have already been derived for 2D systéms.
These mathematical works show in particular that all weak-
coupling instabilities in interacting Fermi systems can be ob- _ _
tained systematically from a renormalization-group analysiswhich implies tha(j[ », 7]= —(#,C ) in the noninteracting

This paper is organized as follows. In Sec. Il we briefly caseV[ «,]=0. The connectedtparticle Green functions
review Salmhofer's RG for general interacting Fermi sys-are given by

A. Functional integral representation

C(K)=

@

i duc o, glet M+ (i) = g=(nCn), (5)
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Gm(Ky, .o KK, oK) A—0. It is not hard to show that the effective interaction
. . satisfies the following exactrenormalization group
=(= D)™ P, Pk e equatiorf®*®
" " —= P PV xx]
= — Gl n.7] , oy x=S ey e
&77Ki' : '(5’77Kr’n (97]Km. ’ '(977'(1 n=7=0 IA [X X] ; IXKIXK
where (- - -). is the connected average of the product of K IXK &;K '
Grassmann variables between the brackets.
The renormalization-group equations are most conve- (11
niently formulated for another generating functional, #fe )
fective interactiof? whereC*(K)=adC*(K)/dA. With the initial condition
V[X,;]=—|09U dMC[¢,E]e—V[¢+X@+;] . @ VAL, x1=VIx.xl, (12)

this equation determines the flow ' uniquely for all A
<Ay. The initial value Ag must be chosen such that

B — = — _ — ®ﬁ(k)=0 for allk and A > A. For the step-function cutoff
xox1=(n.Cn)+Glm ] where x=Ca, X_C?é) introduced above)  is the maximal value of&,].

o An expansion of the functionalV[y,x] in the
Hence functional derivatives of] x, x] generate connected renormalization-group equatidfil) in powers ofyx and yx
Green functions divided by C(K;)---C(K)C(K;)  would lead to Polchinski’s flow equations for amputated
---C(K},), i.e., (noninteractiny propagators are amputated connected Green functions, which have been applied to the
from external legs in the corresponding Feynman diagram2D Hubbard model by Zanchi and SchifzAlternatively,
The term (7,C7) cancels the noninteracting part@f»,»]  One can also expand with respectbck-orderedmonomi-
such thad] x,x]=0 for V[ ¢, ]=0. Hence the noninteract- als
ing propagator is subtracted from the one-particle Green

A simple substitution of variables yields the relation

o0

function generated by. — 1
? Y VAxxl= 2 5 >
m=0 (M)* Ky, Km ! k!
B. Wick-ordered continuous RG v
We now briefly review the derivation of a continuous XVQ(KL KKy, Kp)em et
renormalization-group equation for Wick-orderg¢dmpu- m
tated Green functions, as first derived in the context of in- I (13)
teracting Fermi systems by Salmhof@fThe original system j=1 7 iT T
is endowed with an infrared cutoff at an energy scale0
by replacing the bare propagatG(K) with The exponent in the Wick-ordering operator is the differen-
. tial operator
CMK)= .®>(k) . (9)
iko— &k 92

Apr=2, DMK)——, (14)
Here ®2(k) is a function that vanishes fd¢,|<A and K IXKIXK
tends to one fof&|> A. In this way the infrared singularity
of the propagator a,=0 and&,=0 (corresponding to the Wwith the propagator
non-interacting Fermi surface k space is cut off at scale
A. A simple choice fol®2 (k), which we will later adopt in ﬁ(k)
our numerical calculations, is DA(K)ZC(K)—CA(K)ZikO_gk, (15

A
k)= -A 1 . _
0= =0(&d=A), (10 where®2 (k)=1-02 (k). Note thatD* contributes in the
where® is the usual step function. With this choice single- infrared regime excluded ffOfﬁ?A.- The Wick-ordered mo-
particle states close to the Fermi surface are strictly exclude@iomials reduce to pure monomials in the |er\|'[—>0, since
from the theory. Alternatively, one may also use a smoottP*(K)— 0 in that limit. Hence the functiongp, tend to the
cutoff function. usual amputated connected Green functionsAfes 0.

The generating functional for connected Green functions |nserting expansior(13) for VA[X,;] on the left-hand
and the effective interaction constructed w@h (instead of  side of the RG equatiofll) yields two terms, with the\
C) will be denoted byG*[ 7, 7] andV*[x,x], respectively. derivation acting on the coefficienM% or on the Wick-
The original functionalgj andV are recovered in the limit ordered monomials, respectively. Since
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FIG. 1. Diagrammatic representation of the
flow equation for the Wick-ordered amputated
Green functionsV. The internal line with a
slash corresponds @*, and the others tB*; all
possible pairings leaving ingoing andm outgo-
ing external legs have to be summed.

J— . J 5 A ! !
—ApA , - _ A __ —T (K ,K ;K ,K)
B Jl:[l XK/ XK, ; D*(K) A 1,.K2:K1,K;

0 2 ® [DMNK)IDAK)]
xe o] wgw, 19 BV & A
1 A ’ ’ ’ A ’
. _ X EF (K1, Ko K KT (KK K, K)
andD”=—C*, the second term on the left-hand side can-

cels the first term on the right-hand side of Efl). Only the —TAK] KKy KNTAK! K53 K,K))
second term, quadratic ", remains. Expanding this term
with respect to Wick monomials and comparing coefficients, +TAKS KK KOTAK! KK Ky [, (17)

one can express the derivative ofV2 as abilinear form of

all the other functions\/ﬁ 20 A graphical representation of where B is the inverse temperature amis the volume of

these flow equations is shown in Fig. 1. The precise generahe system. The three terms on the right-hand side are the

equation forv) has rather complicated combinatorial factors contributions from the Coopéor BCS channel and the two

and will not be written here, since we will compute oy~ Zero-sound channel@S and ZSJ. Note that for translation

in a one-loop approximation. Note that one internal line ininvariant systems momentum conservation implies that
YK}, KKy ,Kp)#0 only if ky+k,=kj+kj, so that the

sum overk andk’ in Eq. (17) is reduced to a single energy-

momentum sum.

