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The quantum transport equati@QTE) is extended to study weak localizatiWL ) effects on galvanomag-
netic and thermomagnetic phenomena. QTE has many advantages over the linear responséRigthdo
particle-hole asymmetry, which is necessary for the Hall effect is taken into account by the nonequilibrium
distribution function, while the LRM requires expansion near the Fermi surfag@hen calculating response
to the temperature gradient, the problem of WL correction to the heat current operator is aviigéce
magnetic field is directly introduced to the QTE, while the LRM deals with the vector potential and special
attention should be paid to maintain gauge invariance, e.g., when calculating the Nernst-Ettingshausen effect
the heat current operator should be modified to include the external magnetic field. We reproduce in a very
compact form known results for the conductivity, the Hall and the thermoelectric effects and then we study our
main problem, WL correction to the Nernst-Ettingshausen coeffi¢teanisverse thermopoweiVe show that
in a quasi-two-dimensional film the Nernst-Ettingshausen coefficient has a large logarithmic factor similar to
that of the conductivity and the Hall conductivity, while the thermoelectric coefficient does not have such a
factor.

I. INTRODUCTION included in the heat current operatwe will discuss this
subject in detail in the Appendjix
In many complex cases the quantum transport equation The QTE was initially developed for the interaction ef-

(QTE) turns out to be physically clear and more convenientfects on the conductivity in the diffusion regithand was
than the linear response methidRM). Calculating many- later extended to the weakly disordered regime for the
body corrections to the electrical conductivity choice of theconductivity;' thermoelectric powet” and the Hall effect.
QTE or the LRM is a matter of taste, the LRM requires many!n the present paper we first derive the QTE, which incorpo-
diagrams to be considered, while the QTE deals only witijates electric and_ magnetic fields and the temperatur.e gradi-
the electron self-energy diagrams but includes specific term@nt On €qual footing. Then we obtain the WL corrections to

like Poisson brackets corrections. The QTE shows specid|'¢ conductivity, the Hall conductivity, which has been cal-

advantages when thermoelectric and galvanomagnetic eﬁec?glated earlier by the LR.M in Refs. 6 andsee ‘?"50 Ref_s._ 8
are considered. and 9. Then we consider the thermoelectric coefficient,

1. Calculating the thermoelectric coefficient by the QTEWhICh has also been considered earlier by LRWinally we

find a WL correction to the Nernst-Ettingshausen coefficient,
as a response of the electron system to the temperature 9hich to our knowledge has not been studied before, and for

dient, one avoids difficulty associated with corrections to thet e reasons mentioned above, it is a very difficult problem to
heat current operator due to the electron-electron an tudy by the LRM

electron-phonon interactiorg.

2. Calculating the Hall coefficient by the QTE the
electron-hole asymmetry is accounted automatically by the
nonequilibrium distribution function of noninteracting elec- The quantum transport equation method is based on the
trons, while the LRM requires all electron parameters to beceldysh diagrammatic technique, where transport phenom-
expanded near the Fermi surface. ena are described by the<2 matrix electron Green function

3. The QTE incorporates real electric and magnetic field% as well as the matrix electron self-enefdly
in the gradient terms and also through the terms in the form '
. (EC 3R

of the Poisson brackets. Contrary to that, the LRM deals with R 0o GA

two vector potentials for the electric and magnetic fields and G= ( GR GC sA
special attention is required to obtain the Hall component of
the electric current. When calculating the Nernst-whereA andR stand for advanced and retarded components
Ettingshausen coefficient the gauge invariance requires thef the matrix function andC corresponds to the kinetic com-
vector potential corresponding to the magnetic field to beponent.

1. QUANTUM TRANSPORT EQUATION

: (1)
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The electric current is expressed by the kinetic Green’s G%q-p) Gg-p) G"(g-p)
function G©, . C . C N
T T
4 C o Ble
d*P q° e
sz evimAGE(P), 2)
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FIG. 1. Diagrams of the kinetic electron self-eneBjy contrib-

whereP=(p,e) and AG® is the nonequilibrium correction uting to the WL corrections to conductivity.

