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Quasiclassical theory of superconductivity: A multiple-interface geometry
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Department of Theoretical Physics, Umea˚ University, 901 87 Umea˚, Sweden

~Received 16 July 1999!

A method is suggested that allows one to study multiple coherent reflection/transmissions by partially
transparent interfaces~e.g., in multilayer mesoscopic structures or grain boundaries in highTc’s!, in the
framework of the quasiclassical theory of superconductivity. It is argued that in the presence of interfaces, a
straight-line trajectory transforms to a simple connected one-dimensional tree~graph! with knots, i.e., the
points where the interface scattering events occur and pieces of the trajectories are coupled. For the two-
component trajectory ‘‘wave function’’ which factorizes the Gor’kov matrix Green’s function, a linear bound-
ary condition on the knot is formulated for an arbitrary interface, specular or diffusive~in the many channel
model!. From the new boundary condition, we derive~i! the excitation scattering amplitude for the multichan-
nel Andreev/ordinary reflection/transmission processes;~ii ! the boundary conditions for the Riccati equation;
~iii ! the transfer matrix which couples the trajectory Green’s function before and after the interface scattering.
To show the usage of the method, the cases of a film separated from a bulk superconductor by a partially
transparent interface, and a SIS8 sandwich with finite thickness layers, are considered. The electric current
response to the vector potential~the superfluid densityrs) with thep phase difference in S and S8 is calculated
for the sandwich. It is shown that the model is very sensitive to imperfection of the SS8 interface: the low
temperature response being paramagnetic (rs,0) in the ideal system case, changes its sign and becomes
diamagnetic (rs.0) when the probability of reflection is as low as a few percent.
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I. INTRODUCTION

Many important properties of superconductors are rela
to surfaces and interfaces, the Josephson and proximity
fects being well-known examples. In recent years, new r
surface physics has been found in high-Tc oxides after the
identification of thed symmetry of the order parameter. O
the theoretical side, studying an interface poses certain p
lems: The method of the quasiclassical Green’s function1–4

~for a recent review see Ref. 5! which is the main tool in the
superconductivity theory, cannot be directly applied h
since the quasiclassical condition is violated by fast cha
of the potentials on the atomic distances in the vicinity of
interface. As shown by Zaitsev,6 the abrupt changes at
specular partially transparent interface can be incorpora
into a boundary condition for the quasiclassical Gree
functions; the condition is a third order equation for the m
trix Green’s function near the interface. Various forms of t
boundary condition have been discussed in more re
papers.7–9 New difficulties arise when one attempts to d
scribe the coherent reflection/transmission by many in
faces, e.g., in a multilayer mesoscopic structures or g
boundaries network in high-Tc’s. In this case, Zaitsev’s third
order boundary condition must be satisfied on each interf
and one encounters the problem of solving a system of c
matrix equations. It is not obvious that a solution to the s
tem of equations exists and is unique if it exists. Moreov
some authors7,8 doubt the very applicability of the quasicla
sical scheme in the many interface geometry: They ar
that the quasiclassical normalization, which is a vital part
the quasiclassical scheme, is not possible in a double l
system with partially reflective interface.

The purpose of the present paper is to reexamine
theory of the interface in the quasiclassical description
PRB 610163-1829/2000/61~10!/7077~24!/$15.00
d
ef-
h

b-

e
e

e

d
s
-

nt

r-
in

e,
ic
-

r,

e
f
er

e
f

superconductivity. A scheme is suggested that allows on
incorporate specular as well as diffusive interface~s! into the
quasiclassical theory. To make the presentation s
contained, we start with a short introduction to the quasicl
sical theory of superconductivity.

As first shown by Bardeen, Cooper, and Schrief
~BCS!,10 the phenomenon of superconductivity can be und
stood in the framework of a mean-field type scheme wh
the Cooper correlations are introduced through the pair
tentialD ~generally, a function of the momentump) which is
related to electron-electron interaction by a self-consiste
condition. The mean fieldD may be introduced directly as
kind of Hartree-type potential, or it can be derived in t
framework of a more sophisticated Eliashberg theory wh
the pair potential comes as the anomalous self-energy in
Gor’kov equations for the Green’s function. This truly m
croscopic approach allows one to perform all the normali
tions in the spirit of the Landau theory of Fermi liquid and
consider superconductors with a strong coupling~see Seren
and Rainer4 and references therein!.

Whatever the method of derivation, the Gor’kov equati
for the matrix Green’s function gives the basis for studyi
the BCS-type superconductivity. The quasiclassical theor
superconductivity offers an approximate simplified sche
of solving the Gor’kov equation. To clarify physics behin
the approximations, we analyze first the Bogoliubov–
Gennes equation10 that is the effective ‘‘Schro¨dinger equa-
tion’’ corresponding to the Gor’kov equation~in the weak
coupling limit!.

It is well known that Cooper’s pairing in the superco
ducting state is conveniently described in the language of
electron-hole coherence. On the mean field level, the gro
as well as excited states of the system are products of si
particle states, each of them a quantum superposition of e
tron and hole. The electron,ce , and hole,ch , amplitudes in
7077 ©2000 The American Physical Society
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the superposition comprise the two-component single p
ticle wave function, C(r,t)5(ch

ce). It obeys the

Bogoliubov–de Gennes equation,10

i\
]

]t S ce

ch
D 5S jS p̂2

e

c
AD1U D

D* 2jS p̂1
e

c
AD2U

D S ce

ch
D ,

~1.1!

wherej(p)5e(p)2m, e(p) andm being the electron band
energy and the chemical potential, respectively,A is the
magnetic vector potential;U(r) is the potential energy. The
pairing potentialD, and, in principle, all other potential
must be found self-consistently.

For future needs we note that in the vicinity of the Fer
surfacej(pF)50, the electron~hole! with the momentump
'pF moves with the Fermi velocity v
51(2)(]j/]pF)uj50. The particle energy is close to th
Fermi energyEF;vpF , and the de Broglie wave length|F
is of order of|F;\/pF , pF being a typical momentum on
the Fermi surface.

In the superconductors which are good metals in the n
mal state, the potentials are semiclassical~excluding inter-
faces and disorder which are discussed later!, i.e., they are
slowly varying functions of the coordinate on the scale of
wave length|F . Indeed, the pair potentialD changes at the
coherence lengthj0;\v/D, and one estimates the rat
|F /j0 as|F /j0;D/EF . Also, the validity of a semiclassica
treatment of magnetic fieldB requires that|F! l B , l B being
the magnetic length,l B5AF0 /B, F05hc/2e. Since super-
conductivity exists only atB,Bc2;F0 /j0

2, the ratio|F / l B

never exceedsD/EF . Seeing thatD;Tc , the semiclassica
conditions|F /j0 , |F / l B!1 are equivalent to the require
ment thatTc /EF!1. In accordance with the Landau theo
of Fermi liquid, this condition is always is satisfied if th
normal state is metallic.

Most of the physical effects in metals and supercondu
ors ~the Hall and thermoelectric effects being notable exc
tions! can be described in the simplest approximation wh
all the corrections of orderT/EF;Tc /EF are neglected, i.e.
in the limit Tc /EF→0. This is the approximation where th
quasiclassical theory of superconductivity is valid.4,11

SinceTc /EF;\/pFj0, the limit is equivalent to\→0 or
large massm;pF /v→`. In this limit of quantum mechan
ics of noninteracting particles, wave packets do not su
quantum broadening and dynamics becomes comple
classical: The particle moves along a trajectory, positionr(t)
and momentump(t) being well defined. Below we analyz
how the electrons-hole coherence in the superconduc
state changes the situation.

First, we consider in more detail the classical dynamics
the electron and hole separately. The Bogoliubov–de Gen
equation where we putD50 for the moment, reads

i\
]ce

]t
5@j~ p̂2eA!1U#ce ,

i\
]ch

]t
52@j~ p̂1eA!1U#ch . ~1.2!
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The two equations transform into each other after the sub
tution t→2t andA→2A. This means that given a solutio
ce(r,tu$A%) corresponding to the vector potentialA, the
function ce(r,2tu$2A%) solves the equation forch in the
vector potentialA. Therefore,

ch~r,tu$A%!5ce~r,2tu$2A%!, ~1.3!

providedce(r,t50)5ch(r,t50).12

If \→0, the center of electron or hole wave packe
moves in ther2p space along the trajectory specified by t
coordinatere,h(t) and momentumpe,h(t) as a function of
time t. The relation between electron and hole trajector
can be expressed in the following way.

Let re(h)(tu$b%) together withpe(h)(tu$b%) be the trajectory
of the electron~hole! in the magnetic fieldb5rot A. From
Eq. ~1.3! one can conclude that the corresponding class
dynamics of electrons and holes are related to each othe
the following way:

rh~ tu$b%!5re~2tu$2b%!, ph~ tu$b%!5pe~2tu$2b%!,
~1.4!

provided the electron and hole trajectories pass through
same pointre5rh5r0 andpe5ph5p0 at t50.

One sees from here that if the magnetic field is abse
b50, or its influence on the classical dynamics is negligib
then

rh~ t !5re~2t !, ph~ t !5pe~2t !, ~1.5!

that is the electron and hole move in opposite directio
along thesameline ~path! in the r2p space. However, to the
extent the magnetic field influences the orbits, the elect
and hole paths aredifferent.13 ~Obviously, the role of the
magnetic field may play any perturbation violating the tim
reversal symmetry.!

Now we are in position to analyze how the electron-ho
mixing @i.e., DÞ0 in Eq. ~1.1!# changes propagation of th
wave packets. Consider a wave packet which is initia
purely electronic (ch50, t50), and assume for the mo
ment that Eq.~1.5! is valid. The electron moves classical
on a trajectory in ther2p space, and provides a sourc
D* ce , in the equation forch @see Eq.~1.1!# generating a
hole wave. SinceD is a slowly varying field, the source
D* (r)ce(r,t) andce(r,t) are peaked at the same point of th
r2p space. In other words, the hole is created at the poin
the current position of the electron and with the instan
neous electron momentum. Then, by virtue of Eq.~1.5!, the
secondary hole moves backwards along the path of the
mary electron. In turn, the hole creates new electrons wh
move along the same path, etc. It is very important that
multiple processes of the electron-hole conversion keep
packet on a line in ther2p space which is nothing but th
classical trajectory. However, the width of the packetalong
the trajectory grows linearly in time}vt ~at timest.\/D)
due to the reverse of the velocity under the electron↔ hole
conversion processes.

One sees that the wave packet in a superconductor e
riences broadening even in the limit\→0, and, therefore, a
quantum description is unavoidable. Nevertheless, the no
of the classical trajectory as a line in ther2p space remains
meaningful because the quantum broadening occurs
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along the line. Ultimately, this important feature is due to t
time reversal symmetry. It holds to the extent Eq.~1.5! is
accurate, i.e., when one can neglect the magnetic Lor
force in the classical dynamics.

Note the peculiar role of a magnetic field: the differen
in the magnetic bending of electron and hole trajectories
sults in the broadening of the coherent electron-hole w
packet in the direction transverse to the classical traject
At energies;D where the electron and hole componen
have comparable weight, the significance of the Lore
force can be estimated14 from the ratio\vc /D&D/EF where
vc5ueB/mcu is the cyclotron frequency. Since\vc /D
}1/m, one can consistently neglect the Lorentz since
quasiclassical theory is effectively a theory of infinite
heavy particles,m→` as discussed before. It seems that
general case the Lorentz force can be incorporated i
theory of superconductivity only by a full quantum approa
~see, however, Kopnin’s quasiclassical theory of the H
effect15!. Sometimes, the magnetic broadening may turn
to be noncrucial, e.g., in a spatially homogeneous case,
then certain simplifications may be possible~see, e.g., Ref.
16!.

A more formal and rigorous analysis of electron-hole c
herence on classical trajectories can be done using a me
first suggested by Andreev.17 The stationary state wave func
tion is written asC(r,t)5c(r)e( i /\)pF"re(2 i /\)Et, wherec(r)
is a slowly varying function~provided uEu!EF). Plugging
C(r,t) into the Bogoliubov–de Gennes equation Eq.~1.1!,
and using the approximation

e2( i /\)pF"rjS p̂2
e

c
ADe( i /\)pF•r'v•S \

i
“2

e

c
AD ,

where the small terms of order (|F“)2 are neglected, one
gets the Andreev equation. Rearranging terms, the And
equation may be written in the following form:

S i\v"¹1S E2v"ps D

2D* 2E1v•ps
D D S ce

2ch
D 50, ~1.6!

wherev is the velocity at the pointpF of the Fermi surface,
ps denotesps52(e/c)A and for simplicityU50 ~as is usu-
ally the case because of the efficient screening!. The most
important feature here is that the derivativev"¹ couples the
value of the wave function only on straight lines in the d
rection of the velocityv; the lines are the classical traject
ries whenU50.18 In this approximation, the quantum cohe
ence exists only along the classical trajectories without
coupling between neighboring paths. These properties a
agreement with the qualitative picture of the wave pac
spreading along the classical trajectory, discussed pr
ously. One may call the envelope functionc in Eq. ~1.6! the
wave function on the classical trajectory.

After this short review of the quasiclassical approxim
tion, our next step is to include the interface into the sche
In this introductory part of the paper, we present main id
using the language of the wave functions on classical tra
tory; a more general approach of two-point trajecto
Green’s function is presented in Sec. II.