Fig. 1 corresponds t®”, and the others to thisw-energy
propagatoD”. Note also that the flow equations doeal in

A. For a spin-rotation invariant system tkpin structureof
the vertex function can be written as
C. One-loop equations TAKEK55K 1, K2) =T3(k1 K 1K1.K2) St 070,y o,
To detec_:t dqmllne}nt. |nsta.b|.l|t|es of the system in _the +FtA(k',ké;kl,kz)Ta',(r';gl,az,
weak-coupling limit, it is sufficient to truncate the infinite 12
hierarchy of flow equations described by Fig. 1 atre-loop (18

level, and neglect all components of the effective interactiothere
except the two-particle interactio\dg. Since self-energy

corrections are also neglectedz“ reduces to the one-particle 1

irreducible two-particlesertex functiopand will therefore be S”i"’é”’l"’ZZE( 001010050y~ 0100001
denoted byl™* from now on. Summing all possible pairings

of two vertices in a one-loop diagram as in Fig. 2, one ob-

tains theflow equation Tot opioy.0,=5 (001018000 F Oy 0y0ayor)  (19)

are the projection operators on singlet and triplet states in a
two-particle spin space, respectively. The antisymmetry of
I'* with respect toK K, or Kj—K) implies thatl“sA is

2 2 2 2
3 _ symmetric andl“tA antisymmetric under exchange of the
oA h + variablesk, andk, or kj andkj. Carrying out the spin sum
1 1 1 1

in the flow equation, one obtains
BCS

1’ 2 2 1
W: W AT D (kg Ky iky ko) = > > [CBESBECS(Kj k) Ky ko)
+ + i=st j=st
1 7 21 75 2 +C25 BEAKL K Ky ko)

aij
+CZY B (K| kyike k)] (20)
FIG. 2. Flow equation for the vertex functidi* in a one-loop aiy B 22
approximation with the particle-particle chann@CS) and two  for a=s,t, where the coefficient€ ,;; can be grouped in
particle-hole channel&ZS and ZS). matrices
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10 , 1/-13 — —
CSBCS=(O O)’ cZ=-c2 :Z( 3 3) SZ(Q):Ek [—q,1 k1~ kg, P, ] (29)
00 Co1/1 1 2Y) and also the response to pairing fields coupling tosihglet
CBes= 0 1), c=cH :Z(l 5) pair operator,
and the ‘B functions” are given by A(q):kz‘ ad(K) Y qot ko (29)
BCS/, ’ 1 A Ar ! : : : : i
] klakziklakz):m 2 IA[D*(K)D™*(K")] where d(k) is a function with even parity specifying the
kK’ orbital symmetry of the pairing operatos (vave, d wave,
XFiA(ki ,kg;k,k’)FjA(k,k’;kl,kz), etc). The linear response of the expectation value
1 1 1 dlog Z[ h]
ZS( ! ’. - A At m =V O =, 30
B K ke == g 3 aa[DMWDAK)] (@=VHO =y (30
><FiA(k’ ,k;kl,k’)FjA(k’,ké;k,kz) with the partition function
BT (ki Ky ika ko) == Bikg ki ka ko). (22) Z[h]= f ducl,gle VA=V (3

We finally list some useful relations for the vertex func- js given by the susceptibility
tion following from generalsymmetries Time-reversal in-
variance implies that am(q)

x(q)= h(q)

=V HO()O(q))|n=o- (32

I K] KK LK) h=0

=Uio'éa'la'zl"A(RKl,RKZ;RKi,RKé) (23) W_e consi'der. only systems which are trar)sIaFion invariant,
spin rotation invariant, and charge conserving in the absence
whereRK = (kq, —k,— o) for K=(kg,k,o), and the number of the external fielch. In the normal(not symmetry-broken
1(—1) is assigned to-=1(]) in the prefactor. Assuming in phase the expectation valué®(q)) then vanish forh(q)
addition spatial reflection invariance and spin rotation invari-—0, except for the expectation valdg(0)), which yields
ance, one obtains the average particle number of the system.
The renormalization-group equatidtl) is not affected
MKy, K5iKy,Ko) =T (Ky,K2;K1,K)). (24 by the presence of the additional tekt in the bare action,
since an arbitrary many-body interaction was allowed in any

From the behavior under complex conjugation case. Only the initial condition of the flow is modified to

A ’ . _1TANw w w! w! _ _ _
r (K11K21K11K2)_r (K11K21K11K2)1 (25) VAO[h;XaX]:V[X1X]+V/[h;X1X]a (33)

with _K:(Xko;k"f)y one can then deduce that the vertexyhich leads to an h-dependent effective interaction
gjbr;ggovnalr;is(hKl'KZ;Kl'KZ) is real, if all the energy vari- VATh:x,x]. When a pairing field is coupled to the system,
' the expansion o®’*[h;x,x] with respect to Wick-ordered
monomials will also contain monomials where the number of
creation and annihilation variables is not equal, and(E§).