to G, which will be calculated in each particular case of

external disturbance. Poisson bracket corrections arise when integrals in the coor-
Assuming that weak localization corrections are small, wedinate representatior{like Eq. (5)] transform to the

will calculate the kinetic electron Green function by itera- momentum-energy representation,

tion. Without weak localization effects, the retardéat-

vanced Green function is f dX AX;,X)B(X,X,)=A(P)B(P)+ iE{A(p),B(p)},

2_ 12
_ PPk 3 (10

RP)=[GAP) ] =—— —
G"(P)=[G"(P)] e— & til2r’ P 2m where

wherer is the elastic scattering time due to electron-impurity A IB 9'BdA SAIB 9'BJIA
scattering. {A,B}= ( ————— ) - ( —————
The normalization condition for the matrix Green func- €
tion in the coordinate representation
The potentialsA and® enter as

f dYG(X,, Y)G(Y, X)) =1 @) J 9 edhd o 9
_:______e__,
[ X is a four-dimensional coordinate,() |, results in the fol- gt dt ¢ tap o e

lowing form of the Keldysh component g9 edA o JP g

—————— e——. (12)

GC(xz,x1)=f dY[S(X,,Y)GA(Y,X,)
Therefore Poisson brackets due to the electric and magnetic

—GR(X,,Y)S(Y,X1)], (5) fields, and also due to the temperature gradient, are
where the functiors plays the role of the electron distribu- dA 9B 9B JA
tion function. {ABje=eE| - ap e ap)’ (13
In equilibrium S=Sy= —tanh(/2T). In the presence of
the electric and weak magnetic fieldbe quantization of the IJA OB
electron levels is neglectg®is determined from the follow- {A’B}H:EH : (% X(?_p> (14
ing transport equation:
JdA 9B 9B /A
S €9JS e Js —vT| =7
e(V-E) 5~ (VI T) g 5ot COXH) Sl emimg, (6) {A Bl VT( T op ot ap)' 9

wherelg_im, is the collision integrals corresponding to the — Our goal is to find the WL correctioA G and calculate

electron-impurity interaction in the lowest ordéwithout  the electric currentEqg. (2)]. The kinetic Green functio®®

WL corrections and is chosen in the simplest form may be found by two methods. Firs" may be expressed
through the nonequilibrium electron distribution function

2 k A [see Eq(5)], which in turn is determined from the transport
efimpzmj (Zw)s[s(k,f)—s(p,f)ﬂm Go(k,e) equation~° Second, the transport equation may be written
directly for GC. Both methods are equivalent, we chose the
So(€)—S(€) second method as more convenient for the current problem.
E— (7) Note, that a retardetadvancedl component of the elec-

T tron self-energy consists of integrals of retardadvanced

Performing the Fourier transformation of E() from the  Green functions, therefore, in the main approximation it is
coordinate representation to the momentum-energy represeequal to zero. Thus, the WL correction & is determined
tation we get only by the kinetic componerX®. In the coordinate repre-

sentation the transport equation 18F is
GC(P)=S(P)[GA(P)—GR(P)]+ 6G(P), t)

where 8G° is the correction in the form of the Poisson AGC(X,X’)=J dY dzZ G&(X,Y)SC(Y,2)GA(Z,X").
bracket

(16)
i For the problem of WL the self-energy diagrams are
C__ A R
oG _Z{S(P)’G (P)+GH(P)}- © shown in Fig. 1. To solve Eq16) we use the iteration pro-
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cedure. As in the case of the QTE for the nonequilibrium
electron distribution functiof;® field terms and scattering
terms in Eq.(16) cannot be separated. In the present formal-

ism, field terms accounting for the elect(imagneti¢ field
and temperature gradient appear due to zero gmuiighout

WL corrections, nonequilibrium distribution functions ob-

tained from Eq(6), and due to Poisson brackétsgs.(13)—

(15)] after transformation of Eq.(16) to the energy-
Further for each particular
external perturbation the procedure described above will be Aoy =—

momentum representation.

presented in detail.

