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Weak-localization effect on thermomagnetic phenomena
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The quantum transport equation~QTE! is extended to study weak localization~WL! effects on galvanomag-
netic and thermomagnetic phenomena. QTE has many advantages over the linear response method~LRM!: ~i!
particle-hole asymmetry, which is necessary for the Hall effect is taken into account by the nonequilibrium
distribution function, while the LRM requires expansion near the Fermi surface,~ii ! when calculating response
to the temperature gradient, the problem of WL correction to the heat current operator is avoided,~iii ! the
magnetic field is directly introduced to the QTE, while the LRM deals with the vector potential and special
attention should be paid to maintain gauge invariance, e.g., when calculating the Nernst-Ettingshausen effect
the heat current operator should be modified to include the external magnetic field. We reproduce in a very
compact form known results for the conductivity, the Hall and the thermoelectric effects and then we study our
main problem, WL correction to the Nernst-Ettingshausen coefficient~transverse thermopower!. We show that
in a quasi-two-dimensional film the Nernst-Ettingshausen coefficient has a large logarithmic factor similar to
that of the conductivity and the Hall conductivity, while the thermoelectric coefficient does not have such a
factor.
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I. INTRODUCTION

In many complex cases the quantum transport equa
~QTE! turns out to be physically clear and more conveni
than the linear response method~LRM!. Calculating many-
body corrections to the electrical conductivity choice of t
QTE or the LRM is a matter of taste, the LRM requires ma
diagrams to be considered, while the QTE deals only w
the electron self-energy diagrams but includes specific te
like Poisson brackets corrections. The QTE shows spe
advantages when thermoelectric and galvanomagnetic ef
are considered.

1. Calculating the thermoelectric coefficient by the QT
as a response of the electron system to the temperature
dient, one avoids difficulty associated with corrections to
heat current operator due to the electron-electron
electron-phonon interactions.1,2

2. Calculating the Hall coefficient by the QTE th
electron-hole asymmetry is accounted automatically by
nonequilibrium distribution function of noninteracting ele
trons, while the LRM requires all electron parameters to
expanded near the Fermi surface.

3. The QTE incorporates real electric and magnetic fie
in the gradient terms and also through the terms in the fo
of the Poisson brackets. Contrary to that, the LRM deals w
two vector potentials for the electric and magnetic fields a
special attention is required to obtain the Hall componen
the electric current. When calculating the Nern
Ettingshausen coefficient the gauge invariance requires
vector potential corresponding to the magnetic field to
PRB 610163-1829/2000/61~11!/7340~8!/$15.00
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included in the heat current operator~we will discuss this
subject in detail in the Appendix!.

The QTE was initially developed for the interaction e
fects on the conductivity in the diffusion regime3 and was
later extended to the weakly disordered regime for
conductivity,4 thermoelectric power,1,2 and the Hall effect.5

In the present paper we first derive the QTE, which incorp
rates electric and magnetic fields and the temperature gr
ent on equal footing. Then we obtain the WL corrections
the conductivity, the Hall conductivity, which has been c
culated earlier by the LRM in Refs. 6 and 7~see also Refs. 8
and 9!. Then we consider the thermoelectric coefficie
which has also been considered earlier by LRM.10 Finally we
find a WL correction to the Nernst-Ettingshausen coefficie
which to our knowledge has not been studied before, and
the reasons mentioned above, it is a very difficult problem
study by the LRM.

II. QUANTUM TRANSPORT EQUATION

The quantum transport equation method is based on
Keldysh diagrammatic technique, where transport pheno
ena are described by the 232 matrix electron Green function
Ĝ, as well as the matrix electron self-energyŜ,

Ĝ5S 0 GA

GR GCD , Ŝ5S SC SR

SA 0 D , ~1!

whereA andR stand for advanced and retarded compone
of the matrix function andC corresponds to the kinetic com
ponent.
7340 ©2000 The American Physical Society
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The electric current is expressed by the kinetic Gree
function GC,

J5E d4P

~2p!4
ev Im DGC~P!, ~2!

whereP5(p,e) and DGC is the nonequilibrium correction
to GC, which will be calculated in each particular case
external disturbance.