The reflection/transmission on an isolated interface~a
specular one, to begin with! mixes together semi-infinite
pieces of classical trajectories~see Fig. 1!. Each of the pieces
tz

-
e
y.

z

e

a

ll
t

nd

-
od

ev

y
in
t
i-

-
e.
s
c-

is characterized by the Fermi surface momentumpF and the
corresponding~electron! velocity v; the arrows indicate the
direction of the velocity. On pieces of trajectories 1 and 2
velocity is directed towards the interface, and we call th
incoming trajectories~or channels!; correspondingly, 18 and
28 are outgoing~pieces of! trajectories. Throughout the pa
per, the outgoing ‘‘channels,’’ alias for ‘‘trajectory,’’ are
marked by ‘‘prime.’’

Note that the in/out classification of the trajectories
accordance with the direction of the Fermi surface velocity
unique but it is arbitrary because the electron and hole
longing to same channel have the opposite directions of t
velocities. For instance, the electron coming to the interf
on via, e.g., the channel 2~see Fig. 1! may go away as the
electron on trajectories 18 and 28 as well as a hole along
nominally incoming trajectory 1.

We will call ‘‘knot’’ the region inside of which scattering
occurs and the pieces of the classical trajectories get ‘‘tie
together on the interface.19 Usually the typical thickness o
the interface region is of atomic scale, and only the wa
function in the outer region is of interest. Then, on the qu
siclassical level of accuracy, the interface~the knot! can be
described by the scattering matrix.20

In general, the knot may tie together arbitrary number,N,
of ballistic inchannel to the same numberN of the outchan-
nels. For a specular interface, number of channelsN equal to
2, and rough interfaces may be modeled by knots withN
.2.

The waves generated by a source, e.g., on path 1 in Fi
spread to all other paths 18, 2, and 28 coupled by the knot. In
the presence of an interface, the wave function on trajec
remains a valid concept if one interprets the notion of traj
tory in a broader sense as a set of the points on all
ballistic paths coupled by the knot. For instance, in Fig.
one understands paths 1, 2, 18, 28 as the parts of a single
geometrical object, which we also call a ‘‘trajectory.’’ Th
spatial argument of the wave function will span the gene
ized trajectory. Similar constructions are known in the lite
ture: see, e.g., Ref. 21 where the Schro¨dinger equation is
solved on graphs~networks!.

The case of many interfaces requires some prelimin
remarks. Consider as an example a two layer system, Fig
If the layers are of the same thickness and the reflections
exactly specular, the two outgoing path 18 and 28 meet to-

FIG. 1. Scattering on a partially transparent specular interfa
The interface is depicted as the shaded region. The arrows show
direction of the~electron! velocity. The incoming~outgoing! trajec-
tories are denoted 1 and 2 (18 and 28). The filled circle, the knot
~see text!, is the ‘‘black box’’ where the scattering occurs.
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7080 PRB 61A. SHELANKOV AND M. OZANA
gether again on the upper knot, forming a loop, i.e., a pai
interfering paths. This causes a major difficulty for the qu
siclassical theory: Indeed, the envelope functionc obeying
the Andreev equation is introduced when the phase fa
eipFL/\, L being the distance along the path, is singled ou
the full wave function. When loops are present and ther
more than one path connecting any two points, the dista
L is ill-defined, and the procedure of constructing the en
lope c becomes non-unique and dubious. Besides, the in
ference phase factors likeeipF(L12L2)/\, L1,2 being the
lengths of the interfering paths, crucially sensitive to t
value of pF and cannot be found in the quasiclassical lim
where\/pF50.

To overcome the difficulty we note the following: Th
interference leads to Fabry-Pe´rot type geometric resonance
and related fluctuations of various physical quantities, p
haps locally strong. However, in the limit\→0, the reso-
nances areclose to each other in the configuration spac
and, therefore, the fluctuations are expected to be effecti
averaged out when one calculates observables: The latte
given by certain integrals and thus are sensitive mainly
coarse-grain features in the configuration space.

Further, the coarse-grain features@like, e.g., the angular-
resolved local density of states averaged in small volum
(@|F

3)# or small interval of directions! are more than likely
not perceptive to small variations of geometry shifting t
positions of the resonances. Hence, it seems plausible to
sume that the coarse-grain structure can be faithfully rep
duced if one introduces ‘‘virtual roughness,’’ which is sma
(!j0) and not noticeable quasiclassically, and performs
eraging with respect to the roughness~kind of ergodic hy-
pothesis!. In other words, on the course-grain level, an ide
surface is expected to be indistinguishable from a ‘‘virtua
rough,’’ i.e., a random surface with roughnessW ~see Fig. 3!
small on the typical quasiclassical scale,W!j0.

For a rough surface, the picture of trajectories shown
Fig. 2 almostnever occurs: In the quasiclassical approxim
tion, the trajectories are lines with zero (;|F) width, and
the condition that the trajectories 18 and 28 cross each othe
again exactly at the interface~up to;|F), is very restrictive.
For this, the surfaces must be strictly parallel and the refl
tions 18→3 and 28→4 must be specular~identical! with

FIG. 2. The typical trajectory in an ideal sandwich with th
layers of an equal thickness and parallel surfaces.
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high precision. Qualitatively, the argument here is the sa
as in the billiard theory where closed orbits are known to
rare exceptions. As long as the loops are absent, solution
the Andreev equation vary smoothly when parameters of
trajectory ~e.g., its direction! or the surface roughness a
changed and have certain limit when the virtual roughn
tends to zero. Hence, the averaging with respect to the vir
roughness is trivial: it amounts to neglecting it in any calc
lation provided the topology of the trajectories is sing
connected. The virtual roughness~tending to zero! is needed
here only as a mean to eliminate the geometric resona
which are not of interest because they are not seen on
coarse-grain level of description.~Another line of reasoning
could be to say that any real sample is always microsco
cally rough so that loops are statistically impossible.!

By these arguments, one comes to the important con
sion that due to the virtual~or real! roughness the paths tie
together by a knot do not show any further correlations a
do not~typically! meet each other on other knots. This see
to be an analog to the impurity averaging. Effectively,
allows one to average over the Fermi wave length scale f
the very beginning.

Uncorrelated multiple collisions with interfaces transfor
a ballistic trajectory into a treelike geometrical object. T
give a general idea of what we mean by a tree, the topolo
cal structure of one of the possible trees withN52,3 knots is
shown in Fig. 4. The tree corresponding to a real phys
situation will be presented later.

The main feature of the treelike trajectory is its on
dimensional character, the property which can be equ
lently formulated as~i! there are no loops or interferin
paths;~ii ! there is only one path connecting any two points
the tree;~iii ! the cut of any line produces two disconnect
pieces.

Since the tree is effectively one-dimensional, one is a
to repeat Andreev’s procedure on a treelike trajectory de
ing the slowly varying envelope wavec(r) by the formula
C(r)5c(r)eipFL(r), wherer spans the points on the tree, an
L(r) is the coordinate along the tree counted off a point.
between knots, the Andreev equation Eq.~1.6! is valid and

FIG. 3. The typical trajectory in a sandwich with a rough su
face. The roughness is shown schematically as a step,W being the
height of the step. Unlike the ideal case in Fig. 2, the paths 18 and
28 return to the interface at different points.
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PRB 61 7081QUASICLASSICAL THEORY OF . . .
the values of the wave function on a knot are coupled by
scatteringS-matrix ~see Sec. III!.

The purpose of present paper is to extend the exis
quasiclassical Green’s function theory of superconductiv
to the case of multi-interface geometry. In essence, the s
dard quasiclassical~‘‘ j-integrated’’! theory of superconduc
tivity is the Green’s function version of the Andreev equ
tion: Again, the quantum coherence of the electron and h
residing on the same trajectory is taken into full consid
ation whereas the coherence between particles occup
different trajectories is neglected. The paths are couple
each other only by the self-consistent effective potentials
various self-energies~impurity, phonon! and the pair poten-
tial D. The Green function technique has obvious advanta
for one is able to perform the disorder averaging, include
inelastic scattering and the strong-coupling effects, etc.

Although the potential due to crystal imperfections li
impurities is not slowly varying, this does not invalidate t
quasiclassical scheme if one is interested only in the diso
averaged properties. It is well known that the disorder av
aging amounts to the impurity self-energy term in t
Gor’kov equation which effect is similar to that of the p
tential energy. The self-energy varies on the same sp
scale as other self-consistent potential and as such doe
violate classicality. Of course, the imaginary part of the se
energy must be small so that the mean free pathl is large,
l @|F . The quantum localization corrections controlled
the parameter\/pFl !1 are ignored, which again is consi
tent with the limit\→0 or pF→` accepted in the quasiclas
sical theory.

We use the version of the quasiclassical theory22,23 where
the main object is the two-point Green’s function on classi
trajectories. In our opinion, this approach is most adequat
the above physical picture of the electron-hole phase co
ence spreading along classical trajectories. As has alre
been discussed, in the many-interface geometry the clas
trajectory becomes treelike. Accordingly, the arguments
the two-point Green’s function are points on a tree. In
present paper, we restrict ourselves to the stationary c
and our main concern is the retarded Green’s function of
Keldysh technique.

FIG. 4. An example of a treelike trajectory. Pieces of t
straight lines show the trajectories before or after they enter a
~filled circles!, i.e., before or after a collision with an interfac
There is only one path connecting any two points on the tree so
the tree is effectively one-dimensional.
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The paper is organized as follows. In Sec. II, we revie
the quasiclassical theory in the formulation based on the t
point Green’s function. The connection to the standard te
nique is discussed in Sec. II B. In Sec. II C, we briefly sho
the connection to the Riccati equation technique,24,25 as well
as suggest a general method for the case of a periodic po
tial. In Sec. III, we derive the boundary conditions for th
Green’s function on the knot~interface! with arbitrary num-
ber of channels. In Sec. IV, a solution to the multichann
problem of the Andreev reflection as well as the bou
states, is given. In Sec. V, we derive the interface bound
condition for the Riccati equation. In Sec. V B, the bounda
condition for the Green’s function in terms of the transf
matrix is derived. In Sec. VI, we show the usage of t
general approach applying the theory for studying sim
examples:~i! a film separated by a partially transparent i
terface from a bulk material superconductor;~ii ! two layers
of a finite thickness. Motivated by the recent theory of t
paramagnetic effect,26 we pay most attention to the cas
when the phases of the order parameter in the two super
ductors differ inp; numerical data for the density of state
and superfluid density are presented. The results are sum
rized in Sec. VII. Details of the calculations are collected
the Appendixes. In the rest of the paper,\51.

II. TRAJECTORY TWO-POINT GREEN’S FUNCTION

A convenient starting point is the formulation of the qu
siclassical technique in terms of the two-point Green’s fu
tion on classical trajectories; the method was first sugge
in Refs. 27~‘‘ t-representation’’!, and in a different form de-
veloped in Refs. 22 and 23. The trajectory Green’s funct
is introduced via the following representation of the 232
matrix Gor’kov Green’s function:28

Ĝ«
R~r1 ,r2!52

mF

2p

eipFur12r2u

ur12r2u
ĝ1

R ~r1 ,r2 ;«!

1
mF

2p

e2 ipFur12r2u

ur12r2u
ĝ2

R ~r1 ,r2 ;«!,

pFur12r2u@1, ~2.1!

wheremF5pF /v, pF andv being the Fermi momentum an
velocity, respectively;« in Eq. ~2.1! is the energy variable
~stationary case!. For definiteness, we consider the retard
Green’s functionGR of the Keldysh technique. To simplify
notations, we assume a spherical Fermi surface; genera
tion to an anisotropic spectrum is straightforward.

Similar to Andreev’s procedure, the fast ‘‘quantum’’ o
cillations on the scale|F are singled out in Eq.~2.1!. Re-
sembling Eq.~1.6!, the slowly varying quasiclassical enve
lopes ĝ6

R (r1 ,r2) obey first order differential equations,28,22

the gradient term of which couples only the points
straight lines which are obviously the classical trajector
corresponding to a particle on the Fermi surface.29 The tra-
jectory is specified by its directionn and initial pointR, so
that the positionr of a point on the trajectoryR,n can be
presented asr5R1xn, x has the meaning of the coordina
on the trajectory. In the momentum space, the trajectoryn is

ot

at
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associated with the points in the vicinity of the Fermi surfa
where the velocity vector is directed towardsn.

For the trajectory specified by$n,R%, one defines the two
point Green’s functionĝR(x1 ,x2un,R),22,23

ĝ«
R~x1 ,x2un,R!5H ĝ1

R ~r1 ,r2 ;«!, x1.x2 ,

ĝ2
R ~r1 ,r2 ;«!, x1,x2 ,

r1,25x1,2n1R.

@In many cases we omitR,n and « for brevity and use the
notationĝR(x1 ,x2).#

As shown in Refs. 22 and 23, the two-point Green’s fun
tion obeys the following equations:

S iv
]

]x1
1Ĥ«,n

R ~r1! D ĝ«
R~x1 ,x2un,R!5 ivd~x12x2!,

r15R1x1n, ~2.2!

ĝ«
R~x1 ,x2un,R!S 2 iv

]

]x2
1Ĥ«,n

R ~r2! D5 ivd~x12x2!,

r25R1x2n, ~2.3!

where the 232 traceless30 matrix Ĥ«,n
R ,

Ĥ«,n
R 5ĥ«,n

R 2Ŝ«,n
R ,

ĥ«,n
R 5S «2v•ps Dn

2Dn* 2«1v"ps
D , v5vn, ~2.4!

whereDn is the order parameter~which may dependent on
the directionn), andps52(e/c)A, A being the vector po-
tential, andŜR is built of the impurity self-energy and th
part of the electron-phonon self-energy not included to
self-consistent fieldD.

The boundary condition to Eqs.~2.2! and ~2.3! is the re-
quirement thatĝR is zero atux12x2u→`, so thatĝR is an
analytic function of« in the upper half plane for anyx1,2
including ux12x2u5`.