IIl. CONDUCTIVITY

For the conductivity we retain in EJ6) only the term
corresponding to the electric field. The solution of E6)
with the electron-impurity collision integral, Eq7), in the
energy-momentum representation is given by

Jd
S=Syt de. de(P)=-er(v-EDT. (17

The Poisson bracket term &€ [Eq. (9)] is
5EGC=i§{so<e>,GA<P>+GR<P>}E. (19

Now we take into account WL corrections f&¢, using Eq.
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A;GE(P)=GR(P)C(Q) #e(P)[GH(Q—P)
—GR(Q-P)IGA(P). (22

SubstitutingA ;G(P) into Eq. (2) we find corresponding
correction to the conductivity. In the quasi-two-dimensional
cased< Lg’)' whered is the thickness of the film ant,
:(DT¢)1/ is the localization length, and we have

2¢’D [ d%q 1 e2I Ly
7d ) (2m)? Urg+ D a2d | T

(23

wherel =v g7 is the mean free path.
The second correction in EQL9), A,G° due to3;(5G°)
[Eq. (20)], is

A,GE(P)=GR(P)C(Q)(i/2){Sy(€),GA(Q—P)
+GR(Q—P)}eGA(P), (24)

which results in the correction to the conductiviy,oryy
=(1/2)A10yx-

Now we consider diagrams, and X ;. These diagrams
containG€ inside the electron-impurity ladder. For this rea-
son, nonequilibrium corrections due to the distribution func-
tion ¢ and due to the Poisson brack®GC give zero after
the angular integration over the electron momentum.

The next correctior ;G comes from the Poisson brack-

(16). This equation in the momentum representation with allets inside the self-energy diagrams. The Poisson bracket

terms in the form of the Poisson brackets is

AG =GF3%(¢g) G+ GFI(6.G%) G A+ GRoeX “(S) GH

+ 5 {GR IS} 5 GRE(S) GRle. (19

should include the electron distribution functi® in G°.

As the total contribution of all three equilibrium diagrams is
zero, and in all diagram&® has the same position with
respect to the Cooperon, the Poisson brackets bet®&ge

and Green'’s functions inside the Cooperon are equal to zero.
The only nonzero term it ;G appears when the Poisson

The first three terms take into account the nonequilibriumbrackets are taken betweedy(e) and the electron Green
corrections due t@pe, GC, and internal Poisson brackets in functions G*R(Q—P) (external with respect to the Coop-
the electron self-energy . The last two terms are the Pois- €ron in the second and third diagrams,

son brackets between the self-energy and external Green

functions. Keeping the linear in the electric field terms, one C_~R ' Ao

should calculate the Poisson bracket terms with the equilib- AsGT=GH(P) ZC(Q){SO(G)’G (Q=P)

rium electron self-energy. But as we have already men-

tioned, 2#=0, and thereforeX °(S;) =2iSp(e)IM3~=0. +GRQ-P)le|GAP) (25)
So the last two terms are equal to zero, and we need to take . '

into account only nonequilibrium corrections to the electron
self-energy.
Let us consider diagrams shown on Fig. 1. We denot

which results inAzoy,=—(1/2)A,0,y. Thus, the second
and third corrections to the conductivity originating from the
%oisson brackets mutually cancel out afgo,, describes

corresponding self-energies as, %,, and %3. The non-
equilibrium corrections to the first diagram are

38(¢e)=¢e(Q—P)C(QIGAQ-P)~GR(Q-P)],

3 $(8:G€)=C(Q)5:G(Q—P),

where for brevity we dropped the integrftl Q/(27)%, Q
=(q,w), the CooperorC(Q) is

(20

1
v —iw+ Ury+ Dg?’

C(Q)= (21)
wherer, is the phase relaxation time.

The first correction in Eq(19), A;G® due to3(¢g), is
given by

the full WL correction to the conductivity that coincides with

Ref. 9. However, we will show that the Poisson brackets
corrections are very important for the Hall and Nernst-
Ettingshausen effects.

IV. HALL EFFECT

Calculating the Hall conductivity we assume that the
magnetic field is directed along theaxis and the electric
field is directed along th& axis. The Hall currend, is pro-
portional toEXH.

Without WL effects the electron distribution function has
the form

S=Sot det én, (26)
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where the nonequilibrium distribution functiafiz is given
by Eq.(17), and ¢y is

I(So+ 272 J
QSH(p,E):—TS(VXH) (Soﬁpqu):_ecr; v-(EXH)a—SEO.
(27)
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A,G%(P) = GR(P)3 [ 5,G5(Q~ P)GA(P)
=~ - GR(P)du(PHIGAQ-P)?
+[GHQ—P)I}GAP). (32)

The Hall conductivity of noninteracting electrons is given by The corresponding correction to the Hall conductivity is

Sy d*P A
ny_E_zef (ZT)Awyd’H IMG™(P) =070y, (28

where(Q)=eH/mc is the cyclotron frequency ang,, is the
Drude conductivity.