Assuming that weak localization corrections are small,
will calculate the kinetic electron Green function by iter
tion. Without weak localization effects, the retarded~ad-
vanced! Green function is

GR~P!5@GA~P!#* 5
1

e2jp1 i /2t
, jp5

p22pF
2

2m
, ~3!

wheret is the elastic scattering time due to electron-impur
scattering.

The normalization condition for the matrix Green fun
tion in the coordinate representation

E dYĜ~X2 ,Y!Ĝ~Y,X1!51̂ ~4!

@X is a four-dimensional coordinate (r ,t)#, results in the fol-
lowing form of the Keldysh component

GC~X2 ,X1!5E dY@S~X2 ,Y!GA~Y,X1!

2GR~X2 ,Y!S~Y,X1!#, ~5!

where the functionS plays the role of the electron distribu
tion function.

In equilibrium S5S052tanh(e/2T). In the presence o
the electric and weak magnetic fields~the quantization of the
electron levels is neglected! S is determined from the follow-
ing transport equation:

e~v•E!
]S

]e
2~v•¹T!

e

T

]S

]e
1

e

c
~v3H!

]S

]p
5I e2 imp , ~6!

where I e2 imp is the collision integrals corresponding to th
electron-impurity interaction in the lowest order~without
WL corrections! and is chosen in the simplest form

I e2 imp5
2

pntE dk

~2p!3
@S~k,e!2S~p,e!#Im G0

A~k,e!

5
S0~e!2S~e!

t
. ~7!

Performing the Fourier transformation of Eq.~5! from the
coordinate representation to the momentum-energy repre
tation we get

GC~P!5S~P!@GA~P!2GR~P!#1dGC~P!, ~8!

where dGC is the correction in the form of the Poisso
bracket

dGC5
i

2
$S~P!,GA~P!1GR~P!%. ~9!
’s

f

e

n-

Poisson bracket corrections arise when integrals in the c
dinate representation@like Eq. ~5!# transform to the
momentum-energy representation,

E dX A~X1 ,X!B~X,X2!⇒A~P!B~P!1
i

2
$A~P!,B~P!%,

~10!

where

$A,B%5S ]8A

]e

]8B

]t
2

]8B

]e

]8A

]t D2S ]8A

]p

]8B

]r
2

]8B

]p

]8A

]r D .

~11!

The potentialsA andF enter as

]8

]t
5

]

]t
2

e

c

]A

]t

]

]p
2e

]F

]t

]

]e
,

]8

]r
5

]

]r
2

e

c

]A

]r i

]

]pi
2e

]F

]r

]

]e
. ~12!

Therefore Poisson brackets due to the electric and magn
fields, and also due to the temperature gradient, are

$A,B%E5eES ]A

]e

]B

]p
2

]B

]e

]A

]p D , ~13!

$A,B%H5
e

c
H•S ]A

]p
3

]B

]p D , ~14!

$A,B%T5¹TS ]A

]T

]B

]p
2

]B

]T

]A

]p D . ~15!

Our goal is to find the WL correctionDGC and calculate
the electric current@Eq. ~2!#. The kinetic Green functionGC

may be found by two methods. First,GC may be expressed
through the nonequilibrium electron distribution functio
@see Eq.~5!#, which in turn is determined from the transpo
equation.1–3 Second, the transport equation may be writt
directly for GC. Both methods are equivalent, we chose t
second method as more convenient for the current probl

Note, that a retarded~advanced! component of the elec
tron self-energy consists of integrals of retarded~advanced!
Green functions, therefore, in the main approximation it
equal to zero. Thus, the WL correction toGC is determined
only by the kinetic componentSC. In the coordinate repre
sentation the transport equation forGC is

DGC~X,X8!5E dY dZ GR~X,Y!SC~Y,Z!GA~Z,X8!.

~16!

For the problem of WL the self-energy diagramsS are
shown in Fig. 1. To solve Eq.~16! we use the iteration pro

FIG. 1. Diagrams of the kinetic electron self-energySC contrib-
uting to the WL corrections to conductivity.
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cedure. As in the case of the QTE for the nonequilibriu
electron distribution function,1–3 field terms and scattering
terms in Eq.~16! cannot be separated. In the present form
ism, field terms accounting for the electric~magnetic! field
and temperature gradient appear due to zero order~without
WL corrections!, nonequilibrium distribution functions ob
tained from Eq.~6!, and due to Poisson brackets@Eqs.~13!–
~15!# after transformation of Eq.~16! to the energy-
momentum representation. Further for each particu
external perturbation the procedure described above wil
presented in detail.

