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Electron-electron relaxation in two-dimensional impure superconductors
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The electron-electron relaxation in impure two-dimensional superconductors is studied. All channels of the
electron-electron interaction classified in the Nambu representation are taken into account. It is shown that the
recombination relaxation rate originates from quasiparticle processes associated with fluctuations of the elec-
tron density and the phase of the order parameter. At low temperatures the recombination relaxation rate has a
double exponential temperature dependence. The scattering relaxation rate at low temperatures has a power-
law temperature dependence due to contributions from gapless collective excitations, the phase modes. The
two-layer superconductor—normal-metal system is also considered. It is shown that the recombination relax-
ation rate in the superconducting layer has a single exponential factor at low temperatures in comparison with
a one layer superconducting system. This increase in the recombination relaxation rate originates from the
interlayer Coulomb interaction and may be used in the constructing of superconducting radiation detectors.

I. INTRODUCTION to that of Ref. 12, however, including all channels of the
electron-electron interaction allows us to find important re-

The electron-electron energy-relaxation time determines &ults, in particular the contribution to the scattering relax-
number of parameters of nonequilibrium superconductor@tion time from gapless collective excitatiofghasons
such as the relaxation times for the amplitude and the phase Then we study the superconductor—normal-metal two-
of the order parametérlt is also important for nonequilib- 1ayer system. Such a system was already studied in Ref. 6 for
rium superconducting radiation detectors based on the resid cleéan system. We consider a disordered case in the present
tive and inductive responses. The electron-electron relaxork and show that recombination relaxation rate is strongly
ation time is responsible for the quasiparticle multiplication€nhanced due to interlayer electron-electron interaction.
coefficient which in turn determines the responsivity and de-
tectivity of the detector and its noise characteristics.

The energy relaxation time also serves as a pair breaking
parameter in the superconducting density of states which is \ye yse the Keldysh diagram technique for nonequilib-
measured in the tunneling experimérRecently the energy rium processes in which the electron Green's functions,
relaxation time was measured in cuprate superconductors Byong with the electron-electron interaction potential, the
studying an electronic instability at high vortex velocities in gjectron self-energy, and the polarization operator are repre-

the mixed staté. o sented by supermatrices
The electron-electron relaxation time of clean supercon-

Il. ELECTRON-ELECTRON INTERACTION
IN MATRIX FORMALISM

ductors was calculated for the three-dimensional case in Ref. R 0 GA ) R 0 VA

5 and for the two-dimensional case in Ref. 6. In the last work (G)=| . . , M= ._ ],

all channels of the electron-electron interaction, not only the GR GS, AR

Coulomb interaction, was taken into account by using the . . N .

matrix classification of the interaction channels developed - ¢ 3R e 1R

earlier in Refs. 7 and 8. The importance of considering all (2)= A0 ()= A o D

channels of interaction was realized long ago for the problem

of gauge invariance in superconductdiswas also empha- The matrix electron Green’s function in an impure supercon-

sized in Ref. 8 that interference between different channelguctor in the Nambu representation has the form

of interaction cancels divergences in the interaction correc- . . .

tion to the superconducting order parameter. N N — 13— €Rrg+ ART
GR(P)=[GAP) I =———

It is known that in normal impure and low dimensional £2— (ER)? '
metals the diffusive motion of electrons leads to enhance- P
ment of the electron-electron relaxatih! The purpose of p2—p?
the present paper is to calculate the electron-electron relax- P=(p,e), &= om £ (2

ation time in impure two-dimensional superconductors using

the formalism of Refs. 7 and 8. Earlier attempts t0 studynere 7, are the Pauli matricesn is the electron mass, and
electron-electron relaxation in impure two-dimensional

superconductof8 took into account only the Coulomb R R

electron-electron interaction and therefore ignored the other e'=el 1+ 27&,)" AT=A{1+ 27¢.)"

relevant interaction channels. Our results for the recombina- ¢ ¢

tion relaxation time from the Coulomb interaction are similar (ER)2=(€R)2+(AR)?, ®)
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whereA is the energy gaps is the electron-impurity relax-
ation time, and

£e= (4)

In a spatially uniform system the kinetic componeéfé and
3¢ are satisfied the equations

(e2—A?)Y2sgr(e),|e|>A.