To identify possible instabilities of the system we com-must be generalized to
pute various susceptibilities, i.e. the linear response of the

D. Susceptibilities

oo

system to small external fields. Application of an external N — 1
field h leads to an additional contribution to the action VAhixxl= 2 e > >
mn=0 MiNt = K Ki K
V'[h; g, 9] == 2 [h(@)O(q)+h(q)O(a)],  (26) X Vo [hiK1, oo KKy, o Ky)
q
—ApA,, . ._ ’ . e
whereO(q) is a bilinear form in the Grassmann variables, X€ TEIXKL XK XK XKy (34

6(q) is its Hermitian conjugate, anﬁ(q) is the complex
conjugate ofh(qg). We will compute the response to fields
coupling to thecharge density

To obtain thelinear response of the system, we expand
the effectivem-body interactionQ/Q1 (or its generalization
V2 ) in powers ofh. The effective zero-body interaction can
be expanded as

p<q>=k20 Y qotio (27)

Valh]=V5—V> x (@)h(q)h(q)+0(h%). (35
and thespin densityin the z direction, olh]=Vg 2q XA(@h(@h(@)+0hs. (39
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d 1
(@) % WP M@M &_AXA(q):B_VK,EKr IAIDM(K)DA(K)]

XRMoK KRN —q;KiK) (4D

(b) A and

J
A ! _ A A '
FIG. 3. Flow equations fofa) the susceptibilitieg® and(b) the A R (@K Ky == Bv 2, dA[DH(K)D(K')]
response verticeB* in a one-loop approximation. K.K

XRM ;K KT (K], K KK,
Note thatvg[h] converges to the grand-canonical potential
Q[h]=—log Z[h] for A—0, and x*(q) converges to the (42)
susceptibilityx(q). If h couples to the charge density, there with the initial conditionR*o(q;K’;K) = Oy ¢Ok—k' q for the
is also a linear contributior NA[h(0)+h(0)] in the expan- ~ charge an®R*o(q;K’;K)=08,,8-' q for the spin vertex
sion of VA[h], whereN* converges to the average particle Part. Note thatR"(q;K';K)#0 only if k'=k—gq. If h
number for A—0. For a field coupling to charge or spin COuples to pair creation and annihilation operators, the flow

density, the effective one-body interaction becomes equations become
d 2
T VA - A A
VE(REK' )= VI 1K) = 3 [RA@:K i K)(a) + Hee] A X (=" 5y 2 D (K)DA(Ky)]
+0(h?) (36) XRMq;K1,Ko)RM(@;K 1, Ky) (43)
The spin structure of the renormalized verRX is and
J 1
RMg:K';K) =8,/ ,R(a;K;K) 37 RMQiK Ky == > 9,[DMK)DMKY]
oy 26V &,
172

for the charge vertex, and
xRA(qaK:’LvKé)FA(K:’LIKéVKviZ)

RMq;K'K) =8,/ ,RS(q:K;K) (39) a4
for the spin vertex. For a pairing fielt/; has only quadratic  with the initial condition RM(q;K4,K5)
terms inh, but the off-diagonal effective interactions =010, —0. 0 +k. qdl(k1—k5)/2]. Note that

01,7 07K Ky G
RY(q;K;,K5) #0 only if k;+k,=q. The initial condition
. e . A _ .
VALK, Koy = =23 RAMq:K, . K, h(g)+O(h?), for the susceptibility isy*o(q)=0 in all cases.
0A[h]iK1.K2) zq: (4:K1.Kz)h(q) (") The vertex function[* is obtained by solving the flow

equationg(17) in the absence of a perturbing field. One can
N _ then solve the linear differential equation f&f, and finally
V3 4[h];K] Ky =—22 RMq;K{,Kj)h(g)+0O(h?) integrate the flow equation fog. Note that for the special
d (39) case of a flat fermi surface these one-loop equations have the
same structure as the so-called fast parquet equdtidns,
have linear(and higher-ord@rcontributions. The spin struc- here the flow variable is the cutoff instead of an external
ture of the renormalized singlet pairing vertex is energy or momentum variable.

RA(q;Kl:KZ):01501,702R£(q;k1,k2). (40) Ill. APPLICATION TO THE 2D HUBBARD MODEL

g We will now apply the general renormalization-group
method derived in Sec. Il to the two-dimensional Hubbard
model, the main aim being an analysis of the leading insta-
IbiIities of the system at weak coupling.

Effective two- and many-body interactions can be expande
similarly. Inserting the expansions of the effective interac-
tions V2 into the flow equations and comparing the coeffi-
cients of contributions with equal powers in the externa
field, one obtains flow equations for these coefficients, espe-

cially for XA andRA. A. Hubbard model and Fermi surface

We will again truncate the infinite hierarchy of flow equa-  The Hubbard mod&lis a lattice electron model with the
tions at a one-loop level, and neglézero-field self-energy  simple Hamiltonian
terms by settingi(K’;K)zO. To obtain the linear-
response susceptibility it is then sufficient to solve the two
flow equations for the susceptibility* and the renormalized H= IEJ:
charge, spin, or pairing verté®* represented diagrammati-
cally in Fig. 3. If h couples to the charge or spin density, where ciT(, and c;, are the usual creation and annihilation
these equations read operators for fermions with spin projectiane{,|} on a

E tijCiT(er(r‘FU; n”n”, (45)

o
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log? in the special cas¢’=0. Note thatu=0 for t'=0
corresponds to half-fillingr{=1). Fort’=0 there are also
logarithmic divergences for all momentum transfers parallel
to (7r,7) or (m,— ) due to the strong nesting of the square
shaped Fermi surface. Far# e, only the usual logarithmic
0 Cooper singularity at zero total momentum in the particle-
particle channel remains. However, the additional singulari-
ties atu= €, lead clearly to largely enhanced contributions
for small u— €.y, especially ift" is also small.

Hence, for smallu— €,y one has to deal with competing
divergencies in different channels. This problem can be
treated systematically by the RG method described in Sec. Il.

ﬁ\c
//

o
taa
=

a

B. Parametrization of the vertex function

We now prepare for a computation of the one-loop flow
of the vertex function and susceptibilities. The flow equa-
tions derived in Sec. Il cannot be solved analytically. Even a
numerical solution is not possible with the full energy and
momentum dependence of the vertex function, which must
therefore be suitably simplified.

