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Geometrical perturbation of graphene electronic structure
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We discuss low-energy electronic properties of distorted graphene sheets from a local geometric viewpoint,
treating curvature and strain as perturbations of a smooth surface. This allows a unified description of the
variety of deformations to which carbon nanotubes are susceptible. By using a general symmetry analysis in
conjunction with a four-orbital, nonorthogonal tight-binding model, we calculate accurate values of the rel-
evant couplings.

Carbon nanotubésave a high Young’s modulus, but are 9N
not otherwise mechanically strong, being easily bent, or de- —=-7K", (2
formed by van der Waals interactions with a substfate. ax*

Hence, the electronic repercussions of mechanical deforma-

tions are of interest for both fundamental and device-oriente@btains for the derivatives of the unit normal vector. An in-
reasons. Kane and Méleave studied this issue with the aid dex was raised here with the metric as usu#l,

of a tight-binding model incorporating onty electrons. We ~ =9**K,, . At each point, a surface has two principal curva-
use a model-independent group-theoretical analysis to revefires 1R; and 1R; along orthogonal directions. The Gauss-
the relevant couplings, which are then evaluated with a fourian curvatureG = 1/(R;R;), is related to the extrinsic curva-
orbital non-orthogonal tight-binding model that takes intoture by

account the strong effects of rehybridization. By expressing

curvature and strain as a modification of the Hamiltonian and G=detk*,, (3
overlap, we avoid the use of the large unit cells implied by
small deformations. where the indices indicate which versionkfto use.

The response of electronic structure to curvature and Figure 1 depicts the graphene lattice and its first Brillouin
strain is essentially a local coupling, largely independent ozone. Bands cross the Fermi level only at the isolated points
boundary conditions or global topology. We therefore isolatek andK’ at the corners of the zone. We exploit their stabi-
the effects of geometric deformation by first studying alizer (little) group to constrain the form of an effective
single graphene sheet. Although our perturbative approach idamiltonian for the electronic states near the Fermi energy.
in principle limited to gentle distortions, the results are inThe full point group of the graphene latticeDs,, which is
good agreement with full tight-binding calculations for a ra- gyenerated by a rotation through'3 about an axisZ) per-
dius of curvature as small as two graphene lattice spacing§endicular to the plane, reflection through tkey plane
[i.e., a(12,0 tubel. (o), and rotations byr about axes through lattice points or

The conformation of a surface in spateg., a single paifway between, as depicted in Figbl K is not invariant
graphene shepts described by a vector-valued embeddingnqer rotations by odd multiples af/3, so its stabilizer sub-
function X(x*), specifying the location of the point with

coordinatesx”,u=1,2. The pair of vectors,, = X/ Jx*,(u y
=1,2) provide a basis for the tangent space and determine T_)
the metricg,,=7,-7,, which converts coordinate differ-
ences into physical distances. If the coordinates are deter-
mined relative to a flat unstretched state, the metric carries
information about strain. The inverse of this matrix is de-
notedg’, so thatg*#g,,=¢&",. Curvature is detected by
second derivativés of the embedding functioiX,

o,

=nK,,+ 7™, (1)
axs (@ (b)

wheren is the unit vector normal to the surface, the sign of G, 1. () The pattern of phases associated with the Brillouin
which is chosen arbitrarily. The extrinsic curvatutg, de-  zone pointk, which we take to point along thedirection; all sites
scribes the way the surface is embedded in space, and tagthe same value of have the same phase and we abbreviate
connection coefficients v are mostly related to twisting of =e?™/3, The sites with heavy dots are on tAesublattice.(b) The
the coordinates from point to point on the surface. A similarpointskK andK’ in the hexagonal Brillouin zone, and the two types
equation of 7 rotation axes in the stabilizer group Kf
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group isD3p,. We focus on an Abelian subgrou@g,, gen-  the components of which are restricted by symmetry as fol-

erated by the 2/3 rotation aboutz and the mirror plane. ~ lows. All elements are even under the mirror operaiign
Transformation of tensors such gs, andK,, is facili- ~ Vas=(Vsa)* has spin Imod 3. Vax andVgg must be real,
tated by use of the complex coordinates simply from self-adjointness. Finally, using, ,Vgg is found
from V, by changing the sign of terms with odd tensor
1 _ — 1 _ order.
z= E(Xﬂy), z= E(X—IY)- 4 The only allowed combinations to lowest nontrivial order

in g9, andK ,, (first and second, respectivglgre straight-

In these coordinates, the Euclidean metric has componentdorward to determine. The spins of the metric and curvature
are clear from the indices they carry. Undgy, 8g is even,

92z 9zz| 0 1 5 butK,, is odd because of its dependence on the choice of
9, 95 \1 0/ ) orientation of the unit normai. The connection coefficients

, , . . can be ignored because they are second order in gradients of
The inverseg”” is the same matrix &g, , S0 that raising or the metric, and all the information they contain about curva-
lowering an index does not change the numerical value of §,,¢ is already found in dét. This analysis produces an
tensor component. The general relation betweerzthand  effective potential
the ordinary Cartesian components of a second-rank tensor is