III. CONDUCTIVITY

For the conductivity we retain in Eq.~6! only the term
corresponding to the electric field. The solution of Eq.~6!
with the electron-impurity collision integral, Eq.~7!, in the
energy-momentum representation is given by

S5S01fE , fE~P!52et~v•E!
]S0~e!

]e
. ~17!

The Poisson bracket term forGC @Eq. ~9!# is

dEGC5
i

2
$S0~e!,GA~P!1GR~P!%E . ~18!

Now we take into account WL corrections forGC, using Eq.
~16!. This equation in the momentum representation with
terms in the form of the Poisson brackets is

DGC5GRSC~fE!GA1GRSC~dEGC!GA1GRdESC~S0!GA

1
i

2
$GR,SC~S0!%EGA1

i

2
GR$SC~S0!,GA%E . ~19!

The first three terms take into account the nonequilibri
corrections due tofE , dGC, and internal Poisson brackets
the electron self-energySC. The last two terms are the Pois
son brackets between the self-energy and external G
functions. Keeping the linear in the electric field terms, o
should calculate the Poisson bracket terms with the equ
rium electron self-energy. But as we have already m
tioned, SA50, and thereforeSC(S0)52iS0(e)Im SA50.
So the last two terms are equal to zero, and we need to
into account only nonequilibrium corrections to the electr
self-energy.

Let us consider diagrams shown on Fig. 1. We den
corresponding self-energies asS1 , S2, and S3. The non-
equilibrium corrections to the first diagram are

S1
C~fE!5fE~Q2P!C~Q!@GA~Q2P!2GR~Q2P!#,

S1
C~dEGC!5C~Q!dEGC~Q2P!, ~20!

where for brevity we dropped the integral*dQ/(2p)4, Q
5(q,v), the CooperonC(Q) is

C~Q!5
1

pnt2

1

2 iv11/tf1Dq2 , ~21!

wheretf is the phase relaxation time.
The first correction in Eq.~19!, D1GC due toS1(fE), is

given by
l-

r
e

ll

en
e
-
-

ke

e

D1GC~P!5GR~P!C~Q!fE~P!@GA~Q2P!

2GR~Q2P!#GA~P!. ~22!

SubstitutingD1GC(P) into Eq. ~2! we find corresponding
correction to the conductivity. In the quasi-two-dimension
cased!Lf , where d is the thickness of the film andLf
5(Dtf)1/2 is the localization length, and we have

D1sxx52
2e2D

pd E d2q

~2p!2

1

1/tf1Dq2 52
e2

p2d
lnS Lf

l D ,

~23!

wherel 5vFt is the mean free path.
The second correction in Eq.~19!, D2GC due toS1(dGC)

@Eq. ~20!#, is

D2GC~P!5GR~P!C~Q!~ i /2!$S0~e!,GA~Q2P!

1GR~Q2P!%EGA~P!, ~24!

which results in the correction to the conductivityD2sxx
5(1/2)D1sxx .

Now we consider diagramsS2 and S3. These diagrams
containGC inside the electron-impurity ladder. For this re
son, nonequilibrium corrections due to the distribution fun
tion fE and due to the Poisson bracketdEGC give zero after
the angular integration over the electron momentum.

The next correctionD3GC comes from the Poisson brack
ets inside the self-energy diagrams. The Poisson bra
should include the electron distribution functionS0 in GC.
As the total contribution of all three equilibrium diagrams
zero, and in all diagramsGC has the same position with
respect to the Cooperon, the Poisson brackets betweenS0(e)
and Green’s functions inside the Cooperon are equal to z
The only nonzero term inD3GC appears when the Poisso
brackets are taken betweenS0(e) and the electron Green
functions GA,R(Q2P) ~external with respect to the Coop
eron! in the second and third diagrams,

D3GC5GR~P!F2
i

2
C~Q!$S0~e!,GA~Q2P!

1GR~Q2P!%EGGA~P!, ~25!

which results inD3sxx52(1/2)D1sxx . Thus, the second
and third corrections to the conductivity originating from th
Poisson brackets mutually cancel out andD1sxx describes
the full WL correction to the conductivity that coincides wit
Ref. 9. However, we will show that the Poisson brack
corrections are very important for the Hall and Nern
Ettingshausen effects.