GC(P)=S(e)[GA(P)—GR(P)],

S(P)=S(e)[SAP)-3SR(P)], (5)

where S(e€)= —tanh/2T)=2n(e)—1, and n(e) is the
Fermi distribution function. Similar relations hold for matrix
interaction potentials and polarization operators:

VE(Q)=(2N(w)+1[VR(Q)—VAQ)],
116(Q) = (2N(w) + L)[MTR(Q)~TTAQ)], (6)

whereQ=(q,w) andN(w) is the Bose distribution function.
For averaging over impurity position it is convenient to
introduce the following expressions

1 . . . n .
A W—W<T3GA(P)TiGA(P+Q)73>,

AR_
7

1 .- ~ ~
VT(TsGA(P)TiGR(P+Q)Ts>,

= f e ™
where v is the two-spin electron density of states. Calcula-
tions give, e.g.,
4 - -
:E[(1+A+)To+ B, 7],
AA §+
[(1 A)7'3+ B|T2] (8)
where
_e(e-i-w)—Az _e(e+a))+A2
§e§e+w , - gegeer ,
B (et w)A—€A B wA
B §5§5+w B §E§E+a),
_(e-l—w)A-i—eA_(Ze-i—w)A ©
o §e§e+w a gege-%—w ’
§:1+i(§e+w_§e)7_Dq27—!
§+:1_i(§e+w+§s)7_quT! (10)

whereD is the diffusion coefficient. Values af; for differ-

ent matricesr; are presented in Table I. Note also that the
following identities hold:A?—B?=1 andA% —B% =—1.
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TABLE I. Summary of the results fop** and *® defined by
Eq. (7). QuantitiesA,A, ,B, andB, are defined by Eq9).

i AA AR

70 gy 14 “ A
2[(1 A+)7'0 B+7'1] E[(1+A+)To+B+Tl]

T AR B SI0-A)T B

2 7*[(1+A)}2+i|3}3] g[(l—A);z_iB;s]

73

%[(17A)§-3+i8§-2] g[(1+A)3-3fiB;2]

The bare vertices for the electron-electron interaction are
classified in terms of the Pauli matrices. Physical meaning of

the corresponding operatof3,=¥'7 ¥ is the following.
Matrix }1 corresponds to the order parameter amplitdde
matrix 7, corresponds to the order parameter phasena-
trix 75 corresponds to the electron density, and the vector

matrix k}o corresponds to the electric current, the later will
not be considered in the present pafsere Ref. h Note also
that each impurity vertex carries the matix

Therefore each interaction vertex operates in both
Keldysh and Nambu spaces and has the foyp (7))
=y(7)KK,,, where 7, indicates the component in the
Nambu space and tensigf, , stands for the Keldysh spade,
is a boson index, anch andn are the electron indices. In the
representation corresponding to Etj) the nonzero compo-
nents of tensoK K, are

1
2

We will omit coefficient 14/2 in intermediate equations for
the impurity renormalized vertices and restore it in final
equations for the polarization operators and the electron self-
energies.

Impurity averaging leads to the ladder equation for the

scalar vertef(}i) shown in Fig. 1. Such an equation should
be written for each bare matrix in the Nambu space. The
solution of these equations for the verté“>(}i) in the

F(r)<]< <+ F(r><]::

K=K, =Ki,=K5= (11

v, /vvv\ M wv@xvv\
T, i T T T T

FIG. 1. F(}i) is the impurity renormalized scalar vertex in the

Treating the electron-electron interaction in superconducttadder approximatior;; is the screened electron-electron interac-
ors we use the matrix formalism developed in Refs. 7 and 8tion, X is the electron self-energy in an impure superconductor.
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Keldysh-Nambu space is obtained following Ref. 13. We TABLE Il. Summary of the results for impurity renormalized

start with the equation for the vertdy(7s), verticesI'z,(7) andT'3y(7;).
(TsGAP)T3A73) GR(P+ Q) 75) — [ 3 73) = — 75. r(m) 70 m 72 £
o 2 rye) B LA 0 0
The solution of this equation is 21-¢ 2 1-¢
R R g . g 1+A)\ . Fgl(;-l) %1B_+ l+%i+A+ 0 0
[l (r)=— 2 —imt |1+ 2|7, (13 —+ &
21-¢ 21-¢ M) O 0 (1-A (B
S a1 T'21=¢
Note that renormalized verteF(%z( 73) has components pro- R
. A -~ I'2,(7) 0 0 l, 1+A [, B
portional not only to to matrix; but also to matrixr,. The 2 1+ 1-¢ i .
N1 ~o A + +
other verticed (7)) andI'3,(7;) are presented in Table Il. 1 () 0 0 . B 1A
The vertices with the other Keldysh indices are obtained “'217¢ t21-¢
from the equations r2(%2) 0 0 i§—+ B . £ 1-A
PP “o n A P 2 1-¢ 2 1-¢
D3 =[T 57 1* T m) =S()[ T 3m) ~ Tio7)], u :
1:%1( 7)=—S(e+ w)[f%z(;'i) - fgl( ™1, bra are not affected by the complex conjugate, opmpare
with Eq. (13)],
[3(7)=S(e)I3y(7) — S(et+ o) I'1y(7)
A AU * B . 2 1+AN L
—[S(e)=S(e+w)][Im)]*. (19 (M2 r9)] == 5 = pint| 1+ 5 =5
Note also that index structure of the renormalized vertices (15