The advanced Green’s functionĝA is found from Eqs.
~2.2! and Eq.~2.3! with ĤR substituted forĤA,

ĤA5 t̂z~ĤR!†t̂z , ~2.5!

wheret̂z is the Pauli matrix and the dagger denotes the H
mitian conjugation.

Although the observables can be expressed via the qu
classical one-point Green’s function (x15x2), the two-point
Green’s function turns out to be a useful intermediate obj
It gives a full physical description of the system in the a
proximation where the part of the orbital degree of freed
is treated classically~no quantum broadening in the plan
'n), with a complete quantum treatment of the electron-h
degree of freedom.

It is important that the construction based on the notion
smooth classical trajectories remains valid in the presenc
disorder~or phonons!, in the standard approximation whe
the scattering is included on the average via the self-ene
~providedpFl @1, l being the mean free path!.
e
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A. Factorization

To build the Green’s function on the trajectoryn,R, one
first considers solutions to the equation

S iv
]

]x
1ĤR~x! Df50. ~2.6!

Heref is a column,f5(v
u) andĤR stands forĤ«,n

R (r) at the
trajectory pointr5xn1R.

Denotec̄ the row built from a columnc by the following
rule:

c̄[cTty

1

i
⇒S u

v D 5~v, 2u!.

Note the identities,

c̄acb52c̄bca , c̄aca50, cac̄b2cbc̄a5~ c̄bca!1̂.

By virtue of the identity

~ĤR!T52tyĤ
Rty , ~2.7!

the row f̄(x) built from a solution to Eq.~2.6!, satisfies the
conjugated equation

f̄~x!S 2 iv
]

]x
1ĤR~x! D50. ~2.8!

Combining Eqs.~2.6! and~2.8!, one gets the conservatio
law,

d

dx
~f āfb!50, ~2.9!

valid for any pair of solutionsfa(x) andfb .
For a general complex«, the Green’s function is built of

the regular solutions to Eq.~2.6!, i.e., solutions satisfying the
following boundary conditions:

f1~x!→0, x→1`,

f2~x!→0, x→2`. ~2.10!

Denotef6
(N) the normalized solutions for which

f̄2
(N)~x!f1

(N)~x!51. ~2.11!

The normalization is possible because the left-hand s
~LHS! is a ~finite! constant as it is seen from Eq.~2.9!.

The Green’s function can be written now as

ĝR~x1 ,x2!5H f1
(N)~x1!f̄2

(N)~x2!, x1.x2 ,

f2
(N)~x1!f̄1

(N)~x2!, x1,x2 .
~2.12!

Indeed, it satisfies Eq.~2.2! and Eq.~2.3! at x1Þx2, and is
regular atux12x2u→`. The normalization in Eq.~2.11! en-
sures that the discontinuity atx15x2,

ĝR~x10,x!2ĝR~x20,x!51̂,

is what is required by thed-function source in Eqs.~2.2! and
Eq. ~2.3!.



ig

is
a

ol
g

io
ne

n

r

co

n’s

re-

e-
ing
f

ject

he
sen
em

PRB 61 7083QUASICLASSICAL THEORY OF . . .
For clean superconductors with inelastic scattering
nored,SR(A)→0, and Eq.~2.6! is nothing but the Andreev
equation Eq.~1.6!. Note that the structure of the equations
not changed when the disorder and inelastic scattering
included via the self energies. In this case, however, s
tions to Eq. ~2.6! have only the meaning of the buildin
block of the Green’s functions.

B. One-point Green’s function

Observables can be expressed via the Green’s funct
with coinciding spatial arguments, and therefore, the o
point Green’s function is the final goal of calculations.

The one-point Green’s functions defined asĝ6
R (x)

5ĝR(x60,x), can expressed via the normalized solutio
@see Eq.~2.12!#

ĝ1
R ~x!5f1

(N)~x!f̄2
(N)~x!, ĝ2

R ~x!5f2
(N)~x!f̄1

(N)~x!.
~2.13!

This expression can be identically written as

ĝ1
R ~x!5

1

f̄2~x!f1~x!
f1~x!f̄2~x!,

ĝ2
R ~x!5

1

f̄2~x!f1~x!
f2~x!f̄1~x!, ~2.14!

where the normalization of the wave functionsf6 is arbi-
trary.

These matrices are projectors,

ĝ6
R ĝ6

R 56ĝ6
R , ĝ6

R ĝ7
R 50, ĝ1

R 2ĝ2
R 51̂, Spĝ6

R 561.
~2.15!

Tagging electronlike and holelike excitations in acco
dance with the direction of their propagation (6x directions!
and considering examples, e.g., the normal state, one
cludes thatĝ1

R can be identified as the~quasi!electron part of

the Green’s function, andĝ2
R is the~quasi!hole one~and vice

versa forĝ6
A ).

Denoting

a[
u2

v2
, b[

v1

u1
, ~2.16!

whereu6 andv6 are the components off6 ,

f6~x!5S u6~x!

v6~x!
D ,

Eq. ~2.14! becomes

ĝ1
R 5

1

12ab S 1

bD ~1, 2a!, ĝ2
R 5

1

12ab S a

1D ~b, 21!.

~2.17!

Another elucidating form of Eq.~2.14! is as follows:

ĝ1
R 5Ôa,bS 1 0

0 0D Ôa,b
21, ĝ2

R 5Ôa,bS 0 0

0 21D Ôa,b
21 ,
-

re
u-

ns
-

s

-

n-

where the rotation matrixÔa,b

Ôa,b5S 1 a

b 1D . ~2.18!

As discussed in Refs. 22 and 23, the one-point Gree
~‘‘ j-integrated’’! function of the quasiclassical theory,ĝR, is
given by

ĝR5ĝ1
R 1ĝ2

R , ~2.19!

i.e.,

ĝR5f1
(N)f̄2

(N)1f2
(N)f̄1

(N) . ~2.20!

In terms ofĝR,

ĝ6
R 5

1

2
~ ĝR61!, ~2.21!

and the relations in Eq.~2.15! lead to the well-known nor-
malization condition

~ ĝR!251̂

and

SpĝR50.

Combining Eqs.~2.19! and ~2.17!, one gets

ĝR5
1

12abS 11ab 22a

2b 2~11ab!
D . ~2.22!

This parametrization of the Green’s function has been
cently suggested by Schopohl and Maki24 ~see, also, Ref.
25!. The present derivation leads quite naturally to this d
composition, and clearly shows the physics behind it. See
thata andb may be interpreted as the ‘‘local’’ amplitudes o
the Andreev reflection for electron and hole~see below!, we
call them the Andreev amplitudes.

Finally, the rotation with the matrixÔa,b in Eq. ~2.18!
diagonalizesĝR, i.e.,

ĝR5Ôa,bS 1 0

0 21D Ôa,b
21 .

The advanced Green’s functionĝA and symmetry rela-
tions betweenĝR and ĝA are discussed in Appendix A.

C. Solving the equation of motion

In this paper we take the approach where the main ob
of interest is the two component ‘‘wave functions’’f6 ,
which factorizes the Green’s function and obeys t
Andreev-type equations. A variety of options can be cho
to find the amplitudes. For future references, some of th
are discussed in this section.
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1. Riccati equation

Instead of solving linear equations for two componentf
5(v

u), one solves the equation for the ratioa5v/u. It fol-
lows from Eq.~2.8! that a(x) satisfies the Riccati equation

i
]

]x
a52«Ra1D* R1DRa2, ~2.23!

where parameters«R andDR are found from the identifica
tion

ĤR~x!5[S «R DR

2D* R 2«RD
x

.

In the context of the quasiclassical theory, this equation
been first derived by Schopohl and Maki.24

Known a(x), one finds the two-component functio
f(x),

f~x!5constS 1

a~x!
D expS i E

x0

x

dx8~«R1DRa!x8D .

~2.24!

To find a6(x), i.e., the solutions to Eq.~2.23! corre-
sponding tof6 , the Riccati equation must be supplement
with the boundary condition which leads to the correct
ymptotics Eq.~2.10!.

In many cases of interest such as, e.g., an SNS-struc
or isolated Abrikosov’s vortex, the superconductor is hom
geneous atx→6`. If so, solutions to Eq.~2.6! are plane
waves in the asymptotic region:

f~x!→constS DR

6jR2«RD e6 i jRx,

where jR5A(«R)22DRD* R, Im jR.0. Selecting the
waves decaying in the corresponding region, one come
the boundary conditions as follows:

f6 :a6ux56`5
6jR2«R

DR U
x56`

. ~2.25!

An equivalent condition was suggested in Refs. 24 and
from ‘‘the requirement of the stability of the numerical int
gration procedure.’’ In the present paper, the boundary c
dition is deduced, ultimately, from the physical conditio
that the two-point Green’s function is a regular function d
caying at large distance from the source.

The one-point Green’s functionsĝ6
R and ĝR are found

now from Eq.~2.17! and Eq.~2.22! with the understanding
that

b~x!5a1~x!, a~x!51/a2~x!,

wherea6(x) are the solutions to Eq.~2.23! with the bound-
ary conditions in Eq.~2.25!.

2. Periodic potential

In many situations of interest such us vortex lattice, N
or S-S superlattice, or multiple reflections~see below! the
s

d
-

re
-

to

5

n-

-

potentials are periodic functions of the trajectory coordina
In this case, the Green’s functions may be found by the
lowing method.

A formal solution to Eq.~2.6!, f(x)5Û(x,x0)f(x0), can
be expressed via the evolution matrix

Û~x,x0!5Txe
2 i *

x0

x1dx8ĤR(x8),

where Tx orders the matricesĤR(x) in the descendingx
order from the left to the right.

Denote ÛL(x)[Û(x1L,x) the evolution matrix corre-
sponding to the translation by the period of the structureL.
As proven in Appendix B, the one-point Green’s functio
can be found as

ĝR~x!5FR@ÛL~x!#. ~2.26!

HereFR@ . . . # stands for the ‘‘formatting’’ operation:

FR@Q̂#5
1

qR
S Q̂2S 1

2
SpQ̂D 1̂D ,

qR5AS Q̂2S 1

2
SpQ̂D 1̂D 2

, ~2.27!

which returns a normalized traceless matrix31 ~similar com-
bination of matrices has been introduced in Ref. 8!. The
branch of the square root inqR must be chosen to satisf
Re(FR@Q̂#)11.0. Except for the choice of the branch, Eq
~2.26! and ~2.27! are the same forĝA. Construction of the
evolution matrixÛL(x) in the Riccati equation technique i
described in Appendix B.

III. KNOT MATCHING CONDITIONS

In the quasiclassical picture, particles move on trajec
ries, usually straight lines characterized by the direction
velocity n ~and the initial positionR). At any point in real
space, infinite number of trajectories with differentn cross
each other. Since there are no transitions between the in
secting trajectories, the crossings do not lead to any phys
effect. At some points, called here knots, the quasiclass
condition is violated. At a knot, the particle may leave
original trajectory and continue its motion along a trajecto
in another direction. In the simplest example of a specu
interface Fig. 1, two trajectories 1-18 and 2-28 are mixed. In
a general case, the knot is a region where transitions betw
N in andN out trajectories are allowed. The in trajectories~or
channels! are those which have the direction of the Fer
momentum towards the knot; the momentum direction
from the knot in the out channels~see Fig. 4!.32 The in and
out trajectories are somehow numbered,l 51, . . . ,N. We
mark by8 the outgoing channels so thatk8 stands for thekth
outgoing channels.

Since the knot is pointlike on the quasiclassical sc
;vF /D, one can talk about the knot value of the trajecto
‘‘wave function.’’ Denotec i the two-component wave func
tion on thei th incoming trajectory,i 51, . . . ,N at the point
where it enters the knot, and analogouslyck8 is the knot
value on thekth outgoing trajectory.

The outcome of events happening inside the knot can



n

ix

on
on

io
i-

n
es
nc

tio

a
s,
ua
o
o

in
e

ry
ev

he
s
ta

-

si-

-

he

h

to

ne
as-
q.

-
e

n-

q.

PRB 61 7085QUASICLASSICAL THEORY OF . . .
generally described by the scatteringSmatrix. For any speci-
fied case, it can be found by solving the Schro¨dinger equa-
tion for the electron with the Fermi energy. Here, it is co
sidered as a phenomenological input.

The suggested matching condition reads

ck85(
i 51

N

Sk8 ic i , ~3.1!

whereSk8 i are the elements of the unitary scattering matr
In the spirit of the quasiclassical theory,Sk8 i is the normal
metal property taken at the Fermi surface; it is an electr
hole scalar. This relation generalizes the matching conditi
of Ref. 20 to the many channels case.

Taking advantage of unitarity,S215S†, the inverse of
Eq. ~3.1! reads

c i5 (
k851

N

Sik8
† ck8 . ~3.2!

Seeing that the conjugated wave functionc̄ always be-
longs to the second argument of the Green’s funct
G(1,2);^c(1)c* (2)&, it must obey the matching cond
tions for c* , i.e.,

c̄k85(
i 51

N

Sk8 i
* c̄ i . ~3.3!

Equation~2.6! together with the matching conditions i
Eq. ~3.1! allows one to find the two-component amplitud
on the treelike trajectory, and, therefore, the Green’s fu
tions. We remark also that the relation in Eq.~3.1! can be
used as the boundary condition to the Andreev equa
~1.6!.

IV. ANDREEV REFLECTION ON THE KNOT

In this section, we consider the quantum problem of sc
tering of ballistic excitations off the knot or, in other word
the problem of many-channel combined, Andreev and us
reflection/transmission. The problem is formulated as f
lows. On each of the trajectories connected by the kn
i ,k851,2, . . . ,N, the order parameterD(x) and, hence, the
matrix ĥ(x) in Eq. ~2.4! is supposed to be known. Since
the ballistic caseS50, the wave function on each of th
trajectories satisfies the equation

S iv
]

]x
1ĥ~x! Dc50. ~4.1!