The dependence of the vertex function on energy vari-
ables can be neglected completely without much damage,
because it is absent in the bare interaction, and irreleant

S
AR

¥
\\\

- the sense of power countipp the low-energy limitsee, for
(b) 0 kx T example, Ref. 26 We therefore approximate
FIG. 4. The Fermi surfaces of the noninteracting 2D Hubbard rg(ki ,ké ;kl,k2)~F£(k1,k§ Ky,Ks). (48)
model witht’ =0 (a) andt’=—0.1& (b) for various choices of the
chemical potentiak. The Matsubara sums on the right-hand side of the flow equa-

tions can then be performed analytically. One thus obtains

lattice sitei. We consider the Hubbard model with a repul-
sive interactiond >0 on a(two-dimensional square lattice aAFQ(ki,ké;kl,k;_.):E -Et [CBCSBﬁcs(ki,ké;kl,kz)

aij

with a hopping amplitude i=stj=s,
—t if i and | are nearest neighbors +CZ3 BEAKY kg Ky ko)
ty=1 —t' if i andj are next-nearest neighbors +C§yisj118ﬁ3/(kivké;k1ak2)] (49)

0 otherwise. (46) for «=s,t, where theB functions are now frequency inde-

pendent and read
The corresponding dispersion relation of noninteracting par-
ticles is o 1 )
Bk K ke ko) =5y X ax[0L(K)OL(K')]
€= — 2t(cosk,+ cosk,) — 4t’(cosk, cosk,).  (47) ok

This dispersion relation has saddle pointskat(0,7) and xf(_gk)_f(gk’)F-A(ki,ké;k,k’)
(7,0), which lead to logarithmic van Hove singularities in &t & '

the non-interacting density of states at the eneggye, A

— At! ; ; ; XT3 (kK" kq,Ko)

=4t’. In Fig. 4 we show the Fermi surfaces of the noninter- j U R L R1R2/,

acting system for various electron densitiegor the case

i - - i i f ! ’ 1 ’
m:ﬂoy;r&ext nearest-neighbor hoppiny £0) and a case Bﬁs(kpkz;kpkz):— 5 S a0 (K)OA (k)]

Kk’

For a chemical potentigk= €, the Fermi surface con-
tains the van Hove vH points. In this case a perturbative f(&)—fC&) o, ,
calculation of the two-particle vertex function leads to sev- X?Fi (kg kika k")
eral infrared divergencies already at second ordéf,ine. at ko Sk
a one-loop leve(see the Feynman diagrams in Fig.22°In XK' Kbk ky), (50)
particular, the particle-particle channel diverges a¢ liog
vanishing total momenturk,+Kk,, and logarithmically for Bﬁs (K} Kbk k)= — ﬁs(kéyki;kl,kz),

k,+k,=(,7). The particle-hole channel diverges logarith-
mically for vanishing momentum transfer; for momentum with the Fermi functionf(&)=[ef+1] 1. Note that mo-
transfer @r,) it diverges logarithmically ift’#0 and as mentum conservation implies thatand k’ are related by



PRB 61 RENORMALIZATION-GROUP ANALYSIS OF THE TWQ. .. 7371

k+k'=k;+k, in the Cooper channel, and dy+k;=k’
+k4 in the zero sound channel, such that only one indepen-
dent momentum variable has to be summed.

For a step cutoff functio®” (k) =0 (A — &), one has

AOL(K)OL(K)]=8(A~]&6)OA—|é]) +kek',
(59

such that thek sum can be reduced to a one-dimensional
integral in the thermodynamic limit. To this end we substi-
tute k, andk, by the new variableg= ¢, and the anglep
betweenk and thex axis ink space, and use

FIG. 5. Projection of momenta on the Fermi surface; discretiza-

dk % .. tion and labelling of angle variables.

)
Ve T 27 2m
The angular dependence turns out to be strong for small
2m and cannot be neglected.
:(277)2f d¢ 0 doJ(&,8)- -, (52) With the above projection procedure only functional de-
pendences which are irrelevant in the low-energy limit have
where J(&,¢) is the Jacobian associated with the transfor-been neglectedsee, for example, Ref. 26Approximation
mation of variables. Since the integrand contains a factof53) is asymptotically exact foA—0 (for momenta within
S(A—|¢€]), the ¢ integration can be performed by hand, leav-the A shel) and, for the Hubbard model, also far=A,. At
ing only the angular integral oves to be done numerically. intermediate stages of the flow there are of course correc-
The flow equation can be solved only if also the momen-tions. To assess their importance, we have refined the param-
tum dependence of the vertex function is simplified. At leastetrization of the vertex function in some test runs by using a
for weak coupling(in practice also for moderate ongshe  second surface of constant energy in momentum space as a
vertex function acquires strong momentum dependence@rget for momentum projections. In addition to the Fermi
only for momenta close to the Fermi surface. Note that forsurface a canonical choice is th@n Hove surfacéefined by
the Hubbard model the bare vertex functibrto does not €= ey, Wheree,y is the energy at which the density of
depend on momentum at all. Instabilities are signalled bystates has a van Hove singularity due to saddle pointg of
divergencies of the vertex functidi* for momenta close to Momenta are then projected on that surfa€ermi or van
the Fermi surface and small. Hence we will focus on the Hove) which is energetically closer. In this way scattering
flow of the vertex function with momenta close to the Fermiprocesses between van Hove points, which are particularly

surface. important at scales\ =|e,y—u|, are treated more accu-

The intermediate momentaandk’ are constrained to a rately. In addition to the three anglefs, ¢,, 3 one needs
momentum shell around the Fermi surface, sifgg,| & | three binary variables, ,v,, andv; to label the closest pro-
<A [see Eq(51)]. Hence the values of the vertex function jection surface fok,, k,, and andk; .
at momenta within that\ shell govern their own flow. The parametrization of the vertex paRs' required for