in the Keldysh space is different from the index structure of

the bare vertex described by H4J1). It is important that the  The effective screened electron-electron interaction in a su-
complex conjugate in Eq14) operates only in the Keldysh perconductor according to Refs. 6—8 is shown in Fig. 1. The
space, thus aniyin Table Il originating fromr, matrix alge-  solution of this equation in 8 3 matrix form is

—(2I+115) 1 0 0
V= 0 [(Vo) " *—Tlg)/D p5/D : (16)
0 3,/D —(2IN+11,9)/D
|
where ivr S(e+w)—S(e)
154Q)= Tf de((l—A)T—(lJrA)
D=— (2 +11)[ (Vo) " =Tlgg] —Mpgllz,,  (17)

and\ is the BCS coupling constank &0), Vo=2me?/q is S(6+i°)_ ) ) (20)
the nonscreened two-dimensional Coulomb potential. 1- 1-4

The polarization operator§ renormahzeq by impurities are . s S(e+w)—S(e)
expressed through the vertéxby the equation M3(Q)=—v— TJ de (1+A)T

i de . .. -
I7(Q)= - Ewwf S-SHmTmli(m)]. (18 _(1_A){S(e+<:) S(e) ) 2
1- §+ 1-44
Using Eq.(14) for T'2,(7;) and Table Il we find the polariza- R A T S(€)— S(e+ w)
tion operators I15(Q)=—1155(Q)=— Zj dEB(T
ivr S(e+ w)—S(e) S(e+w) S(e)
HA(Q)=—f dE((l—A ) —(1+AL) - + . 22
W S . 1= 14, 22
S(e+w) S(e) To calculate the electron relaxation we need the imaginary
1-7* - 1-¢ ) (19 part of the potentialéthe polarization operatorsn the qua-
+ +

siparticle representation. Making a transformation from the
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TABLE Ill. Summary of the results for the polarization operators in the regions of the parameters

important for the electron relaxation at low temperaturesA.

Im IT5

w—2A<T<A

w<T<A

A A
(Im H5=Im 139 scan

(rwT)Y’Dg%exp(=A/T)

wDgexp(—A/T)
bt Bl i Wl

w?+2Aw+(DP)? 2Aw+(DGP)?
(Im 1) scar (wT)l’Z(ZA +w)Dg2exp —AIT) 7w\ Y22ADg2exp —A/T)
o @+ 200+ (DGR V(7) 20w+ (DP)?
(Im H§2=Im Héa)rec TwDg?
Y 0?— 200+ (D)2
Umnﬁ%% ~0

electronic representation to the quasiparticle representation
we use Eq(4). As a result we separate out the processes of
scattering and recombination of quasiparticles in E#8)—

(22). For the imaginary part of the polarization operators we

e(e+ w)—AZ)

c33<q,e,w>=—(1+m

have

IMITAQscay | delS(e+ )~ S(1C, (0,0,
A
23

M Q)racon 3 0(0-28) [ delSte—o)
A

—S(E)]C”(q,é',_(x)), (24)

whereC;; are

e(e-l—w)-i—Az) Dg?
Eellécral [ (& ol —1Ed)2+(DG?)?

<1+ e(e-l—w)-l—Az)
|§e||§e+w|
Dg?
X )
(|§e+w| +|§E|)2+(Dq2)2

Cll(qreuw):(l_

(29)

e(e+w)—A2)
|§E||§E+w|
2
X Dq 2 2\2
(|§e+w|_|§e|) +(Dq )
e(e+w)—A2)
|§E||§E+w|
2
X Dq 2 272’
(|§e+w|+|§e|) +(Dq )

C22(q15!w):(1_

~|1+

(26)

X qu
(|§e+w| - |§e|)2+(Dq2)2

(1_ E(E+0))—A2)
|§e||§e+w|

X Dq2
(|€crol +1E*+(Dg??

