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A method is suggested that allows one to study multiple coherent reflection/transmissions by partially
transparent interfaceg.g., in multilayer mesoscopic structures or grain boundaries in Mg, in the
framework of the quasiclassical theory of superconductivity. It is argued that in the presence of interfaces, a
straight-line trajectory transforms to a simple connected one-dimensionalgirael) with knots, i.e., the
points where the interface scattering events occur and pieces of the trajectories are coupled. For the two-
component trajectory “wave function” which factorizes the Gor’kov matrix Green’s function, a linear bound-
ary condition on the knot is formulated for an arbitrary interface, specular or diffdsivibe many channel
mode). From the new boundary condition, we derifethe excitation scattering amplitude for the multichan-
nel Andreev/ordinary reflection/transmission proces&esthe boundary conditions for the Riccati equation;

(ii ) the transfer matrix which couples the trajectory Green'’s function before and after the interface scattering.
To show the usage of the method, the cases of a film separated from a bulk superconductor by a partially
transparent interface, and a SlSandwich with finite thickness layers, are considered. The electric current
response to the vector potentittie superfluid density,) with the = phase difference in S and & calculated

for the sandwich. It is shown that the model is very sensitive to imperfection of then&3face: the low
temperature response being paramagneiic<Q) in the ideal system case, changes its sign and becomes
diamagnetic fs>0) when the probability of reflection is as low as a few percent.

[. INTRODUCTION superconductivity. A scheme is suggested that allows one to
incorporate specular as well as diffusive interfacénto the
Many important properties of superconductors are relate@uasiclassical theory. To make the presentation self-
to surfaces and interfaces, the Josephson and proximity egontained, we start with a short introduction to the quasiclas-
fects being well-known examples. In recent years, new rictpic@! theory of superconductivity.

: : . As first shown by Bardeen, Cooper, and Schrieffer

surface physics has been found in high-oxides after the 10 g
identification of thed symmetry of the order parameter. On (BCS): " the phenomenon of superconductivity can be under-
stood in the framework of a mean-field type scheme where

loms: The method of the quasiclaseical Green's funche e COOPEr cortelations are introduced through the pair po-
: ; S . . tential A (generally, a function of the momentuph which is
(for a recent review see Ref) which is thg main t00|.ll’l the related to electron-electron interaction by a self-consistency
superconductivity theory, cannot be directly applied here,,ngition. The mean field may be introduced directly as a
since the quasiclassical condition is violated by fast changging of Hartree-type potential, or it can be derived in the
of the potentials on the atomic distances in the vicinity of thegramework of a more sophisticated Eliashberg theory where
interface. As shown by Zaitsévthe abrupt changes at a the pair potential comes as the anomalous self-energy in the
specular partially transparent interface can be incorporatedorkov equations for the Green’s function. This truly mi-
into a boundary condition for the quasiclassical Green'scroscopic approach allows one to perform all the normaliza-
functions; the condition is a third order equation for the ma-tions in the spirit of the Landau theory of Fermi liquid and to
trix Green’s function near the interface. Various forms of theconsider superconductors with a strong couplisge Seren
boundary condition have been discussed in more recenind Rainet and references thergin
papers New difficulties arise when one attempts to de- Whatever the method of derivation, the Gor’kov equation
scribe the coherent reflection/transmission by many interfor the matrix Green’s function gives the basis for studying
faces, e.g., in a multilayer mesoscopic structures or graithe BCS-type superconductivity. The quasiclassical theory of
boundaries network in high;’s. In this case, Zaitsev's third superconductivity offers an approximate simplified scheme
order boundary condition must be satisfied on each interfacef solving the Gor’kov equation. To clarify physics behind
and one encounters the problem of solving a system of cubithe approximations, we analyze first the Bogoliubov—de
matrix equations. It is not obvious that a solution to the sysGennes equatidfi that is the effective “Schidinger equa-
tem of equations exists and is unique if it exists. Moreovertion” corresponding to the Gor'’kov equatiofin the weak
some authors® doubt the very applicability of the quasiclas- coupling limit).
sical scheme in the many interface geometry: They argue It is well known that Cooper’s pairing in the supercon-
that the quasiclassical normalization, which is a vital part ofducting state is conveniently described in the language of the
the quasiclassical scheme, is not possible in a double layaectron-hole coherence. On the mean field level, the ground
system with partially reflective interface. as well as excited states of the system are products of single
The purpose of the present paper is to reexamine thparticle states, each of them a quantum superposition of elec-
theory of the interface in the quasiclassical description otron and hole. The electro., and hole/,, amplitudes in
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the superposition comprise the two-component single parfhe two equations transform into each other after the substi-
ticle wave function, xp(r,t):(ge)_ It obeys the tutiont——tandA— —A. This means that given a solution
n we(r,t|{A}) corresponding to the vector potentidl, the

Bogoliubov—de Gennes equatith, function ¢(r,—t|{—A}) solves the equation fog, in the

e vector potentialA. Therefore,
g( p—-A|+U A
iﬁi(%): c (’»”) (A = dilr, —t{— AY), L3
ot . ' .
¥ A* _elprCal—u ] provided gro(r,t=0)= g (r,t=0) 2
c If #—0, the center of electron or hole wave packets

(1.1 moves in tha —p space along the trajectory specified by the

where £(p) = e(p) — u, €(p) and u being the electron band coordinatere n(t) and momentunp,(t) as a function of
energy and the chemical potential, respectivélyjs the timet. The relation between electron and hole trajectories
magnetic vector potentialy(r) is the potential energy. The can be expressed in the following way.
pairing potentialA, and, in principle, all other potentials  Letren)(t|{b}) together withpe (t|{b}) be the trajectory
must be found self-consistently. of the electron(hole) in the magnetic fieldo=rot A. From
For future needs we note that in the vicinity of the FermiEd. (1.3) one can conclude that the corresponding classical
surface&(pg) =0, the electror{hole) with the momentunp dynamics_of electrons and holes are related to each other in
~p- moves with the Fermi velocity v the following way:
=+(—)(0& dpe)|s=o- The particle energy is close to the B
Fermi energyEF~|§v pe, and the de Broglie wave lengt (tl{b}) =re(—tl{=b}), ph(t|{b})_p9(_t|{_b})(’1 4
is of order ofX\g~#/pg, pe being a typical momentum on ’
the Fermi surface. provided the electron and hole trajectories pass through the
In the superconductors which are good metals in the norsame point.=r,=ry andp,=pp=py att=0.
mal state, the potentials are semiclassi@cluding inter- One sees from here that if the magnetic field is absent,
faces and disorder which are discussed Jatieg., they are b=0, or its influence on the classical dynamics is negligible,
slowly varying functions of the coordinate on the scale of thethen
wave lengthxr . Indeed, the pair potentidl changes at the
coherence lengtht,~#%v/A, and one estimates the ratio M) =re(=1), pa(t)=pe(—1), (1.9

A l&o sk /§o~AIEg . Also, the validity of a semiclassical . is the electron and hole move in opposite directions

treatment O,f magnetic_fieIB requires_thaKF<I B» I being along thesameline (path in ther —p space. However, to the
the magnetic lengthg= \®,/B, <I>0—hc2/2e. Since Super-  gytent the magnetic field influences the orbits, the electron
conductivity exists only aB<Bc;~®o/&, the ratioAe/lg 4ng hole paths areifferent'® (Obviously, the role of the

never exceeda/Eg . Seeing thal~T,, the semiclassical magnetic field may play any perturbation violating the time
conditionsAg /o, Ap/lg<1 are equivalent to the require- yeyersal symmetry.

