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Geometrical perturbation of graphene electronic structure
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We discuss low-energy electronic properties of distorted graphene sheets from a local geometric viewpoint,
treating curvature and strain as perturbations of a smooth surface. This allows a unified description of the
variety of deformations to which carbon nanotubes are susceptible. By using a general symmetry analysis in
conjunction with a four-orbital, nonorthogonal tight-binding model, we calculate accurate values of the rel-
evant couplings.
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Carbon nanotubes1 have a high Young’s modulus, but ar
not otherwise mechanically strong, being easily bent, or
formed by van der Waals interactions with a substra2

Hence, the electronic repercussions of mechanical defor
tions are of interest for both fundamental and device-orien
reasons. Kane and Mele3 have studied this issue with the a
of a tight-binding model incorporating onlyp electrons. We
use a model-independent group-theoretical analysis to re
the relevant couplings, which are then evaluated with a fo
orbital non-orthogonal tight-binding model that takes in
account the strong effects of rehybridization. By express
curvature and strain as a modification of the Hamiltonian a
overlap, we avoid the use of the large unit cells implied
small deformations.

The response of electronic structure to curvature
strain is essentially a local coupling, largely independen
boundary conditions or global topology. We therefore isol
the effects of geometric deformation by first studying
single graphene sheet. Although our perturbative approac
in principle limited to gentle distortions, the results are
good agreement with full tight-binding calculations for a r
dius of curvature as small as two graphene lattice spac
@i.e., a~12,0! tube#.

The conformation of a surface in space~e.g., a single
graphene sheet! is described by a vector-valued embeddi
function X(xm), specifying the location of the point with
coordinatesxm,m51,2. The pair of vectorstm5]X/]xm,(m
51,2) provide a basis for the tangent space and determ
the metric gmn5tm•tn , which converts coordinate differ
ences into physical distances. If the coordinates are de
mined relative to a flat unstretched state, the metric car
information about strain. The inverse of this matrix is d
notedgls, so thatglmgmn5dl

n . Curvature is detected b
second derivatives4,5 of the embedding functionX,

]tn

]xm
5n̂Knm1tlGl

nm , ~1!

wheren̂ is the unit vector normal to the surface, the sign
which is chosen arbitrarily. The extrinsic curvatureKmn de-
scribes the way the surface is embedded in space, and
connection coefficientsGl

mn are mostly related to twisting o
the coordinates from point to point on the surface. A simi
equation
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]n̂

]xm
52tnKn

m ~2!

obtains for the derivatives of the unit normal vector. An i
dex was raised here with the metric as usual:Km

n

5gmlKln . At each point, a surface has two principal curv
tures 1/R1 and 1/R2 along orthogonal directions. The Gaus
ian curvature,G51/(R1R2), is related to the extrinsic curva
ture by

G5detKm
n , ~3!

where the indices indicate which version ofK to use.
Figure 1 depicts the graphene lattice and its first Brillou

zone. Bands cross the Fermi level only at the isolated po
K andK8 at the corners of the zone. We exploit their sta
lizer ~little! group to constrain the form of an effectiv
Hamiltonian for the electronic states near the Fermi ener
The full point group of the graphene lattice isD6h , which is
generated by a rotation throughp/3 about an axis (ẑ) per-
pendicular to the plane, reflection through thex-y plane
(sh), and rotations byp about axes through lattice points o
halfway between, as depicted in Fig. 1~b!. K is not invariant
under rotations by odd multiples ofp/3, so its stabilizer sub-

FIG. 1. ~a! The pattern of phases associated with the Brillou
zone pointK, which we take to point along they direction; all sites
at the same value ofy have the same phase and we abbreviates
5e2p i /3. The sites with heavy dots are on theA sublattice.~b! The
pointsK andK8 in the hexagonal Brillouin zone, and the two type
of p rotation axes in the stabilizer group ofK.
7308 ©2000 The American Physical Society
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group isD3h . We focus on an Abelian subgroup,C3h , gen-
erated by the 2p/3 rotation aboutẑ and the mirror plane.

Transformation of tensors such asgmn andKmn is facili-
tated by use of the complex coordinates

z5
1

A2
~x1 iy !, z̄5

1

A2
~x2 iy !. ~4!

In these coordinates, the Euclidean metric has compone

S gzz gzz̄

gz̄z gz̄z̄
D 5S 0 1

1 0D . ~5!

The inversegmn is the same matrix asgmn , so that raising or
lowering an index does not change the numerical value
tensor component. The general relation between thez,z̄ and
the ordinary Cartesian components of a second-rank tens

Azz5
1
2 @Axx2Ayy2 i ~Axy1Ayx!#,

Azz̄5
1
2 @Axx1Ayy1 i ~Axy2Ayx!#.

Az̄z̄ and Az̄z are obtained by complex conjugation. IfA is
symmetric~as areg andK) Azz̄ is real.

For a given tensor componentA . . .
. . . , we define an in-

teger ‘‘spin,’’ s 5 # ~upperz’s and lowerz̄’s! 2 # ~lower z’s
and upperz̄’s!. If the geometrical structure described by
uniform value of the tensorA is rotated counterclockwise
through an arbitrary angleu, each component picks up
phase factor ofeisu.