For the off-diagonal polarization operator we have

(27)

S(e)—S(e+ w)
i|§s+w|_i|§e|+Dq2

HA(Q) B VA fw de
3 seatt 2 ¢ A|§e||§e+w|

S(e)
+. .
I|§e+w|+l|§e|+Dq2

S(e+w)
_i|§e+w|_i|§e|+Dq2

, (28)

de

124 Q)rec=—B(0-28) g [ 1t —
32 rec 2 A |§e||567w|

X{ S(e)—S(e— )
i|€cm ol —i|€]+DG?

S(e)
i[€c—o| +ilé]+Da?

S(e—w)
—iléc-o|—ilé]+Da?]
As we will see in the next chapter, calculating the electron
relaxation time we need the imaginary part of the propaga-

tors IrT[V{?(Q)]. The imaginary part of the propagators may
originate from the poles of the propagators which correspond

(29
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to collective excitations or from the imaginary part of the 2 [T124(Q)]2 -1
polarization operators I[ﬂﬂ{?(Q)], which correspond to real  Im V’QZ(Q)= Im{ — — —Héz(Q)+ 213 A
processes of scattering and recombination of quasiparticles. A Vo(q) "~ TI34(Q)

We will restrict our calculations to low temperaturésA, X

where large frequencies—2A<T, are important for both ~—Im H?z(Q): (34)
recombination and scattering processes and small frequen- 4

cies w<T<A are important only for the scattering pro-

cesses. The imaginary part of diagonal polarization operatoighere V¢(q) = x/v(q+«) is the statically screened Cou-
for in these regions are presented in Table Ill. Real parts ofomb potential in the normal state, which was presented
the pOIarization Operators are analyzed in Appendix A. above for the two-dimensional cas&= 27TV62 is the

Now we study in detail each of the matrix elements/of ~ screening momentum. Such an approximation is justified due
Following Eq.(A16) the imaginary part of the potentigl;;  to absence of collective excitation in this frequency region.
for scattering processes and for small argumesnsA and

Dg?<A is
IIl. ELECTRON-ELECTRON RELAXATION
ImV7,(Q)=—1Im The kinetic equation for nonequilibrium distribution func-
2IN+119%(Q) tion in a spatially uniform system is
1 (1) 2| A (Q) 2
~Ilm X ~l =) m : dn(e) i &1 dop - -
vl2—i Im 1% v . __ ! ges J_ A c(py—
1(Q) — =T (277)2|m[e (P){2C(P)—S(€)
(30) A A

This approximation is justified because there is no singular- X[ZAP)=2R(P)]}. 39

ity in the order-parameter amplitude propagais at small

frequency and momentum for any finide which means that - The electron energy relaxation time._ is determined from
fluctuations of the amplitude of the order parameter are mashe equation

sive. For the recombination processes, large frequengies

>2A are important, and according to Table Il Ih; may

be neglected. 1 d dn(e)

As was shown in Appendix A, the propagatdrs; and e (T n(e) at (36)
V,, for <A andDg?<A have the form
A K TADQ?— w? The electron self-energy is shown in Fig. 1. Using the results
V(Q)= 24 7ADGA—(@—10)" (3D of Sec. II, we have
K 4A° TADQ?— w?
VQZ(Q): V_q 7ADgk— (w—i0)* TADQ*+ w?’ (32 ;=E é d—Q[N(w)+n(w+ €)]
ToolT,€) m €) (2m)°
Thus the imaginary part of the propagat®ds andV,, for
small arguments comes from the pole corresponding to the « ImVA(O)REPr [T2.( >
phase mode, not from the imaginary part of the polarization S5S( e)( i(QRePr [yy(m)]}
operators. A s
For large frequenciem~2A we use the following ap- —2ImVam{Pr, [I'13(72)]}), (37
proximation:
A . A [H/Z*S(Q)]2 -1 where P;i means the component proportional to mat%ix
IMV35(Q)={ Vo (q) —II5(Q) — 1 At ~ ; d indi
2IN+1154Q) (projection onr;). In Eq.(37) summation on repeated indices
A is implied. Using Table Il and relatiodI's,/ 5S(e) =13,
~Vg(q)“ImII55Q), (33 —(rl)* we present Eq(37) in the form

11 d?q A £, e(etw)+A? Dq?
ree<T,e)‘?f d"’J<2w>7[N(‘°)+”(“’+6)]['mV”(Q) (?+ €ern | (£erot£)7+ (DGR
(£ eletw)+A? Dg? R (ge e(e+w)—A2) Dg?
(e €€cru <§E+w—§e>2+(Dq2)2HmVZZ(Q) e w (£ ot )7+ (DGO
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C(é e(e+w)—A2> Dg? A (ge_ e(e+w)—A2) Dg?

