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Electron-electron relaxation in two-dimensional impure superconductors

Michael Reizer
5614 Naiche Road, Columbus, Ohio 43213

~Received 1 July 1999; revised manuscript received 27 October 1999!

The electron-electron relaxation in impure two-dimensional superconductors is studied. All channels of the
electron-electron interaction classified in the Nambu representation are taken into account. It is shown that the
recombination relaxation rate originates from quasiparticle processes associated with fluctuations of the elec-
tron density and the phase of the order parameter. At low temperatures the recombination relaxation rate has a
double exponential temperature dependence. The scattering relaxation rate at low temperatures has a power-
law temperature dependence due to contributions from gapless collective excitations, the phase modes. The
two-layer superconductor–normal-metal system is also considered. It is shown that the recombination relax-
ation rate in the superconducting layer has a single exponential factor at low temperatures in comparison with
a one layer superconducting system. This increase in the recombination relaxation rate originates from the
interlayer Coulomb interaction and may be used in the constructing of superconducting radiation detectors.
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I. INTRODUCTION

The electron-electron energy-relaxation time determine
number of parameters of nonequilibrium superconduc
such as the relaxation times for the amplitude and the ph
of the order parameter.1 It is also important for nonequilib-
rium superconducting radiation detectors based on the re
tive and inductive responses. The electron-electron re
ation time is responsible for the quasiparticle multiplicati
coefficient which in turn determines the responsivity and
tectivity of the detector and its noise characteristics.2

The energy relaxation time also serves as a pair brea
parameter in the superconducting density of states whic
measured in the tunneling experiment.3 Recently the energy
relaxation time was measured in cuprate superconductor
studying an electronic instability at high vortex velocities
the mixed state.4

The electron-electron relaxation time of clean superc
ductors was calculated for the three-dimensional case in
5 and for the two-dimensional case in Ref. 6. In the last w
all channels of the electron-electron interaction, not only
Coulomb interaction, was taken into account by using
matrix classification of the interaction channels develop
earlier in Refs. 7 and 8. The importance of considering
channels of interaction was realized long ago for the prob
of gauge invariance in superconductors.9 It was also empha-
sized in Ref. 8 that interference between different chann
of interaction cancels divergences in the interaction corr
tion to the superconducting order parameter.

It is known that in normal impure and low dimension
metals the diffusive motion of electrons leads to enhan
ment of the electron-electron relaxation.10,11 The purpose of
the present paper is to calculate the electron-electron re
ation time in impure two-dimensional superconductors us
the formalism of Refs. 7 and 8. Earlier attempts to stu
electron-electron relaxation in impure two-dimension
superconductors12 took into account only the Coulom
electron-electron interaction and therefore ignored the o
relevant interaction channels. Our results for the recomb
tion relaxation time from the Coulomb interaction are simi
PRB 610163-1829/2000/61~10!/7108~10!/$15.00
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to that of Ref. 12, however, including all channels of t
electron-electron interaction allows us to find important
sults, in particular the contribution to the scattering rela
ation time from gapless collective excitations~phasons!.

Then we study the superconductor–normal-metal tw
layer system. Such a system was already studied in Ref. 6
a clean system. We consider a disordered case in the pre
work and show that recombination relaxation rate is stron
enhanced due to interlayer electron-electron interaction.

II. ELECTRON-ELECTRON INTERACTION
IN MATRIX FORMALISM

We use the Keldysh diagram technique for nonequil
rium processes in which the electron Green’s functio
along with the electron-electron interaction potential, t
electron self-energy, and the polarization operator are re
sented by supermatrices

~Ĝ!5S 0 ĜA

ĜR ĜC,
D , ~V̂!5S 0 V̂A

V̂R V̂C,
D ,

~Ŝ !5S ŜC ŜR

ŜA 0,
D ,~P̂ !5S P̂C P̂R

P̂A 0
D . ~1!

The matrix electron Green’s function in an impure superc
ductor in the Nambu representation has the form

ĜR~P!5@ĜA~P!#* 5
2jpt̂32eRt̂01DRt̂1

jp
22~ER!2

,

P5~p,e!, jp5
p22pF

2

2m
, ~2!

wheret̂ i are the Pauli matrices,m is the electron mass, an

eR5eS 11
i

2tje
D , DR5DS 11

i

2tje
D ,

~ER!25~eR!21~DR!2, ~3!
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whereD is the energy gap,t is the electron-impurity relax-
ation time, and

je5~e22D2!1/2sgn~e!,ueu.D. ~4!