IV. HALL EFFECT

Calculating the Hall conductivity we assume that t
magnetic field is directed along thez axis and the electric
field is directed along thex axis. The Hall currentJy is pro-
portional toE3H.

Without WL effects the electron distribution function ha
the form

S5S01fE1fH , ~26!
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where the nonequilibrium distribution functionfE is given
by Eq. ~17!, andfH is

fH~p,e!52t
e

c
~v3H!

]~S01fE!

]p
52

e2t2

cm
v•~E3H!

]S0

]e
.

~27!

The Hall conductivity of noninteracting electrons is given

sxy5
Jy

E
52eE d4P

~2p!4
vyfH Im GA~P!5Vtsxx , ~28!

whereV5eH/mc is the cyclotron frequency andsxx is the
Drude conductivity.

It is noteworthy here that the Hall effect is proportional
the particle-hole asymmetry and is taken into account in
nonequilibrium distribution function in Eq.~27! by the factor
]2jp /]2p51/m, which is a measure of the average curv
ture of the Fermi surface.

For electrons in the magnetic field the Poisson brac
corrections toGC,

dHGC5
i

2
$fE~P!,GA~P!1GR~P!%H , ~29!

are also proportional to the same particle-hole asymm
factor asfH(p,e).

To get the WL correction to the Hall conductivity w
keep in the momentum representation of Eq.~16! only terms
proportional toE3H,

DGC5GRSC~fH!GA1GRSC~dHGC!GA

1GRdHSC~fE!GA1GR@dHdESC~S0!#GA

1
i

2
$GR,SC~fE!%HGA1

i

2
GR$SC~fE!,GA%H ,

~30!

where SC(fH) stands for the self-energy with nonequilib
rium distribution functionfH ,SC(dHGC) stands for the self-
energy with the magnetic Poisson bracket correction toGC

from Eq. ~29!, dHSC(fE) denotes the magnetic Poisso
bracket in the self-energy with the nonequilibrium functi
fE, dHdESC is the correction due to internal~inside SC)
double Poisson brackets. In the last two terms we calcu
the magnetic Poisson bracket between the nonequilibr
self-energy andGR,A functions. As we discussed in the pr
vious section, in equilibriumSC50, thus external electric
Poisson brackets betweenSC(S0) andGR andGA are equal
to zero.

Let us start with the first diagramS1. The correction
D1GC corresponding to the first term in Eq.~30! is

D1GC~P!5GR~P!SC~fH!GA~P!

5GR~P!C~Q!fH~P!

3@GA~Q2P!2GR~Q2P!#GR~P!. ~31!

Calculating the electric current, we find the correction to
Hall conductivityD1sxy5Vtdsxx .

From the second term in Eq.~30! we have
e

-

t

ry

te
m

e

D2GC~P!5GR~P!SC@dHGC~Q2P!#GA~P!

52
i

2t
GR~P!fH~P!$@GA~Q2P!#2

1@GR~Q2P!#2%GA~P!. ~32!

The corresponding correction to the Hall conductivity
D2sxy5(1/2)Vtdsxx . Note that, as for the conductivity
the corrections to the Hall conductivity fromfH anddHGC

in S2 andS3 give zero after the angular integration.
Now we calculate the internal Poisson brackets@the third

term in Eq.~30!#. First let us consider the magnetic Poiss
brackets betweenfE and external with respect to the Coo
eron Green functionsGA,R(Q2P) in the second and the
third diagrams. For the Hall conductivity these contributio
cancel each other, because the electron momentum infE
changes its sign in these diagrams. Terms with the magn
Poisson bracket betweenfE and the Cooperon for all thre
diagramsS1 , S2, andS3 are proportional to

@GA~Q2P!2GR~Q2P!#1GA~Q2P!