( € E§f+w (§e+w_§5)2+(Dq2)2 +ImV33(Q) € E§E+‘” (§6+w+§€)2+(Dq2)2
& e(e+w)—A2) Dg? o wA ( Dg?

(f+ €fero | (Eery—E)2+(DGP)? ramVarg (et 0t £)2+(DGP)?
" Dg’ ] 38
(bcro—E)?+(DD?/ |

In order to separate out the processes of scattering and recombination of quasiparticles we need to make a transformation
from the electronic representation to the quasiparticle representation ii3&gNote that the presence of imaginary facior
in the last term in Eq(38) means that for the contribution of the nondiagonal channels of interaction requires the states under
the gap to be taken into account according to the equation=i[ A%~ (w+ €)?]*?|e+ w|<A. Such states should also be
included in equations for the polarization operdtbs;, in Egs.(28) and(29) only the states above the gap were included. The
analysis similar to that presented in Ref. 6 for the clean case shows that contribution from the nondiagonal channels of
interaction may be neglected.

For electrons on the Fermi surfaces A,

1 2 (= o Dg?
T s Ayt LAd“’ fo dgeN(w) +n(w=4)]—— Aw+(qu)z{[lmvz@)rewwImVSa(Q»ecom]

A 1/2 2 (= o qu
R JE— 1
X Zw) +'n'3f0 dwfo dqq[N(w)+n(w+A)J2Aw+w2+(Dq2)2
2A+w 1/2 A 1/2
X ImV’fl(@scat(T +[lmV’22(Q>scan+Imv;\s(@scata(z) } (39

1 _ 2 fmd J‘ood N A DqZ
o (T.e=Ayrecom— 3], do | g N(w)+n(w )JwZ—Aer(DqZ)Z

1/2

X ImVi\l(Q>scat(T

A 1/2
+[Im Véz(Q)scatt+ Im V§3(Q)scatT](Z) }

2 o o qu
+ ?szdwfo dqu(w)-f—n(aH-A)]zAw_l_w2+(Dq2)2

A 1/2
X [lmv/;2<Q>recom+Imv;\s(@recona(z) : (40
|
Equations (39) and (40) describe processes of scattering 1 A2 A
two into two and “three into one” quasiparticles corre- o (Te=h) =5-2Dy 1+ > [&A T/
spondingly. scatt (42)

Further calculations will be performed for low tempera-
turesT<A. It may be shown that the most important contri-  As for the contribution to the scattering relaxation time
bution to the recombination time originates from termsfrom terms IMVx(Q)<car@nd IMVaz(Q)scarin EQ. (38) we

V2o Q) recom @andV33(Q)recom in Eq. (40), note that for small energy transfeis<T<A the imaginary
part of the propagatorgs; andV,, originates from the poles
1 T A2 2A correspondin_g to the phase mode as seen in B313.and
mwwm:m 1+ 7) exp — =/ (32). Integrating these poles over the momentgnve get
(41 1 21 [\ 12/ T\32 T2
—Te_ea,e:mscatfﬁ(ﬁ) (K) pZ2y 49

Calculating the scattering relaxation time from terms
VX Q) recom @and Vi3(Q)recom iN EQ. (38) we use the ap- Note that the main contribution comes from the propagator
proximation of Eqs(33) and(34) and we use Table Il for V,, corresponding to the fluctuation of the phase of the order
the imaginary parts of the polarization operators. As a resulparameter. Equatiofd43) is the second order in the small
we get parameter I v unlike Eq.(42) which is the first order, how-
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ever Eg. (43) does not have a small exponential factor The recombination relaxation time is obtained similar to Eq.
exp—A/T therefore contribution from the collective excita- (41),
tions dominates at low enough temperatures. Really for

er7=10, T/eg=10 4, andx~pg, the contribution from the 1 1 AY2T Avg) 2
phase mode dominates for<0.05A.  (Te=A =i > ~an + e
The termV1(Q)scart does not have poles corresponding e-e(T, Jrecom 2M(2)? D¥24
to the collective mode, thus using E@0) we find that the 2A
scattering relaxation time has a power-law divergence: ><exp( - 7) (48)
1 A (aT\V? A ”
redTe=h) 22D wy] TATT) (44) IV. TWO-LAYER
SUPERCONDUCTOR-NORMAL-METAL SYSTEM