In a spatially uniform system the kinetic componentsĜC and
ŜC are satisfied the equations

ĜC~P!5S~e!@ĜA~P!2ĜR~P!#,

Ŝ~P!5S~e!@ŜA~P!2ŜR~P!#, ~5!

where S(e)52tanh(e/2T)52n(e)21, and n(e) is the
Fermi distribution function. Similar relations hold for matr
interaction potentials and polarization operators:

V̂C~Q!5„2N~v!11…@V̂R~Q!2V̂A~Q!#,

P̂C~Q!5„2N~v!11…@P̂R~Q!2P̂A~Q!#, ~6!

whereQ5(q,v) andN(v) is the Bose distribution function
For averaging over impurity position it is convenient

introduce the following expressions

h i
AA5

1

pnt
^t̂3ĜA~P!t̂ i Ĝ

A~P1Q!t̂3&,

h i
AR5

1

pnt
^t̂3ĜA~P!t̂ i Ĝ

R~P1Q!t̂3&,

^•••&5E d2p

~2p!2 , ~7!

wheren is the two-spin electron density of states. Calcu
tions give, e.g.,

h0
AR5

z

2
@~11A1!t̂01B1t̂1#,

h3
AA5

z1

2
@~12A!t̂31Bi t̂2#, ~8!

where

A5
e~e1v!2D2

jeje1v
, A15

e~e1v!1D2

jeje1v
,

B5
~e1v!D2eD

jeje1v
5

vD

jeje1v
,

B15
~e1v!D1eD

jeje1v
5

~2e1v!D

jeje1v
, ~9!

z511 i ~je1v2je!t2Dq2t,

z1512 i ~je1v1je!t2Dq2t, ~10!

whereD is the diffusion coefficient. Values ofh i for differ-
ent matricest̂ i are presented in Table I. Note also that t
following identities hold:A22B251 andA1

2 2B1
2 521.

Treating the electron-electron interaction in supercondu
ors we use the matrix formalism developed in Refs. 7 and
-

t-
8.

The bare vertices for the electron-electron interaction
classified in terms of the Pauli matrices. Physical meaning
the corresponding operatorsÔi5C†t̂ iC is the following.
Matrix t̂1 corresponds to the order parameter amplitudeD,
matrix t̂2 corresponds to the order parameter phasef, ma-
trix t̂3 corresponds to the electron density, and the vec
matrix kt̂0 corresponds to the electric current, the later w
not be considered in the present paper~see Ref. 5!. Note also
that each impurity vertex carries the matrixt̂3.

Therefore each interaction vertex operates in b
Keldysh and Nambu spaces and has the formĝmn

k ( t̂ i)

5ĝ( t̂ i)Kmn
k , where t̂ i indicates the component in th

Nambu space and tensorKmn
k stands for the Keldysh space,k

is a boson index, andm andn are the electron indices. In th
representation corresponding to Eq.~1! the nonzero compo-
nents of tensorKmn

k are

K22
1 5K11

1 5K12
2 5K21

2 5
1

A2
. ~11!

We will omit coefficient 1/A2 in intermediate equations fo
the impurity renormalized vertices and restore it in fin
equations for the polarization operators and the electron s
energies.

Impurity averaging leads to the ladder equation for t

scalar vertexĜ( t̂ i) shown in Fig. 1. Such an equation shou
be written for each bare matrixt̂ i in the Nambu space. The

solution of these equations for the vertexĜ( t̂ i) in the

TABLE I. Summary of the results forh i
AA andh i

AR defined by
Eq. ~7!. QuantitiesA,A1 ,B, andB1 are defined by Eq.~9!.

h i AA AR

h0 z1

2
@(12A1) t̂02B1t̂1#

z

2
@(11A1) t̂01B1t̂1#

h1 z1

2
@(11A1) t̂11B1t̂0#

z

2
@(12A1) t̂12B1t̂0#

h2 z1

2
@(11A) t̂21 iB t̂3#

z

2
@(12A) t̂22 iB t̂3#

h3 z1

2
@(12A) t̂31 iB t̂2#

z

2
@(11A) t̂32 iB t̂2#

FIG. 1. G( t̂ i) is the impurity renormalized scalar vertex in th
ladder approximation,Vi j is the screened electron-electron intera
tion, S is the electron self-energy in an impure superconductor
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Keldysh-Nambu space is obtained following Ref. 13. W

start with the equation for the vertexĜ22
1 ( t̂3),

^t̂3ĜA~P!Ĝ22
1 ~ t̂3!ĜR~P1Q!t̂3&2Ĝ22

1 ~ t̂3!52 t̂3 .
~12!

The solution of this equation is

Ĝ22
1 ~ t̂3!52

z

2

B

12z
i t̂21S 11

z

2

11A

12z D t̂3 . ~13!

Note that renormalized vertexĜ22
1 ( t̂3) has components pro

portional not only to to matrixt̂3 but also to matrixt̂2. The

other verticesĜ22
1 ( t̂ i) and Ĝ21

2 ( t̂ i) are presented in Table II
The vertices with the other Keldysh indices are obtain
from the equations

Ĝ12
2 ~ t̂ i !5@Ĝ21

2 ~ t̂ i !#* ,Ĝ12
1 ~ t̂ i !5S~e!@Ĝ22

1 ~ t̂ i !2Ĝ12
2 ~ t̂ i !#,

Ĝ21
1 ~ t̂ i !52S~e1v!@Ĝ22

1 ~ t̂ i !2Ĝ21
2 ~ t̂ i !#,

Ĝ11
2 ~ t̂ i !5S~e!Ĝ21

2 ~ t̂ i !2S~e1v!Ĝ12
2 ~ t̂ i !