3^GA~P8!2GR~P8!,GA~Q2P8!&1GR~Q2P!

3^GR~P8!,GA~Q2P8!2GR~Q2P8!&, ~33!

where ^G1 ,G2& stands for (pnt)21*dp G1G2. Performing
calculations, we find that these terms cancel each other.
similar way one can prove that the double Poisson brac
correctionsdHdESC also mutually cancel out.

Now we calculate contributions of the fifth and six
terms in Eq.~30!,

D5GC1D6GC5
e

c
H•v3

]SC

]p
@~GA!2GR2GA~GR!2#.

~34!

Calculations show that onlyS2 andS3 give nonzero contri-
bution, thus

D5GC1D6GC

5
e

c
H•v3

]

]p
@S2

C~fE!1S3
C~fE!#

3@~GA!2GR2GA~GR!2#

5
e

c
H•v3EC~Q!

et

m

]S0

]e
@GA~Q2P!1GR~Q2P!#

3@~GA!2GR2GA~GR!2#. ~35!

The corresponding correction to the Hall conductivity
D5,6sxy5sxy(1/2)Vtdsxx .

Finally, the total contribution to the Hall conductivity is

Dsxy

sxy
52

Dsxx

sxx
, ~36!

which coincides with Refs. 6 and 7.
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V. THERMOELECTRIC AND NERNST-ETTINGSHAUSEN
EFFECTS

Now we consider the thermoelectric and Nern
Ettingshausen coefficients. Without the WL correction,
nonequilibrium distribution function in the crossed tempe
ture gradient and the magnetic field is

S5S01fT1fN , ~37!

fT~P!5t~e!~v•¹T!
e

T

]S0~e!

]e
, ~38!

fN~p,e!52t
e

c
~v3H!

]~S01fT!

]p

5
et2~e!

cm
v•~¹T3H!

e

T

]S0

]e
. ~39!

The Poisson bracket corrections toGc are

dTGC5
i

2
$S0~e!,GA~P!1GR~P!%T , ~40!

dNGC5
i

2
$fT~P!,GA~P!1GR~P!%H . ~41!

The thermoelectric coefficient is defined from the equat
J5h¹T, therefore substitutingfT from Eq.~38! into Eq.~2!
we have the following equation for the thermoelectric co
ficient without weak localization effect:

h05
2e

3TE d4P

~2p!4v2t~e!e
]S0~e!

]e
Im GA~P!. ~42!

To get a nonzero result from Eq.~42! requires the electron
hole asymmetry to be taken into account. Therefore we
pand all electron quantities near the Fermi surface,

v~e!5vFS 11
e

2eF
D , n~e!5n0S 11

e

2eF
D ,

t~e!5t0S 12
e

2eF
D ,

1

t0
5pn0niU

2, n05
mpF

p2 , ~43!

whereni is the impurity concentration andU is the electron-
impurity potential. Finally we have

h052
2

9
et0pFT. ~44!

The weak localization correction to the thermoelectric co
ficient is obtained by substitutingfT for fE and$A,B%T for
$A,B%E into the equations of Sec. III. As a result we get

Dh52
e

pTE d3q

~2p!3E dee
]S0~e!

]e

1

q21Lf
22~e!

, ~45!

where Lf
2 (e)5D(e)tf(e). For a film, which is two-

dimensional with respect to the WL (d!Lf), the momentum
integral in Eq.~45! is logarithmically divergent on the uppe
limit. Taking the cutoff to be 1/l (e), l (e)5v(e)t(e), and
making the expansion near the Fermi surface, we get
-
e
-

n

-

x-

-

Dh52
e

2p2TdE dee
]S0~e!

]e
lnS Lf~e!

l ~e! D
5

eT

3d F ]

]e
lnS Lf~e!

l ~e! D G
e50

, ~46!

which is analogous to the result of Ref. 10. Equation~46!
shows that the correction to the thermoelectric coeffici
does not have a large logarithmic factor compared to
correction to the conductivity, Eq.~23!. This result means
that for the experimentally measured Seebek coefficient

B5B0S 12
Dsxx

sxx
1

Dh

h0
D , ~47!

where B052h0 /sxx , only the term corresponding to th
correction to the conductivity is important.