Herex is the coordinate along the corresponding trajecto
this equation differs only in notations from the Andre
equation Eq.~1.6!. The scattering of the~quasi!particles off
the knot is due multiple sequential processes of~i! intertra-
jectory transitions described by Eq.~3.1!, which do not affect
the electron-hole degrees of freedom, followed by~ii ! in-
tratrajectory Andreev reflections, i.e., rotations in t
electron-hole space. The goal is to express the amplitude
the multiple processes via the amplitudes of the elemen
events.
-

.

-
s

n

-

n

t-

l,
l-
t,

;

of
ry

On each of the paths, we chose the originx50 at the
knot. Then, the coordinatex belongs to the region2`,x
,0 on the incoming and to the region 0,x,` on the out-
going trajectories.

First, we consider the plane wave asymptotics atuxu→`

where ĥ5const(x). The electronlike~holelike! solution is
Ce(x)5cee

i jx/v @Ch(x)5che2 i jx/v#, where ce (ch),
ĥce51jce (ĥch52jch) is the eigenfunction of the ma
trix ĥ. The eigenvalues6j are found fromj21̂5ĥ2. We
supply the energy with an infinitesimalpositive imaginary
part,«→«1 id, and impose condition Imj.0 to specify the
branch ofAj2.

The basis for the electron-hole classification is the qua
particle current

j qp5c†t̂zc5uuu22uvu2, ~4.2!

which is a constant of motion, (d/dx) j qp(x)50, due to the
symmetryĥ†5 t̂zĥt̂z . The electronlike quasiparticle is iden
tified by j qp.0. It moves in the direction of increasingx in
accordance with the sign of the probability current. For t
holelike excitation j qp,0, and it moves towardsx52`.
Note that the solutionC (e,h) are chosen in the way that bot
electron and holes decay in the direction of propagation.

Below, c (e,h) denotes the eigenfunctions normalized
the unit flux:

c (e)†t̂zc
(e)51, c (h)†t̂zc

(h)521, j2.0.

~The LHS is identically zero in the gap region whenj2,0
and propagating states are absent.!

Generally,ĥ is x dependent and the solutions are the pla
waves only asymptotically. However, the electron-hole cl
sification is unique due to the current conservation in E
~4.2!. One has for the electronlike,C (e)(x), and holelike,
C (h)(x), solutions on outgoing~incoming! trajectories

C (e)~x!5H c (e)ei jx/v, x→` ~or 2`!,

1

b (e) S 1

a (e)D , x50,
~4.3!

C (h)~x!5H c (h)e2 i jx/v, x→` ~or 2`!,

1

b (h) S a (h)

1 D , x50,
~4.4!

where the parametersa (e,h) andb (e,h) are found solving Eq.
~4.1! in the region 0,x,` ~or 2`,x,0).

If considered as a function ofx, a (e)(x) and 1/a (h) can be
found by solving Eq.~2.23!. We see that indeed the param
etersa(x) and b(x) of the Riccati equation technique hav
the meaning of the instantaneous~local! amplitudes of An-
dreev reflection, and, therefore, one may call them the A
dreev amplitudes.

It generally follows from the current conservation E
~4.2! that

a (h)5~a (e)!* , ua (e)u21ub (e)u25ua (h)u21ub (h)u251

for an open channel,j2.0. Seeing thatub (e)u25ub (h)u2, one
can enforce
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b (e)5b (h),

choosing the overall phase factor inc (e,h).
The physical meaning of the parameters is clear from E

~4.3! and Eq. ~4.4!: On the outgoing trajectories (0,x
,`), a (e) is the amplitude of the Andreev reflection of th
~bare! electron injected atx50, andb (e) is the correspond-
ing transmission amplitude;a (h)/b (h) and 1/b (h) are u,v
components of the quasihole having come fromx5`. On
the incoming paths, the above is true after the substitu
‘‘electron’’ ↔ ‘‘hole.’’

Moving towards the knot, quasielectrons on the incom
and quasiholes on the outgoing trajectories comprise the
coming states of the scattering problem; the outgoing st
are electrons on the outgoing and holes excitations on
incoming trajectories.

Let the incoming particle be the quasielectron approa
ing the knot along thel th in-trajectory. The source particl
generates waves inall outgoing channels. The wave func
tions of the systemC ( l ) reads

C ( l )5C l
(e)1Bl

( l )C l
(h)1(

kÞ l
Bk

( l )Ck
(h)1(

k8
Ak8

( l )Ck8
(e) ,

~4.5!

whereCk8
(e) andCk

(h) stand for the trajectory wave function
defined by Eqs.~4.3! and Eq.~4.4!, k or k8 being the label of
the trajectory. The yet unknown amplitudes of the outgo
particles,Ak8

( l ) and Bk
( l ) , are to be found from the matchin

conditions in Eq.~3.1!.
The calculations are most easily done using Eqs.~C6! and

~C7!. It follows by comparing Eq.~C6! with Eqs.~4.3!, ~4.4!,
that one may putnmÞ l5am

(h) andmk85ak8
(e) . From Eq.~C6!

and Eq.~C4!, one sees that the wave functions on the sou
trajectory atxl50 must be proportional to (a

0l
(e)
1

), where

a0l
(e)5^ l uS†â (e)Ŝl u l &. ~4.6!

Here and below,Ŝl is the full S matrix taking into account
multiple events of the Andreev reflection. From Eq.~C5!

Ŝl5@Ŝ†2~ â (h)!( l )Ŝ†â (e)#21, ~4.7!

where â (e,h) is the diagonal matrix with the elemen
(â (e,h))kk5ak

(e,h) and superscripts( l ) means thel l element
must be put to zero. Bŷl uZum&, l ,m51, . . . ,N we denote
the matrix elementZlm .

The parametera0l
(e) in Eq. ~4.6! has the meaning of the

amplitude of the Andreev backscattering of a bare elect
by the knot as a whole. From the condition that the wa
function has theu2v structure atxl50 like (a

0l
(e)
1

), one finds

Bl , i.e., the amplitude of the Andreev reflection of the in
dent electron excitation. After some algebra

Bl
( l )5

a0l
(e)2a l

(e)

12a0l
(e)a l

(h)
. ~4.8!

Here, the denominator can be understood as due to mul
Andreev reflections.33
s.

n

g
n-
es
e

-

g

e

n
e

le

The wave functionC l
(e)1Bl

( l )C l
(h) at xl50 equals now to

C(a
0l
(e)
1

) where C5b l
(e)* (12a0l

(e)a l
(h))21. Looking at Eq.

~C6!, one find the rest of the scattering amplitudes:

Ak8
( l )

5
1

12a0l
(e)a l

(h) ^k8ub̂ (e)Ŝl b̂
(e)* u l &,

Bk
( l )5

1

12a0l
(e)a l

(h) ^kub̂ (h)S†â (e)Ŝl b̂
(e)* u l &. ~4.9!

Similarly, one derives the scattering amplitudes for t
quasihole coming to the knot on then8 trajectory. Analo-
gously to Eq.~4.5!, the wave function,

C (n8)5Cn8
(h)

1Bn8
(n8)Cn8

(e)
1 (

k8Þn8
Bk8

(n8)Ck8
(e)

1(
k

Ak
(n8)Ck

(h) ,

contains the scattering amplitudes which are found from
matching conditions. The corresponding expressions can
obtained by the substitutions: (e)↔(h), l→n8, andS↔S†,
andSl→Sn8

† ,

Ŝn8
†

5@Ŝ2~ â (e)!(n8)Ŝâ (h)#21.

For the hole incident on then8 trajectory, the amplitudes

of the Andreev reflection,Bn8
(n8) , scattering to the hole stat

on the kth trajectory,Ak
(n8) , and scattering to the electro

state on thek8th trajectory,Bk8
(n8) , read, respectively

Bn8
(n8)

5
a0n8

(h)
2an8

(h)

12a0n8
(h) an8

(e) , ~4.10a!

Ak
(n8)5

1

12a0l
(h)a l

(e) ^kub̂ (h)Ŝn8
† b̂ (h)* un8&, ~4.10b!

Bk8
(n8)

5
1

12a0l
(h)a l

(e) ^k8ub̂ (e)Sâ (h)Ŝn8
† b̂ (h)* un8&.

~4.10c!

The presented formulas give the amplitude of scatter
from a propagating channel to another propagating chan
The scattering of the excitations is a result of multiple s
quential events of two types:~i! on the knot intertrajectory
transitions described by theS matrix in Eq. ~3.1!, and ~ii !
intratrajectory processes of the Andreev reflectio
transmission with the amplitudesa (e,h)/b (e,h). Expanding
the effective S matrix Sl in Eq. ~4.7!, Sl5Ŝ

1Ŝ(â (h)) ( l )Ŝ†â (e)Ŝ1Ŝ(â (h)) ( l )Ŝ†â (e)Ŝ(â (h)) ( l )Ŝ†â (e)Ŝ1...
one sees that the full amplitude of the scattering eventn8
←m is the superposition of all different paths connecting t
initial and final states with electron↔ hole transformation
on each step.

The theory gives exact amplitudes of the multiple scatt
ing expressed via the amplitudes of the elementary p
cesses: the normal metalSmatrix and the intratrajectory An
dreev amplitudes. In the simplest case, whenN52, andD
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50 on two out of the four trajectories, the above formu
reproduces results of the theory of Andreev reflection in
NIS structure.22

A. Bound states

Bound states are physical solutions existing in the abse
of a source. The physical solutions are those when
matching conditions on the knot are simultaneously satis
with the requirement that the wave functions decay far aw
from the knot. The electron and holes states defined ea
~with Im j.0) have the property that they decay in the
rection of their propagation. Therefore, the wave function
a bound stateCbound has the form

Cbound5(
k

BkCk
(h)1(

k8
Ak8Ck8

(e) ,

where the coefficientsA’s andB’s are found from the match
ing conditions. Again, looking at Eqs.~4.3! and ~4.4! one
sees that in Eq.~C1!, mk8 may be identified withak8

(e) , andn i

with a i
(h) . Then, Eq.~C3!,

D~$a (h)%,$a (e)%![deti12Ŝâ (h)Ŝ†â (e)i50, ~4.11!

gives the condition for the wave functions to be matched
the knot. The Andreev amplitudesa (e) anda (h) are functions
of energy«, and the bound states exist at the energies wh
Eq. ~4.11! is satisfied.

B. Example: Rough surface, anisotropic superconductor

The rough surface reflects waves in many direction.
the simplest model, we assume that the surface reflec
couples together only two incoming directions ‘‘1’’ and ‘‘2’
to two outgoing ‘‘18’’ and ‘‘2 8.’’ The model corresponds to
a N52 knot. In what follows we calculate the amplitude
Andreev reflection by the knot and consider the bound l
els.

The unitary 232 scattering matrix of the knot may b
taken in the form

Ŝ5S r 1 r 2

2r 2* r 1*
D

provided R11R251, where R15ur 1u2 (R25ur 2u2) is the
probability of reflection 1→18 (2→18).

Given the profile of the order parameter, one can find
wave functions, and the Andreev amplitudesa (e,h) and
b (e,h). Here, the matrices

â (h)5S a1
(h) 0

0 a2
(h)D , â (e)5S a18

(e) 0

0 a28
(e)D ,

are taken as input, each of thea ’s is a functions of energy.
The energies of bound states are found from Eq.~4.11!,

which takes the following form:

D~«![R1~12a1
(h)a18

(e)
!~12a2

(h)a28
(e)

!

1R2~12a1
(h)a28

(e)
!~12a2

(h)a18
(e)

!50. ~4.12!
e
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The bound states exist only in the gap region at the ene
interval whereua1,2

(h)u5ua18,28
(e) u51.

Essential physics can be grasped by the simplest m
where the order parameterDn is a constant at each of th
trajectories:Dn5Deiwn. Then,

a18,28
(e)

5e( i /2)c«e2 iw18,28, a1,2
(h)5e( i /2)c«eiw1,2,

where c« is a function of energy, eic«5(«
2 iAuDu22«2)/(«1 iAuDu22«2).

Equation~4.12! is conveniently transformed to the form

cos~c«1w1181w228!5R1cosS w122w1828
2 D

1R2cosS w121w1828
2 D ,

~4.13!

wherewab[wa2wb .
One sees that the existence and position of the bound

is sensitive to the surface roughness only if either the inco
ing or outgoing channels are not equivalent, i.e.,w125w1
2w2Þ0, or w18285w182w28Þ0. In other words, mixing of
identical channel does not affect the levels.

Consider now the possibility, which may exist in the ca
of a d-wave superconductor, that the order parame
changes its sign on the 1→18 and 2→28 trajectories. A
smooth surface mixes only trajectories with close transve
momenta; then the trajectories are almost equivalent
their coupling does not shift the levels. On the contrary
backward-like scattering splits the degenerate levels: In
model under consideration, the backward-like scattering c
responds to the phase factorsw15w285p andw25w1850.
Then, from Eq.~4.13! cosc«5R22R1. The bound state ener
gies are

«bound56AR2 D. ~4.14!

One concludes that the presence of substantial spe
weight at low energies is not likely if scattering in the bac
ward directions is present:;10% probability the scattering
moves the levels from zero energy to;0.3D, of the order of
the gap.

These results are in agreement with that previously
tained by many authors using different approaches in
contexts of the theory of anisotropic superconductivity a
Josephson junctions.