2@S~e!2S~e1v!#@Ĝ22
1 ~ t̂ i !#* . ~14!

Note also that index structure of the renormalized verti
in the Keldysh space is different from the index structure
the bare vertex described by Eq.~11!. It is important that the
complex conjugate in Eq.~14! operates only in the Keldysh
space, thus anyi in Table II originating fromt̂ i matrix alge-
ar

-

d

s
f

bra are not affected by the complex conjugate, e.g.,@compare
with Eq. ~13!#,

@Ĝ22
1 ~ t̂3!#* 52

z*

2

B

12z*
i t̂21S 11

z*

2

11A

12z* D t̂3 .

~15!

The effective screened electron-electron interaction in a
perconductor according to Refs. 6–8 is shown in Fig. 1. T
solution of this equation in 333 matrix form is

TABLE II. Summary of the results for impurity renormalize

verticesG22
1 ( t̂ i) andG21

2 ( t̂ i).

G( t̂ i) t̂0 t̂1 t̂2 t̂3

G22
1 ( t̂1)

2
z

2
B1

12z
11

z

2
12A1

12z

0 0

G21
2 ( t̂1) z1

2
B1

12z1
11

z1

2
11A1

12z1

0 0

G22
1 ( t̂2) 0 0

11
z

2
12A

12z
2 i

z

2
B

12z

G21
2 ( t̂2) 0 0

11
z1

2
11A

12z1
i
z1

2
B

12z1

G22
1 ( t̂3) 0 0

2 i
z

2
B

12z
11

z

2
11A

12z

G21
2 ( t̂3) 0 0

i
z1

2
B

12z1
11

z1

2
12A

12z1
V̂5S 2~2/l1P11!
21 0 0

0 @~V0!212P33#/D P23/D
0 P32/D 2~2/l1P22!/D

D , ~16!
ary

the
where

D52~2/l1P22!@~V0!212P33#2P23P32, ~17!

andl is the BCS coupling constant (l.0), V052pe2/q is
the nonscreened two-dimensional Coulomb potential.

The polarization operators renormalized by impurities

expressed through the vertexĜ by the equation

P i j
A~Q!52

i

2
pntE de

2p
Sp@ t̂3t̂ j t̂3G11

2 ~ t̂ i !#. ~18!

Using Eq.~14! for G11
2 ( t̂ i) and Table II we find the polariza

tion operators

P11
A ~Q!5

int

4 E deS ~12A1!
S~e1v!2S~e!

12z*
2~11A1!

3FS~e1v!

12z1*
2

S~e!

12z1
G D , ~19!
e

P22
A ~Q!5

int

4 E deS ~12A!
S~e1v!2S~e!

12z*
2~11A!

3FS~e1v!

12z1*
2

S~e!

12z1
G D , ~20!

P33
A ~Q!52n2

int

4 E deS ~11A!
S~e1v!2S~e!

12z*

2~12A!FS~e1v!

12z1*
2

S~e!

12z1
G D , ~21!

P32
A ~Q!52P23

A ~Q!52
nt

4 E deBS S~e!2S~e1v!

12z*

2
S~e1v!

12z1*
1

S~e!

12z1
D . ~22!

To calculate the electron relaxation we need the imagin
part of the potentials~the polarization operators! in the qua-
siparticle representation. Making a transformation from
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TABLE III. Summary of the results for the polarization operators in the regions of the param
important for the electron relaxation at low temperaturesT!D.

Im P i i
A v22D!T!D v!T!D

(Im P22
A 5Im P33

A )scatt
n

(pvT)1/2Dq2exp(2D/T)

v212Dv1(Dq2)2
2n

vDq2exp(2D/T)

2Dv1(Dq2)2

(Im P11
A )scatt

nSpT

v D1/2~2D1v!Dq2exp~2D/T!

v212Dv1~Dq2!2
nSpv

T D1/22DDq2exp~2D/T!

2Dv1~Dq2!2

(Im P22
A 5Im P33

A ) rec
n

pvDq2

v222Dv1(Dq2)2

(Im P11
A ) rec '0
ti

w

on
ga-
y

ond
electronic representation to the quasiparticle representa
we use Eq.~4!. As a result we separate out the processes
scattering and recombination of quasiparticles in Eqs.~19!–
~22!. For the imaginary part of the polarization operators
have

Im P i i
A~Q!scatt5

n

2ED

`

de@S~e1v!2S~e!#Cii ~q,e,v!,

~23!

Im P i i
A~Q!recom5

n

4
Q~v22D!E

D

v2D

de@S~e2v!

2S~e!#Cii ~q,e,2v!, ~24!

whereCii are

C11~q,e,v!5S 12
e~e1v!1D2

ujeuuje1vu D Dq2

~ uje1vu2ujeu!21~Dq2!2

2S 11
e~e1v!1D2

ujeuuje1vu D
3

Dq2

~ uje1vu1ujeu!21~Dq2!2
, ~25!