The Nernst-Ettingshausen coefficientN is defined by the
equationJ5N(¹T3H). SubstitutingfN for fH in Eq. ~2!
we get for the Nernst-Ettingshausen coefficient without we
localization effects

N52
p2

9

e2T

cm

]

]e
@v2~e!t2~e!n~e!#ue50

52
p2

6

T

eF
~Vt0!

sxx

H
52

p2

6

T

eF
sxy5

Vt0

2H
h. ~48!

Equation ~48! shows that the Nernst-Ettingshausen coe
cient is proportional to the product of the electron-ho
asymmetry factors, one from the Hall conductivitysxy and
another factorT/eF arises after expansion of all electron p
rameters near the Fermi surface similar to the thermoelec
coefficient. Note that this important fact is clear when calc
lating the Nernst-Ettingshausen coefficient by the transp
equation. When the LRM is applied special attention is
quired to find this double-electron-hole asymmetry, as d
cussed in detail in the Appendix.

The WL correction to the Nernst-Ettingshausen coe
cient may be obtained from the above presented calcula
of the Hall conductivity by substitutingfT for fE and also
$A,B%T for $A,B%E in all equations of Sec. III. As a result w
have

DN5

2
2e2

pcmE d3q

~2p!3E de
e

T

]S0~e!

]e

t~e!

q21@D~e!tf~e!#21
.

~49!

According to Eq.~49!, in the quasi-two-dimensional cas
(d,Lf) the main contribution to the Nernst-Ettingshaus
coefficient arises from the expansion oft(e) @see Eq.~43!#,
as a result

DN

N
522

Dsxx

sxx
, ~50!

which is different by sign compared with the correspondi
correction to the Hall conductivity@Eq. ~36!#. Equation~50!
shows that in the quasi-two-dimensional case the WL corr
tion to the Nernst-Ettingshausen coefficient has a large lo
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rithmic factor. Note, that for exactly two-dimensional~2D!
electrons, the electron momentum relaxation time does
depend on the energy, and the large logarithmic factor in
WL correction to the Nernst-Ettingshausen effect disappe

VI. CONCLUSIONS

In the present paper we apply the QTE for the WL effe
on different transport coefficients. We reproduce the W
corrections to the conductivity, the Hall conductivity6,7 and
the thermoelectric effect9 obtained earlier by the LRM. Then
we calculate WL corrections to the Nernst-Ettingshausen
efficient. To our knowledge, this problem has not been c
sidered before.

The QTE gives a convenient and universal description
all transport phenomena. A specific feature of an exter
disturbance is taken into account by the nonequilibrium d
tribution functions of noninteracting electrons@Eqs. ~17!,
~27!, ~38!, and~39!# and by quantum corrections to the qu
siclassical transport equation in the form of the Poiss
brackets@Eqs.~13!, ~14!, and~15!#.

The quasiclassical transport equation has been applie
the WL effect on the electrical conductivity in Ref. 1
where all terms in the form of the Poisson brackets h
been ignored. As we demonstrated above, these terms m
ally cancelled for the correction to the conductivity but th
are very important for the Hall conductivity and the Nern
Ettingshausen coefficient.

QTE also allows us to avoid lengthy calculations of t
particle-hole asymmetry, which is important for the Hall a
Nernst effects. In the Hall effect the particle-hole asymme
appears as a measure of the average curvature of the F
surface, and is expressed through the electron mass~some
effective electron mass in the general case!. Using the QTE
we get Hall’s particle-hole asymmetry in the distributio
function of noninteracting electrons, Eq.~27!, and in the
magnetic Poisson bracket, Eq.~14!. To obtain the same re
sult by the LRM one needs to expand all electron parame
in all Green’s functions near the Fermi surface.