ment thatT;/Eg<1. In accordance with the Landau theory  Now we are in position to analyze how the electron-hole

of Fermi liquid, this condition is always is satisfied if the mixing [i.e., A#0 in Eq.(1.1)] changes propagation of the
normal state is metallic. _ wave packets. Consider a wave packet which is initially
Most of the physical effects in metals and superconduct-pure|y electronic ¢4,=0, t=0), and assume for the mo-
ors (the Hall and thermoelectric effects being notable excepment that Eq(1.5 is valid. The electron moves classically
tions) can be described in the simplest approximation whergy, 5 trajectory in ther—p space, and provides a source,
all the f:o_rrections of ordgT/_EF~TC/EF are ngglected, i.e., A* e, in the equation fory, [see Eq.(1.1)] generating a
in the limit Tc/E—0. This is the approximation where the e wave. SinceA is a slowly varying field, the source
quasiclassical theory of superconductivity is vétid. A* (1) ho(r,t) andye(r,t) are peaked at the same point of the
SinceTc/Eg~h/pgéo, the limit is equivalent tdi—0 or ;5 space. In other words, the hole is created at the point of
large massn~pg/v—ce. In this limit of quantum mechan- the current position of the electron and with the instanta-
ics of noninteracting particles, wave packets do not suffefequs electron momentum. Then, by virtue of EQ5), the
quantum broadening and dynamics becomes completelyacondary hole moves backwards along the path of the pri-
classical: The particle moves along a trajectory, positi®h  mary electron. In turn, the hole creates new electrons which
and momentunp(t) being well defined. Below we analyze moye along the same path, etc. It is very important that the
how the electrons-hole coherence in the superconductingyltiple processes of the electron-hole conversion keep the
state changes the situation. _ _ _ acket on a line in the—p space which is nothing but the
First, we consider in more detail the classical dynamics ot|assical trajectory. However, the width of the pachteng
the electron and hole separately. The Bogoliubov—de Genngge trajectory grows linearly in timewt (at timest>7#/A)

equation where we put =0 for the moment, reads due to the reverse of the velocity under the elecwerhole
o conversion processes. _
ih— =[&(p—eA)+ U], One sees that the wave packet in a superconductor expe-
ot riences broadening even in the linkit-0, and, therefore, a
» quantum description is unavoidable. Nevertheless, the notion
L %% e of the classical trajectory as a line in the p space remains
K at [&(pt+eA)+Ulin. (2.2 meaningful because the quantum broadening occurs only
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along the line. Ultimately, this important feature is due to the N

time reversal symmetry. It holds to the extent Ef.5) is 2

accurate, i.e., when one can neglect the magnetic Lorentz

force in the classical dynamics. 1
Note the peculiar role of a magnetic field: the difference

in the magnetic bending of electron and hole trajectories re-

sults in the broadening of the coherent electron-hole wave

packet in the direction transverse to the classical trajectory. r

At energies~A where the electron and hole components

have comparable weight, the significance of the Lorentz 2

force can be estimatétfrom the ratiof w./A<A/Eg where .

o.=|eB/md is the cyclotron frequency. Sincéw./A FIG. 1. Scattering on a partially transparent specular interface.

«1/m, one can consistently neglect the Lorentz since theé'he interface is depicted as the shaded region. The arrows show the
quasiclassical theory is effectively a theory of infinitely direction of the(electron velocity. The incomingoutgoing trajec-
heavy partidesm_)oo as discussed before. It seems that intories are denoted 1 and 2'(hnd 2) The filled circle, the knot
general case the Lorentz force can be incorporated in €€ text is the “black box” where the scattering occurs.
theory of superconductivity only by a full quantum approach
(see, however, Kopnin's quasiclassical theory of the Hallg characterized by the Fermi surface momenpgrand the
effect). Sometimes, the magnetic broadening may turn oukorrespondingelectron velocity v; the arrows indicate the
to be noncrucial, e.g., in a spatially homogeneous case, anglrection of the velocity. On pieces of trajectories 1 and 2 the
then certain simplifications may be possiltsee, e.g., Ref. yelocity is directed towards the interface, and we call them
16). ) ) incoming trajectoriegor channels correspondingly, 1 and
A more formal_and rigorous analysis of electr(_)n-hole CO-2’ are outgoing(pieces of trajectories. Throughout the pa-
herence on classical trajectories can be done using a meth%r, the outgoing “channels,” alias for “trajectory,” are
first suggested by Andreé\7/.The_ stationary state wave func- marked by “prime.”
tion is written asW¥ (r,t) = y(r)e!™MPeTel"IEL wherey(r) Note that the in/out classification of the trajectories in
is a slowly varying function(provided|E[<Eg). Plugging  accordance with the direction of the Fermi surface velocity is
W (r,t) into the Bogoliubov—de Gennes equation Ef.1),  unique but it is arbitrary because the electron and hole be-
and using the approximation longing to same channel have the opposite directions of their
velocities. For instance, the electron coming to the interface
: h e . ;

e(llh)pp-r%v.<__v_ —A), on via, e.g., the channel &ee Fig. 1 may go away as the

I ¢ electron on trajectories’land 2 as well as a hole along

where the small terms of ordek£V)? are neglected, one Nominally incoming trajectory 1.

gets the Andreev equation. Rearranging terms, the Andreey W€ Will call “knot” the region inside of which scattering
equation may be written in the following form: occurs and the pieces of the classical trajectories get “tied”

together on the interfac@.Usually the typical thickness of
E-vps A Yo the interface region is of atomic scale, and only the wave
—A* —E+v: Ps - l/fh

)20, (1.6)  function in the outer region is of interest. Then, on the qua-
siclassical level of accuracy, the interfadbe knoj can be
wherev is the velocity at the poinp: of the Fermi surface, described by the scattering matffx.
ps denotegp,= — (e/c)A and for simplicityU =0 (as is usu- In general, the knot may tie together arbitrary numibér,
ally the case because of the efficient screenifidne most  of ballistic inchannel to the same numbérof the outchan-
important feature here is that the derivativev couples the nels. For a specular interface, number of chanNedgjual to
value of the wave function only on straight lines in the di- 2, and rough interfaces may be modeled by knots Wth
rection of the velocity; the lines are the classical trajecto- >2.
ries whenU = 0.2 In this approximation, the quantum coher-  The waves generated by a source, e.g., on path 1 in Fig. 1,
ence exists only along the classical trajectories without angpread to all other paths 12, and 2 coupled by the knot. In
coupling between neighboring paths. These properties are iime presence of an interface, the wave function on trajectory
agreement with the qualitative picture of the wave packetemains a valid concept if one interprets the notion of trajec-
spreading along the classical trajectory, discussed previory in a broader sense as a set of the points on all the
ously. One may call the envelope functignin Eq. (1.6) the  ballistic paths coupled by the knot. For instance, in Fig. 1,
wave function on the classical trajectory. one understands paths 1, 2,, 2’ as the parts of a single
After this short review of the quasiclassical approxima-geometrical object, which we also call a “trajectory.” The
tion, our next step is to include the interface into the schemespatial argument of the wave function will span the general-
In this introductory part of the paper, we present main ideaszed trajectory. Similar constructions are known in the litera-
using the language of the wave functions on classical trajedure: see, e.g., Ref. 21 where the Sdlinger equation is
tory; a more general approach of two-point trajectorysolved on graphgnetworks.
Green'’s function is presented in Sec. Il. The case of many interfaces requires some preliminary
The reflection/transmission on an isolated interfdae remarks. Consider as an example a two layer system, Fig. 2.
specular one, to begin withmixes together semi-infinite If the layers are of the same thickness and the reflections are
pieces of classical trajectorié¢see Fig. 1. Each of the pieces exactly specular, the two outgoing path &nd 2 meet to-

. . e
e("ﬁ)pF'r§<p— oA
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FIG. 3. The typical trajectory in a sandwich with a rough sur-
face. The roughness is shown schematically as a ¥tdpeing the
height of the step. Unlike the ideal case in Fig. 2, the patharid
2’ return to the interface at different points.
gether again on the upper knot, forming a loop, i.e., a pair of

interfering paths. This causes a major difficulty for the qua-high precision. Qualitatively, the argument here is the same
siclassical theory: Indeed, the envelope functipbeying a5 in the billiard theory where closed orbits are known to be

tfilpe L,%ndreev_ equation is introduced when the phase factqfyre exceptions. As long as the loops are absent, solutions to
ePr™, L being the distance along the path, is singled out oo Andreev equation vary smoothly when parameters of the

tmhgrgugh\ggv: functt|r(])n. Whert1_ loops atrv?/ pres:e:n ?rr]]d éhetre '?rajectory (e.g., its directioh or the surface roughness are
ne path connecting any two points, the distanc anged and have certain limit when the virtual roughness