Ayoyy=(1/2)Q760,,. Note that, as for the conductivity,
the corrections to the Hall conductivity frogs, and §,G°
in %, andX 5 give zero after the angular integration.

Now we calculate the internal Poisson bracKée third
term in Eq.(30)]. First let us consider the magnetic Poisson
brackets betweer e and external with respect to the Coop-

It is noteworthy here that the Hall effect is proportional to eron Green function&s*R*(Q—P) in the second and the
the particle-hole asymmetry and is taken into account in théhird diagrams. For the Hall conductivity these contributions

nonequilibrium distribution function in Eq27) by the factor

cancel each other, because the electron momentumgin

&zgplﬂzpz 1/m, which is a measure of the average curva-changes its sign in these diagrams. Terms with the magnetic

ture of the Fermi surface.

Poisson bracket betweepe and the Cooperon for all three

For electrons in the magnetic field the Poisson bracketliagrams? ;, %,, and2 5 are proportional to

corrections toG°®,

5uGo=5{#e(P),GAP)+GR(P)}y, (29

are also proportional to the same particle-hole asymmetry X(G<(P"),GA(Q—P')—GR(Q—-P")),

factor as¢y(p,€).

[GA(Q—P)~GXQ—P)]+GAQ—P)
X(GAP")=GR(P"),GA(Q-P"))+G(Q—P)
(33

To get the WL correction to the Hall conductivity we Where(G;,G,) stands for grv7)~*fdp G;G,. Performing

keep in the momentum representation of Ed) only terms
proportional toEXH,

AGC=GR3C(¢) G +GRYC(5,G%)GA
+GRELE (e G+ GR 61402 “(Sp) 1GH
i i
+ E{GRaEC(¢E)}HGA+ EGR{EC(qﬁE),GA}H ,

(30

calculations, we find that these terms cancel each other. In a
similar way one can prove that the double Poisson brackets
correctionss, 6g2 € also mutually cancel out.

Now we calculate contributions of the fifth and sixth
terms in Eq.(30),

C C e &EC A\2~R A R\ 2
AsGC+AG =EH~vpr[(G )2GR—GA(GR)2].

(39

where3S(¢,) stands for the self-energy with nonequilib- Calculations show that onlyi, andX 3 give nonzero contri-

rium distribution functiong,; ,3<(8,GC) stands for the self-

energy with the magnetic Poisson bracket correctio o

from Eq. (29), 642C(¢g) denotes the magnetic Poisson
bracket in the self-energy with the nonequilibrium function

#E, 640e2C is the correction due to internginside 3 )

double Poisson brackets. In the last two terms we calculate
the magnetic Poisson bracket between the nonequilibrium
self-energy andsR* functions. As we discussed in the pre-
vious section, in equilibriun® =0, thus external electric
Poisson brackets betwe&if(S;) andGR andG* are equal

to zero.

Let us start with the first diagramk,. The correction

A,GC corresponding to the first term in E(BO) is
A;GH(P)=GR(P)X( 1) GA(P)

=GR(P)C(Q)¢n(P)
X[GAQ-P)=GQ—-P)IG(P). (31

bution, thus
AsGC+A4GC

_eH X J EC EC
=cHv (7_p[ 7(de)+23(de)]
X[(G*?GR-GA(GR)?]

e er 4S5,
= HVXEC(Q) 1 Z=1GAQ-P)+GRQ—P)]

X[(GH2GR-GA(GR)?]. (35
The corresponding correction to the Hall conductivity is
As 60xy= Oy (L2)Q 760y

Finally, the total contribution to the Hall conductivity is

Aoy, Aoy

, (36)