C22~q,e,v!5S 12
e~e1v!2D2

ujeuuje1vu D
3

Dq2

~ uje1vu2ujeu!21~Dq2!2

2S 11
e~e1v!2D2

ujeuuje1vu D
3

Dq2

~ uje1vu1ujeu!21~Dq2!2
, ~26!
on
of

e

C33~q,e,v!52S 11
e~e1v!2D2

ujeuuje1vu D
3

Dq2

~ uje1vu2ujeu!21~Dq2!2

1S 12
e~e1v!2D2

ujeuuje1vu D
3

Dq2

~ uje1vu1ujeu!21~Dq2!2
. ~27!

For the off-diagonal polarization operator we have

P32
A ~Q!scatt52

n

2
DvE

D

` de

ujeuuje1vu F S~e!2S~e1v!

i uje1vu2 i ujeu1Dq2

1
S~e!

i uje1vu1 i ujeu1Dq2

2
S~e1v!

2 i uje1vu2 i ujeu1Dq2G , ~28!

P32
A ~Q!rec52Q~v22D!

n

2
DvE

D

v2D de

ujeuuje2vu

3F S~e!2S~e2v!

i uje2vu2 i ujeu1Dq2

1
S~e!

i uje2vu1 i ujeu1Dq2

2
S~e2v!

2 i uje2vu2 i ujeu1Dq2G . ~29!

As we will see in the next chapter, calculating the electr
relaxation time we need the imaginary part of the propa
tors Im@Vii

A(Q)#. The imaginary part of the propagators ma
originate from the poles of the propagators which corresp
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to collective excitations or from the imaginary part of th
polarization operators Im@P i i

A(Q)#, which correspond to rea
processes of scattering and recombination of quasipartic
We will restrict our calculations to low temperaturesT!D,
where large frequenciesv22D!T, are important for both
recombination and scattering processes and small freq
cies v!T!D are important only for the scattering pro
cesses. The imaginary part of diagonal polarization opera
for in these regions are presented in Table III. Real parts
the polarization operators are analyzed in Appendix A.

Now we study in detail each of the matrix elements ofV̂.
Following Eq.~A16! the imaginary part of the potentialV11
for scattering processes and for small argumentsv!D and
Dq2!D is

Im V11
A ~Q!52Im

1

2/l1P11
A ~Q!

'Im
1

n/22 i Im P11
A ~Q!

'S 1

n D 2

Im P11
A ~Q!.

~30!

This approximation is justified because there is no singu
ity in the order-parameter amplitude propagatorV11 at small
frequency and momentum for any finiteD, which means that
fluctuations of the amplitude of the order parameter are m
sive. For the recombination processes, large frequenciev
.2D are important, and according to Table III ImP11 may
be neglected.

As was shown in Appendix A, the propagatorsV33 and
V22 for v!D andDq2!D have the form

V33
A ~Q!5

k

nq

pDDq22v2

pDDqk2~v2 i0!2 , ~31!

V22
A ~Q!5

k

nq

4D2

pDDqk2~v2 i0!2

pDDq22v2

pDDq21v2 . ~32!

Thus the imaginary part of the propagatorsV33 andV22 for
small arguments comes from the pole corresponding to
phase mode, not from the imaginary part of the polarizat
operators.

For large frequenciesv;2D we use the following ap-
proximation:

Im V33
A ~Q!5S V0

21~q!2P33
A ~Q!2

@P23
A ~Q!#2

2/l1P22
A ~Q!

D 21

'VS~q!2Im P33
A ~Q!, ~33!
s.

n-

rs
of

r-

s-

e
n

Im V22
A ~Q!5ImS 2

2

l
2P22

A ~Q!1
@P23

A ~Q!#2

V0~q!212P33
A ~Q!

D 21

'
l2

4
Im P22

A ~Q!, ~34!

where VS(q)5k/n(q1k) is the statically screened Cou
lomb potential in the normal state, which was presen
above for the two-dimensional case,k52pne2 is the
screening momentum. Such an approximation is justified
to absence of collective excitation in this frequency regio

III. ELECTRON-ELECTRON RELAXATION

The kinetic equation for nonequilibrium distribution func
tion in a spatially uniform system is

dn~e!

dt
52

i

pn

je

e

1

2
TrE d2p

~2p!2Im@ĜA~P!#$ŜC~P!2S~e!

3@ŜA~P!2ŜR~P!#%. ~35!

The electron energy relaxation timete2e is determined from
the equation

1

te2e~T,e!
52

]

]n~e!

dn~e!

dt
. ~36!