L is ill-defined, and the .procedure of_constructllng the €NV€4iends to zero. Hence, the averaging with respect to the virtual
lope ¢ becomes non-unique and dubious. Besides, the inter-

ference phase factors likePF(Ei-22/ £ being the rogghness .is trivial: it amounts to neglec_ting it.in any (_:alcu—
lengths of the interfering paths, crucially sensitive to theIatlon R[r%\m_jr?]d th? tolpologﬁ/ of th§ trajectorlgs IS salngle-
value of pg and cannot be found in the quasiclassical limjt €ONNected. The virtual roug qe(sten Ing to zerb|§ neede
where#i/pg=0. here only as a mean to eliminate the geometric resonances
To overcome the difficulty we note the following: The which are not of interest because they are not seen on the

interference leads to Fabry-@e type geometric resonances €0arse-grain level of descrlptlo(Anothe_r line of rea_soning _
and related fluctuations of various physical quantities, per¢ould be to say that any real sample is always microscopi-
haps locally strong. However, in the limit—0, the reso- cally rough so that loops are statistically impossible.
nances areloseto each other in the configuration space, BY these arguments, one comes to the important conclu-
and, therefore, the fluctuations are expected to be effectivel§ion that due to the virtudbr rea) roughness the paths tied
averaged out when one calculates observables: The latter d@gether by a knot do not show any further correlations and
given by certain integrals and thus are sensitive mainly talo not(typically) meet each other on other knots. This seems
coarse-grain features in the configuration space. to be an analog to the impurity averaging. Effectively, it
Further, the coarse-grain featurdige, e.g., the angular- allows one to average over the Fermi wave length scale from
resolved local density of states averaged in small volumethe very beginning.
(>7(§)] or small interval of directionsare more than likely Uncorrelated multiple collisions with interfaces transform
not perceptive to small variations of geometry shifting thea ballistic trajectory into a treelike geometrical object. To
positions of the resonances. Hence, it seems plausible to agive a general idea of what we mean by a tree, the topologi-
sume that the coarse-grain structure can be faithfully reproeal structure of one of the possible trees Witk 2,3 knots is
duced if one introduces “virtual roughness,” which is small shown in Fig. 4. The tree corresponding to a real physical
(< &) and not noticeable quasiclassically, and performs avsituation will be presented later.
eraging with respect to the roughneggind of ergodic hy- The main feature of the treelike trajectory is its one-
pothesis. In other words, on the course-grain level, an idealdimensional character, the property which can be equiva-
surface is expected to be indistinguishable from a “virtuallylently formulated as(i) there are no loops or interfering
rough,” i.e., a random surface with roughnésgsee Fig. 3  pathsj(ii) there is only one path connecting any two points of
small on the typical quasiclassical scalé< &, the tree;(iii ) the cut of any line produces two disconnected
For a rough surface, the picture of trajectories shown irpieces.
Fig. 2 almostnever occurs: In the quasiclassical approxima- Since the tree is effectively one-dimensional, one is able
tion, the trajectories are lines with zere- () width, and to repeat Andreev’s procedure on a treelike trajectory defin-
the condition that the trajectories &nd 2 cross each other ing the slowly varying envelope wawg(r) by the formula
again exactly at the interfadap to ~ X¢), is very restrictive. W (r)= #(r)e'PFE0) wherer spans the points on the tree, and
For this, the surfaces must be strictly parallel and the reflec£(r) is the coordinate along the tree counted off a point. In
tions 1'—3 and 2Z—4 must be speculafidentica) with between knots, the Andreev equation Ef.6) is valid and

FIG. 2. The typical trajectory in an ideal sandwich with the
layers of an equal thickness and parallel surfaces.
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The paper is organized as follows. In Sec. Il, we review
the quasiclassical theory in the formulation based on the two-
point Green'’s function. The connection to the standard tech-
nigue is discussed in Sec. Il B. In Sec. Il C, we briefly show
the connection to the Riccati equation techniét®,as well
as suggest a general method for the case of a periodic poten-
tial. In Sec. Ill, we derive the boundary conditions for the
Green'’s function on the kndinterface with arbitrary num-
ber of channels. In Sec. IV, a solution to the multichannel
problem of the Andreev reflection as well as the bound
states, is given. In Sec. V, we derive the interface boundary
condition for the Riccati equation. In Sec. V B, the boundary
condition for the Green’s function in terms of the transfer
matrix is derived. In Sec. VI, we show the usage of the
general approach applying the theory for studying simple

FIG. 4. An example of a treelike trajectory. Pieces of the €xamplesi(i) a film separated by a partially transparent in-
straight lines show the trajectories before or after they enter a knd€rface from a bulk material superconducti) two layers
(filled circles, i.e., before or after a collision with an interface. of a finite thickness. Motivated by the recent theory of the
There is only one path connecting any two points on the tree so thgtaramagnetic effeéf we pay most attention to the case
the tree is effectively one-dimensional. when the phases of the order parameter in the two supercon-
ductors differ in#; numerical data for the density of states
@nd superfluid density are presented. The results are summa-
rized in Sec. VII. Details of the calculations are collected in

e Appendixes. In the rest of the papkr 1.

the values of the wave function on a knot are coupled by th
scatteringSmatrix (see Sec. I\

The purpose of present paper is to extend the existin
quasiclassical Green'’s function theory of superconductivit
to the case of multi-interface geometry. In essence, the stan-
dard quasiclassicdl’ é&-integrated’) theory of superconduc- II. TRAJECTORY TWO-POINT GREEN'S EUNCTION
tivity is the Green’s function version of the Andreev equa- . . o .
tion: Again, the quantum coherence of the electron and hole A convenient starting point is the formulation of the qua-
residing on the same trajectory is taken into full consider-Siclassical technique in terms of the two-point Green’s func-
ation whereas the coherence between particles occupyirin on classical trajectories; the method was first suggested
different trajectories is neglected. The paths are coupled t#) Refs. 27(" t-representation), and in a different form de-
each other only by the self-consistent effective potentials like/€loped in Refs. 22 and 23. The trajectory Green’s function
various Se|f-energieémpurity, phOﬂOI) and the pair poten- is inFroduced via the foIIowmg representation of thx 2
tial A. The Green function technique has obvious advantage®atrix Gor'kov Green's functiod?
for one is able to perform the disorder averaging, include the

inelastic scattering and the strong-coupling effects, etc. AR Mg e‘pF“l’rﬂAR
Although the potential due to crystal imperfections like G(ry,rp)=— 27 o) g5 (ry,ra;e)

impurities is not slowly varying, this does not invalidate the _
guasiclassical scheme if one is interested only in the disorder mg e"pF"l"Z‘AR

; ; ; +————0°(ry,r,:¢)
averaged properties. It is well known that the disorder aver- 27 |rp—r, ooV irn2Eh
aging amounts to the impurity self-energy term in the
Gor’kov equation which effect is similar to that of the po-

pF|I’1— I’2|>l, (21)

tential energy. The self-energy varies on the same spatial
scale as other self-consistent potential and as such does not . )
violate classicality. Of course, the imaginary part of the self-Whe€r€émMe=pg/v, pr andv being the Fermi momentum and
energy must be small so that the mean free pathlarge, veloqty, respectivelys in _Eq. (2.2) is the energy variable
|>Xg. The quantum localization corrections controlled by (stat|0|’1ary case Fgr definiteness, we consider the retarded
the parametefi/pgl <1 are ignored, which again is consis- Creen’s functionG™ of the Keldysh technique. To simplify
tent with the limiti —0 or pg— o accepted in the quasiclas- notanons, we assume a spherlc_al Fer_m| surface; generaliza-
sical theory. tion Fo an anisotropic spectrum is straightforward.

We use the version of the quasiclassical th&#where ~_Similar to Andreev's procedure, the fast “quantum” os-
the main object is the two-point Green's function on classicafillations on the scaléie are singled out in Eq(2.1). Re-
trajectories. In our opinion, this approach is most adequate t8¢MPliNg Eq.(1.6), the slowly varying quasiclassical enve-
the above physical picture of the electron-hole phase cohelopes g (ry,r;) obey first order differential equatioR%??
ence spreading along classical trajectories. As has alreadie gradient term of which couples only the points on
been discussed, in the many-interface geometry the classicaliraight lines which are obviously the classical trajectories
trajectory becomes treelike. Accordingly, the arguments oforresponding to a particle on the Fermi surfatehe tra-
the two-point Green’s function are points on a tree. In thgectory is specified by its direction and initial pointR, so
present paper, we restrict ourselves to the stationary casthat the positiorr of a point on the trajectoryr,n can be
and our main concern is the retarded Green’s function of th@resented as=R+xn, x has the meaning of the coordinate
Keldysh technique. on the trajectory. In the momentum space, the trajeataisy
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associated with the points in the vicinity of the Fermi surface A. Factorization
where the velocity vector is directed towands
For the trajectory specified g, R}, one defines the two-

point Green’s functiory®(x, ,X,|n,R) %223

Jd .
R é'ﬁ(rl,rz;s), X=X, (Iva—X—I—HR(X))d):O. (2.6
QSR(X11X2|”,R)=IAR r1o=XyN+R. A )
9=(r1.ra5e), X1<Xa, Here ¢ is a column,g= () andHR stands foH} (r) at the
trajectory pointr=xn+R.
Denotey the row built from a columny by the following
rule:

To build the Green’s function on the trajectanyR, one
first considers solutions to the equation

[In many cases we omR,n ande for brevity and use the
notationg®(x;,X,).]
As shown in Refs. 22 and 23, the two-point Green'’s func-

tion obeys the following equations: 1 7o
P EE‘ﬁTTyT:}( )Z(U' —u).
~ ~ 1%
( v ——+ H?,n“l)) g5 (X1, Xa|N,R) =0 8(X1— X,),
IXq Note the identities,
r=R+xn, (2.2) Ja'pb:_gb'//aa anazo’ '/’agb_wbaa: (Eb‘/’a)i-
~R .9 ) By virtue of the identity
9. (Xq1,X,|N,R) —|v(9—X2+H8’n(r2) =ivd(Xy—Xy),
(H®)T=—7,HR7, 2.7
rz=R+xn, 23 the row ¢(x) built from a solution to Eq(2.6), satisfies the
where the % 2 traceles¥ matrix AF conjugated equation
N ~ ~ — J .
HE,=hg,—2F,, qS(X)( —iv5+HR(x)) =0. 2.9
AR _ e=V-ps Ay _n (2.4 Combining Egs(2.6) and(2.8), one gets the conservation
ano\ —AY —e+vpg)’ v ' law,

where A, is the order parametdwhich may dependent on d ——
the directionn), and ps=—(e/c)A, A being the vector po- d_)((¢a¢b)zo’ 2.9
tential, and3R is built of the impurity self-energy and the
part of the electron-phonon self-energy not included to th
self-consistent field\.