This divergence is similar to the logarithmic divergence of i i
the phase or energy relaxation times from the Coulomb in- W€ consider a system of two disordered electron layers

teraction in the normal impure two-dimensional c¥seow- ~ With different density of states;, », elastic scattering times,
ever, in a superconductor the divergence is stronger due (G2 Mean free pathd, , and diffusion coefficient®, ;.
the fact that propagatov,,, correlator of amplitude of the The layers are coupled by the Coulomb potentials, there is no

order parameter fluctuations, corresponds in the NambgUPerconducting coupling between the layers.
.~ . . . First we consider the screened Coulomb potentials in the
space to matrixr,, while the Coulomb interaction corre-

normal state. The nonscreened Coulomb potentials within

sponds to matrixr;. As a result propagatorsy, and Vas  the Jayer,V,, and between electrons in different plandg,
have different coherence factors, see H39)—(22). Other  5e

examples of different behavior of perturbations with differ-
ent symmetries in the Nambu space are discussed e.g., in 1 27e2
Ref. 9. According to Ref. 14 the cutoff frequenay; is de- Vo(a)=2me?/qe, Uo(q)= P
fined by the relaxation time._., which physically means !
that the kinetic equation cannot be applied for energy transwhere e and €, are the dielectric constants of the electron
fers less than I_., thus the self-consistent solution of Eq. |layer and the interlayer medid is the distance between
(44) is layers. We assume that=e; and we absorbed into €.

In all further calculations small momentum transfers are

1 (wA?T)Y3 p( ZA)
3T/ (45

important, thus we assuntgh<<1,
= B 2 728X
Te—o(T,€=A) 0 (27%Dv)
The low-frequency singularity in the scattering relaxation

time mentioned above is for electrons exactly at the Fermi VS—U§=V04we2b. (50)
surface,e=A. We note that for the electrons above the

Fermi surfacee>A the Singu|arity in the Scattering relax- In this chapter the lower indices of the potentials and the
ation time associated with the potenti&l;(Q) <. iS Weaker ~ Polarization operators refer to the layer, e\g;; means the
but it does not disappear. More accurately such a divergendeoulomb potential between electrons in the layer 1, etc. The
must be regularized directly in the physically measurablescreened potentials are satisfied the equations

guantity, e.g., the tunneling conductance. However, it is not

exp—qgb), (49

Vo—Ug=V[1—exp—qb)]=2me%b,

necessary because the contribution to the scattering relax- | Vi1 Uiz| [Vo Uo| [Vo Ug|(Ily 0
ation time from the phase collective mode, E4f3), is more Uyy Vi (U Vg Uy Vo/\ 0 TI,
important because it does not have a small exponential factor
such as that presented in E¢42) and (45). Vii Up
The appearance of the nonexponential scattering relax- X Uy Voo (52)

ation at low temperature is a direct consequence of the gap-

less phase mode in two dimensions. In three dimensions thé&/e will use the definitions:\V,;=V;,V,»=V,, and U,
phase mode have a gap and the main contribution to theU,;=U. The solution of Eq(3) is

scattering relaxation comes from the potentig| .

S Ug o Vo (Vg-URI, - Vo~ (Ve—UYII,
1 B 1m-rl/2 (A) 1/4ex% - é) U= F; Vl_ P y V2— P y
Te*e(TvezA)Scatt 7T(7TD)3/2V3 Wo T) 2
(46) P:(l_vonl)(l_VOHZ)_UOHlHZ
where vz=mpge/7? is the three-dimensional density of ~1—Vo(I1;+11,—4me’bIl,I1,). (52
states. Again after regularization of singularity in Ed6) o )
we have The polarization operators in each layers fpk<1 and
w7;<1 are chosen in the form corresponding to a normal
1 12TV2 4A state, because for recombination processes large frequencies
Te=A = 7 p( - ﬁ) . (470  ©>2A are important, while collective excitations in a super-
Te-e(T€=A) o m(wD)¥2w; conductor exist only forw<<A.
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Dig? from the quasiparticle scatteringecombination processes
Q)= -~ Vot D, (53 associated with the fluctuations of the electron density and
: the phase of the order parameter, the propagatfgssand
The potentials are V,,. The recombination relaxation rate has double exponen-
L 04 D02 (i 0+ Do tial smallness at low temperaturgsee Eq.(41)], associated
UAQ) = (lo+D4q )(N"" 29°) with exponentially small number of available quasiparticles
v1(D1+Dory/v1)g? iw+Dg? ’ (see also Ref. 12
(54 The scattering relaxation rate has a power-law tempera-
ture dependencésee Eq.(43)] due to singularity in the
A a0+ (1+2k,d)D,q propagators/,, and V3 associated with the gapless collec-
Vi(Q)=U%Q) iw+D,0° ’ (59 tive mode, the phase mode. The contribution to the scattering
relaxation rate from the fluctuations of the amplitude of the
where order parametery/;; has an infrared divergence similar to
B v DD, the p&ase relaxation time in_ th_e two-dimensional_ normal
D=|1+ V_l +2K2d)m, Ky=21e?v,. metal;” however, after regularization the corresponding con-

tribution to the scattering relaxation rate has a small expo-
(56) nential factor and therefore is less important that the contri-