The amplitudes of scattering of excitations can be fou
from Eqs.~4.8!, ~4.9!, and ~4.10c!. As an example, the am
plitude of the Andreev reflection of the electronlike excit
tion incident on the trajectory ‘‘1,’’B1

(1) , reads

B1
(1)5

R1ã18
(e)

2ã1
(e)

12R1ã18
(e)ã1

(h)
,

where the following notations are used:

ã1
(h)5

a1
(h)2a2

(h)

12a28
(e)a1

(h)
,

ã18
(e)

5
a18

(e)
2a28

(e)

12a18
(e)a2

(h)
,
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ã1
(e)5

a1
(e)2a28

(e)

12a1
(e)a2

(h)
.

The shortest way to derive this result is to apply the rotat
transforminga2

(h) anda28
(e) to zero as explained in Sec. D.

V. MATCHING GREEN’S FUNCTIONS

As has been discussed in Secs. II A and II B, the Gree
functions can be built from the regular solutions to the A
dreev equation, Eq.~2.6!. When the trajectory coordinatex
extends from2` to `, the regularity requirement leads t
the boundary conditions in Eq.~2.10!. In the case of a tra-
jectory ending in or originating from a knot the bounda
conditions must be reformulated.

First consider an isolated knot mixing semi-infinite traje
tories~with no more knots on them!. With the origin chosen
at the knot, the trajectory coordinatexn extends from2` to
0 on the nth incoming trajectory, and 0,xk8,` on the
k8-outgoing one. As before, the requirement,

f2,m~2`!50, f1,k8~`!50, m,k51, . . . ,N,
~5.1!

uniquely ~up to a normalization factor! defines the solutions
f2,n(xn) and f1,k8(xk8). Denote the knot values of th
regular solutions as

f2,m~xm50!5S am

1 D , f1,k8~xk850!5S 1
bk8

D ,

m,k51, . . . ,N. ~5.2!

For convenience, the normalization is chosen so that on
the components is equal to 1 at the knot; the parametersam
or bk8 are ‘‘bulk’’ properties independent on the knot.

The problem in hand is to find the knot values

f1,l~xl50![S 1
bl

D , f2,n8~xn850![S an8
1 D ,

l ,n51, . . . ,N,

which give the boundary condition to Eq.~2.6! needed to
evaluatef1,l(xl,0) andf2,n8(xn8.0).

To find f1,l(0), onenotes that by virtue of the matchin
conditions in Eq.~3.1! and Eq.~3.2!, a finitef1,l(0) gener-
ates waves in all other channels, outgoing and incoming.
regular solution, all the secondary waves must decay w
propagating from the knot. This condition fixes theu2v
structure of the secondary waves: in each of the channels
incomingmÞ l and any outgoing onek8, the generated two
component wave functions~at x50) must be proportional to
that in Eq.~5.2!. As proven in Sec. C, the matching conditio
allows one to find theu2v structure in one of the channe
provided, as is the case here, it is known for all other ch
nels.

Changing notions in formulas in Sec. C (mk8→bk8 ,
n iÞ l→ai , n l 215bl), one gets from Eq.~C4!

bl5^ l uŜ†b̂Ŝl u l &, ~5.3!

where
n

’s
-

-

of

a
le

he

-

Ŝl5~Ŝ†2â( l )Ŝ†b̂!21,

â5diag(a1 ,a2 , . . . ) andb̂5diag(b18 ,b28 , . . . ); thesuper-
script ( l ) has the meaning that thel th element on the diago
nal must be put to zero; and̂l u(•••)u l &[(•••) l l .

Repeating the arguments, one finds the boundary va
an8 . Changing notations in Eq.~C8! (mn8

21→an8), one gets

an85^n8uŜâŜn8
† un8&, ~5.4!

where

Ŝn8
†

5~Ŝ2b̂(n8)Ŝâ!21.

From the derivation in Sec. C, it is clear that both E
~5.3! and Eq.~5.4! are just different forms of Eq.~C3!, which
reads in the present notations

D~$a%,$b%![deti12ŜâŜ†b̂i50. ~5.5!

This equation should be understood in the following sens
Suppose one seeks for the boundary value ofbl for the l th

in channel. Then, one formally solves Eq.~5.5! relative to
al , the obtained value givesbl

21 . In the same manner, on
finds the knot value ofak8 on thek8-outgoing trajectory as
the inverse of the root of Eq.~5.5! relative tobk8 . The pro-
cedure does not pose calculational problems since the d
minant is a linear function of any ofa’s or b’s. Equation
~5.5! represents most concise and symmetric form of
boundary condition to Eq.~2.6!.

Summarizing, the Green’s functions on trajectories link
by a knot is calculated in the following scheme. First, o
solves Eq.~2.6! with boundary condition in Eq.~5.1! on each
of the trajectories and calculates functionsf2,m(x,0) and
f1,k8(x.0); the parametersam andbk8 in Eq. ~5.2! are then
also known. The next step is to calculate the knot value
b’s on the incoming trajectories anda’s on the outgoing
ones. This is done by formulas in Eq.~5.3! and Eq.~5.4!.
Having obtained the boundary values, one solves Eq.~2.6!
for f1,m(x,0) on the incoming trajectories andf2,k8(x
.0) on the outgoing ones. The one-point Green’s function
then built fromf6 by the recipe in Eq.~2.20!.

In the Riccati equation technique, one first finds the A
dreev amplitudesam(x) and bk8(x), m,k51, . . . ,N from
Eqs.~2.23! and~2.25!. Then, Eqs.~5.3! and Eq.~5.4! provide
the initial value forbm(x) andak8(x), solutions to the Ric-
cati equation. The Green’s function is then given by E
~2.22!.

The matching conditions can be also expressed via
transfer matrix as derived in Sec. V B and in the case o
N52 knot explained in detail in Sec. E.

This scheme is also applicable when the trajectories c
nected by the knot under consideration may enter ot
knots. As a matter of principle, one assumes that the sys
under consideration is finite, and it is surrounded by
‘‘clean’’material where trajectories are infinite lines witho
knots. Then, one solves the problem for the knots on
boundary and moves inwards towards the knot of interest
the one-dimensional topology of the tree with only one p
connecting any two knots, the procedure is unique.
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A. 2Ã2 case

The most simple case is when the knot mixes two inco
ing and two outgoing trajectories (N52) as, e.g., in case o
specular reflection on an interface. The unitaryS-matrix cou-
pling 1 and 2 incoming trajectories to 18 and 28 outgoing
ones~see Fig. 5!, may be taken in the form

S5S r s

2s* r * D , ur u25R, usu25T, R1T51.

~5.6!

Here, r and s are the amplitude of the process 1→18 2
→18, respectively.

Presenting the wave function on each of the trajectorie
the knot as

c1(2)5S a1(2)

1 D , c18(28)5S 1

b18(28)
D ,

the matching condition in Eq.~5.5! gives the following rela-
tion between the parameters:

R~12a1b18!~12a2b28!1T~12a1b28!~12a2b18!50,
~5.7!

which serves as the boundary condition for Eq.~2.6! or Ric-
cati equation Eq.~2.23!.

The usage of it has been explained in Sec. V. Reiterat
the parametersa1,2 (b18,28) in Eq. ~5.7! are found from the
regular solutions to Eq.~2.6! or Eq. ~2.23!. They areinde-
pendentfrom each other and the properties of the knot. T
actual meaning of Eq.~5.7! is that when it is resolved rela
tive to a1,2 (b18,28) the inverse value gives the initial cond
tion b1,2(x50) @a18,28(0)#, i.e.,

b1~0!5
R~12a2b28!b181T~12a2b18!b28

R~12a2b28!1T~12a2b18!
, ~5.8!

a18~0!5
R~12a2b28!a11T~12a1b28!a2

R~12a2b28!1T~12a1b28!
, ~5.9!

and the expressions forb2 anda28 obtained by the substitu
tion 1↔2.

B. Transfer matrix

Sometimes it is convenient to consider a pair of trajec
ries, tag them to 1 and 18, as pieces of a single trajectory~see
Fig. 6!. We assignx,0 to the path 1 andx.0 to 18. Then

FIG. 5. Simplest 232 knot with two incoming 1 and 2, and two
outgoing channels 18 and 28 ~schematically!.
-

at

g,

e

-

Eq. ~2.6! is valid for anyx excepting the knot pointx50.
The knot at the trajectory 18←1 is included via the 232
transfer matrixM18←1:

f~x510!5M18←1f~x520!,

f̄~x510!5f̄~x520!M̂18←1
21 ~5.10!

as explained in detail in Appendix E. The transfer matrix
found from the requirements that~i! the matching conditions
in Eq. ~3.1! are satisfied;~ii ! waves on the trajectories othe
than 1 and 18 are regular.

Denotef1(x.0) @f2(x,0)# the solution to Eq.~2.6!
regular at1` (2`) as in Eq.~2.10!. The transfer matrix
allows one to continue the solutions across the knot:

f̄2~10!5f̄2~20!M18←1
21 ,

f1~20!5M 18←1
21 f1~10!. ~5.11!

In accordance with Eqs.~2.21! and Eq.~2.14!, the 1-point
Green’s functionĝ18

R on the trajectory 18 at the knot can be
found as

1

2
~11ĝ18

R
!5

f1~10!f̄2~10!

f̄2~10!f1~10!
.

Applying Eq. ~5.11!, one gets from here that

1

2
~11ĝ18

R
!5

f1~10!f̄2~20!M18←1
21

f̄2~20!M18←1
21 f1~10!

.

Similarly, for the trajectory 1

1

2
~11ĝ1

R!5
M18←1

21 f1~10!f̄2~20!

f̄2~20!M18←1
21 f1~10!

.

From hereĝ18
R M18←15M18←1ĝ1

R or

ĝ18
R

5M18←1ĝ1
RM18←1

21 . ~5.12!

For an arbitrary interface, this relation gives the bound
condition for the quasiclassical one-point Green’s functio
With the help of Eq.~E1! or Eq.~E2!, the transfer matrixM
is generally expressed via the Green’s function on the o
trajectories coupled by the knot. In the next Sec. V B 1,

FIG. 6. For a many channel knot, one chooses a pair of tra
tories, one incoming and one outgoing~denoting them 1 and 18),
and considers them as a single trajectory with a knot on it. T
transfer matrix relates to each other the wave functions across
knot.
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explicit expression for the transfer matrix is presented for
simplest case of two in and two out channels.

2Ã2 case

In the most important case of a 232 knot Fig. 5~e.g., a
specular interface!, the transfer matrix can be found usual
in the general formula derived in Appendix E. A more sim
pler way is to make the derivation from the scratch in
specially selected basis~see Appendix V 1, for details!.

For the knot with theS matrix in Eq. ~5.6!, the transfer
matrix Eq.~E5! and its inverse read

M18←15
~11R!

2r * S 12
T

11R
ĝ28d2D , ~5.13!

M18←1
21

5
~11R!

2r S 11
T

11R
ĝ28d2D , ~5.14!

where ĝ28d2 is the normalized (ĝ28d2
2

51) ‘‘across-knot’’
Green’s function. It can be presented is different forms.

Its matrix structure is most transparent whenĝ28d2 is
written in a factorized form as

1

2
~11ĝ28d2!5

1

N
f28,1 f̄2,2 , N5f̄2,2f28,1 ,

~5.15!

wheref28,1 and f2,2 are the functions introduced in Se
II A taken at the point adjacent to the knot on the trajecto
28 or 2. They do not depend on the knot parametersR andT.
One may think ofĝ28d2 as a one-point Green’s function o
the virtual trajectory built of the pieces 2 and 28.

From Eqs. ~5.15! and ~2.13!, one concludes that (1
1ĝ28d2)}(11ĝ28

R )(11ĝ2
R). Equation~5.15! can be written

in terms of the Andreev amplitudes Eq.~2.16! as

1

2
~11ĝ28d2!5

1

12a2b28
S 1

b28
D ~1,2a2!

or

ĝ28d25
1

12a2b28
S 11a2b28 22a2

2b28 2~11a2b28!
D .

~5.16!

The ‘‘across interface’’ Green’s function can also be wr
ten as

ĝ28d25
1

11
1

2
@ ĝ28 ,ĝ2#1

S ĝ281ĝ21
1

2
@ ĝ28 ,ĝ2#2D ,

~5.17!

where ĝ2,28 are the knot values of the usual one-po
Green’s function on the trajectory 2 and 28. One should re-
alize that unlikef6 in Eq. ~5.15! and a,b8 in Eq. ~5.16!,
both ĝ2 andĝ28 are modified by the knot scattering, and on
their combinationĝ28d2 is knot independent.

Using the transfer matrix approach, one can derive
boundary condition to the Riccati equation on theN52 knot.
e

y

t

e

Most easily this can be done using the transfer matrix in
~E4!. Same the result one can get from Eq.~5.7!.

We have just presented the boundary condition for
Green’s function on an interface which mixes two incomi
and two outgoing trajectories~e.g., for a specular interface!:
the Green’s functions on the interface are linearly related
Eq. ~5.12! ~and the analogous relation for the channel 2 a
28) where the transfer matrixM and M 21 can be found
from Eqs. ~5.13!, ~5.14!, and ~5.17!. Using these relations
one is able to rederive Zaitsev’s boundary conditions6 for a
specular reflecting interface.

VI. MULTILAYER SYSTEMS

The purpose of this section is to show the usage of
general theory in practical calculations. First we consid
simplest geometry that is a layer deposited on the flat sur
of a bulk material with a partially transparent interface. T
gether with the totally reflecting outer surface, there are t
coherently reflecting planes. The other geometry is a sys
of two layers of arbitrary thickness in contact, in which the
are three reflecting planes and rather complicated pictur
multiple scattering.