The boundary condition to Eq§2.2) and (2.3) is the re-

quirement thagR is zero at|x; —x,|—, so thatgR is an

é/alid for any pair of solutionsb,(x) and ¢, .

For a general complex, the Green’s function is built of
the regular solutions to E@2.6), i.e., solutions satisfying the
following boundary conditions:

analytic function ofe in the upper half plane for any; , ¢ (X)—0, X—+,
including |x; — X,| =c°.
The advanced Green’s functiagf* is found from Egs. $_(x)—0, X——oe, (2.10
(2.2 and Eq.(2.3) with H¥ substituted fot*, Denote¢™ the normalized solutions for which
HA=7,(R™) 7, 25 AN N (x)=1. (210

wherer, is the Pauli matrix and the dagger denotes the HerThe normalization is possible because the left-hand side

mitian conjugation. (LHS) is a(finite) constant as it is seen from E.9).
Although the observables can be expressed via the quasi- The Green’s function can be written now as

classical one-point Green'’s functio®;(=x5), the two-point

Green’s function turns out to be a useful intermediate object. . N (x) dM(x,), X1>Xo,

It gives a full physical description of the system in the ap- gR(X1,X) = (2.12
imati i dM(x) (%), X1 <%z

proximation where the part of the orbital degree of freedom - )Py AR2), AL=A2

is treat_ed classicallyno quantum broadening in the plane Indeed, it satisfies Eq2.2) and EqQ.(2.3) at x; #X,, and is
1 n), with a complete quantum treatment of the electron—holeregmar at|x; — x,| — . The normalization in Eq(2.11) en-

degree of freedom. , o ofUres that the discontinuity aj =xa,
It is important that the construction based on the notion o

smooth classical trajectories remains valid in the presence of AR(x+0x) — aR(x—0x)=1

disorder(or phonong, in the standard approximation when g7 (x+0x)~g7(x=0x)=1,

the scattering is included on the average via the self-energig what is required by thé-function source in Eq€2.2) and
(providedpgl>1, | being the mean free path Eq. (2.3.
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For clean superconductors with inelastic scattering igwhere the rotation matn@
nored,3R" -0, and Eq.(2.6) is nothing but the Andreev
equation Eq(1.6). Note that the structure of the equations is R
not changed when the disorder and inelastic scattering are Oap=
included via the self energies. In this case, however, solu-
tions to Eq.(2.6) have only the meaning of the building
block of the Green'’s functions.

1 a)
b 1) (2.18

As discussed in Refs. 22 and 23, the one-point Green’s
(" &-integrated’) function of the quasiclassical theou}y’?, is

B. One-point Green’s function given by
Observables can be expressed via the Green’s functions 4R=GR 4+ oR (2.19
with coinciding spatial arguments, and therefore, the one- 9=9+79-, '
point Green'’s function is the final goal of calculations. ie.
The one-point Green’s functions defined @g(x)
— AR(y+ ; i i AR—= A(N) £(N) (N) (N)
=g~ (x*0x), can expressed via the normalized solutions g =L P+ PV Py (2.20
[see Eq(2.12)]
. — . — In terms ofgR,
gk 0=¢0 0™, g (x)=¢Mx) M x).
(2.13
58 = (6= 1) (229
This expression can be identically written as =2 T '
1 o and the relations in Eq2.15 lead to the well-known nor-
R ) == (X)P_(X), malization condition
T 0600
L (g7?=1
~R —
9o (X) == _(X) P+ (X), (2.14
$-(X) b+ (%) ! and
¥vhere the normalization of the wave functiots. is arbi- SpgR=0.
rary.
These matrices are projectors, Combining Egs(2.19 and(2.17, one gets
Raf=+0%, %%=0, F-gR=1i, spgR==+1. L [i+ab —2a
(2.19 gR= . (2.22
1-ab\ 2b —(1+ab)
Tagging electronlike and holelike excitations in accor-
dance with the direction of their propagation X directions This parametrization of the Green’s function has been re-

and consiqering examples, e.g., the normal state, one cogently suggested by Schopohl and Mékisee, also, Ref.
cludes thag® can be identified as thguasjelectron part of ~ 25). The present derivation leads quite naturally to this de-

the Green’s function, angR is the(quasjhole one(and vice composition, and clgarly shows the physics behinq it. Seeing
versa forg?) thata andb may be interpreted as the “local” amplitudes of

the Andreev reflection for electron and hdsze below, we

Denoting call them the Andreev amplitudes.
_u vy Finally, thAe rotation with the matriXA)a,b in Eq. (2.18
= o (218 giagonalizeg)?, i.e
whereu. andv. are the components @f. , 1 0
A [
(m(x)) 10
+(X)= ,
¢+ (X) 02 (X)

The advanced Green’s functiaf]nA and symmetry rela-

Eq. (2.14 becomes tions betweerg® andg” are discussed in Appendix A.

1 /1 1
9+:1_ab b) (1, -a), gf= 1—ab )(b1 —-1). C. Solving the equation of motion
(2.17 In this paper we take the approach where the main object
o ) of interest is the two component “wave functions.. ,
Another elucidating form of Eq2.14) is as follows: which factorizes the Green’s function and obeys the

10 0 0 Andreev-type equations. A variety of options can be chosen
R=06 Ok gR=06 -1 to find the amplitudes. For future references, some of them
toTablg o) Tab Y- Plo -1 ’ are discussed in this section.
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1. Riccati equation

Instead of solving linear equations for two component
=(}), one solves the equation for the ratio=v/u. It fol-
lows from Eq.(2.8) that a(x) satisfies the Riccati equation,

Jd
i—a=2eRa+A*R+ ARG,

Ix (2.23

where parameters® and AR are found from the identifica-

tion
eR AR
—A*R _SR .
X

Hszs(
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potentials are periodic functions of the trajectory coordinate.
In this case, the Green'’s functions may be found by the fol-
lowing method.

A formal solution to Eq(2.6), ¢(x)=U(x,xg) #(Xo), can
be expressed via the evolution matrix

~ L X 10 ’
(%, Xg) = Ty 50X A0,

where T, orders the matrice$iR(x) in the descending
order from the left to the right.

Denote U, (x)=U(x+L,x) the evolution matrix corre-
sponding to the translation by the period of the structure
As proven in Appendix B, the one-point Green’s function
can be found as

In the context of the quasiclassical theory, this equation has

been first derived by Schopohl and M&ki.

Known «(x), one finds the two-component function

#(x),

1 X
_ H ’ R R
d)(x)—cons( a(x))eXp(ILde (e"™+A a)x/>.
(2.24

To find a.(x), i.e., the solutions to Eq(2.23 corre-

gR(0)=Fel O (x)]. (2.26
Here Fy .. .] stands for the “formatting” operation:

n 1/. 1 .\.
fR[QF@(Q—(ESDQ) 1),

e

.o (1 VN2
Q—(ESpQ)l) , (2.27)

sponding tog.., the Riccati equation must be supplemented,yhich returns a normalized traceless matrissimilar com-
with the boundary condition which leads to the correct asyination of matrices has been introduced in Ref. Bhe

ymptotics Eq.(2.10. branch of the square root igz must be chosen to satisfy

In many cases of interest such as, e.g., an SNS-structu A :
or isolated Abrikosov's vortex, the superconductor is homo-ﬁ}e(fR[Q])l?o‘ Except for the choice of the branch, Egs.

geneous ak— *. If so, solutions to Eq(2.6) are plane (2.26 and (2.27) are the same fog”. Construction of the
waves in the asymptotic region: evolution matrixU, (x) in the Riccati equation technique is
described in Appendix B.