We assume that layer 1 is in the superconducting state arRption from the collective excitations.
layer 2 is in the normal state. We will calculate the recom- W€ @lso shown that in the superconductor—normal-metal
bination relaxation time in the superconducting layer due tgwo-layer system the recombination relaxation rate in the
interlayer electron-electron interactith From Eq.(40) we superconducting layer due to the interlayer Coulomb interac-

have tion is strongly increased at low temperatufesA by an
exponential factor exg(T)>1 in comparison with a single
1 superconducting layer. This fact may be important for con-
—Te—e(T’ e=A) structing superconducting radiation detecfors.

recom The author is grateful to I. L. Aleiner for valuable discus-

2 (= % sions and A. V. Sergeev for his help at the early stage of the
:;gszdwfo dgq N(w)+n(w—A)] work.

quz

I A A) 1/2
8 “’Z_A“’JF(quZ)ZIm v (Q)(z‘" ' 57 In this appendix we obtain equations for the polarization

For the imaginary part of the interlayer interaction we use@Perators for some limiting cases and prove some identities
the approximation similar to Eq.(33), ImU”(q,w) for them. Though some of the results were already presented
=|U(q,0)|2|mH’2'\(Q), where U(q,0) corresponds to the N Ref. 8, for Matsubarg frequencies and in Ref. 15 Tor
static limit of Eq.(54). The imaginary part of the polariza- — 0O the analysis for continuous frequencies has some advan-
tion operatodI, corresponds to the electron scattering in thetages a!”d helps us to estimate the imaginary parts of the
normal layer and thus does not have a small exponentiditéraction propagators.

factor typical for a superconductor. As a result, We start with the polarization operators fay=0.
I1,5(0,0) may be taken directly from Ed22),

APPENDIX A

1 T DD, )
T — A =12 2 ivwA
Te—e(T €= A) com 47 V1 (D1+Dovalvy) MM20.0) = = ——J(w), (A1)
X i+~; exr{—é). where
D D+.2D,; T
de [S(e+w)—S(e etw)+S(e
59 - ( (e+w)-S(e) S(etw) ())
. . §e§e+w §s+w_§e §s+w+§e
We see that relaxation rate in a superconductor—normal- (A2)
metal two-layer system is increased by an exponential factor
in comparison with the recombination rate in a single layer;Then we takdlyy(w,0) from Eq.(20),
see Eq.(40).
a(40 v (et ) — A2 S(et w)—S(e)
sz(o,w)=—f de| | 1—
V. CONCLUSIONS 4 Eebern feroEe
We derived the kinetic equation describing the electron (et w) =A% S(etw)+S(e)
i . . . 1 . (A3)
relaxation in two-dimensional impure superconductors. For P it ée

electrons at the Fermi surfaces A, the recombination and L ) .

scattering relaxation time were calculated for low tempera@nd transform it using the identities

tures, T<A. We took into account all channels of the _A? a2 2

electron-electron interaction in the superconductor. 1— cletw) __Gerum8) 0 (A4)
We found that the recombination relaxation rate comes Eebetw 28bern
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eletw)—A? (£ ,+E)—w?
§5§5+w o 2§e§e+w (AS)
to the form
v S(e) S(e+ )| vo?
H22(0,w)=ZJ d€< fe ? TJ(&))
(A6)
Now recalling the BCS self-consistency equation
9y, (A7)
we see that
2 vow?
X"’HZZ(O’(‘)):?‘J(“))- (A8)
To transformllz3(0,w),
_ A2
[1540,0) +V———f de( —6(6‘;;:10)A )
S(e+ w)—S(€)
§e+w ge
e e(etw)—A?\S(e+w)+S(e)
§e§e+w §e+w+ ge ,
(A9)

we use the identities

E(e+w)—A2_§€+w—§e e+w+i)_2;A2
§bero w Eerw & §bevo’
(A10)
_E(e+w)—A2_§€+w+§€ e+w_i)+2;A2
§beto w ferw & §bevo’
(A11)
and get