Calculating the electric current, we find the correction to the Oyxy Tyx

Hall conductivity Aoy, = Q750
From the second term in E¢30) we have

which coincides with Refs. 6 and 7.
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V. THERMOELECTRIC AND NERNST-ETTINGSHAUSEN A e 9So( €)| |_¢( €)
EFFECTS Ui zszdJ' dee Je N (e
Now we consider the thermoelectric and Nernst-
Ettingshausen coefficients. Without the WL correction, the = et im(l‘d’_(e)) (46)
nonequilibrium distribution function in the crossed tempera- Bdjde |\ I(e) || __,
ture gradient and the magnetic field is which is analogous to the result of Ref. 10. Equat{d6)
S=Sy+ ¢+ by, (37)  shows that the correction to the thermoelectric coefficient
does not have a large logarithmic factor compared to the
€ dSo(€) correction to the conductivity, Eq23). This result means
$r(P)=7(e)(v-VT) 5 ——, (88)  that for the experimentally measured Seebek coefficient
Ao,y An)
e IS+ = — I
ntpie) == o) T2 o=eo[1- 720 “7
5 where Bo= — 5¢/0yy, only the term corresponding to the
_er(e) V- (VT H)E S (39  correction to the conductivity is important.
cm T de’ The Nernst-Ettingshausen coefficievtis defined by the

equationJ=N(VTXH). Substitutingey for ¢y in Eq. (2)
we get for the Nernst-Ettingshausen coefficient without weak
localization effects

The Poisson bracket corrections@j are

i
851G =-{Sy(€),GA(P)+GR(P)}+, (40)

i N=-T T 2 a2 ene)

. =——F= —=-—1v7(€)T(€)Vv(€)]|e=0
5NGE=5{#1(P),GA(P) + GR(P)} (1) b
N 27T H- T Oyx m? T Qr

== — ()= — oy =5 (49
The thermoelectric coefficient is defined from the equation 6 er H 6 er 2H

J=7VT, therefore substitutingr from Eq.(38) into EQ.(2)  gquation (48) shows that the Nernst-Ettingshausen coeffi-
we have_ the following eq_uatl_on for the thermoelectric coef-gjant is proportional to the product of the electron-hole
ficient without weak localization effect: asymmetry factors, one from the Hall conductivity, and
4 another factoiT/ ex arises after expansion of all electron pa-
2e ((dP dSy(€) A ; - .
No=o w2r(e)e Im GA(P). (42) rameters near the Fermi surface similar to the thermoelectric
3T) (2m) de coefficient. Note that this important fact is clear when calcu-
To get a nonzero result from E¢42) requires the electron- 1ating the Nernst-Ettingshausen coefficient by the transport
hole asymmetry to be taken into account. Therefore we exequation. When the LRM is applied special attention is re-

pand all electron quantities near the Fermi surface, quired to find this double-electron-hole asymmetry, as dis-
cussed in detail in the Appendix.
€ € The WL correction to the Nernst-Ettingshausen coeffi-
v(e)=ve| 1+ Z) v(e)=wvo| 1+ 2_6,:) cient may be obtained from the above presented calculation

of the Hall conductivity by substitutingb for ¢g and also
€ 1 M pe {A,B}+ for {A,B}¢ in all equations of Sec. Ill. As a result we
7(6)270(1—2—6':), T—OZ’ITVOniUZ, VOZ?—, (43) have
wheren; is the impurity concentration and is the electron- AN=
impurity potential. Finally we have

2e? d3qf € 9Sy(€) (€)

2 “mem) @2m3) TT a6 P [D(e)ry(e)]
(49

70=~ g€ToPrT. (44
ccording to Eq.(49), in the quasi-two-dimensional case

9
(d<L,) the main contribution to the Nernst-Ettingshausen

The weak localization correction to the thermoelectric coef-A
ficient is obtained by substituting for ¢ and{A,B} for

coefficient arises from the expansion ={fe) [see Eq.(43)],
as a result

{A,B}g into the equations of Sec. Ill. As a result we get

Anp=—

3
e dq fde dSy(€) 1 45

aT) (2m)® de g2+l 2(e)’

AN Aoy,
W = 2 o f (50)
where Lé(e)= D(e)74(€). For a film, which is two- X
dimensional with respect to the Wid&L ), the momentum  which is different by sign compared with the corresponding
integral in Eq.(45) is logarithmically divergent on the upper correction to the Hall conductivitjEg. (36)]. Equation(50)
limit. Taking the cutoff to be 1(¢€), I(e)=v(€e)r(e), and  shows that in the quasi-two-dimensional case the WL correc-

making the expansion near the Fermi surface, we get tion to the Nernst-Ettingshausen coefficient has a large loga-
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rithmic factor. Note, that for exactly two-dimension@D) relaxation time is changed for its Cooperon correctibn

electrons, the electron momentum relaxation time does not —27[d%q/(27)3C(q).