R
ting
¢(X)—>00”S[( i§R_8R> € ’ Il. KNOT MATCHING CONDITIONS

where &R=/(eR)?—ARA*R Im&R>0. Selecting the
waves decaying in the corresponding region, one comes
the boundary conditions as follows:

In the quasiclassical picture, particles move on trajecto-
tges, usually straight lines characterized by the direction of
velocity n (and the initial positiorR). At any point in real
space, infinite number of trajectories with differentcross
each other. Since there are no transitions between the inter-
secting trajectories, the crossings do not lead to any physical
effect. At some points, called here knots, the quasiclassical
condition is violated. At a knot, the particle may leave its
An equivalent condition was suggested in Refs. 24 and 2%riginal trajectory and continue its motion along a trajectory
from “the requirement of the stability of the numerical inte- in another direction. In the simplest example of a specular
gration procedure.” In the present paper, the boundary connterface Fig. 1, two trajectories 1--and 2-2 are mixed. In
dition is deduced, ultimately, from the physical condition a general case, the knot is a region where transitions between
that the two-point Green’s function is a regular function de-N in andN out trajectories are allowed. The in trajectories
caying at large distance from the source. channels are those which have the direction of the Fermi

The one-point Green's functior@i and gR are found momentum towards the knot; the momentum direction is
now from Eq.(2.17) and Eq.(2.22 with the understanding from the knot in the out channe(see Fig. 432 The in and
that out trajectories are somehow numberéel, ... N. We
mark by’ the outgoing channels so thdt stands for thekth
outgoing channels.

Since the knot is pointlike on the quasiclassical scale
~ve/A, one can talk about the knot value of the trajectory
“wave function.” Denote; the two-component wave func-
tion on theith incoming trajectoryi=1, ... N at the point
where it enters the knot, and analogousgly is the knot

In many situations of interest such us vortex lattice, N-Svalue on thekth outgoing trajectory.
or S-S superlattice, or multiple reflectioiisee belowy the The outcome of events happening inside the knot can be

+§R_8R

— AR (2.25

B PR

X=+0ow

b(x)=a.(x), a(x)=la_(X),

wherea. (x) are the solutions to Eq2.23) with the bound-
ary conditions in Eq(2.25.

2. Periodic potential



PRB 61 QUASICLASSICAL THEORY CF . .. 7085

generally described by the scatteri@gatrix. For any speci- On each of the paths, we chose the origin0 at the
fied case, it can be found by solving the Sclinger equa-  knot. Then, the coordinate belongs to the region-<x
tion for the electron with the Fermi energy. Here, it is con-<0 on the incoming and to the region<k< e« on the out-

sidered as a phenomenological input. going trajectories.
The suggested matching condition reads First, we consider the plane wave asymptoticgxét- o
N where h=constk). The electronlike(holelike) solution is
W (X)=he ' [W(X)= e ' ¥"], where ,
o= Seiti, Gy Y= [Wi(x)= e o] e e (un)
i=1 hie=+&e (hipy=— &) is the eigenfunction of the ma-

trix h. The eigenvalues- ¢ are found from¢?1=h2. We
supply the energy with an infinitesimglositive imaginary
part,e —¢&+1i6, and impose condition I8>0 to specify the

whereS,/; are the elements of the unitary scattering matrix.
In the spirit of the quasiclassical theor$,/; is the normal
metal property taken at the Fermi surface; it is an electron:
hole scalar. This relation generalizes the matching conditiongr"inch Of\/.?' e .
of Ref. 20 to the many channels case. T'he basis for the electron-hole classification is the quasi-

Taking advantage of unitaritys *=S', the inverse of particle current
Eq. (3.1 reads

jquwT;z‘/’:|u|2_|U|21 4.2
N t which is a constant of motiond(dx)j,,(x) =0, due to the
i= 2 St 32 ff_ oo . o
o1 ymmetryh'= 7,hr,. The electronlike quasiparticle is iden-

tified by j4,>0. It moves in the direction of increasingin
Seeing that the conjugated wave functignalways be- accordance with the sign of the probability current. For the

longs to the second argument of the Green's functiorholelike excitationjqp,<0, and it moves towards=—c.
G(1,2)~(¢(1)y* (2)), it must obey the matching condi- Note that the solutio " are chosen in the way that both

tions for *, i.e., electron and rrl]oles decay in the direction of propagation.
Below, #®" denotes the eigenfunctions normalized to
N . the unit flux:
r= *,- i 33
o= 2 St 59 POTO—1 g5 =1 g5

Equation(2.6) together with the matching conditions in (The LHS is identically zero in the gap region whéh<0
Eq. (3.1) allows one to find the two-component amplitudesand propagating states are absent.
on the treelike trajectory, and, therefore, the Green’s func- Generallyf is x dependent and the solutions are the plane
tions. We remark also that the relation in E§.1) can be  waves only asymptotically. However, the electron-hole clas-
used as the boundary condition to the Andreev equatiosification is unique due to the current conservation in Eq.
(1.6). (4.2). One has for the electronlikeF(®(x), and holelike,
¥(M(x), solutions on outgoingincoming trajectories

IV. ANDREEV REFLECTION ON THE KNOT

l/f(e)ei§X/U, X —s 00 (Or_oo),

_In this sec_tiqn, we co_nsider the quantum _problem of scat- vEx=1 1 1 4.3
tering of ballistic excitations off the knot or, in other words, _— . x=0, '
the problem of many-channel combined, Andreev and usual, FOARA
reflection/transmission. The problem is formulated as fol- _
lows. On each of the trajectories connected by the knot, YMe= &l y_,o0 (or —),
i,kf=112, ... N, the order parametek(x) and, hence, the vm={ 1 o (4.4
matrix h(x) in Eq. (2.4) is supposed to be known. Since in —h( ) x=0, '
the ballistic case> =0, the wave function on each of the gL 1

trajectories satisfies the equation where the parameters®" and 8(®" are found solving Eq.

9 (4.2) in the region G<x<e (or —0<x<0).
(iv Z4 ﬁ(x)) $=0. (4.1) If considered as a function of «(®(x) and 14 can be
2 found by solving Eq(2.23. We see that indeed the param-

Herex is the coordinate along the corresponding trajectory‘etersa(x) andb(x) of the Riccati equation technique have

this equation differs only in notations from the Andreevgﬁzerce;}ggig; tgi&”?ﬁ?ﬁgfgﬂgﬁgbrﬁ?pggﬁdﬁse,?qf Qz An-
equation Eq(1.6). The scattering of théquas)particles off dreev am Iitudés ' ’ y

the knot is due multiple sequential processesipfntertra- It eneprall foilows from the current conservation E
jectory transitions described by E@®.1), which do not affect 4.2 ?hat y g-
the electron-hole degrees of freedom, followed By in- '

tratrajectory Andreev reflections, i.e., rotations in the aM=(a@)* |a(e)|2+ |’8(e)|2:|a(h)|2+ |B(h)|2:1
electron-hole space. The goal is to express the amplitudes of ’

the multiple processes via the amplitudes of the elementarfor an open channet?>0. Seeing that3®|?=|8M|2, one
events. can enforce
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B =M, The wave function?(®+B{ W atx,=0 equals now to
1 _ .
C where C="*(1—a{®a{M)~1. Looking at Eq.
choosing the overall phase factor jt®". (o (e)) AT (1= agiai™) g g

The physical meaning of the parameters is clear from Equ6) one find the rest of the scattering amplitudes:
(4.3) and Eq. (4.4): On the outgoing trajectories (Ox
<), a'® is the amplitude of the Andreev reflection of the
(bare electron injected ax=0, andB® is the correspond-
ing transmission amplitudex/B™ and 18M™ are u,v
components of the quasihole having come frame. On 1
the incoming paths, the above is true after the substitution B('):W<k|ﬁ(h)5’ra(e)s‘ﬁ(e)*||>_ (4.9

o

1 PR
A('[): Kk’ (e) (e)x | ,
k l_aglg)al(h)< |B SIB | >

k
“electron” «— “hole.” 1-

Moving towards the knot, quasielectrons on the incoming
and quasiholes on the outgoing trajectories comprise the in- Similarly, one derives the scattering amplitudes for the
coming states of the scattering problem; the outgoing state@uasihole coming to the knot on tivé trajectory. Analo-
are electrons on the outgoing and holes excitations on thgously to Eq.(4.5), the wave function,
incoming trajectories.

Let the incoming particle be the quasielectron approach-g,(n’ )—\p(h)+B(” )\I,((E)Jr E B(kr) )\I,(e)JFE A(kn’)\l,(kh)'
ing the knot along théth in-trajectory. The source particle K %n’ K
generates waves iall outgoing channels. The wave func-

tions of the systemw () reads contains the scattering amplitudes which are found from the

matching conditions. The corresponding expressions can be
obtained by the substitutionse)— (h), | —n’, andS—S',
YO+ BOWM+ S BOWM+ S ADw© ands—s!

k#1 K’

(4.9

whereW(? andw{" stand for the trajectory wave functions
defined by Eqs(4.3) and Eq.(4.4), k or k’ being the label of For the hole incident on the’ trajectory, the amplitudes
the trajectory The yet unknown amplitudes of the outgoingof the Andreev reflectionB(}’, scattering to the hole state
particles,A{, andB{’, are to be found from the matching o the kth trajectory, A") | and scattering to the electron
conditions in Eq.(3.1).