The Nernst-Ettingshausen coefficient is proportional
the double particle-hole asymmetry. It means that in the
ear response method one should keep second-order term
expansion of electron parameters near the Fermi surf
With many-body corrections, it is a complicated proble
Ignoring at least one of the diagrams gives a nonzero Ner
Ettingshausen coefficient in zero order in the particle-h
asymmetry~without any expansion!. We discuss this prob
lem in detail in the Appendix for noninteracting electron
For interacting electrons the problem is even more com
cated. As an example of the problem for which wrong resu
have been obtained, we mention the effect of supercond
ing fluctuations on the Nernst-Ettingshausen coefficient.12,13

We also found that in the quasi-two-dimensional case
WL correction to the Nernst-Ettingshausen coefficient is p
portional to a large logarithmic factor similar to WL corre
tions to the conductivity and the Hall conductivity, while fo
the WL correction to the thermoelectric coefficient such
correction is absent.

It is interesting to note, that, though it is not obvious
advance, the WL correction to any transport coefficients
given by the corresponding ‘‘classical’’ formula, where th
ot
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relaxation time is changed for its Cooperon correctionDt
522t*d3q/(2p)3C(q).

Thermoelectric phenomena in low-dimensional syste
attracted considerable attention recently.14–17 Our experi-
mental study of the Nernst-Ettingshausen coefficient
proves our understanding of low-dimensional electron tra
port.
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APPENDIX

In this appendix we calculate the Nernst-Ettingshau
coefficient of noninteracting electrons using the LRM. W
demonstrate that the heat current correction due to the m
netic field should be taken into account. The diagram w
this additional heat current vertex cancels the basic diagr
in zero order in the electron-hole asymmetry. The nonz
Nernst-Ettingshausen coefficient arises only in the sec
order in the asymmetry. These conclusions are also rele
to many-body corrections to the Nernst coefficient.

In the linear response method the external magnetic fi
is introduced through the corresponding vector potentiaH
5 i (k3A). In the presence of the external magnetic field t
electronic kinetic energy is given by

K5
1

2m S p1
e

c
AD 2

5
p2

2m
1

e

c
~v•A!1

e2

2mc2 A2. ~A1!

We choose the gauge:k•A50, and consider a response
the electron system to the temperature gradient, which
perpendicular to the magnetic field.

Then the Nernst-Ettingshausen current is proportiona
¹T3H52 iA(k•¹T).

In the LRM the Nernst coefficient is given by

N5
1

VTH
Im QR~V,A!. ~A2!

HereQR(V,A) is the Fourier representation of the retard
correlation function of the heat and charge current opera
Ĵh and Ĵe in the presence of the vector potentialA,

QR~x2x8,t2t8,A!52Q~ t2t8!

3^@ Ĵh~x,t,A!•n,Ĵe~x8,t8,A!•n1#&,

~A3!

wheren is a unit vector directed along the temperature g
dient,n1 is a unit vector perpendicular ton and the external
magnetic fieldH.

The external magnetic field is taken into account by
serting an additional magnetic vertex (e/c)(v•A) @the sec-
ond term on the right-hand side of Eq.~A1!# into the elec-
tronic Green’s function of the corresponding diagrams of
linear response correlators. For example, diagrams for
Hall coefficient are obtained by inserting this vertex into t
conductivity diagrams as it was done in Refs. 8 and 9.
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For the Nernst-Ettingshausen coefficient, however, it
not enough to insert the magnetic vertex in the diagram
the off-diagonal thermoelectric coefficient. An addition
diagram appears due to modification of the heat current
tex. According to Ref. 2 the heat current vertex for nonint
acting electrons isgh5jpv, which corresponds to the energ
current measured with respect to the electron chemical
tential. For electrons in the magnetic field the vertex of
heat current is modified according to Eq.~A1!

gh5jpv1~e/c!~v•A!v. ~A4!

Diagrams of the LRM for the Nernst-Ettingshausen coe
cient are presented in Fig. 2. In the first and second diagr
the vertex (e/c)(v•A) describes the effect of the magnet
field on the electron states. In the third diagram the sa
vertex is a part of the heat current operator, Eq.~A3!. To get
the termA(k•¹T), one should expand the Green functio
G(p1k) in powers of (k•v). Then the contribution of the
first and second diagrams is given by

N11N25
e

THE d4P

~2p!4

]S0~e!

]e
jpv

e

c
~v•A!

3~v•¹T!~v•k!~ I 11I 2!, ~A5!

where the combination of the Green functions is

I 11I 252iGA~P!GR~P!Im@GA~P!#252i t2Im@GA~P!#2.
~A6!