The electron self-energy is shown in Fig. 1. Using the res
of Sec. II, we have

1

te2e~T,e!
5

2

p

je

e E dQ

~2p!3 @N~v!1n~v1e!#

3
d

dS~e!
„Im Vii

A~Q!Re$Prt̂ i
@Ĝ11

2 ~ t̂ i !#%

22 ImV23
A Im$Prt̂3

@Ĝ11
2 ~ t̂2!#%…, ~37!

where Prt̂ i
means the component proportional to matrixt̂ i

~projection ont̂ i). In Eq.~37! summation on repeated indice
is implied. Using Table II and relationdG11

2 /dS(e)5G21
2

2(G22
1 )* we present Eq.~37! in the form
1

te2e~T,e!
5

1

p2E dvE d2q

~2p!2 @N~v!1n~v1e!#H Im V11
A ~Q!F S je

e
1

e~e1v!1D2

eje1v
D Dq2

~je1v1je!
21~Dq2!2

2S je

e
2

e~e1v!1D2

eje1v
D Dq2

~je1v2je!
21~Dq2!2G1Im V22

A ~Q!F S je

e
1

e~e1v!2D2

eje1v
D Dq2

~je1v1je!
21~Dq2!2
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2S je

e
2

e~e1v!2D2

eje1v
D Dq2

~je1v2je!
21~Dq2!2G1Im V33

A ~Q!F S je

e
2

e~e1v!2D2

eje1v
D Dq2

~je1v1je!
21~Dq2!2

2S je

e
1

e~e1v!2D2

eje1v
D Dq2

~je1v2je!
21~Dq2!2G12i Im V23

A vD

eje1v
S Dq2

~je1v1je!
21~Dq2!2

1
Dq2

~je1v2je!
21~Dq2!2D J . ~38!

In order to separate out the processes of scattering and recombination of quasiparticles we need to make a trans
from the electronic representation to the quasiparticle representation in Eq.~38!. Note that the presence of imaginary factoi
in the last term in Eq.~38! means that for the contribution of the nondiagonal channels of interaction requires the states
the gap to be taken into account according to the equationze1v5 i @D22(v1e)2#1/2,ue1vu,D. Such states should also b
included in equations for the polarization operatorP23, in Eqs.~28! and~29! only the states above the gap were included. T
analysis similar to that presented in Ref. 6 for the clean case shows that contribution from the nondiagonal cha
interaction may be neglected.

For electrons on the Fermi surface,e5D,

1

te2e~T,e5D!scatt5
2

p3E
2D

`

dvE
0

`

dqq@N~v!1n~v2D!#
Dq2

v22Dv1~Dq2!2F @ Im V22
A ~Q!recom1Im V33

A ~Q!recom#

3S D

2v D 1/2G1
2

p3E
0

`

dvE
0

`

dqq@N~v!1n~v1D!#
Dq2

2Dv1v21~Dq2!2

3F Im V11
A ~Q!scattS 2D1v

v D 1/2

1@ Im V22
A ~Q!scatt1Im V33

A ~Q!scatt#S D

2v D 1/2G , ~39!

1

te2e~T,e5D!recom5
2

p3E
2D

`

dvE
0

`

dqq@N~v!1n~v2D!#
Dq2

v22Dv1~Dq2!2

3F Im V11
A ~Q!scattS v22D

v D 1/2

1@ Im V22
A ~Q!scatt1Im V33

A ~Q!scatt#S D

2v D 1/2G
1

2

p3E
2D

`

dvE
0

`

dqq@N~v!1n~v1D!#
Dq2

2Dv1v21~Dq2!2

3F @ Im V22
A ~Q!recom1Im V33

A ~Q!recom#S D

2v D 1/2G . ~40!
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Equations ~39! and ~40! describe processes of scatteri
‘‘two into two’’ and ‘‘three into one’’ quasiparticles corre
spondingly.

Further calculations will be performed for low temper
turesT!D. It may be shown that the most important cont
bution to the recombination time originates from term
V22(Q) recom andV33(Q) recom in Eq. ~40!,

1

te2e~T,e5D!recom5
T

4pDn F11S ln

2 D 2GexpS 2
2D

T D .

~41!

Calculating the scattering relaxation time from term
V22(Q) recom and V33(Q) recom in Eq. ~38! we use the ap-
proximation of Eqs.~33! and ~34! and we use Table III for
the imaginary parts of the polarization operators. As a re
we get
lt

1

te2e~T,e5D!scatt

5
T

2p2Dn F11S ln

2 D 2GexpS 2
D

T D .

~42!

As for the contribution to the scattering relaxation tim
from terms ImV22(Q)scatt and ImV33(Q)scatt in Eq. ~38! we
note that for small energy transfers,v!T!D the imaginary
part of the propagatorsV33 andV22 originates from the poles
corresponding to the phase mode as seen in Eqs.~31! and
~32!. Integrating these poles over the momentumq we get

1

te2e~T,e5D!scatt

5
21

2p6 S p

2 D 1/2S T

D D 3/2 T2

D2k2n
. ~43!

Note that the main contribution comes from the propaga
V22 corresponding to the fluctuation of the phase of the or
parameter. Equation~43! is the second order in the sma
parameter 1/Dn unlike Eq.~42! which is the first order, how-
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ever Eq. ~43! does not have a small exponential fact
exp2D/T therefore contribution from the collective excita
tions dominates at low enough temperatures. Really
eFt510, T/eF51024, andk'pF , the contribution from the
phase mode dominates forT,0.05D.

The termV11(Q)scatt does not have poles correspondi
to the collective mode, thus using Eq.~30! we find that the
scattering relaxation time has a power-law divergence:

1

te2e~T,e5D!scatt

5
D

2p2DnS pT

v0
D 1/2

expS 2
D

T D . ~44!