Vaa=C1Tr 8g+cy(TrK/2)2+c5G,
Az~ %[Axx_ Ayy_ i (Axy+Ayx)]!
) . Veg=Vaa, (8)
A= [Axt Ayy+ I (Axy_Ayx)]-

_ 2
A, and A, are obtained by complex conjugation. Af is Vas=C400z7+ Cs(Kz) "+ CoK K.

symmetric(as areg andK) A, is real. TrK/2=Kis the mean curvature, af@=|K,)2—|K 72 is
For a given tensor componeAt -, we define an in- the Gaussian curvature.
teger “spin,” s = # (upperz's and lowerz's) — # (lowerz's To compute the values of the couplings, we employ a four

orbital per atom, nonorthogonal tight-binding model, with
the parametrizations of Porezag all® Curvature induces
nonzero Hamiltonian and curvature matrix elements between
local 7 orbitals andsp? orbitals. Although the result can be
recast as ar Hamiltonian(as for instance in Ref.)3accurate
computation of the effect requires all the orbitals since bend-
ing produces rehybridization.

We choose a basis gf orbitals on each atom to corre-
spond to an orthonormal frame having the third element nor-
mal to the surface. The Hamiltonian then connects orbitals
on different sites according to a4 matrix depending upon
the distance between them as well as the relative orientation
of the frames. The curvature enters both of these quantities,
since it affects the relation between coordinate differences
(along the she¢tnd the interatomic distance. Neglecting the

and upperz’'s). If the geometrical structure described by a
uniform value of the tensoA is rotated counterclockwise

through an arbitrary angl®, each component picks up a
phase factor o&'s’.

The electronic states atk decompose into one-
dimensional representations ©f;, labeled again by a spin,
so that under rotation by 22/3 counterclockwise about a
hexagon center, a state picks up a phase factel?8f. At
the Fermi level there are two states, q#¢ having the pat-
tern of amplitudes depicted in Fig.(d, and another(B)
which differs only in having that pattern shifted perpendicu-
lar to K onto theB sublattice. They have the following at-
tributes, wherey(oy,) indicates evennesst1) or oddness
(—1) under reflection through the graphene plane:

A: s=—1, x(oy=-1, change in interatomic distance results in calculated gaps re-
duced by a factor of 2.
B: s=+1, x(op)=-1. We extract the couplings;, . . . ,cg from the four-orbital

, , . ) . tight-binding model by studying the motion of the Fermi
The corresponding states &' have spins with opposite hoint under very small deformations of a graphene sheet.
sign. . o ) The error incurred by truncating the expansion as in (Bj.
The effective Hamiltonian contains only terms that are 5, pe gauged from Fig. 2. The departure from the lowest-
even undewr, and have total spin zeranod 3. The kinetic  orger curvature-induced effects does not exceed 10% up to

part associated with the undeformed sheet is the equivalent of &6,6) tube. Similarly, the strain depen-
0 —ig? dence is nearly linear up to 10% extension. N
Hp(q)=v2v F( _ ) , 6) The curvature _affects orientations and positions of the rel-
igc O evant atomic orbitals. By shifting this dependence onto the

Hamiltonian and overlap matrices, we make the problem ap-
pear as a flat sheet with unorthodox couplings. This is some-
what analogous to the shift from Scklinger to Heisenberg

representations. Under uniform curvature conditions, this re-
stores a two-atom unit cell so that computations are rapid
and individual couplings easily isolated. The computed val-

where the upper rowleft column corresponds té, and the
lower row (right column to B. Here and below, we omit
creation and destruction operators.

The curvature and strain-induced effective potenial
the sense of a self-enengipr these two bands takes the form

v v ues of thec, are collected in Table I.
:( AR AB) , 7) The symmetry undey— —y guarantees that all the are
Vga Vas real. Comparison with the kinetic HamiltonigEq. (6)]
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0 —einW)

inW 0

HD(Q)=W7UF< -

It is well knowrP that curvature can induce a gap in a
nanotube. We now demonstrate how this effect arises from
the geometrical couplings. If the cylinder is undistorted,

18 Kyw=Kww=1/2R. Thez,z components have this same mag-
1.4 nitude, but different phases according to their spins, so that
1.3 the off-diagonal element of the effective potential becomes
$ ix

e . . )
0.0 0 02 03 VRe= 5 (cse% ¥ cee ) +cae M Xoguw,  (9)

R*Ag (eV A?)
AN

FIG. 2. Curvature induces an energy differedgebetween the ~Where anisotropic strain in the bonds is accounted fobdpy
two bands aK by shifting the Fermi point. This results in a genuine The imaginary part of the factor in parentheses can be offset
energy gap if the shifted point is not accessible due to boundaryy a shift ofq,, but the real part cannot, awg is quantized.
conditions.A is shown scaled bR? here fory=0 (upper curves, The curvature therefore induces a direct gap of magnitude
left-hand scalpand y= #/6 (lower curves, right-hand scaleNote
the zero offset. §,=2.46 A is the graphene lattice constarithe
solid curves are exact. Expanding the Hamiltonian and overlap only Ag=
to quadratic order ik ,, results in the dashed curves.