For fixed finite A, the dependence df’(kj kj;kq,k,)  the computation of susceptibilities is done in a similar fash-
on &, etc., is regularized by the cutoff fq§k1|, L.<A. ion. We concentrate ostatic susceptibilities q2=0) and
For momenta within the\ shell one may therefore approxi- Neglect the(irrelevani energy dependence 6t". For the
mate the vertex function by charge and spin density vertex we approximate

A L~ DA . .
To(k] kg ke ko) =T a(KEy Keat+Keo—KEg iKe Keo), Res(@k" K ~Re s(dike = dike), (55

(53)  wherekg is the projection ok on the Fermi surface. The
pairing susceptibility is computed only for the most interest-

whereke,, etc. are projections diy, etc. on the Fermi sur- oo o aniching total momentups-0. The correspond-
face (see Fig. 5. Note that strong momentum dependences 9 g upe 9. P

of the effective vertex are built up only by contributions with Ing vertex part is approximated by

intermedia'te momemlaandk’ (on the right-_hand side of the RA(0:k, —k)~R(0:ke , — kp). (56)
flow equationgwhich are close to the Fermi surface, because

for such momenta the fractiong f(=¢&.)—"f(&:)]/ The projection approximation for the vertex parts is again
(&= &) can be large. Hence, for the most important mo-exact forA = A,, and asymptotically exact fok—0. It can
menta, the error made by the projection is relatively smallalso be improved for intermediate by projecting momenta
(even if A is not small, because these momenta are close teeither on the Fermi surface or on the van Hove surface,
their projected counterparts. The projected vertex functiorwhichever is closer.

can be parameterized by three angfes ¢,, and ¢ asso- The behavior of theeompressibilityyc=dn/du= xc(0)
ciated withkgq, kg, andkg,, respectively, i.e., and thehomogeneous spin susceptibilipg= x5(0) cannot
be obtained directly from the flow equations fgés(q).

T2 (kEy ket Kea—Kig i Ker, Keo) =T 2 (b1, ¢0, b3). The problem is thag 5(0) vanishes for allA>0 (at zero

(54) temperaturg since the infrared cutoff blocks particle-hole
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excitations with an infinitesimal momentum transfer. We
will therefore computeyc and ys from the effective quasi-
particle interaction

"A A A .
fzsk'p :ZkFZk,FFA(k,:O',k,':o",k,:O',k,':o"). (57
Note that the forward scattering limizero momentum and
energy transferof the two-particle vertex is unique fok
>0, and converges to the quasi-particle interaction for

—0 andkg#k¢ 2" The wave-function renormalization fac-

tor ZQF is 1 in our calculation because we have neglected

self-energy contributions. Following the usual Fermi-liquid
arguments® one obtains the compressibility and the homo-
geneous spin susceptibility as
k
X ool &= ),

Xc,s™ ZJ (277)2

Wherex(k:F'S is the solution of the inhomogeneous linear inte-
gral equation

2

(58)

2kr

d
C,S Cs ,CS o
X, +2f (zw)kaFkéxk'p S(eg—m)=1, (59
. CS _ 1,400 o,— 0 . .
with f 7, = 5(kok,Fi kok; ). In a noninteracting system one

Kek!

would obtainXEF*Szl. The quantity
(?SkF 1
—F=—x£, (60)

ap vl kF

with the velocityv,=V,e€,, describes the linear response of

the Fermi surface ik (a shift along the normal vectpfor

a small shift of the chemical potential.

For a concrete numerical solution of the flow equations
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magnetic spin susceptibilityg(7,7); (i) incommensurate
spin susceptibility xys(q), with q=(7—4,7) and q=(1
—8)(m,m);*® (i) commensurate charge susceptibility
xc(m,7); and (iv) singlet pair susceptibilities with form
factors

(1 (swave
E(coskﬁ cosk,) (extendeds wave
d(k)=
E(coskx— cosky) (dwaved,2_,2)
| sinkysink, (d waved,,).

(61)

Some of these susceptibilities diverge together with the ver-
tex function at scalé\ .. Depending on the choice &f, t’,
and u, the strongest divergence is found for the commensu-
rate or incommensurate spin susceptibility or for the pair
susceptibility withd,z.,2 symmetry.

We will now present explicit results for the flow of the
two-particle vertex and susceptibilities for a coupling
strengthU =t, which is much smaller than the bandwidth
W= 8t and therefore safely in the weak-coupling regime. All
energy scales will be plotted in units of To exhibit the
interaction-induced renormalizations of the susceptibilities,
we plot the flow of the ratigy®/xy, where ) is the sus-
ceptibility of the noninteracting system at scale as ob-
tained from the flow equations faf=0. We show examples
for the flow of xyj in the Appendix. Note that the non-
interacting susceptibilitieag are all finite for A>0, such
that a divergence of" at a finite scale\ ; implies a diverg-
ing ratio y/ XQ, and vice versa.

In Fig. 6 we show the flow fot’=0 and u= —0.005,

the angular dependence of the vertex function is discretizegorresponding to a density=0.995, i.e., almost at half-

with a finer mesh in the vicinity of the saddle pointsegf, at
(7,0) and (O7r), as shown in Fig. 5. One is thus left with a
finite (though very large number of flowing coupling con-

filling. Here and in the following we plot the singlet part of
the vertex function for a selected choice of momenta on the
Fermi surface, including those momenta for which the vertex

stants. If not stated otherwise, we have used 16 points on tH@nction renormalizes most strongly. The singlet vertex func-

Fermi surface to discretize the vertex function, correspon
ing to 672 independerit.e., not symmetry-relatedoupling

gtion has its largest values for umklapp scattering along the

diagonal of the Brillouin zone, but also forward and Cooper

constants, if the Fermi level lies at the van Hove energ)ﬁcattering of particles on opposite sides of the almost square

€yns, and 846 couplings otherwise. With the addition of 1
points on the van Hove surface one has to deal with 472
flowing couplings.