This divergence is similar to the logarithmic divergence
the phase or energy relaxation times from the Coulomb
teraction in the normal impure two-dimensional case.14 How-
ever, in a superconductor the divergence is stronger du
the fact that propagatorV11, correlator of amplitude of the
order parameter fluctuations, corresponds in the Nam
space to matrixt̂1, while the Coulomb interaction corre
sponds to matrixt̂3. As a result propagatorsV11 and V33
have different coherence factors, see Eqs.~19!–~22!. Other
examples of different behavior of perturbations with diffe
ent symmetries in the Nambu space are discussed e.g
Ref. 9. According to Ref. 14 the cutoff frequencyv0 is de-
fined by the relaxation timete2e , which physically means
that the kinetic equation cannot be applied for energy tra
fers less than 1/te2e , thus the self-consistent solution of E
~44! is

1

te2e~T,e5D!scatt

5
~pD2T!1/3

~2p2Dn!3/2
expS 2

2D

3T D . ~45!

The low-frequency singularity in the scattering relaxati
time mentioned above is for electrons exactly at the Fe
surface,e5D. We note that for the electrons above t
Fermi surface,e.D the singularity in the scattering relax
ation time associated with the potentialV11(Q)scatt is weaker
but it does not disappear. More accurately such a diverge
must be regularized directly in the physically measura
quantity, e.g., the tunneling conductance. However, it is
necessary because the contribution to the scattering re
ation time from the phase collective mode, Eq.~43!, is more
important because it does not have a small exponential fa
such as that presented in Eqs.~42! and ~45!.

The appearance of the nonexponential scattering re
ation at low temperature is a direct consequence of the g
less phase mode in two dimensions. In three dimensions
phase mode have a gap and the main contribution to
scattering relaxation comes from the potentialV11.

1

te2e~T,e5D!scatt

5
12DT1/2

p~pD !3/2n3
S D

v0
D 1/4

expS 2
D

T D ,

~46!

where n35mpF /p2 is the three-dimensional density o
states. Again after regularization of singularity in Eq.~46!
we have

1

te2e~T,e5D!scatt

5
12T1/2

p~pD !3/2n3

DexpS 2
4D

5T D . ~47!
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The recombination relaxation time is obtained similar to E
~41!,

1

te2e~T,e5D!recom

5
1

21/4~2p!2

D1/2T

D3/2n3
F11S ln3

2 D 2G
3expS 2

2D

T D . ~48!

IV. TWO-LAYER
SUPERCONDUCTOR–NORMAL-METAL SYSTEM

We consider a system of two disordered electron lay
with different density of states,n1,2, elastic scattering times
t1,2, mean free paths,l 1,2, and diffusion coefficientsD1,2.
The layers are coupled by the Coulomb potentials, there is
superconducting coupling between the layers.

First we consider the screened Coulomb potentials in
normal state. The nonscreened Coulomb potentials wi
the layer,V0, and between electrons in different planes,U0,
are

V0~q!52pe2/qe, U0~q!5
1

e1

2pe2

q
exp~2qb!, ~49!

wheree and e1 are the dielectric constants of the electr
layer and the interlayer media,b is the distance betwee
layers. We assume thate'e1 and we absorbede into e2.

In all further calculations small momentum transfers a
important, thus we assumeqb!1,

V02U05V0@12exp~2qb!#52pe2b,

V0
22U0

25V04pe2b. ~50!

In this chapter the lower indices of the potentials and
polarization operators refer to the layer, e.g.,V11 means the
Coulomb potential between electrons in the layer 1, etc. T
screened potentials are satisfied the equations

S V11 U12

U21 V22
D 5S V0 U0

U0 V0
D 1S V0 U0

U0 V0
D S P1 0

0 P2
D

3S V11 U12

U21 V22
D . ~51!

We will use the definitions:V115V1 ,V225V2, and U12
5U215U. The solution of Eq.~3! is

U5
U0

P
, V15

V02~V0
22U0

2!P2

P
, V25

V02~V0
22U0

2!P1

P
,

P5~12V0P1!~12V0P2!2U0
2P1P2

'12V0~P11P224pe2bP1P2!. ~52!

The polarization operators in each layers forqli!1 and
vt i!1 are chosen in the form corresponding to a norm
state, because for recombination processes large freque
v.2D are important, while collective excitations in a supe
conductor exist only forv!D.
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P i
A~Q!52n i

Diq
2

iv1Diq
2 . ~53!

The potentials are

UA~Q!5
1

n1~D11D2n2 /n1!q2

~ iv1D1q2!~ iv1D2q2!

iv1D̃q2
,

~54!

V1
A~Q!5UA~Q!

iv1~112k2d!D2q2

iv1D2q2 , ~55!

where

D̃5S 11
n2

n1
12k2dD D1D2

D11D2n2 /n1
, k252pe2n2 .

~56!