The calculations are most easily done using EG$) and
(C7). It follows by comparing Eq(C6) with Egs.(4.3), (4.4),

g;, —[S—(a®)("8aM]-1,

state on the’th trajectory,Bl(('?’) , read, respectively

(h) (e) al, — o)
that one may puby,. = apy’ and uy = ay,’ . From Eq.(C6) g(n")_ o’ (4.103
and Eq.(C4), one sees that the wave functions on the source n"oo1- ag?,aﬁ'?) ' '
trajectory atx;=0 must be proportional toa%e)), where
ol
’ 1 ~ ~ ~
A‘k”>——)<k|ﬁ"‘>82,ﬁ<“’*|n’>, (4.100

ag?):<||ST&(e)S||>- (4.6 1— o (e

Here and below§ is the full S matrix taking into account
multiple events of the Andreev reflection. From EG5 (n") _ 2 ~ (&t »h
i - B = g (K BOSIOF, B ),

S=[S"—(aMO&ae]-1, (4.7 (4.100

where o©&" is the diagonal matrix with the elements The presented formulas give the amplitude of scattering
(&(e,h))kk: a(ke,h) and superscripté) means thel element from a prop.agating chann.el to anpther propagating .channel.
must be put to zero. Byl|z|m), I,m=1, ... N we denote The s'catterlng of the exutatyons is a resuIF of mqltlple se-
the matrix elemen,,, . guential events of two typesi) on the knot intertrajectory

The parameten(e) in Eq. (4.6 has the meaning of the transitions described by th® matrix in Eq. (3.1), and (ii)

intratrajectory processes of the Andreev reflection/
amplitude of the Andreev backscattering of a bare electron - . . %\ o o 7o litudes®"/ 8N Expandin
by the knot as a whole. From the condition that the wave P - =XP 9
the effecive S matrix S in Egq. (4.7, S=S

. _ . 1 .
function has thei—uv structure ak;=0 like (agle)), one finds (M O 2O+ 5 aM)OF 4OFaM) VS 4 @5+

B, i.e., the ampli_tud_e of the Andreev reflection of the inci- yne sees that the full amplitude of the scattering event
dent electron excitation. After some algebra —m s the superposition of all different paths connecting the
initial and final states with electrons hole transformation
on each step.

The theory gives exact amplitudes of the multiple scatter-
ing expressed via the amplitudes of the elementary pro-
Here, the denominator can be understood as due to multipleesses: the normal metaimatrix and the intratrajectory An-
Andreev reflections® dreev amplitudes. In the simplest case, winen 2, andA

afp—of

1- agf)afh)

(e)

BN = (4.8
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=0 on two out of the four trajectories, the above formulaThe bound states exist only in the gap region at the energy
reproduces results of the theory of Andreev reflection in thenterval where| a{")| =lal?,|=1.

172
NIS structure?? Essential physics can be grasped by the simplest model
where the order parametdy,, is a constant at each of the
A. Bound states trajectories:A,,=Ae'’n. Then,
Bound states are physical solutions existing in the absence a(le,)z, =eveemiorz o) =elRi:gierz

of a source. The physical solutions are those when the . . -
oo here ¢, is a function of energy, e'=(e

matching conditions on the knot are simultaneously satisfied’" s S
with the requirement that the wave functions decay far away_I N @ )/(SJF.' Al —e ).
Equation(4.12 is conveniently transformed to the form,

from the knot. The electron and holes states defined earlier
(with Im £>0) have the property that they decay in the di- Q10— P19/
rection of their propagation. Therefore, the wave function of COd et @11+ pop) =RyCO§ ————

)

\IfboundZEk: qur(kh)+2 Ak’q’(k?), 2
k/

(4.13
where the coefficientd’s andB'’s are found from the match- whereg,,=0,— ¢},
ing conditions. Again, looking at Eq$4.3) and (4.4) one One sees that the existence and position of the bound state
sees that in Eq(C1), uy may be identified Witm(k‘,’) , andy; is sensitive to the surface roughness only if either the incom-
with a{™ . Then, Eq.(C3), ing or outgoing channels are not equivalent, ig;,=¢;

—@,#0, 0req1/2:= @1 — @2 #0. In other words, mixing of
(h) (N — _an(hat (e — identical channel does not affect the levels.
D{a™}{at¥})=def1-SaS'a’?|=0, (4.1D Consider now the possibility, which may exist in the case
gives the condition for the wave functions to be matched oPf @ d-wave superconductor, that the order parameter
the knot. The Andreev amplituded® anda™ are functions ~changes its sign on the-11" and 22" trajectories. A

of energye, and the bound states exist at the energies whera"00th surface mixes only trajectories with close transverse
Eq. (4.11) i,s satisfied momenta; then the trajectories are almost equivalent and

their coupling does not shift the levels. On the contrary, a
_ _ backward-like scattering splits the degenerate levels: In the
B. Example: Rough surface, anisotropic superconductor model under consideration, the backward-like scattering cor-

The rough surface reflects waves in many direction. Ag€SPonds to the phase factarg= ¢, = 7 and ¢, = ¢, =0.
the simplest model, we assume that the surface reflectioh"en, from Eq(4.13 cos/,=R,—R,. The bound state ener-
couples together only two incoming directions “1” and “2” 9'€S aré
to two outgoing “1'” and “2 '.” The model correspo.nds to Epound= * \/R—zA- (4.14
aN=2 knot. In what follows we calculate the amplitude of i
Andreev reflection by the knot and consider the bound levOne concludes that the presence of substantial spectral

els. weight at low energies is not likely if scattering in the back-
The unitary 2<2 scattering matrix of the knot may be ward directions is present: 10% probability the scattering
taken in the form moves the levels from zero energytd.3A, of the order of
the gap.
o ry ry These results are in agreement with that previously ob-
S=( o r*) tained by many authors using different approaches in the
2 1

contexts of the theory of anisotropic superconductivity and
Josephson junctions.

The amplitudes of scattering of excitations can be found
e{rom Egs.(4.9), (4.9, and(4.100. As an example, the am-
plitude of the Andreev reflection of the electronlike excita-
tion incident on the trajectory “1,B{?, reads

provided R;+R,=1, where Ry=|r;|2 (R,=]r,|?) is the
probability of reflection --1" (2—1").

Given the profile of the order parameter, one can find th
wave functions, and the Andreev amplitude$®"™ and
BN Here, the matrices

~©)_=(0

oM 0 9 0 N e
A= o= , I CHO
0 o 0 ol 1o

where the following notations are used:
are taken as input, each of thés is a functions of energy.

The energies of bound states are found from @&qll), ~ (h) a(lh)_ a(zh)
1 H . a :—1
which takes the following form: o a(ze,)a(lh)
D(e)=Ry(1-aMa?)(1- aal?) NG
~ (e) _ 1! 2!

a ! _—1
+Ry(1— aPal)(1- aaP)=0. (4.12 Yo1-al9a
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pCH a®—al) §=(5"-asMp) 1,
_ (e (h)’ ~ ~
1=ai"a; a=diag(@;,a,, ...) ando=diag(;: ,b,, ...); thesuper-
The shortest way to derive this result is to apply the rotatiorscript ) has the meaning that théh element on the diago-
transforminga” anda® to zero as explained in Sec. D. nal must be put to zero; and|(- - -)[1)=(---)y .
Repeating the arguments, one finds the boundary value

; ; ; -1
V. MATCHING GREEN'S FUNCTIONS a, . Changing notations in EqC8) (u,  —a,s), one gets

As has been discussed in Secs. Il A and Il B, the Green’s an':(n'|§i§rr|n'>, (5.4)
functions can be built from the regular solutions to the An- "
dreev equation, Eq2.6). When the trajectory coordinate  \where
extends from—o to «, the regularity requirement leads to
the boundary conditions in Eq2.10. In the case of a tra- &t —(5- HURE TR
jectory ending in or originating from a knot the boundary n’ '
conditions must be reformulated.

First consider an isolated knot mixing semi-infinite trajec-
tories (with no more knots on themWith the origin chosen
at the knot, the trajectory coordinatg extends from—co to
0 on thenth incoming trajectory, and €x,, <o on the

From the derivation in Sec. C, it is clear that both Eq.
(5.3 and Eq.(5.4) are just different forms of EC3), which
reads in the present notations

k’-outgoing one. As before, the requirement, D({a},{b})=def|1-SaS'b|=0. (5.5
G m(—2)=0, ¢, (®)=0, mk=1,...N, This equation should be understood in the following sense.
Y Y (5.2 Suppose one seeks for the boundary valule, dor thelth

in channel. Then, one formally solves E®.5 relative to
a,, the obtained value givd&fl. In the same manner, one
finds the knot value o&,, on thek’-outgoing trajectory as
the inverse of the root of Eq5.5) relative tob,, . The pro-

uniquely (up to a normalization factprdefines the solutions
¢_ o(Xn) and ¢, (X¢). Denote the knot values of the
regular solutions as

. cedure does not pose calculational problems since the deter-
¢—,m(><m=0)=( 1 ) ¢+,k’(xk’:0):(b ) minant is a linear function of any ad’s or b’s. Equation
k (5.5 represents most concise and symmetric form of the
mk=1,...N. (5.2 boundary condition to E(2.6).