Since our main intention is to demonstrate how to use
general formula, we allow ourselves not to worry about t
self-consistency of the pair potential. For simplicity, we co
sider the ballistic caseS imp50, and the pair potentials in th
left ~l! and right~r! regions are taken constantsD l andD r .

A. A film

The treelike trajectory near the interface between a la
of thicknessdr and semi-infinite space is shown in Fig. 7~a!.
To build the tree, one considers a particle coming along
path~at the angleu) marked in Fig. 7 by ‘‘1’’ which denotes
both the location and direction. Due to the partial reflectio
a wave on the trajectory ‘‘4’’ is generated. The waves on
paths ‘‘2’’ and ‘‘3’’ are generated due to transmission. Th
paths ‘‘2’’ and ‘‘3’’ are the semi-infinite, whereas the trajec
tory ‘‘4’’ comes to the interface again as ‘‘5’’~the total

FIG. 7. The typical trajectory formed by the total reflection o
the outer surface and the partial reflection/transmissions on the
terface~a!. The numbers serve as markers for both direction a
position. In~b!, the structure of the treelike trajectory is shown wi
the numbering as in~a!.
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reflection does not interrupt motion in between ‘‘4’’ an
‘‘5’’ !. Again, waves on ‘‘6’’ and ‘‘7’’ are generated, and th
path continues towards ‘‘9,’’ etc. The topological structu
of the treelike trajectory is presented in Fig. 7~b!.

To find two-point Green’s functionĝR(x1 ,x2), one solves
Eq. ~2.3! where the coordinatesx1,2 correspond now to the
points on the tree Fig. 7~b! with the understanding that th
tree coordinatex includes information about both the pos
tion and direction of the momentum. Due to the on
dimensional topology of the tree, the method described
Sec. II is directly applicable. As before, the one-po
Green’s functionĝR(x) is given by Eq.~2.19!.

The matrixĤR in Eq. ~2.3! is either

Ĥ l
R5S «1 id D l

2D l* 2«2 id D or Ĥr
R5S «1 id D r

2D r* 2«2 id D
for the tree coordinatex in the left or right regions. For future
references, the free bulk one-point Green’s function in
left ~right! region ĝ0,l (r )

R equals

ĝ0,l (r )
R 5

1

j l (r )
R

Ĥr ( l )
R ,

wherej l (r )
R 5A(«1 id)22uD l (r )u2, Im j l (r )

R .0.

Considered as a function ofx1 , ĝR(x1 ,x2) has a source a
x15x2 which generates waves propagating away fromx2.
The regularity condition requires that the waves decay w
propagating from the source along branches of the tree.
propagation in between the knots is described by Eqs.~2.6!,
or Eq. ~2.8!, and the knots are incorporated by the match
conditions in Eq.~3.1! or their more advanced version i
Eqs.~5.5!, or Eq. ~5.10!.

Let us first find one-point Green’s function at the tr
point x in between ‘‘4’’ and ‘‘5.’’ In accordance with Sec. II
one has to find solutionsf1 which describes the wav
spreading from the pointx in the positive direction, andf2

propagating in the opposite direction. In the present exam
the wave f1 spreads to the paths ‘‘5,’’ ‘‘6,’’ ‘‘7,’’
‘‘8,’ ’ . . . , and f2 spreads to ‘‘4,’’ ‘‘3,’’ ‘‘2,’’ ‘‘1,’ ’ . . . .
We chose to think that the particle moves along the ‘‘roo
path ‘‘1’’ → ‘‘4’’ → ‘‘5’’ → ‘‘8’’ → ‘‘9’ ’ . . . , andexclude the
‘‘side’’ branches ‘‘2,’’ ‘‘3,’’ ‘‘6,’’ ‘‘7,’ ’ . . . using the trans-
fer matrix approach@see Eq.~5.11!#.

Take, e.g., the knot where the trajectories ‘‘1–4’’ cro
each other@see Fig. 7~a!#. The transfer matrixM4←1 can be
expressed in accordance with Eq.~5.13! via the ‘‘across-
knot’’ Green’s functionĝ3d2. In the present simple case
when ‘‘2’’ and ‘‘‘3’’ extend to infinity and ĤR is same for
‘‘2’’ and ‘‘3,’’ one can conclude from Eq.~5.15! or Eq.
~5.16! that ĝ3d25ĝ0,l

R , whereĝ0,l
R is the bulk Green’s func-

tion in the left region. For any of the identical knots, th
transfer matrix reads

M5
~11R!

2r * S 12
T

11R
ĝ0,l

R D ,

whereR5ur u2 andT512R are the interface reflection an
transmission probabilities.
-
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t

e

n
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The functionsf6(x) on the root trajectory, wherex is
coordinated along the root counted from a knot, are fou
with the help of Eq.~2.6! supplemented with the boundar
condition connecting the two-component amplitude leav
the knotfout ~out 5 ‘‘4,’’ ‘‘8,’’ ‘‘12,’ ’ . . . ! via the incom-
ing wavef in ~in 5 ‘‘1,’’ ‘‘5,’’ ‘‘9,’ ’ . . . !

fout5Mf in .

In the present case, when the free motion on the root tra
tory is perturbed by the equidistant knots, one can use
method developed in Appendix B for periodic potentia
The period of the structure is 2Du , Du5dr /cosu whereu is
the angle between the direction of the momentum and
perpendicular to the interface.

The functionsf6(x) are eigenfunctions of the evolutio
operatorÛ2Du

(x) generating the translation by the periodx

→x12Du ~see Sec. B!. The free evolution operatorÛ (r )(x
1x0 ,x0) in the right region is

Û (r )~x1x0 ,x0!5e( i /v)Ĥr
Rx5cosS jRx

v D1 i ĝ0,r
R sinS jRx

v D ,

ĝ0,r
R being the bulk Green’s function.

The full evolution operatorÛ2Du
(x) reads

Û0~x!5AexpS i j r
R

v
ĝ0,r

R xD S 12
T

11R
ĝ0,l

R D
3expS i j r

R

v
ĝ0,r

R ~2Du2x! D ,

where A5(11R)/2r * . Finding the two eigenfunctions o
this matrix, one knowsf6(x) and, therefore, the full two-
point Green’s function from Eq.~2.12!.

As explained in Sec. B, the one-point Green’s functi
can be extracted fromÛ2Du

(x) by purely algebraic transfor
mations. The Green’s function for the direction of the m
mentum (p)z5pFcosu at the distance from the interfacez
(z.0 in the right region! reads from Eq.~2.27!

ĝR~z,u!5FRFexpS i j r
R

v
ĝ0,r

R xD S 12
T

11R
ĝ0,l

R D
3expS i j r

R

v
ĝ0,r

R ~2Du2x! D GU
x5z/cosu

, ~6.1!

where the ‘‘formatting’’ operationFR@•••# is defined in Eq.
~2.27!. The ‘‘formatting’’ can be performed analytically bu
the result looks rather awkward and hardly any informat
can be extracted from it without a computer. On the oth
hand, the ‘‘formatting’’ operation is easily implemented n
merically, and for this reason we leave as final the express
for Green’s function in Eq.~6.1!.

Consider now the left region and the knot ‘‘1’’–‘‘4’’ in
Fig. 7~a!. The left region Green’s functions are those on t
jectories ‘‘2’’ and ‘‘3.’’ To apply formula in Sec. E and one
should substitute 1 for ‘‘2’’ and 1’ for ‘‘3.’’ Since trajecto-
ries ‘‘2’’ and ‘‘3’’ are semi-infinite, the combination
f1(10)f̄2(20) is proportional to the bulk value (1
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1ĝ0,l
R ). The transfer matrixM4←1 contains the across-kno

Green’s functionĝ4d1 analogously to Eq.~5.17!. It is easy to
see thatĝ4d1 equals to just foundĝR(z510,u). Therefore,
the Green’s function on the left side of the interface is

ĝR~z520,u!5FRF ~11ĝ0,l
R !S 11

T

11R
ĝR~z510,u! D G .

At other points in the left region (z,0), the Green’s func-
tion is found with the help of the free evolution operator,

ĝR~z,u!5expS i j l
R

v
ĝ0,l

R xD ĝR~z520,u!

3expS 2
i j l

R

v
ĝ0,l

R xDU
x5uz/cosuu

. ~6.2!

In Fig. 8, we show the density of states on the film side
the interface, i.e., ImĝR(z510,u) Eq. ~6.1!, for Du
5v/uD l u and the pair potential in the left and right parts
different signs,D l52D r ; the curves parameters differ in th
reflectivity R increasing from zero in Fig. 8~a! to R50.9 in
Fig. 8~d!.

WhenR50, one sees in Fig. 8~a! two ~zero width! peaks
in the gap regionu«u,uDu. The peaks are due to the boun
states well-known in the theory of anisotrop
superconductors34 ~see also Sec. IV B!. The «50 bound
states exist near the trajectory point where the phase oD
changes abruptly byp. When the thicknessdr is finite, the
levels are at a finite energy26 due to the overlap of the wav
functions@e.g., of the states on the ‘‘2’’–‘‘4’’ and ‘‘5’’–‘‘7’’
paths in Fig. 7~a!# and the level repulsion. The overlap of th
separated in space levels and, therefore, the level splitting
exponentially small whenDu is large.

WhenR is finite, the splitting increases. First, the refle
tion gives rise to the on-knot overlap of the levels belong
to the same knot, e.g., the ‘‘2’’–‘‘4’’ and ‘‘1’’–‘‘3’’ levels.
By this mechanism, the level is split to6ARuDu @cf. Eq.
~4.14!#. Second, the on-knot overlap in combination with t
next neighbor overlap discussed earlier, mixes togethe
the bound states and transforms the discreet levels
bands. This behavior is clearly seen in Figs. 8~b!–8~d!.

B. Sandwich

In this section we consider a more general case when
left region is a finite layer of thicknessdl . As previously, the
order parameter is assumed to be constant in the layers

The typical treelike trajectory formed by multiple refle
tions on the outer surfaces and the interface, is shown in
9~a!. As in Fig. 7, the numbers tag the coordinate on
trajectory. Topological structure of~a fragment of! the tree is
shown in Fig. 9~b!; the tagging is the same as in Fig. 9~a!.
The center of the tree is~arbitrarily! chosen at the ‘‘5’’–‘‘8’’
knot; the tree structure looks same if viewed from differe
knots. The pieces of the tree with the arrows in the horizon
direction correspond to the left layer, and points on the v
tical lines belong to the right layer. Generally, the treeli
trajectory covers~almost! all space but remains neverthele
topologically one-dimensional: The features discussed be
f
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FIG. 8. The density of states~trajectory resolved! versus energy
«/D at the interface of a bulk superconductor with the pair poten
D l and a filmD r52D l ~see Fig. 7!. The film thicknessd is mea-
sured along the trajectory in unitsv/iDu. The interface reflectivity
R50, 0.1, 0.5, 0.9 in~a!, ~b!, ~c!, ~d! respectively.
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PRB 61 7093QUASICLASSICAL THEORY OF . . .
are clearly seen here; that is~i! if a line of the tree is cut, two
disconnected pieces are produced or, equivalently,~ii ! there
are no closed loops on the tree.

First we calculate the knot values of the Green’s fun
tions, for the central knot ‘‘5’’–‘‘8.’’ Other knots are equiva
lent to the central knot. On both horizontal and vertic
branches in Fig. 9, the arrays of knots are periodical, se
rated by 2Dl ,u , Dl ,u5dl /cosu for the horizontal branche
~the left layer! and 2Dr ,u , Dr ,u5dr /cosu, on the vertical
branches~the right layer!.

As in the previous section~see Sec. B for proof!, the
one-point Green’s function at ‘‘5,’’ĝ5

R , is simply related to

the evolution operatorÛ9←5 advancing the wave function a
‘‘5’’ to the periodically equivalent point ‘‘9’’@see Fig. 9~b!#.
Crossing the knot from ‘‘5’’ to ‘‘8’’ with the help of the
transfer matrix,M↓ , build analogously to Eq.~5.13!,

M↓5
~11R!

2r * S 12
T

11R
ĝ7d6D ,

and moving from ‘‘8’’ to ‘‘9’’ by exp(2iDu,rĝ0,r
R ), one gets

Û9←5 as the ordered product of the two matrices. The sa
matrices but multiplied in the different order, give the ev

lution operatorÛ8←3 and, thereforeĝ8
R .

Changing notation in Eq.~5.17! and collecting formulas
together, one gets

ĝ7d65
1

11 1
2 @ ĝ7 ,ĝ6#1

~ ĝ71ĝ61 1
2 @ ĝ7 ,ĝ6#2!,

~6.3a!

ĝ8
R5FRF S 12

T

11R
ĝ7d6Dexp~2iD u,r ĝ0,r

R /v !G ,
~6.3b!

ĝ5
R5FRFexp~2iD u,r ĝ0,r

R /v !S 12
T

11R
ĝ7d6D G . ~6.3c!

FIG. 9. ~a! Real space classical trajectories of a particle in a t
layers system formed by multiple reflections on the outer surf
and the interface between layers. Numbers tag both the positio
the particle on the trajectory as well as the direction.~b! The struc-
ture of the treelike trajectory is shown. The points in real space
on the tree are marked by the same numbers in~a! and ~b!.
-

l
a-

e
-

These equations allow one to find the knot values of
Green’s function in the right region via the left region cou
terparts.

In the same way one can derive expressions whereĝ6,7
R are

related toĝ5,8
R

ĝ8d55
1

11 1
2 @ ĝ8 ,ĝ5#1

~ ĝ81ĝ51 1
2 @ ĝ8 ,ĝ5#2!, ~6.4a!