C5—Csq
2R?

sin 3y, (10

which is shifted away from K by q?=—[(cs
shows that distorting the sheet shifts the double cone of the-c;)/4R?]cos 3. The value of the constants—cg|/2 is
low-energy bands in botly and energy. However, it is of about 0.26 e\&3 (see Table)l Notice that f,n) tubes are
interest to note that the Fermi point is never destroyed to thiot gapped by curvature or b§g, since 8g,,, is real for
order and persists in the infinite graphene sheet. A gap can hgese achiral tubes.
induced Only if boundary COﬂditiOI’lS make the Sh|fted Fel’mi Now we Consider deformations imposed on the uniform
point inaccessible, as occurs in a cylindrical geometry. Agylindrical background curvature. Since circumferential
for the strain contributions, T8g=gx«+dy,=269,, Mea-  poundary conditions reduce each band for planar graphene to
sures iSOtrOpiC dilatation or CompreSSion of the lattice. Th% set of Separa‘[ed brancheS, we construct an effective poten_
other componentg?,= 3 (gx— 9yy*2i0,), is associated tial for the lowest-lying branch only.n(n) tubes ¢ =0) are
with shear(twisting, for a tube. Sincek vectors are reck- of most interest, since they remain ungapped in the uniform
oned with respect to coordinates attached to the undeformeghnformation.
conformation, a dilatation does not shift the Fermi point at |n g left/right-moving basis which diagonalizes the kinetic
all. Also note that the gradient of the curvatutg, cannot  energy,
contribute toV even in higher order, because it is odd under
Oh - _UFQg+ ReVAB+VAA _| ImVAB
Cylindrical geometries and perturbations of them are of H=
special interest. We use a right-handed system of “tube co-

ordinates” ¢ and ¢ with % running along the circumference (11)

and along the axial direction of the cylindéso thaté<x{  Circumferential averaging is implicit here and the zerajpf
points outward). These combine intw=(§+i§)/\/§ andits has been shifted.

complex conjugatg_\/_ Introducing the wrapping angle be- In general, the diagonal part ®fshifts the Fermi point in
tween the circumferential directichand a bond directior, 0, and the entire band structure in energy. Such a shift is
we havew=e Xz, Similarly, qW:(q§+iq£)/\/§: e ixgz,  relevantto an mtr_atube junction, yvh_lch could be_greateq by,
The values ofg, are quantized to #n/R, whereR is the ~ €:9- local squashing of a tube. This involves additional direct
cylinder radius. With this substitution, the kinetic Hamil- €lectronic coupling as well as curvature effects as has been
tonian becomes discussed elsewhefeMeanwhile, the off-diagonal term can
open a gap or scatter electrons between left- and right-
moving branches.

The application of our effective Hamiltonian to the elec-

i Im VAB UFQ§_ ReVAB+VAA .

TABLE |. Geometric couplings in graphene.

Coupling Value y=2.46 A) f[ronic effects of mechaniqal deformations, ejther gxternally
imposed or thermally excited, requires consideration of the
Cy —1.06+0.05 eV elastic properties of a nanotube. The lowest-energy deforma-
c, 1.324+0.005 eVaj tions of the tube are the bending and twisfii@soldstone
C3 —0.900+0.005 eVa3 modes. In comparison to strain, curvature costs very little
Cy 7.00+0.05 eV elastic energy. For instance, @0,10 tube has anE,,
Cs —0.699+0.002 eVa? ‘squashing’ mod& at 3 meV and a breathing mode at 20
Ce —1.221+0.003 eVa3 meV. To study the low-energy modes, we parametrize the

deformation by local changes in raditg £, ¢), and azimuth,
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0(&,0). Strain energy is approximately minimized by dis-

ily implies strain, so that the major part of any elastic normal

carding azimuthally uniform changes in radius, and settingnode will couple primarily through strain.

d¢0+h=0. Only the azimuthally uniform par, of ¢ and
nonuniform Fourier modes di are independent variables.
We also discard higher than first derivativeinThe result,
after azimuthal averaging, is

SV g - R4, 0
MV~ = Cs| —C4|RI b
Cg 5
+| 5= 05| aBh(aga h) —calagh) (ah).

Since the strain coupling, is about 7 eV and the combina-
tion cs—cg/2 of curvature couplings is about 0.1 e,

This geometric picture provides a unified framework for
understanding the effects of structural distortions, both cur-
vature and strain, on the low-energy electronic properties of
sp?-bonded carbon, particularly nanoscale materials such as
nanotubes and nanoconiésThe effective Hamiltonian so
produced can handle large-scale distortions in a natural and
computationally efficient manner, using a minim@o-
atom unit cell.
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