depend on the energy, and the large logarithmic factor in the Thermoelectric phenomena in low-dimensional systems

WL correction to the Nernst-Ettingshausen effect disappearsttracted considerable attention recenfyt’ Our experi-
mental study of the Nernst-Ettingshausen coefficient im-

proves our understanding of low-dimensional electron trans-

In the present paper we apply the QTE for the WL effect
on different transport coefficients. We reproduci;zithe WL ACKNOWLEDGMENTS
corrections to the conductivity, the Hall conductivityand .
the thermoelectric effetbbtained earlier by the LRM. Then A;’h_e supptCIth bykthe f\lgxagder von Humboldt Foundation
we calculate WL corrections to the Nernst-Ettingshausen co(- ) is greatly acknowledged.
efficient. To our knowledge, this problem has not been con-
sidered before. APPENDIX
The QTE gives a convenient and universal description of
all transport phenomena. A specific feature of an externa&O
disturbance is taken into account by the nonequilibrium dis—de
tribution functions of noninteracting electro&qgs. (17),
(27), (38), and(39)] and by quantum corrections to the qua-
siclassical transport equation in the form of the Poisso

In this appendix we calculate the Nernst-Ettingshausen
efficient of noninteracting electrons using the LRM. We

monstrate that the heat current correction due to the mag-
netic field should be taken into account. The diagram with

ri[his additional heat current vertex cancels the basic diagrams
n zero order in the electron-hole asymmetry. The nonzero
bracketqEgs. (13), (14), and(15)]. Nernst-Ettingshausen coefficient arisyes onlyy in the second

The quasiclassical transpo_rt equation h_a_s bgen applied E?rder in the asymmetry. These conclusions are also relevant
the WL effect on the electrical conductivity in Ref. 11, . many-body corrections to the Nernst coefficient
where all terms in the form of the Poisson brackets have In the linear response method the external magnetic field

been ignored. As we demonstrated above, these terms mutiL-; ; :
) ’ o introduced through the corresponding vector potertial
ally cancelled for the correction to the conductivity but they _ g P g b

are very important f(_)r_ the Hall conductivity and the Nernst—& éﬁ;ﬁgmgi pérrt]es%r;c; %fi\t/z(; (a(/ternal magnetic field the
Ettingshausen coefficient.

QTE also allows us to avoid lengthy calculations of the 1
particle-hole asymmetry, which is important for the Hall and K=_—
Nernst effects. In the Hall effect the particle-hole asymmetry 2m
appears as a measure of the average curvature of the Fer
surface, and is expressed through the electron n=mse
effective electron mass in the general gasésing the QTE
we get Hall's particle-hole asymmetry in the distribution
function of noninteracting electrons, E@7), and in the
magnetic Poisson bracket, Ed.4). To obtain the same re-
sult by the LRM one needs to expand all electron parameters
in all Green’s functions near the Fermi surface.

The Nernst-Ettingshausen coefficient is proportional to N= ——
the double particle-hole asymmetry. It means that in the lin- QTH
ear response method one should keep second-order terms i
expansion of electron parameters near the Fermi surface. . .

With many-body corrections, it is a complicated problem.(fo"elaf'on function of the heat and charge current operators
Ignoring at least one of the diagrams gives a nonzero Nernsth andJe in the presence of the vector potentfs)
Ettingshausen coefficient in zero order in the particle-hole

asymmetry(without any expansion We discuss this prob- ~ Q¥(x—=x',t—t’,A)=—0(t—t")

lem in detail in the Appendix for noninteracting electrons. - A

For interacting electrons the problem is even more compli- X([In(X,t,A) -, Je(X",t",A) -y ]),

cated. As an example of the problem for which wrong results (A3)
have been obtained, we mention the effect of superconduct-

ing fluctuations on the Nernst-Ettingshausen coefficiéfit. ~ wheren is a unit vector directed along the temperature gra-