C. Results

g Fermi surface are strongly enhanced. Scattering amplitudes

r momenta near the van Hove points diverge a bit more
slowly. The triplet part of the vertex function is renormalized
mostly for forward and Cooper scattering, but generally
more weakly than the singlet part. The spin susceptibility
with an antiferromagnetic wave vector clearly dominates

We have computed the flow of the vertex function and theover pairing susceptibilities in this case. The incommensu-

susceptibilities for several choices of the bare interaction
>0, the next-nearest-neighbor hopping amplittide 0, and
the chemical potentighk, wheret’ and u have been chosen

rate spin susceptibilities are indistinguishable from the com-
mensurate one for the parameters chosen in Fig. 6 because
the incommensurability parametéris almost zero so close

such that the Fermi surface is on or close to the van Hovéo half-filling (see Ref. 28 Note also that the susceptibility

points of e, , and the particle density is close to half-filling.

ratios for isotropic and extendeslwave pairing are equal

In all cases the vertex function develops a strong momenhere, and almost coincide with the charge-density suscepti-

tum dependence for smal with divergencies for several
momenta at some critical scale.>0, which vanishes expo-
nentially U—0. To see which physical instability is associ-

bility ratio. The non-interacting susceptibility for extended
swave pairing(and thusy) is however much smaller than
the other two(see the Appendjx

ated with the diverging vertex function we have computed Decreasing the densitaway from half-filling one enters

the following susceptibilities(i) commensurate antiferro-

a regime where pairing correlations withz.,2 symmetry
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FIG. 6. (@) The flow of the singlet vertex functioﬁ? as a
function of A for several choices of the momenka,, kg, and
kg, which are labeled according to the numbers in Fig. 5. The
model parameters ald=t andt’'=0, and the chemical potential
pu=—0.005.(b) The flow of the ratio of interacting and noninter-
acting susceptibilitieg*/ )(3 for the same system.
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FIG. 7. Same as Fig. 6 fdd=t, t'=0, andu=—0.02.

incommensurate spin-density fluctuations with= (7,7
—6) dominate. Other incommensurate structures may be
more favorable than the ones considered here.U~er0 at
fixed densityn<1, the superconducting instability always

dominates, because the bare particle-hole bubbles are finite

dominate at sufficiently low-energy scales. This is seen irBway from half-filling, while the Cooper channel always di-

Fig. 7, where we show the flow fdr =0 and u=—0.02,
corresponding tm=0.984. Note that for small the transi-

tion from antiferromagnetism to superconductivity occurs al-nate is exponentially small.

ready at a critical density. quite close to half-filling. For
increasingU the deviation ofn, from half-filling increases.
The flow in Fig. 7 exhibits a threshold & =2|u| below
which the amplitudes for various scattering processes, espe-
cially umklapp scattering, renormalize only very slowly. The
flow of the antiferromagnetic spin susceptibility is cut off at
the same scale. The infinite slope singularity in some of the
flow curves at scalé =|u| is due to the van Hove singular-

ity being crossed at that scale. The pairing susceptibility with
dy2.,2 symmetry is obviously dominant hefaote the loga-

Ut

rithmic scalg. Following the flow of the vertex function and sdw (m,m) O

L ipeas .. 00 O
susceptibilities, one can see that tthe > pairing correla- SdWS(g,th;Sg g
tions develop in the presence of pronounceddfuirt-range . . X
antiferromagnetic spin correlationsn agreement with ear- 0 002 004 006 008 0.1

lier ideas ond-wave superconductivity.
In Fig. 8 we show the 4,U) phase diagram fot’=0
obtained by identifying the dominant instability from the

W/

verges at least logarithmically. For small the region
around half-filling in which spin-density instabilities domi-

The way the critical energy scale. varies as the system
is doped away from half-filling can be seen in Fig. 9 for an

FIG. 8. The ,U) phase diagram far' =0 near half-filling; the

flow for many different values oft andU. Note thatu=0  symbols represent the parameters for which the flow has been com-
corresponds to half-filling. The regime with a leading com-puted; the solid line separates the spin-density-wave regime from

mensurate antiferromagnetic spin density instability is sepathe superconducting regime, and the dotted line separates the com-
rated from thed-wave pairing regime by a thin region where mensurate and incommensurate spin-density regions.
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00 14 [ sdw: W/ =-0.005 —
! d: ujt=-0.020 -
0.02 . 121 sed: pf
I .
. 0015 sdw (m,m) O A Cu 08 | ': i
= . -
< f sdw (T,n—8) © g 0.6 -
001  / scd2 2 o
PS8 A= e 04 r
0.005 [/ / = Wl - 02 |
';:i’l 0 1 1 1
0 0.01 0.1 1
0 001 002 003 004 005 (a) At
-p./t
. . . 2 T T T
FIG. 9. The critical energy scal&. as a function of the chemi-
cal potentialu for U=t andt’=0. The different symbols indicate 15k
whether the leading instability is a commensurate or incommensu- ’
rate spin-density wave a-wave pairing instability; the straight ‘?;x y
lines represent the functions,=|u| and A .=2|u|, respectively. 2 1 K i
. . . . _v sdw: p/r=-0.005 — |
interaction strength) =t. The different symbols show which 0.5 i sc d: ﬁ/t =-0.020 -
instability is leading atA .. The two straight lines represent o | . . .

the linear functions\ .=| x| andA,=2|ul, respectively. As “ool od )

already observed by Zanchi and Schifizhe superconduct- (b) ’ AJi

ing instability is leading ifA.<|u|. This may be related to

the fact that only pair fluctuations receive a singular en- FIG. 10. The flow of(a) the compressibility angb) the homo-
hancement ah = || (see Fig. 7, while spin fluctuations do geneous spin susceptibility as a functiontofor various choices of
not. A commensurate spin-density-wave instability cannot bee atU=1 andt’=0; «° and x*° are the corresponding noninter-
favorable for A.<2|u|, since their flow is cut off atA  acting quantities.