The contribution of the third diagram is

N35
e

THE d4P

~2p!4

]S0~e!

]e

e

c
v~v•A!~v•¹T!~v•k!I 3 ,

~A7!

FIG. 2. Diagrams of the linear response method for the Ner
Ettingshausen coefficient of noninteracting electrons.
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where the combination of the Green functionsI 3 is

I 352iGA~P!Im@GA~P!#252i t2Im GA~P!. ~A8!

The angular integral in Eqs.~A4! and~A6! gives the term
proportional toA(k•¹T),

E dVp

4p
v~v•A!~v•k!~v•¹T!5

v4

15
A~k•¹T!. ~A9!

Therefore, the total contribution of the three diagrams is

N5
ie2

15cTHE de

2p
djp

]S0~e!

]e
v4t2n$jpIm@GA~P!#2

1Im GA~P!%A~k•¹T!. ~A10!

Without taking into account the particle-hole asymme
the total contribution of the three diagrams goes to zero a
integration overjp ,

E djp$jpIm@GA~P!#21Im@GA~P!#%50. ~A11!

Nonzero contribution arises from terms proportional toe2,
thus we should expand all electron parameters near the F
surface:

@v~jp!#4n~jp!5v0
4n0F11

5

2

jp

eF
1

15

8 S jp

eF
D 2

1•••G ,
~A12!

@t~e!#25t0
2F12

e

eF
1•••G . ~A13!

Taking into account terms proportional to the square of
particle-hole asymmetry, e.g.,j2/eF

2 or je/eF
2 , we get

E djpv4nt2$jpIm@GA~P!21Im GA~P!#%

52pv0
4n0t0

25

4

e2

eF
2 52p

5

2

v0
2t0

2n0

m

e2

eF
. ~A14!

Substituting this result into Eq.~A9!, and performing inte-
gration overe, we get the Nernst-Ettingshausen coefficie
that coincides with Eq.~48!.
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3B.L. Altshuler, Zh. Éksp. Teor. Fiz.75, 1330~1978! @Sov. Phys.
JETP48, 670 ~1978!#.

4M.Yu. Reizer and A.V. Sergeev, Zh. E´ksp. Teor. Fiz.92, 2291
~1987! @Sov. Phys. JETP65, 1291~1987!#.

5M.Yu. Reizer, Phys. Rev. B57, 12 338~1998!.
6B.L. Altshuler, A.G. Aronov, and P.A. Lee, Phys. Rev. Lett.44,
ity,

,

1288 ~1980!.
7H. Fukuyama, J. Phys. Soc. Jpn.49, 664 ~1980!.
8B.L. Altshuler, D.E. Khmel’nitskii, A.I. Larkin, and P.A. Lee

Phys. Rev. B22, 5142~1980!.
9B.L. Altshuler and A.G. Aronov, inElectron-Electron Interaction

in Disordered Systems, edited by A.L. Efros and M. Polak
~North-Holland, Amsterdam, 1985!.

10V.V. Afonin, Yu.M. Galperin, and V.L. Gurevich, Zh. E´ksp.
Teor. Fiz. 87, 335 ~1984! @Sov. Phys. JETP60, 194 ~1984!#.
Note, that a coefficient in Eq.~32! of this paper should be ex
changed for 1/3.

11J. Rammer and H. Smith, Rev. Mod. Phys.58, 323 ~1986!.



B

n,

PRB 61 7347WEAK-LOCALIZATION EFFECT ON THERMOMAGNETIC . . .
12K. Maki, Prog. Theor. Phys.45, 1009~1971!.
13S. Ullah and A.T. Dorsey, Phys. Rev. Lett.65, 2066 ~1990!;

Phys. Rev. B44, 262 ~1991!.
14R. Fletcher, Semicond. Sci. Technol.14, R1 ~1999!.
15X. Zianni, P.N. Butcher, and M.J. Kearney, Phys. Rev.
49, 7520~1994!.
16R.T. Syme and M.J. Kearney, Phys. Rev. B46, 7662~1992!.
17A. Miele, R. Fletcher, and E. Zaremba, Y. Geng, C. T. Foxo

and J. J. Harris, Phys. Rev. B58, 13 181~1998!.