The electronic states atK decompose into one
dimensional representations ofC3h labeled again by a spin
so that under rotation by 2p/3 counterclockwise about
hexagon center, a state picks up a phase factor ofei2ps/3. At
the Fermi level there are two states, one~A! having the pat-
tern of amplitudes depicted in Fig. 1~a!, and another~B!
which differs only in having that pattern shifted perpendic
lar to K onto theB sublattice. They have the following a
tributes, wherex(sh) indicates evenness~11! or oddness
(21) under reflection through the graphene plane:

A: s521, x~sh!521,

B: s511, x~sh!521.

The corresponding states atK8 have spins with opposite
sign.

The effective Hamiltonian contains only terms that a
even undersh and have total spin zero~mod 3!. The kinetic
part associated with the undeformed sheet is

HD~q!5&vFS 0 2 iqz

iqz̄ 0 D , ~6!

where the upper row~left column! corresponds toA, and the
lower row ~right column! to B. Here and below, we omi
creation and destruction operators.

The curvature and strain-induced effective potential~in
the sense of a self-energy! for these two bands takes the for

V5S VAA VAB

VBA VBB
D , ~7!
s

a

r is

-

the components of which are restricted by symmetry as
lows. All elements are even under the mirror operationsh .
VAB5(VBA)* has spin 1~mod 3!. VAA andVBB must be real,
simply from self-adjointness. Finally, usingsv ,VBB is found
from VAA by changing the sign of terms with odd tens
order.

The only allowed combinations to lowest nontrivial ord
in dgmn andKmn ~first and second, respectively! are straight-
forward to determine. The spins of the metric and curvat
are clear from the indices they carry. Undersh ,dg is even,
but Kmn is odd because of its dependence on the choice
orientation of the unit normaln. The connection coefficients
can be ignored because they are second order in gradien
the metric, and all the information they contain about curv
ture is already found in detK. This analysis produces a
effective potential

VAA5c1Tr dg1c2~Tr K/2!21c3G,

VBB5VAA , ~8!

VAB5c4dgzz1c5~Kz̄z̄!
21c6Kzz̄Kzz.

Tr K/25Kzz̄ is the mean curvature, andG5uKzzu22uKzz̄u2 is
the Gaussian curvature.

To compute the values of the couplings, we employ a fo
orbital per atom, nonorthogonal tight-binding model, wi
the parametrizations of Porezaget al.10 Curvature induces
nonzero Hamiltonian and curvature matrix elements betw
local p orbitals andsp2 orbitals. Although the result can b
recast as ap Hamiltonian~as for instance in Ref. 3!, accurate
computation of the effect requires all the orbitals since be
ing produces rehybridization.

We choose a basis ofp orbitals on each atom to corre
spond to an orthonormal frame having the third element n
mal to the surface. The Hamiltonian then connects orbi
on different sites according to a 434 matrix depending upon
the distance between them as well as the relative orienta
of the frames. The curvature enters both of these quanti
since it affects the relation between coordinate differen
~along the sheet! and the interatomic distance. Neglecting t
change in interatomic distance results in calculated gaps
duced by a factor of 2.

We extract the couplingsc1 , . . . ,c6 from the four-orbital
tight-binding model by studying the motion of the Ferm
point under very small deformations of a graphene sh
The error incurred by truncating the expansion as in Eq.~8!
can be gauged from Fig. 2. The departure from the lowe
order curvature-induced effects does not exceed 10% u
the equivalent of a~6,6! tube. Similarly, the strain depen
dence is nearly linear up to 10% extension.

The curvature affects orientations and positions of the
evant atomic orbitals. By shifting this dependence onto
Hamiltonian and overlap matrices, we make the problem
pear as a flat sheet with unorthodox couplings. This is so
what analogous to the shift from Schro¨dinger to Heisenberg
representations. Under uniform curvature conditions, this
stores a two-atom unit cell so that computations are ra
and individual couplings easily isolated. The computed v
ues of thecn are collected in Table I.

The symmetry undery→2y guarantees that all theci are
real. Comparison with the kinetic Hamiltonian@Eq. ~6!#
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shows that distorting the sheet shifts the double cone of
low-energy bands in bothq and energy. However, it is o
interest to note that the Fermi point is never destroyed to
order and persists in the infinite graphene sheet. A gap ca
induced only if boundary conditions make the shifted Fer
point inaccessible, as occurs in a cylindrical geometry.
for the strain contributions, Trdg5gxx1gyy52dgzz̄ mea-
sures isotropic dilatation or compression of the lattice. T
other component,gz

z̄5
1
2 (gxx2gyy12igxy), is associated

with shear~twisting, for a tube!. Sincek vectors are reck-
oned with respect to coordinates attached to the undefor
conformation, a dilatation does not shift the Fermi point
all. Also note that the gradient of the curvatureKmn cannot
contribute toV even in higher order, because it is odd und
sh .