=2|u| (see Fig. 7 once agaginHence the incommensurate

spin-density wave is the leading instability fop|<A. large that the one-loop results are not reliable any more. In
<2|u|. The sharp peak i . at u=0 (half-filling) is due to  any case the large charge fluctuations indicatedxbyo

the van Hove singularity. For larger deviations from half- would only be a consequence of the pairing instability of the
filling, the critical energy scale\. vanishes rapidly. Note, Hubbard model, not a driving mechanism, since the pairing
however, that for larger values bfthe regime with a sizable correlations appear already at a higher energy scale.

scaleA . extends to larger values @f, i.e., to larger doping. Results for the flow of the vertex function and suscepti-
In Figs. 1@a) and 1@b), we show results for the com- bilities fort’ <0 andu=€,,=4t" are shown in Figs. 11 and
pressibility and the homogeneous spin susceptibility, respect2, with t'=-0.01 and —0.05, respectively. The corre-

tively, for two choices of the chemical potential,lat=t and  sponding Fermi surfaces touch the saddle pointsre@) and
t’=0. We recall that these quantities have been obtaine€0,7) In the first case the density i$=0.992, and in the
from the forward-scattering vertex by using Fermi-liquid re- second onen=0.959. For the bare interaction we have cho-
lations, as discussed above. The noninteracting compressib#enU =t as before. The major difference with respect to the
ity % and spin susceptibility>° in the plotted ratios are perfect nesting casé =0 is that now the umklapp processes
defined without infrared cutoff. Hence the flow in Fig. 10 is near the diagonal of the Brillouin zone are much less en-
entirely due to the flow of the Landau function, starting athanced at low-energy scales, such that scattering processes
the simple random-phase-approximation result for the Hubwith momenta near the van Hove points,0) and (Or)

bard model atA =A,. Close to half-filling, where a spin- become most prominent. In this situation the simple scaling
density-wave instability is leading, the compressibility is approaches which concentrated exclusively on the van Hove
suppressed at low-energy scales, as expected for a systgmints®!3already provide a useful qualitative picture of the
with a charge gap at or near the chemical potential. Thémportant effective interactions and their renormalization.
homogeneous spin susceptibility remains finite near the spirAntiferromagnetic correlations are now mostly driven by
density-wave instability. By contrast, further away from half- umklapp processes fromm(0) to (0), and vice versa
filling in the regime where the-wave pairing instability is  which, due to the equivalence of the points,Q)=(— ,0)
leading, the compressibility diverges while the homogeneouand (0Os)=(0,— ) in the Brillouin zone, can also be
spin susceptibility is suppressed. A suppressed spin suscepiewed as Cooper processes. Indeed, these processes are also
tibility is expected as a precursor of the spin gap opening imresponsible fod-wave pairing correlations.

any spin-singlet superconductor. Very close to the instability For the parameters chosen in Fig. 11, antiferromagnetic
the spin susceptibility flows through zero to negative valuescorrelations dominate over pairing. The incommensurate sus-
which implies that our one-loop calculation breaks down inceptibility with q= (7, 7— 6) is a bit larger than the other
this strong-coupling regime. A diverging compressibility incommensurate candidate and the commensurate antiferro-
would indicate a tendency toward phase separation, but th@agnetic susceptibility. Note that there may be other still
increase ofx sets in quite abruptly only very close to the larger incommensurate susceptibilities among those not com-
instability, where the renormalized couplings are already s@uted here. We have merely investigated tivequently dis-
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cussedlincommensurate spin susceptibilities out of a varietyCrltlcal scaleA; as a function of the inverse number of dis-

e : : tization pointdNy on the Fermi surface falg=4, 8, 16
of infinitely many candidates. Moving further away from cre =0 : 0™ & =
half-filling, as in Fig. 12, one finds again dominant pairing and 32, and a fixed choice of model parameters. We see that

e ; . the critical energy scale obtained from a discretization with
susceptibilities, withd,2.,> symmetry in each case. : : .
The phase diagram in the’(U) plane withu =4t <0 is 16 points has already the right order of magnitude.

shown in Fig. 13. Note that the chemical potential is always
situated at the van Hove singularity here and the density IV. CONCLUSION

decreases away from half-filling with increasiftg|. Since In summary, we have shown that the renormalization

we have no good guess for the optimal density dependencgo,n method developed by Salmhdfewith our extension

of the incommensurability vector faf 0, we have not dis-  or the computation of susceptibilities can be used as a sys-
tinguished different spin density waves in Fig. 13. The be+ematic tool for detecting instabilities in a weakly interacting
havior of A¢ as a function of’ <0 with u=4t" andU=tis  permj system with several coupled infrared singularities.
shown in Fig. 14. The decrease af with increasing|u|  sych a RG analysis is completely unbiased. The selection of

(and thus increasing dopings slower here than in Fig. 9, retained Feynman diagrams is dictated by the weak-coupling
since the Fermi level remains on the van Hove singularity

such that only the importance of nesting is weakened under T T T T
doping.
All the numerical results discussed above have been ob- 2 kOO0 O §
tained by projecting momentum variables of the vertex func-
tion on 16 points on the Fermi surface, as shown in Fig. 5. foo o
To see how much these results may be modified in a more
refined projection scheme, we have computed the flow for 1 Booo p
some typical model parameters with a projection on 32
points on the Fermi surface, and also with a projection on 16 h sdw (m,m) O
Fermi surface points and 16 additional points on the van scdgzz o
Hove surface. It turned out that these refinements, which 0 . . . .
increase the computational effort considerablely, lead only to 0 002 004 006 008 0.1
a moderate reduction of the critical energy scale, without 11t = /(4D)
changing the qualitative behavior of the vertex function and
susceptibilities. In Fig. 15 we show the dependence of the FIG. 13. The {’,U) phase diagram for=4t’'<0.