We assume that layer 1 is in the superconducting state
layer 2 is in the normal state. We will calculate the reco
bination relaxation time in the superconducting layer due
interlayer electron-electron interactionU. From Eq.~40! we
have

1

te2e~T,e5D!recom

5
2

p3E
2D

`

dvE
0

`

dqq@N~v!1n~v2D!#

3
D1q2

v22Dv1~D1q2!2Im UA~Q!S D

2v D 1/2

. ~57!

For the imaginary part of the interlayer interaction we u
the approximation similar to Eq.~33!, Im UA(q,v)
5uU(q,0)u2Im P2

A(Q), where U(q,0) corresponds to the
static limit of Eq. ~54!. The imaginary part of the polariza
tion operatorP2 corresponds to the electron scattering in t
normal layer and thus does not have a small exponen
factor typical for a superconductor. As a result,

1

te2e~T,e5D!recom

5
T

4p2n1

D1D2

~D11D2n2 /n1!2

3S 1

D̃
1

1

D̃1A2D1
D expS 2

D

T D .

~58!

We see that relaxation rate in a superconductor–norm
metal two-layer system is increased by an exponential fa
in comparison with the recombination rate in a single lay
see Eq.~40!.

V. CONCLUSIONS

We derived the kinetic equation describing the elect
relaxation in two-dimensional impure superconductors.
electrons at the Fermi surface,e5D, the recombination and
scattering relaxation time were calculated for low tempe
tures, T!D. We took into account all channels of th
electron-electron interaction in the superconductor.

We found that the recombination relaxation rate com
nd
-
o

e

al

l-
or
;

n
r

-

s

from the quasiparticle scattering~recombination processes!
associated with the fluctuations of the electron density
the phase of the order parameter, the propagatorsV33 and
V22. The recombination relaxation rate has double expon
tial smallness at low temperatures@see Eq.~41!#, associated
with exponentially small number of available quasipartic
~see also Ref. 12!.

The scattering relaxation rate has a power-law tempe
ture dependence@see Eq.~43!# due to singularity in the
propagatorsV22 andV33 associated with the gapless colle
tive mode, the phase mode. The contribution to the scatte
relaxation rate from the fluctuations of the amplitude of t
order parameter,V11 has an infrared divergence similar t
the phase relaxation time in the two-dimensional norm
metal,14 however, after regularization the corresponding co
tribution to the scattering relaxation rate has a small ex
nential factor and therefore is less important that the con
bution from the collective excitations.

We also shown that in the superconductor–normal-m
two-layer system the recombination relaxation rate in
superconducting layer due to the interlayer Coulomb inter
tion is strongly increased at low temperaturesT!D by an
exponential factor exp(D/T)@1 in comparison with a single
superconducting layer. This fact may be important for co
structing superconducting radiation detectors.2

The author is grateful to I. L. Aleiner for valuable discu
sions and A. V. Sergeev for his help at the early stage of
work.

APPENDIX A

In this appendix we obtain equations for the polarizati
operators for some limiting cases and prove some ident
for them. Though some of the results were already prese
in Ref. 8, for Matsubara frequencies and in Ref. 15 forT
50 the analysis for continuous frequencies has some ad
tages and helps us to estimate the imaginary parts of
interaction propagators.

We start with the polarization operators forq50.
P23(0,v) may be taken directly from Eq.~22!,

P23~0,v!52
invD

4
J~v!, ~A1!

where

J~v!5E de

jeje1v
S S~e1v!2S~e!

je1v2je
2

S~e1v!1S~e!

je1v1je
D .

~A2!

Then we takeP22(v,0) from Eq.~20!,

P22~0,v!5
n

4E deF S 12
e~e1v!2D2

jeje1v
DS~e1v!2S~e!

je1v2je

1S 11
e~e1v!2D2

jeje1v
DS~e1v!1S~e!

je1v1je
G , ~A3!

and transform it using the identities

12
e~e1v!2D2

jeje1v
52

~je1v2je!
22v2

2jeje1v
, ~A4!
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11
e~e1v!2D2

jeje1v
52

~je1v1je!
22v2

2jeje1v
, ~A5!

to the form

P22~0,v!5
n

4E deS S~e!

je
1

S~e1v!

je1v
D1

nv2

8
J~v!.

~A6!

Now recalling the BCS self-consistency equation

2

l
1

n

2E de
S~e!

je
50, ~A7!

we see that

2

l
1P22~0,v!5

nv2

8
J~v!. ~A8!

To transformP33(0,v),

P33~0,v!1n52
n

4E deF S 11
e~e1v!2D2

jeje1v
D

3
S~e1v!2S~e!

je1v2je

1S 12
e~e1v!2D2

jeje1v
DS~e1v!1S~e!

je1v1je
G ,
~A9!

we use the identities

11
e~e1v!2D2

jeje1v
5

je1v2je

v S e1v

je1v
1

e

je
D2

2D2

jeje1v
,

~A10!