ĝ7
R5FRF S 12

T

11R
ĝ8d6Dexp~2iD u,l ĝ0,l

R /v !G , ~6.4b!

ĝ6
R5FRFexp~2iD u,l ĝ0,l

R /v !S 12
T

11R
ĝ8d5D G . ~6.4c!

Equations~6.3! and~6.4! allow one to find iteratively the
knot values of the Green’s function. Unless the reflectionR
is too small, the iterations converge rather fast. For alm
transparent interfaces,R!1, a slightly different procedure is
more efficient: as the periods, one chooses the paths
‘‘4’’ → ‘‘5’’ → ‘‘7’’ → ‘‘14’’ → ‘‘16.’’

Given the knot values, the Green’s function at oth
points can be calculated by formulas analogous to Eq.~6.2!.

Figure 10 shows the trajectory resolved density of sta
at the interface, Imĝz50,u

R for the case when theD l52D r

and the layers of equal thicknessDl ,u5Dr ,u5v/uD l u.
As expected, the sandwich with a transparent interfa

R50, has a considerable spectral weight at low energ
which is represented by the band centered at«50 @see Fig.
10~a!#. The overall picture is very different from the BC
density of states: the spectrum is given by well-defined ba
with strong edge singularities. As in case of a film, the
flection splits the«50 bound states, and the bands mo
towards higher energies. When the reflectivity is as low
0.1 @see Fig. 10~b!#, there are no states at, and in the vicin
of «50. The forbidden bands become more narrow, and
edge singularities become smoother. From Figs. 10~c! and
10~d!, one sees that forR*0.5 the states are pushed to th
energies*D.

In the next section, we use these results to evaluate
‘‘superfluid density,’’ an observable sensitive to the shape
the density of states.

Superfluid density

In this section we calculaters , a parameter which con
trols the current densityj induced by a weak spatially homo
geneous static vector potential,A,

j52rs

c

4p

1

lL
2
A,

lL being the~bulk! London penetration depth at zero tem
perature. In the two-fluid lexicon,rs is the ‘‘superfluid den-
sity’’ or the ‘‘fraction of superconducting electrons.’’

In the present case of a two-layer system, the local cur
induced by in-plane homogeneous vector potential
z-dependent, being proportional to the local density of sta
The total current through the layers is proportional to t
average,

o
e
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d
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FIG. 10. Trajectory resolved density of states versus energy«/D
at the interface. The order parameterD l52D r . The thickness of
both layers isv/uD l u. The reflectionR, shown at the top of the
pictures, is 0, 0.1, 0.6, and 0.9 in~a!, ~b!, ~c!, and~d!, respectively.
rs5
1

dl1dr
E

2dl

dr
dzrs~z!,

rs~z!512E
2`

`

d«S 2
] f 0

]« D n~«,z!, ~6.5!

where f 0 is the Fermi function, andn(«,z) is the local den-
sity of states,

n~«,z!5ReE dVn

4p
„ĝR~«,n,z!…11.

The averaged superfluid densityrs in Eq. ~6.5! is conve-
niently written as

rs512E
2`

`

d«S 2
] f 0

]« D n̄~«!, n̄~«![
dl n̄ l~«!1dr n̄ r~«!

dl1dr
,

~6.6!

wheren̄ l ,r(«) is the averaged density of states in the left~l!
and right~r! layers.

To calculaten̄ l ,r(«), one finds the Green’s function, a
explained in the previous section, and perform integratio
with respect to the coordinatez and the directionn. The
spatial dependence, found from the knot values by formu
analogous to Eq.~6.2!, is simple and thez integration can be
done analytically. The averaged density of states in the r
region reads

n̄ r~«!5
1

2
SptzReE

0

1

dmS ĝ0,r
R @ ĝ0,r

R ,ĝ5
R#1

1
sin 2g

2g
ĝ0,r

R @ ĝ0,r
R ,ĝ5

R#2

1 i S 12cos 2g

2g D @ ĝ0,r
R ,ĝ5

R#2D
«,m

, ~6.7!

wherem5cosu, g«,m[2drj r
R/mv, ĝ0,r

R is the bulk Green’s

function, andĝ5
R is the knot value of the Green’s function o

the tree corresponding to the angleu ~see previous section!.
After the substitution,r→ l andĝ5

R→ĝ6
R , Eq. ~6.7! givesn̄ l .

The integration with respect tom in Eq. ~6.7! and« in Eq.
~6.6! can be performed only numerically. The integration
Eq. ~6.6! along the real« axes may be slowly converging du
to the band edge singularities; for better convergence,
may integrate along line Im«5 i (Tp/2) or transform the in-
tegral to the Matsubara sum.

We evaluated numerically the superfluid density for
sandwich with equal thickness of the layersdl ,r5v/uD l ,r u
and thep differences in the order parameter phaseD l5
2D r . In Fig. 11, the superfluid density as a function
temperature is shown for different reflectivityR.

The curve forR50 shows large negativers at low tem-
peratures which would lead to amplification of the appli
magnetic field rather than the Meissner screening. This
ture is due to the large low energy spectral weight seen
Fig. 10~a!. Therefore, our data support the recent idea
forward by Fauchere, Belzig, and Blatter26 about the para-
magnetic instability near the surface where the order par
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PRB 61 7095QUASICLASSICAL THEORY OF . . .
eter changes its sign. However, one sees in Fig. 10 tha
effect is very sensitive to the presence of the partially refl
tive interface: reflection with the probability as low as 4
makesrs positive at any temperature.

VII. CONCLUSIONS

In this paper we have reconsidered the part of the qu
classical theory of superconductivity which concerns int
faces between superconductors~SIS! or a normal metal and a
superconductor~NIS!. Since the interface violates the cond
tion of applicability of the quasiclassical approximation, t
reflection and transmission processes must be included v
boundary condition. In the approach taken in the paper,
master boundary condition in Eq.~3.1! is formulated for the
effective wave functions factorizing the two-point Green
function. In the boundary condition, the two-component a
plitudes inN incoming andN outgoing channels are relate
to each other via theS matrix. The latter is sensitive to mi
croscopic details of the interface and is considered as
input in the quasiclassical theory. The theory is equally
plicable to specular interfaces (N52), as well as to the many
channel case which models a rough surface or interface
Secs. IV, V, and V B, the master boundary condition is
formulated in various forms, suitable for the one or the ot
application.

In Sec. IV, we have presented a general solution to
ballistic problem of the scattering of electronlike and ho
like excitation. This result extends the theory of the NI
interface20 to the many channel situation; SIS case is a
included. As in Ref. 20, the solution is general in the se
that it expresses the full amplitude of the multiple proces
of the Andreev electron↔ hole conversion and ordinar
scattering via the amplitudes of the elementary processes
this, the problem is split into independent and more sim
problems. The theory of multichannel bound states is a
considered. The formulation which operates with excitatio
rather than bare particles, is especially convenient for

FIG. 11. The effective superfluid density of a system of tw
layers,l andr, of equal thicknessdl5dr5v/uD l u with the p phase
difference D l52D r for different reflectivity of the interfaceR
50, 0.01, 0.04.
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kinetic theory in the framework of the Boltzmann-type equ
tions, for which it provides the boundary condition for th
distribution function of the excitations.11,35

For a general case, i.e., when the disorder and inela
collisions are allowed, the boundary value of the tw
component wave functionsf5(v

u) factorizing the trajectory
Green’s function are found in Sec. V. Since the mean fi
equations are linear, this result can be recast as the boun
condition for the Andreev amplitudesu/v of the Riccati
equation approach. In a most compact and symmetric fo
the boundary condition is given by Eq.~5.5!. For the specu-
lar interface, the boundary condition for the Riccati equat
is given by Eq.~5.7!, or explicitly by Eqs.~5.8! and ~5.9!.

One more form of the boundary condition is presented
Sec. V B, where the expression for the transfer matrix
derived. The transfer matrix, which couples the wave fu
tions or the one-point Green’s functions on the chosen p
of in and out channels, absorbs information about all ot
2(N21) channels. This modification of the boundary con
tion is convenient when one solves the Eilenberger equat
for the one-point Green’s function. In the simplest tw
channel case~specular reflection!, this boundary condition
reproduces Zaitsev’s results.6 The new form seems to b
more flexible and convenient.

For the derivation, we use the technique of the two-po
Green’s function. In our opinion, the technique provides
adequate language to discuss the semiclassical physics i
perconductors which we qualitatively considered in Sec
The two-point Green’s function gives a full description
the coherent propagation of electron and hole along a c
mon classical path. In spite of the fact that observables
be expressed via the one-point Green’s function only,
language of the quasiclassical two-point Green’s function
classical paths is not redundant: Offering a physically tra
parent formalism, it is free from some uniqueness proble
which plague the standard ‘‘j-integrated’’ formulation. Note
also that with all possible simplifications already done, t
quasiclassical two-point Green’s function obeys Eqs.~2.2!
and ~2.3! which, unlike the Eilenberger equations, have
familiar form of an equation for a propagator. Therefore, o
may directly apply the intuition and experience gained
other fields of the quantum theory.

Another attractive feature of the two-point Green’s fun
tion technique is that it allows one to define effective wa
functions. The latter factorize the Green’s function averag
with respect to disorder or phonons. Although these ‘‘wa
functions’’ have usual quantum mechanical meaning only
ballistic case, it seems to be advantageous that one may
the unified language of trajectories and wave functions d
cussing both the ballistic motion and the propagation in
presence of disorder or inelastic collisions.

The effective wave function,f5(v
u) obeys the linear

Andreev-type equation Eq.~2.6!. There is a variety of meth-
ods one can chose to solve the system of two linear dif
ential equations foru and v. One of them is to derive the
equation for the ratiou/v which turns out to be the Riccat
equation suggested in Refs. 24 and 25. As the logarith
derivativec8/c in the usual Schro¨dinger equation does, th
choice of the ratiou/v has the indisputable practical adva
tage which is due to insensitivity of the ratio to the norm
ization of f. The Riccati equation approach which h
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7096 PRB 61A. SHELANKOV AND M. OZANA
proven to be very convenient and efficient for numeri
finds rather natural physical interpretation in the two-po
Green’s function technique of the present paper.~For the
latest development of the Riccati equation approach inc
ing the interface boundary condition, see recent commun
tion of Eschrig.37!

An important part of this paper is the understanding t
the classical trajectory transforms to a topologically on
dimensional simply connected tree in the case of many in
faces and/or boundaries. The extended arguments in fav
this point of view have been presented in Sec. I. Althou
this assertion may look wrong in simple idealized geo
etries, like, e.g., a sandwich with strictly parallel outer a
the interface planes Fig. 2, we argue that small deviati
from the perfection eliminate accidental crossings of traj
tories ~as in nonintegrable billiards!. In our opinion, the dif-
ficulties with the quasiclassical theory encountered in Ref
and 8 are due to the fact that some interference contribut
survive the procedure of the integration with respect to
layer thickness: Indeed, rigid variations of the layer thickn
do not eliminate all the loops. We believe that some rou
ness, larger than the Fermi wavelength but small and in
ible on the quasiclassical scale, will restore the quasiclass
results.

To show the new theory in action, we solve in Sec.
two simple problems:~i! a film separated from a bulk mate
rial by a partially transparent interface;~ii ! a two layer sys-
tem with arbitrary transparent interface.~The latter was clas-
sified in Ref. 8 as quasiclassically unsolvable.! Motivated by
recent ideas about the origin of the paramagnetic effect,36 we
evaluate the density of states and the superfluid density w
the phase of the order parameters in the layers differs inp, a
scenario of paramagnetic instability suggested in Ref.
Our results confirm the very possibility that the superflu
densityrs may be negative~Meissner‘‘antiscreening’’! but
we observe also thatrs is strongly affected by reflection o
the interface: when the probability of the reflectionR
.0.04, the Meissnerscreeningis restored. The implications
of these results for a realistic theory of the paramagn
instability requires further studies.
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APPENDIX A: ADVANCED GREEN’S FUNCTIONS

The advanced Green’s functiongA(x1 ,x2) is constructed
in the same manner as the retarded one: One findsf1,2 from
Eq. ~2.6! with ĤR substitutes forĤA and builds the Green’s
function as in Eqs.~2.12!, ~2.13!, and~2.22!.

Combining Eqs.~2.5! and ~2.7!, one can see that th
t̂x(f

R)* with fR from Eq. ~2.6! satisfies the correspondin
equation in theA case. Then, the normalized Eq.~2.11! so-
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lutions are related to each other as

f1
A 5 i t̂x~f1

R !* , f2
A 5 i t̂x~f2

R !* . ~A1!

The Andreev amplitudesa and b Eq. ~2.16! are related
now as

aA51/~aR!* , bA51/~bR!* ,

and Green’s functions as

ĝR~x1 ,x2!5 t̂xĝ
A* ~x1 ,x2!t̂x .

For future references, the symmetry in the one-po
Green’s functions is given by the following well-known re
lations @«5(«,n),«* 5(«* ,n)#:

ĝ«
R~r!52 t̂z„ĝ«*

A
~r!…†t̂z , ĝ«

R~r!5„ĝ2«*
R

~r!…†.

The first of them follows from Eq.~A1!, and the second one
reflects the symmetryĤ«

R52 t̂zĤ2«
A t̂z .

APPENDIX B: EVOLUTION IN PERIODIC POTENTIAL

To prove validity of Eq.~2.26!, one first solves the 2
32 eigenvalue problem

ÛL~x!c~x!5gc~x!

and finds the eigenfunctionsc1,2 ~with x as a parameter! and
the eigenvaluesg1,2. It follows from the conservation of
normalization in Eq.~2.9! that DetU51, and, therefore,

g1g251.