Summarizing, the Green’s functions on trajectories linked

For convenience, the normalization is chosen so that one dfy a knot is calculated in the following scheme. First, one
the components is equal to 1 at the knot; the parameigrs solves Eq(2.6) with boundary condition in E¢5.1) on each
or by, are “bulk” properties independent on the knot. of the trajectories and calculates functiopis ,,(x<0) and
The problem in hand is to find the knot values ¢+ v (x>0); the parametera,, andb, in Eq.(5.2) are then

also known. The next step is to calculate the knot value of

1 an’ b’s on the incoming trajectories anal the outgoi
X =0)= , (X, =0)= , g trajectories anals on the outgoing
$+1(x=0) b|) - X =0) ones. This is done by formulas in E¢.3 and Eq.(5.4).
Having obtained the boundary values, one solves (Ed)
l,n=1,... N, for ¢, m(x<0) on the incoming trajectories angl_ . (x
which give the boundary condition to E(.6) needed to =>0) on the outgoing ones. The one-point Green’s function is
evaluateg . (x,<0) and_ (X, >0). then built from¢ . by the recipe in Eq(2.20.

To find &, ((0), onenotes that by virtue of the matching In the Rigcati equation technique, one first finds the An-
conditions in Eq(3.1) and Eq.(3.2), a finite ¢, (0) gener- ~ dreev amplitudesay,(x) and by (x), mk=1,... N from
ates waves in all other channels, outgoing and incoming. In £9S:(2.23 and(2.29. Then, Eqs(5.3) and Eq.(5.4) provide
regular solution, all the secondary waves must decay whild€ initial value forby,(x) anday(x), solutions to the Ric-
propagating from the knot. This condition fixes the- v cati equation. The Green’s function is then given by Eq.
structure of the secondary waves: in each of the channels, tr(é-zz)- . - .
incomingm##| and any outgoing onk’, the generated two- The matchlng conqmon§ can be also e>§pressed via the
component wave function@tx=0) must be proportional to transfer matrix as derived in Sec. V B and in the case of a

that in Eq.(5.2). As proven in Sec. C, the matching condition N=2 knot explained in detail in Sec. E. _ ,
allows one to find thes—v structure in one of the channels This scheme is also applicable when the trajectories con-

provided, as is the case here, it is known for all other chanN€Cted by the knot under consideration may enter other

nels. knots. As a matter of prin_ci_ple, one assumes that the system
Changing notions in formulas in Sec. Gu{— by, under conS|d_erat|on is f|_n|te, _and it _|s_s_urrqunded_ by a
Vio1—a;, m-1=by), one gets from Eq(C4) “clean”material where trajectories are infinite lines without
e 1 knots. Then, one solves the problem for the knots on the
b=(1|5'B&|1) (5.3 boundaryland moves inwards towards the knot of interest. In
' the one-dimensional topology of the tree with only one path
where connecting any two knots, the procedure is unique.
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L
a

I 1

FIG. 6. For a many channel knot, one chooses a pair of trajec-
tories, one incoming and one outgoif@enoting them 1 and’},
and considers them as a single trajectory with a knot on it. The
transfer matrix relates to each other the wave functions across the

A. 2X2 case knot.

The most simple case is when the knot mixes two incomgq, (2.6) is valid for anyx excepting the knot poink=0.

ing and two outgoing trajectoriedN=2) as, e.g., in case of The knot at the trajectory '+—1 is included via the X2
specular reflection on an interface. The unit&matrix cou-  transfer matrixMy,. ;:

pling 1 and 2 incoming trajectories to’ land 2 outgoing
ones(see Fig. 5, may be taken in the form d(x=+0)=My_1¢(x=-0),

1’ 2’

FIG. 5. Simplest X 2 knot with two incoming 1 and 2, and two
outgoing channelsland 2 (schematically.

S=<r s*)’ r[2=R, |s2=T, R+T=1. G(x=+0)=p(x=—0)M;" , (5.10

(5.69  as explained in detail in Appendix E. The transfer matrix is
_ ) found from the requirements th@j the matching conditions
Here,r and s are the amplitude of the process-1l" 2 i Eq. (3.1) are satisfied(ii) waves on the trajectories other

—1’, respectively. _ ~_ than1and 1 are regular.

Presenting the wave function on each of the trajectories at penotes, (x>0) [4_(x<0)] the solution to Eq(2.6)
the knot as regular at+o (—) as in Eq.(2.10. The transfer matrix

a 1 allows one to continue the solutions across the knot:
1(2)
lﬁ z( ) , , , =< ) ’ " ¢ 1
R YE by ) ¢ (+0)=¢ (~0O)M;,,

the matching condition in Ed5.5) gives the following rela- 1
tion between the parameters: ¢ (=0)=My/_1¢+(+0). (5.11

R(1—a.by)(1—ayby )+ T(1—ashy)(1—amb;)=0 In accordance V\!ith Egg2.21) and Eq.(2.14), the 1-point
(5'_7) Green’s functiorg?, on the trajectory 1 at the knot can be

- " i found as
which serves as the boundary condition for Ej6) or Ric-

cati equation Eq(2.23. 1 A
The usage of it has been explained in Sec. V. Reiterating, 5(1+g?):_ .
the parametera, , (b ») in Eq. (5.7) are found from the $-(+0)¢.(+0)
regular solutions to Eq(2.6) or Eq. (2.23. They areinde- Apblving Ea. (5.11). one gets from here that
pendentfrom each other and the properties of the knot. The pplying Eq.(5.11, ¢
actual meaning of E(q5.7) is that when it is resolved rela-

¢, (+0)¢p_(+0)

e -1
+ -\ ’
tive toa; , (bys ) the inverse value gives the initial condi- 2(1.,.@?, :f+( 0é El OM, ——
tion by (x=0) [a;: »(0)], i.e., 2 ¢ (—0O)M;, b, (+0)
0.0 R(1—a,by )by + T(1—a,by )by - Similarly, for the trajectory 1
(V)= ) . _
R(1—agby )+ T(1—agb;) 1( " ML 1 (+0)b_(—0)
2 _ 1
0) R(1—aybs)a;+T(1—a by )as (5.9 ¢ (—0O)M;14(+0)
al/ = ’ . ~ ~
R(1—-asby )+ T(1—asby) From heregf, My, =M, 105 or
and the expressions ftx, anda,, obtained by the substitu- ~R ~ 1
tion 1< 2. g1’:M1’ng?M1rH1- (5.12

For an arbitrary interface, this relation gives the boundary
condition for the quasiclassical one-point Green’s function.
Sometimes it is convenient to consider a pair of trajectoWith the help of Eq(E1) or Eq.(E2), the transfer matrix\
ries, tag them to 1 and’las pieces of a single trajectoisee is generally expressed via the Green'’s function on the other
Fig. 6). We assignx<0 to the path 1 anad>0 to 1'. Then trajectories coupled by the knot. In the next Sec. V B 1, the

B. Transfer matrix
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explicit expression for the transfer matrix is presented for the
simplest case of two in and two out channels. N7
1
2X2 case 2 ? .4 7 3
In the most important case of ax2 knot Fig. 5(e.g., a v
specular interfage the transfer matrix can be found usually 5
in the general formula derived in Appendix E. A more sim- 6 >—@—-7
pler way is to make the derivation from the scratch in a 8
specially selected basisee Appendix V 1, for details N2
For the knot with theS matrix in Eq. (5.6), the transfer 5
matrix Eq.(E5) and its inverse read 105>—@—> 11
12
(1+R) / T . %
O T \1_ 1rRI2®2) (5.13
(b)
o, (1+R)f T .
V1T o \1+ 1rR32e2): (5.14 FIG. 7. The typical trajectory formed by the total reflection on

the outer surface and the partial reflection/transmissions on the in-
where éz/oz is the normalized gﬁ,.zzl) “across-knot”  terface(a). The numbers serve as markers for both direction and

Green's function. It can be presented is different forms position. In(b), the structure of the treelike trajectory is shown with

. . ~ . the numbering as ifa).
Its matrix structure is most transparent whegp ¢, iS

written in a factorized form as Most easily this can be done using the transfer matrix in Eq.