Cylindrical geometries and perturbations of them are
special interest. We use a right-handed system of ‘‘tube
ordinates’’j and z with ĵ running along the circumferenc
and ẑ along the axial direction of the cylinder~so thatĵ3 ẑ
points outward3!. These combine intow5(j1 i z)/A2 and its
complex conjugatew̄. Introducing the wrapping anglex be-
tween the circumferential directionj and a bond directionx,
we havew5e2 ixz. Similarly, qw5(qj1 iqz)/A25e2 ixqz.
The values ofqj are quantized to 2pn/R, whereR is the
cylinder radius. With this substitution, the kinetic Ham
tonian becomes

FIG. 2. Curvature induces an energy differenceDK between the
two bands atK by shifting the Fermi point. This results in a genuin
energy gap if the shifted point is not accessible due to bound
conditions.DK is shown scaled byR2 here forx50 ~upper curves,
left-hand scale! andx5p/6 ~lower curves, right-hand scale!. Note
the zero offset. (a052.46 Å is the graphene lattice constant.! The
solid curves are exact. Expanding the Hamiltonian and overlap o
to quadratic order inKmn results in the dashed curves.

TABLE I. Geometric couplings in graphene.

Coupling Value (a052.46 Å)

c1 21.0660.05 eV
c2 1.32460.005 eVa0

2

c3 20.90060.005 eVa0
2

c4 7.0060.05 eV
c5 20.69960.002 eVa0

2

c6 21.22160.003 eVa0
2
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HD~q!5 i&vFS 0 2eixqw

e2 ixqw̄ 0 D .

It is well known6 that curvature can induce a gap in
nanotube. We now demonstrate how this effect arises fr
the geometrical couplings. If the cylinder is undistorte
Kww5Kww̄51/2R. Thez,z̄ components have this same ma
nitude, but different phases according to their spins, so
the off-diagonal element of the effective potential becom

VAB
cyl 5

eix

4R2
~c5e3ix1c6e23ix!1c4e22ixdgww , ~9!

where anisotropic strain in the bonds is accounted for bydg.
The imaginary part of the factor in parentheses can be of
by a shift ofqz , but the real part cannot, andqj is quantized.
The curvature therefore induces a direct gap of magnitud

D05Uc52c6

2R2
sin 3xU , ~10!

which is shifted away from K by qz
052@(c5

1c6)/4R2#cos 3x. The value of the constantuc52c6u/2 is
about 0.26 eVa0

2 ~see Table I!. Notice that (n,n) tubes are
not gapped by curvature or bydg, sincedgww is real for
these achiral tubes.

Now we consider deformations imposed on the unifo
cylindrical background curvature. Since circumferent
boundary conditions reduce each band for planar graphen
a set of separated branches, we construct an effective po
tial for the lowest-lying branch only. (n,n) tubes (x50) are
of most interest, since they remain ungapped in the unifo
conformation.

In a left/right-moving basis which diagonalizes the kine
energy,

H5S 2vFqz1ReVAB1VAA 2 i Im VAB

i Im VAB vFqz2ReVAB1VAAD .

~11!

Circumferential averaging is implicit here and the zero ofqz

has been shifted.
In general, the diagonal part ofV shifts the Fermi point in

qz and the entire band structure in energy. Such a shif
relevant to an intratube junction, which could be created
e.g., local squashing of a tube. This involves additional dir
electronic coupling as well as curvature effects as has b
discussed elsewhere.7 Meanwhile, the off-diagonal term ca
open a gap or scatter electrons between left- and rig
moving branches.

The application of our effective Hamiltonian to the ele
tronic effects of mechanical deformations, either externa
imposed or thermally excited, requires consideration of
elastic properties of a nanotube. The lowest-energy defor
tions of the tube are the bending and twisting3,9 Goldstone
modes. In comparison to strain, curvature costs very li
elastic energy. For instance, a~10,10! tube has anE2g
‘squashing’ mode8 at 3 meV and a breathing mode at 2
meV. To study the low-energy modes, we parametrize
deformation by local changes in radius,h(j,z), and azimuth,
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u(j,z). Strain energy is approximately minimized by di
carding azimuthally uniform changes in radius, and sett
]ju1h50. Only the azimuthally uniform partu0 of u and
nonuniform Fourier modes ofh are independent variables
We also discard higher than first derivatives inz. The result,
after azimuthal averaging, is

Im VAB'F 1

R2 S c6

2
2c5D2c4GR]zu0

1S c6

2
2c5D ]j

2h~]j]zh!2c4~]jh!~]zh!.

Since the strain couplingc4 is about 7 eV and the combina
tion c52c6/2 of curvature couplings is about 0.1 eVa0

2,
pure curvature couples very weakly. Moreover, in the
proximation we have made, there is absolutely no coup
without axial variation of the deformation, and that necess
,

-

g

-
g
r-

ily implies strain, so that the major part of any elastic norm
mode will couple primarily through strain.

This geometric picture provides a unified framework f
understanding the effects of structural distortions, both c
vature and strain, on the low-energy electronic properties
sp2-bonded carbon, particularly nanoscale materials such
nanotubes and nanocones.11 The effective Hamiltonian so
produced can handle large-scale distortions in a natural
computationally efficient manner, using a minimal~two-
atom! unit cell.
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