Denoteg1 the eigenvalue for whichug1u,1, and normalize
the eigenfunctions to satisfyc̄2c151. ~When considering
ĝR, the variable« has a finite imaginary part and the matr
ĤR is not Hermitian. Then, the evolution matrix is not un
tary and ug1,2uÞ1.! It is clear now thatc1(x) continued
along the trajectory with the help of the evolution matr
ÛL(x) gives the solution denoted in Eq.~2.10! as f1(x):
Indeed, it satisfies Eq.~2.6! and decays atx→` asg1

x/L . By
the same argument,f25c2. From Eq. ~2.20!, the Green
function now reads

ĝR5c1c̄21c2c̄1 .

Seeing that the evolution 232 matrix can be expanded i
its normalized eigenfunctions as

ÛL~x!5 1
2 ~g11g2!1̂1 1

2 ~g12g2!~c1c̄21c2c̄1!,

the traceless part ofÛL(x) is proportional toĝR. The nor-
malization condition fixes the proportionality coefficient, an
one comes to Eq.~2.26!.

To build the evolution matrix, one may use the followin
procedure. First consider two fundamental solutions to
~2.6!, c I andc II , which satisfy the following boundary con
ditions:

c I~x!5S 1

0D , c II ~x1L !5S 0

1D
and findc I(x1L) andc II (x),



-

u-

PRB 61 7097QUASICLASSICAL THEORY OF . . .
c I~x1L !5eiFL(x)S 1

aL~x!
D , c II ~x!5eiFL(x)S bL~x!

1 D .

The exponential factor is same forc I andc II as required by
the conservation of the normalization in Eq.~2.9!. The pa-
rametersaL(x), bL(x), andFL(x) can be calculated conve
niently in the Riccati equation technique.

Denotea0(x;x0) solution to Eq.~2.23! with the boundary
conditiona0(x5x0 ;x0)50; then@see Eq.~2.24!#
s

th
aL~x!5a0~x1L;x!, FL~x!5E
x

x1L

dx8„«R~x8!

1DR~x8! a~x8;x!….

Similarly,

bL~x!5b0~x,x1L !,

where @b0(x,x0)#21 is the solution to Eq.~2.23! with the
boundary conditionb0(x5x0 ,x0)50.

Building the evolution matrix from the fundamental sol
tions, one gets
ÛL~x!5eiFL(x)S 1 2bL~x!

aL~x! e22iFL(x)2aL~x!bL~x!
D .

The traceless part of it,ÛL8(x), reads

ÛL8~x!5
1

2
eiFL(x)S 12e22iFL(x)1aL~x!bL~x! 22bL~x!

2aL~x! 211e22iFL(x)2aL~x!bL~x!
D .
e

Up to the normalization factor, this matrix is equal toĝR(x).

APPENDIX C: FORMAL SOLUTION: I

Here, we analyze some formal linear algebra aspect
the matching conditions in Eq.~3.1!.

Generally, the wave functions may be presented in
following form:

ck85Ak8S 1

mk8
D , c i5Bi S n i

1 D . ~C1!

Denote uX& the column with elementsX1 , . . . ,XN or
X18 , . . . ,XN8 . One obtains from Eqs.~3.1! and ~3.2!

uA&5Ŝn̂uB&, uB&5Ŝ†m̂uA&. ~C2!

where m̂ and n̂ are diagonal matricesN3N with (m̂)k8k8
5mk8 and (n̂)kk5nk .

The two equalities in Eq.~C2! are compatible only if

D~$n%,$m%![deti12Ŝn̂Ŝ†m̂i50. ~C3!

As expected, the parametersm ’s and n ’s are not indepen-
dent: Eq.~C3! gives a relation among them, which islinear
in each of the parameters~see Appendix D!, making it pos-
sible to express one of them ’s or n ’s through all others.

For instance, one may give any values tom ’s andn ’s in
all channels excepting thel th incoming one. Thenn l is fixed
by Eq. ~C3!,

n l
215^ l uŜ†m̂Sl̂ u l &, ~C4!

where

Ŝl5~Ŝ†2 n̂ ( l )Ŝ†m̂ !21, ~C5!
of

e

andn̂ ( l ) denotes the matrix which differs fromn̂ only in that
the element (n̂ ( l )) l l 50; here and beloŵi uQ̂u j &[Qi j .

From Eq.~C2! one finds now the coefficientsA’s andB’s,
they are proportional to one of them, sayBl . It is convenient
to put Bl5Cn l

21 . In this way, one gets the solution to th
matching conditions in Eq.~3.1! corresponding to the given
set ofmk8 andn iÞ l ’s:

c l
( l )5CS 1

n l
21D , cmÞ l

( l ) 5C^muS†m̂Ŝl u l &S nm

1 D ,

ck8
( l )

5C^k8uŜl u l &S 1

mk8
D . ~C6!

Heren l is given by Eq.~C4!, k,m51, . . . ,N, andC is arbi-
trary.

In the same way one builds the solution where all them ’s
andn ’s are given as input exceptingmn8 adjusted to meet the
condition in Eq.~C3!:

cn8
(n8)

5CS mn8
21

1
D , ck8Þ l 8

(n8)
5C^k8uŜn̂Ŝn8

† un8&S 1

mk8
D ,

cm
(n8)5C^muŜn8

† un8&S nm

1 D , ~C7!

k8,m51, . . . ,N,

mn8
21

5^n8uŜn̂Ŝn8
† un8&, ~C8!

and

Ŝn8
†

5~Ŝ2m̂ (n8)Ŝn̂ !21. ~C9!
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APPENDIX D: FORMAL SOLUTION: II

Transforming 12Ŝn̂Ŝ†m̂5(12Ŝn̂ ( l )Ŝ†m̂)„12n ( l )(Ŝ†

2 n̂ ( l )Ŝ†m̂)21u l &^ l uŜ†m̂…, and using identity det(11uX&^Yu)
511^YuX&, one gets

D~$n%,$m%!5D~$n ( l )%,$m%!~12n ( l )^ l uŜ†m̂Ŝl u l &!,
~D1!

with Ŝl in Eq. ~C5!, andn̂ ( l ) denotes the matrix which differ
from n̂ only in that the element (n̂ ( l )) l l 50.

Similarly,

D~$n%,$m%!5D~$n%,$m (n8)%!~12m (n8)^n8uŜn̂Ŝn8
† un8&!,

whereŜn8
† is defined in Eq.~C9!.

Sometimes calculations become shorter when
changes the representation. Since theSmatrix in Eq.~3.1! is
a scalar in the electron-hole space, the matching conditio
unchanged by any rotationc→cO5Ôc,

Ô5
1

12m0n0
S 1 2n0

2m0 1 D .

After the rotation, the basis wave function in Eq.~C1! has
the same form with (•••)→(•••)O

mOk85
mk82m0

12mk8n0

,

nOi5
n i2n0

12m0n i
,

AOk85Ak8

12mk8n0

12m0n0
,

BOi5Bi

12m0n i

12m0n0
.

One sees that by proper rotations any pairmk8 ,n i can be
nullified in the intermediate calculations. Of course, all oth
coefficients will also be changed. Calculations done, one
to the original basis.

Equations~4.8! and ~4.9! can be written in a more com
pact form. From Eq.~D1!,

1

12a0l
(e)a l

(h)
5

Dl

D0
,

where

D05D~$a (e)%,$a (h)%!

and

Dl5D~$a (e)%,$~a (h)!( l )%!.

AbsorbingDl into Sl , i.e., Sl5DlSl , and using obvious
u l &b (e)* 5b̂ (e)* u l &, etc., the scattering amplitudes read

Bl
( l )5

1

D0
~^ l uS†â (e)Ŝl u l &2Dla l

(e)!,
e

is

r
ts

BkÞ l
( l ) 5

1

D0
^kub̂ (h)S†â (e)Ŝl b̂

(e)* u l &,

Ak8
( l )

5
1

D0
^k8ub̂ (e)Ŝl b̂

(e)* u l &.

APPENDIX E: TRANSFER MATRIX

Another possibility for resolving the matching condition
is via the transfer matrixM̂n8← l

cn85M̂n8← l c l ,

which couples the wave functions

c l5S ul

v l
D , cn85S un8

vn8
D

on a selected pair of trajectoriesl and n8; the parameters
mk8Þn8 andn iÞ l are supposed to be given.

As usual, the transfer matrix can be built out of the e
ments of two particular solutionsC I ,II . Take C I to be the
solution in Eq.~C6! with mn8 put to zero,

C I : cn8
(I )

5^n8uŜn8 l u l &S 1
0D , c l

I5S 1

^ l uŜ†m̂ (n8)Sn8 l
ˆ u l & D

andC II the solution Eq.~C7! with n l50,

C II : cn8
(I )

5S ^n8uŜn̂ ( l )Ŝn8 l
1 un8&

1 D , c l
(II )5^ l uŜn8 l

1 un8&S 0
1D ,

where

Ŝn8 l5~Ŝ†2 n̂ ( l )Ŝ†m̂ (n8)!21, Ŝn8 l
1

5~Ŝ2m̂ (n8)Ŝn̂ ( l )!21.

Requiring that the transfer matrix reproduces the relati
betweencn8 and c l in the two solutions, one gets the fo
lowing result:

M̂n8← l5^ l uŜn8 l
1 un8&21S A B

2C 1 D , ~E1!

where

A5^n8uŜn8 l u l &^ l uŜn8 l
1 un8&

2^ l uŜ†m̂ (n8)Sn8 l
ˆ u l &^n8uŜn̂ ( l )Ŝn8 l

1 un8&,

B5^n8uŜn̂ ( l )Ŝn8 l
1 un8&, C5^ l uŜ†m̂ (n8)Sn8 l

ˆ u l &.

The determinant of the transfer matrix is

DetiM̂n8← l i5
^n8uŜn8 l u l &

^ l uŜn8 l
1 un8&

.

The inverse matrix reads

M̂n8← l
21

5^n8uŜn8 l u l &21S 1 2B

C A D . ~E2!
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Applying the matching conditions for the conjugate
wavesc̄ in Eq. ~3.3!, one can check that the correspondi
transfer matrix is given by the inverse of that forc, i.e.,

c̄n85c̄ lM̂n8← l
21 .

Since c̄n8
(1)cn8

(2)
5c̄ l

(1)M̂n8← l
21 M̂n8← lc l

(2)5c̄ l
(1)c l

(2) , the con-
servation law in Eq.~2.9! is not affected by knots.

Transfer matrix 2 Ã2 case

The transfer matrix for the case when the knot mixes t
in to two out trajectories, can be obtained from the gene
expression in Eq.~E1!. Algebraic simplifications of rathe
awkward expression gives a pretty compact result. Here
alternative derivation, algebraically more transparent, is p
sented.

Call the trajectories of interest by 1 and 18, and consider
calculation ofM̂18←1 for givenm28 andn2 in Eq. ~C1!. First
note superconductivity influences the transfer matrix only
the trajectories 2 and 28. Note also that in the normal meta
case whenm285n250, the transfer matrix is simply

M̂18←1
(0)

5S s 0

0
1

s*
D 5sS 1 0

0 0D 1
1

s* S 0 0

0 1D , ~E3!

wheres5S181.
Since theS matrix is an electron-hole scalar, Eq.~3.1! is

invariant relative to rotations in the electron-hole spaceĉ

→ĉO5Ôc, and one can resolve the matching conditions
arbitrary basis.

The rotation

Ô5
1

12m28n2
S 1 2n2

2m28 1 D , Ô215S 1 n2

m28 1 D
transforms (m28

1 ) to (m28

1 )O5(0
1) and (1

n2) to (1
0) as if in the

normal state. Therefore, after the rotation, the transfer ma
is given by Eq.~E3!, whereas in the original picture

M̂18←15Ô21M̂18←1
(0) Ô.

Inserting Eq.~E3!, the transfer matrix reads

M̂18←15
1

12m28n2
S sS 1

m28
D ~1, 2n2!2

1

s* S n2

1 D
3~m28, 21! D . ~E4!
rs
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One recognizes the combinations enteringĝ6
R in Eq. ~2.17!

with the important difference thatn2 andm28 are parameter
of the wave functions not at the same point but across
knot.

Finally,

M̂18←15
11S

2s*
S 12

R

11S
ĝ28d2D , ~E5!

whereS5usu2, R512S, and

ĝ28d25
1

12m28n2
S 11m28n2 22n2

2m28 212m28n2
D

is normalizedĝ28d2
2

51, ‘‘across-the-knot’’ Green function
It can be presented in a factorized form as follows:

1

2
~11ĝ28d2!5

1

12m28n2
S 1

m28
D ~1, 2n2!. ~E6!

Up to normalization, (m28

1 )5f1
(28) wheref1

(28) is the knot

value off1 on the trajectory 28, and (1, 2n2 )5f̄2
(1) . Tak-

ing into consideration Eqs.~2.14! and ~2.21!, one concludes
from Eq. ~E6! that (11ĝ28d2)}(11ĝ28)(11ĝ2) so that

~11ĝ28d2!5N 21~11ĝ28!~11ĝ2!,

N5
1

2
Sp~11ĝ28!~11ĝ2!, ~E7!

where the normalization12 Sp(11ĝ28d2)51 fixes the pro-
portionality coefficient N. This formula expresses th
‘‘across-the-knot’’ function via Green’s function on the tr
jectories 2 and 28.

After some algebra, one gets another form of Eq.~E7!:

ĝ28d25
1

11
1

2
@ ĝ28 ,ĝ2#1

S ĝ281ĝ21
1

2
@ ĝ28 ,ĝ2#2D .

~The anticommutator12 @ ĝ28 ,ĝ2#1 in the denominator is pro
portional to the unit matrix and does not pose any proble!
.
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