Ut
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0.025 T T T 100 r T
q sdw (1t,m), sdw (m—38,7—38), E
sdw (1t,Rr—38), cdw (1T, 7T) ——
0.02 sdw (r,m) O E 1
scdz22 0 10
. 0015}
5
< =]
0.01 | =2 1
0.005 | 0.1
0 . . .
0 005 01 015 02 0.01
-1/t = -uf(41) 0.
(a)
FIG. 14. The critical energy scalg. as a function ot’ for u 100 . . .
=4t' <0 andU =t; the short dotted line separates the spin-density sdw (frgt), cdvg3 (mg) —
regime from thed-wave pairing regime. s ‘;Vdi’v“(n;ﬁ:g ......
10

expansion, and can be systematically improved by including
higher orders in a loop expansion. = 1

Evaluating the flow equations on a one-loop level for the
2D Hubbard model, we have found antiferromagnetic insta-
bilities close to half-filling and dominant superconducting 0.1
instabilities withd,2.,2 symmetry at smaller densitigstill
near half-filling. Incommensurate spin structures can be fa- 0.01
vorable in the antiferromagnetic regime near half-filling.

The critical energy scald . where vertex functions and (b) At
susceptibilities diverge, vanishes exponentiallyjJas 0, but 100 - T 3
becomes sizable for relatively weak coupling strengtiosn- AL P
pared to the bandwidiheven in the superconducting regime. ]
The appearance of strong pairing correlations with.,2
symmetry in the 2D Hubbard model at physically interesting
energy scales is thus well established at weak coupling. The Cra 1
flow of the vertex function and susceptibilities clearly shows
that the pairing instability is driven by short-range antiferro-
magnetic correlations in the system. This supports earlier
ideas and numerical resulfor finite systems suggesting

10

d-wave superconductivity driven by antiferromagnetic corre- 0.01
lations in the Hubbard modélNote thatA. must not be (c) 0
interpreted as a transition temperature for antiferromag-
netism or superconductivity, but rather as an energy scale 1 T e G dw ey —
where bound particle-particle or particle-hole pairs are sdw (1—8,—8) -~
formed. A Kosterlitz-Thouless transition to a superconduct- 10 kb sdw (7t,70—8) -
ing state may occur at a lower-energy scale, while antiferro- SC dy2 y2
magnetic order is of course possible only in the ground state o
of a two-dimensional system with spin-rotation invariance. T2 o
We finally outline some interesting extensions of the present .
work for the future. 0.1 L

0.04 — . .

0.01
0.01 0.1 1
0.03 | (d) At
j 0.02 | FIG. 16. Free susceptibilities f¢a) t' =0 andu = —0.008, (b)
t’=0 and u=-0.02, (c) t'=—0.01 and u=4t’', and(d) t'=
001 [ data © g —0.08 and u=4t’, corresponding to the examples in Figs. 6, 7,
fit /Ny + A - 11, and 12, respectively.
0 17321716 }ﬁ,o 1/4 (i) Nonlocal interactionsNonlocal interactions may play

an important role even though they are usually much smaller

FIG. 15. The critical energy scalg, as a function of the num- than the localHubbard interaction. They affect the RG flow
ber of discretization pointdl, on the Fermi surface, fod =t, t’ via a different initial condition for the vertex function, and
=—0.01, andu=4t". can thus be taken into account very easily.
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(i) Fermi-surface instabilitiesThe Fermi surface is gen- and giving us several useful hints during the initial stage of
erally deformed by interactions. Computing a susceptibilitythis work. We would also like to thank Maurice Rice, Eu-
for Fermi surface deformations from the RG flow, one findsgene Trubowitz, and Victor Yakovenko for valuable discus-
that deformations breaking the discrete square lattice synsions. This work was been supported by the Deutsche Fors-

metry may occuf?
(iii) Self-energy effectdt will be interesting to compute

chungsgemeinschaft under Contract No. Me 1255/4-1,2.

self-energy contributions and see how they affect the insta-

bilities. The numerical effort for this is small on a one-loop

level, but a two-loop calculation also seems feasible. Kishine

and Yonemitstt recently computed the renormalization of
the quasi-particle weight on a two-loop level for two flat

Fermi-surface pieces, but the feedback of self-energy effec

on instabilities has not yet been treated.
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APPENDIX: NONINTERACTING SUSCEPTIBILITIES

Here (see Fig. 15 we show results for the flow of the
noninteracting susceptibiliti@g{} for the choices of’ andu

1%orresponding to those in Figs. 6, 7, 11, and 12. The reader

may thus estimate the absolute scaleydf by multiplying

x4 with the results for the ratiog"/ x5 in Sec. lll.

The various spin-density susceptibilities and the charge-
density susceptibility lie too close together to be always in-

We are very grateful to Manfred Salmhofer for explaining dividually seen. The extendesiwave pairing susceptibility
to us his renormalization-group scheme before publicationis of the order of 104, and therefore out of scale.
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