11550, w)+v———f de(g + S(e-l—w)——S(e))

vA2
+T‘](w)' (A12)
Now we recall another identity,
f ( S(e+w)——S(e)) 2w, (A13)
§5+w ge
and get
AZ
I155(0,w)= T‘](w)' (A14)

We see from Eqs(Al), (A8), and(A14) that the following
identity holds:

350,0) 2+H22(0w) +[11,50,0)]?=0. (A15)

MICHAEL REIZER
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At low temperaturesT<A and for small argumente<<A
andDq?<A, the polarization operators are

2 w? Dq2
X+H11(Q):_V 1- 12A2+778A2 , (A16)
2 " _ w? Dg?
N 2AQ)=—v aT ARyl (A17)
) 2
M(Q)=—ivor, MaQ)=—v1+ 75|, (AL8)

Thus for small arguments the following relation hofts:

2
1133(Q)| 1 +2AQ) +[M3Q)1*~q*  (A19)
Using Eq.(A16) we have for the propagat®,;
L 0)2 T Dq2 -1
V11(Q)=—[2\+1114(Q)] "= v 1-Ta2t g a7
(A20)

We see thaV,, is not singular which means that fluctuations
of the amplitude of the order parameter are massive, thus the
imaginary part of the propagato¥,; originates from

Im1I;,(Q).
The screened Coulomb potential is presented in the form

VaQ)= L‘?A (A21)
1-Vo()ITH(Q)
where
- R (I154Q))?
IM*(Q)=1I34q, )+m
wADQg?
TV rAD?— (w—i0)2" (A22)

The propagatoW,, may be written in a similar way:

1 1-Ve@UQ)
VE(Q)=- 5 a

2 gy LY@ M@

(A23)

The poles in the propagato¥s; andV,, correspond to the
collective excitation, the phase mode, which in two dimen-
sions ig® given by equationn®= 7wAD«q.

In quasi-one-dimensional superconductors the non-
screened Coulomb potential \&(q) =2€?In(1/qa), qa<1i,
wherea is a cross-sectional size, and the density of states is
v1=1lmvg, thus the spectrum of the phase modé is

2e?
w?’=7ADg?| —In(1/ga)—1]. (A24)
TUE

APPENDIX B

It is interesting to see how the spectrum of the phase
mode changes in different two-layer systems. First we con-
sider a system of two identical impure superconducting
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planes coupled by the Coulomb interaction, but no Josephson wAD >
coupling between the planes, thus the order parameters are 7(Q)= VS AD P (w—10)2’ (B3)
independent in each planes. For the screened Coulomb po- «d
tential in each layer we have from E2) 7D,g°
N3(Q)=~vpi— 3. (B4)
w+D.q

Vo(a) —[VA(a) — U3(q)1TI(Q)

V(Q)= = 5 = > B1)  The spectrum of collective excitations is determined from
[1—Vo(IL(Q)]*~[Uo(a)II(Q)] the equation
To avoid confusion we dropped lower indices in the Cou- 1—Vo(I1,+I1,— 47e?bI1,11,)=0. (B5)

lomb potentialV. The spectrum of the phase modes is de-

. . ~ ~ For small momentaj< x., ks=2me’vs Eq. (B4) leads to
fined by equations 4 (Vo+U)II=0 and 1—(Vo—Uy)II Y=<rs, Ks=2mevs Bq. (BY)

=0. The solution of these equations fod<1 is w, 5 or Dg Vg
=(2mAD«kq)Y? and o_=(2wAD«xd)V%. These new w”=mAD A+"‘”TAD_n’ A:1+V_n+2"sb-
phase modes are similar to in-phase and out-of-phase plas- (B6)

mons in symmetric two-layer clean normal-metal system; se
Refs. 16 and 17. ing:
In a system of two coupled quasi-one-dimensional disor- 9

q‘he solution of Eq(B5) is a phase mode with small damp-

dered superconductors the spectrum of the phase modes in i R
the long-wave limitqd<1 is w=(mADA)Yq+ EwAD—,
n
4e? 5 )
2 _ 2 _ D D
w5 =mADq ( In(1/qa) 1), mPs|” _PsA”

) ) 2e? The last inequality is satisfied providéd>1 andD <D, .
w-=m7ADq W—UFIn(d/a)—l - (B2)  This result was independently obtained in Ref. 19. If the
opposite inequality is valid, the solution of E(B6) is a
Now we consider a two-layer superconductor—normaldiffusion mode:

metal disordered system. The polarization operators in the D2 D.\2
superconducting and normal layers according to E422) iw+D,g2A=0, s4 <min 1'2(_5) } (B8)
and (53) are A A A\Dj,
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