We also found that in the quasi-two-dimensional case thelient,n; is a unit vector perpendicular toand the external
WL correction to the Nernst-Ettingshausen coefficient is pro-magnetic fieldH.
portional to a large logarithmic factor similar to WL correc-  The external magnetic field is taken into account by in-
tions to the conductivity and the Hall conductivity, while for serting an additional magnetic verteg/¢)(v-A) [the sec-
the WL correction to the thermoelectric coefficient such aond term on the right-hand side of EGAl)] into the elec-
correction is absent. tronic Green'’s function of the corresponding diagrams of the

It is interesting to note, that, though it is not obvious in linear response correlators. For example, diagrams for the
advance, the WL correction to any transport coefficients idHall coefficient are obtained by inserting this vertex into the
given by the corresponding “classical” formula, where the conductivity diagrams as it was done in Refs. 8 and 9.

2 p2 e A 2
“om VAT o

e
p+ A A% (A1)

e choose the gaugé&: A=0, and consider a response of
the electron system to the temperature gradient, which is
perpendicular to the magnetic field.

Then the Nernst-Ettingshausen current is proportional to
VTXH=—iA(k-VT).
In the LRM the Nernst coefficient is given by

Im QR(Q,A). (A2)

ereQR(Q,A) is the Fourier representation of the retarded
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fAv where the combination of the Green functidasis
13,=2iGA(P)IM[GA(P)]?=2i 72ImGA(P).  (A8)

The angular integral in Eq$A4) and(A6) gives the term
£Av proportional toA(k-VT),
c

E(AV)VOV dQ, v?
c fEv(v-A)(wk)(v-VT):EA(KVT). (A9)

FIG. 2. Diagrams of the linear response method for the Nernst

. i . . Therefore, the total contribution of the three diagrams is
Ettingshausen coefficient of noninteracting electrons.

in2
For the Nernst-Ettingshausen coefficient, however, it is  N= ' JEdfpaSO(e)v4T2V{§p|m[GA(P)]2
not enough to insert the magnetic vertex in the diagrams of 1cTH) 27 de
the off-diagonal thermoelectric coefficient. An additional +1m GA(P)}A(K-VT). (A10)
diagram appears due to modification of the heat current ver-

tex. According to Ref. 2 the heat current vertex for noninter-  \yithout taking into account the particle-hole asymmetry

acting electrons iy, = £,v, which corresponds to the energy e total contribution of the three diagrams goes to zero after
current measured with respect to the electron chemical PQhtegration overt
p ’

tential. For electrons in the magnetic field the vertex of the
heat current is modified according to E&\1)
fdgp{gplm[GA(P)]z—i—Im[GA(P)]}=0. (A11)
Yn=_E&pv+(e/c)(V-A)V. (A4)

Diagrams of the LRM for the Nernst-Ettingshausen coeffi-Nonzero contribution arises from terms proportionaleto _
cient are presented in Fig. 2. In the first and second diagrarf§uS we should expand all electron parameters near the Fermi

the vertex €/c)(v-A) describes the effect of the magnetic SUrface:
field on the electron states. In the third diagram the same

- 5¢&, 15(¢&,)\2
vertex is a part of the heat current operator, &g). To get 4 =4l 1+ = 2Py _(_P) +...
the termA(k-VT), one should expand the Green function [o(&p) P r(Ep)=vorg 1+ 3 e 8 ler ’
G(p+Kk) in powers of k-v). Then the contribution of the (A12)

first and second diagrams is given by

€
e [ d*P aSy(e) e [r(e)]°=7g1——+---|. (A13)
NitN=TH | 2 oe VeV A) N

Taking into account terms proportional to the square of the
X(V-VT)(v-K) (11 +12), (A5)  particle-hole asymmetry, e.qt2/ €2 or £el€? , we get
where the combination of the Green functions is

I 1+1,=2iGA(P)GR(P)IM[GA(P) 2= 2i Im[GA(P) 2. f dépo v EIm{G(P)*+ Im GA(P)]}

(A6) 4 20 € 5 U%TSVO €
The contribution of the third diagram is = T TUoPoToy Zg: T2 T & (A14)
e [ d'P dSy(e) e Substituting this result into EqA9), and performing inte-
STTH) 2m?* de V- A V- VD(v-K)ls, gration overe, we get the Nernst-Ettingshausen coefficient
(A7)  that coincides with Eq(48).
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