12
e~e1v!2D2

jeje1v
5

je1v1je

v S e1v

je1v
2

e

je
D1

2D2

jeje1v
,

~A11!

and get

P33~0,v!1n52
n

2vE deS e1v

je1v
S~e1v!2

e

je
S~e! D

1
nD2

2
J~v!. ~A12!

Now we recall another identity,

E deS e1v

je1v
S~e1v!2

e

je
S~e! D522v, ~A13!

and get

P33~0,v!5
nD2

2
J~v!. ~A14!

We see from Eqs.~A1!, ~A8!, and ~A14! that the following
identity holds:

P33~0,v!S 2

l
1P22~0,v! D1@P23~0,v!#250. ~A15!
At low temperatures,T!D and for small argumentsv!D
andDq2!D, the polarization operators are

2

l
1P11~Q!52nF12

v2

12D21p
Dq2

8D2G , ~A16!

2

l
1P22~Q!52nF2

v2

4D21p
Dq2

4D2G , ~A17!

P23~Q!52 in
v

2D
, P33~Q!52nF11

v2

6D2G . ~A18!

Thus for small arguments the following relation holds:8

P33~Q!S 2

l
1P22~Q! D1@P23~Q!#2;q2. ~A19!

Using Eq.~A16! we have for the propagatorV11

V11~Q!52@2/l1P11~Q!#215nS 12
v2

12D21
p

8

Dq2

D2 D 21

.

~A20!

We see thatV11 is not singular which means that fluctuation
of the amplitude of the order parameter are massive, thus
imaginary part of the propagatorV11 originates from
Im P11(Q).

The screened Coulomb potential is presented in the fo

V33
A ~Q!5

V0~q!

12V0~q!P̃A~Q!
, ~A21!

where

P̃ A~Q!5P33
A ~q,v!1

~P23
A ~Q!!2

2/l1P22
A ~Q!

52n
pDDq2

pDDq22~v2 i0!2 . ~A22!

The propagatorV22 may be written in a similar way:

V22
A ~Q!52

1

2

l
1P22

A ~Q!

12V0~q!P33
A ~Q!

12V0~q!P̃A~Q!
. ~A23!

The poles in the propagatorsV33 andV22 correspond to the
collective excitation, the phase mode, which in two dime
sions is15 given by equationv25pDDkq.

In quasi-one-dimensional superconductors the n
screened Coulomb potential isV0(q)52e2ln(1/qa), qa!1,
wherea is a cross-sectional size, and the density of state
n151/pvF , thus the spectrum of the phase mode is18

v25pDDq2S 2e2

pvF
ln~1/qa!21D . ~A24!

APPENDIX B

It is interesting to see how the spectrum of the pha
mode changes in different two-layer systems. First we c
sider a system of two identical impure superconduct



s

p

u
e

pla
se

o
es

a
th

m

-

he

PRB 61 7117ELECTRON-ELECTRON RELAXATION IN TWO- . . .
planes coupled by the Coulomb interaction, but no Joseph
coupling between the planes, thus the order parameters
independent in each planes. For the screened Coulomb
tential in each layer we have from Eq.~52!

V~Q!5
V0~q!2@V0

2~q!2U0
2~q!#P̃ ~Q!

@12V0~q!P̃~Q!#22@U0~q!P̃ ~Q!#2
. ~B1!

To avoid confusion we dropped lower indices in the Co
lomb potentialV. The spectrum of the phase modes is d

fined by equations 12(V01U0)P̃ 50 and 12(V02U0)P̃
50. The solution of these equations forqd!1 is v1

5(2pDDkq)1/2 and v25(2pDDkd)1/2q. These new
phase modes are similar to in-phase and out-of-phase
mons in symmetric two-layer clean normal-metal system;
Refs. 16 and 17.

In a system of two coupled quasi-one-dimensional dis
dered superconductors the spectrum of the phase mod
the long-wave limitqd!1 is

v1
2 5pDDq2S 4e2

pvF
ln~1/qa!21D ,

v2
2 5pDDq2S 2e2

pvF
ln~d/a!21D . ~B2!

Now we consider a two-layer superconductor–norm
metal disordered system. The polarization operators in
superconducting and normal layers according to Eqs.~A22!
and ~53! are
u

p.
on
are
o-

-
-

s-
e

r-
in

l
e

P1
A~Q!52ns

pDDsq
2

pDDsq
22~v2 i0!2 , ~B3!

P2
A~Q!52nn

pDnq2

iv1Dnq2 . ~B4!

The spectrum of collective excitations is determined fro
the equation

12V0~P11P224pe2bP1P2!50. ~B5!

For small momentaq!ks , ks52pe2ns Eq. ~B4! leads to

v25pDDsq
2A1 ivpD

Ds

Dn
, A511

ns

nn
12ksb.

~B6!

The solution of Eq.~B5! is a phase mode with small damp
ing:

v5~pDDsA!1/2q1
i

2
pD

Ds

Dn
,

p

A S Ds

Dn
D 2

!
Dsq

2

D
!1 . ~B7!

The last inequality is satisfied providedA@1 andDs!Dn .
This result was independently obtained in Ref. 19. If t
opposite inequality is valid, the solution of Eq.~B6! is a
diffusion mode:

iv1Dnq2A50,
Dsq

2

D
!minF1,

p

A S Ds

Dn
D 2G . ~B8!
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