1 1 o o (E4). Same the result one can get from E5.7).
_(1+§2,.2): —pr s o, N=cp_ o 4, We have just presented the boundary condition for the
2 N ’ ' ' Green’s function on an interface which mixes two incoming
(519 and two outgoing trajectorig®.g., for a specular interface
where ¢,, . and ¢,_ are the functions introduced in Sec. the Green’s functions on the interface are linearly related by
Il A taken at the point adjacent to the knot on the trajectoryEd. (5.12 (and the analogous relation for the channel 2 and
2' or 2. They do not depend on the knot parameRandT. ~ 2') where the transfer matrix4 and M ~* can be found
One may think 0f3,'e, as a one-point Green’s function on oM Egs.(5.13, (5.14, and(5.17. Using these relations,
the virtual trajectory built of the pieces 2 and.2 one is able to r_ede_rlve Zaitsev's boundary conditfoies a
From Egs.(5.15 and (2.13, one concludes that (1 specular reflecting interface.
+0202)%(1+ ng,)(1+g§). Equation(5.15 can be written
in terms of the Andreev amplitudes E@.16) as VI MULTILAYER SYSTEMS
The purpose of this section is to show the usage of the
general theory in practical calculations. First we consider
?wa b,/ (1,—ay) simplest geometry that is a layer deposited on the flat surface
of a bulk material with a partially transparent interface. To-
or gether with the totally reflecting outer surface, there are two
coherently reflecting planes. The other geometry is a system
1+ahy —2a; of two layers of arbitrary thickness in contact, in which there
2b, —(1+a,by)) are three reflecting planes and rather complicated picture of
(5.16 multiple scattering.
Since our main intention is to demonstrate how to use the
The “across interface” Green’s function can also be writ- general formula, we allow ourselves not to worry about the
ten as self-consistency of the pair potential. For simplicity, we con-
sider the ballistic casg,,=0, and the pair potentials in the
left (I) and right(r) regions are taken constanis andA, .

1 “
§(1+92/02):

~ 1
02/@2=

1_ azbzr

. 1
02 @2~

- o~ 1. .
- 92+ Q2+ 5[92',92]—)'
1+5092:,921+ A. A film
(5.17 The treelike trajectory near the interface between a layer
- . of thicknesdd, and semi-infinite space is shown in Figay
Where,gzz are the knot _values of the usual one-pointr g the tree, one considers a particle coming along the
Green S funct.lon on .the trajectory 2 and.,Z?ne should re- path(at the angled) marked in Fig. 7 by “1” which denotes
aI|zeAthat uphked;t in Eq. (5.19 anda,b” in Eq. (5.1, both the location and direction. Due to the partial reflection,
bothg, andg,, are modified by the knot scattering, and only a wave on the trajectory “4” is generated. The waves on the
their combinationg, ¢, is knot independent. paths “2"” and “3” are generated due to transmission. The
Using the transfer matrix approach, one can derive thgaths “2” and “3” are the semi-infinite, whereas the trajec-
boundary condition to the Riccati equation on tthe 2 knot.  tory “4” comes to the interface again as “5'(the total
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reflection does not interrupt motion in between “4” and  The functions¢.(x) on the root trajectory, wherg is
“5" ). Again, waves on “6” and “7” are generated, and the coordinated along the root counted from a knot, are found
path continues towards “9,” etc. The topological structurewith the help of Eq.(2.6) supplemented with the boundary

of the treelike trajectory is presented in Figb) condition connecting the two-component amplitude leaving
To find two-point Green’s functiogR(x; ,X,), one solves  the knotegg, (out = “4,” “8,” 12, *...) via the incom-

Eq. (2.3 where the coordinates, , correspond now to the INg waved;, (in = “1,” “5,” “9,” '...)

points on the tree Fig.(B) with the understanding that the

tree coordinatex includes information about both the posi- bou=Min -

tion and direction of the momentum. Due to the one-, yhe present case, when the free motion on the root trajec-
dimensional topology of the tree, the method described iR,y is perturbed by the equidistant knots, one can use the
Sec. Il is directly applicable. As before, the one-pointyeihod developed in Appendix B for periodic potentials.

Green's functiPrng(x) is given by Eq.(2.19. The period of the structure is®,, D ,=d, /cosf whered is
The matrixHR in Eq. (2.3 is either the angle between the direction of the momentum and the
perpendicular to the interface.
- etid A - etid A, The functions¢ . (x) are eigenfunctions of the evolution
Hy'= —AF —e—ib or Hr= —A¥  —g—ib operatorLAJZDa(x) generating the translation by the perird

o . . —x+2D, (see Sec. B The free evolution operatdd("(x
for the tree coordinatein the left or right regions. For future +Xg,Xo) in the right region is

references, the free bulk one-point Green’s function in the

left (right) region le(r) equals . L ~R £Rx - £Rx
’ U(r) + ’ — alilv)H X — {_ 4 R o _),
(X+Xg,Xg) =€ r*=co 5 igq,Sin 5
1 (R A .
o) = () do, being the bulk Green’s function.

I(r)

where &l = (e +18)2— A% Im &7, >0.
Considered as a function &f, gR(x;,X,) has a source at ~ i§$AR T .5
X1 =X, which generates waves propagating away from Uo(x)=Aex - JorX 1- 11 RrY%!
The regularity condition requires that the waves decay when
propagating from the source along branches of the tree. The i§rRAR
propagation in between the knots is described by E$), X ex Tgo,r(ZDa—X)
or Eg.(2.8), and the knots are incorporated by the matching
conditions in Eq.(3.1) or their more advanced version in wWhere A=(1+R)/2r*. Finding the two eigenfunctions of
Egs.(5.5), or Eq.(5.10. this matrix, one knowsp..(x) and, therefore, the full two-
Let us first find one-point Green’s function at the treepoint Green’s function from Eq2.12).
pointx in between “4” and “5.” In accordance with Sec. I, ~ As explained in Sec. B, the one-point Green’s function
one has to find solutiong, which describes the wave can be extracted frorﬁlZDﬁ(x) by purely algebraic transfor-
spreading from the point in the positive direction, ang-  mations. The Green's function for the direction of the mo-
propagating in the opposite direction. In the present examplenentum ),=prcosé at the distance from the interface

the wave ¢, spreads to the paths “5," “6," “7,” (70 in the right regioh reads from Eq(2.27)
“8," ..., and ¢_ spreads to “4,” “3,” “2,” “1’ ...

The full evolution operatoDZDg(x) reads

We chose to think that the particle moves along the “root” R P&k T .
path “1” —“4” —“5” — “8” 9"’ ..  andexclude the a(z,0)=F exp(—gfim) ( 1— _1+R95')
“side” branches “2,” “3,” “6,” “7,” '... using the trans- v

, (6.1

x=1z/cos6

fer matrix approaclisee Eq.(5.11)]. ierA
Take, e.g., the knot where the trajectories “1—-4" cross ><exp( ngr(ZDg—x))

each othefsee Fig. 7a)]. The transfer matrix\,. , can be
exprf:ssed |r,1 accorc_ians:e with EG.13 via the_ across- where the “formatting” operatiorFy| - - - | is defined in Eq.
knot” Green’s functiongse,. In the present simple case, (2.27). The “formatting” can be performed analytically but
when “2” and “3” extend to infinity and HR is same for the result looks rather awkward and hardly any information
“2" and “3,” one can conclude from Eqg.(5.19 or Eq. can be extracted from it without a computer. On the other

(5.16 that g;e,=0%, WheregR, is the bulk Green’s func- hand, the “formatting” operation is easily implemented nu-
tion in the left region. For any of the identical knots, the merically, and for this reason we leave as final the expression

Consider now the left region and the knot “1”-"4" in
(1+ R)/ T .4 Fig. 7(a). The left region Green'’s functions are those on tra-

jectories “2” and “3.” To apply formula in Sec. E and one
should substitute 1 for “2” and 1’ for “3.” Since trajecto-
whereR=|r|? and T=1-R are the interface reflection and fies “2" and “3" are semi-infinite, the combination
transmission probabilities. ¢+ (+0)p_(—0) is proportional to the bulk value (1

2 |17 T4 R%)
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+§§‘,). The transfer matrixM,,_, contains the across-knot

Green'’s functiorg, e, analogously to Eq5.17). It is easy to 5

see thay,e; equals to just foun@R(z= +0,0). Therefore,
the Green'’s function on the left side of the interface is 2

gR(z=—-0,0)=Fx

(1+g%) 1+L“R(z—+oa)
Yo, 1+R9 = , .

At other points in the left regionz<0), the Green’s func-
tion is found with the help of the free evolution operator, L

. T
aR(z, 0)=exy{ %ggﬂx) gR(z=-0,0) (@)

F3io
>< eXF( - Tgoylx)

In Fig. 8, we show the density of states on the film side of p
the interface, i.e., ImR(z=+0,6) Eq. (6.1), for D,
=v/|A,| and the pair potential in the left and right parts of .
different signsA,= — A, ; the curves parameters differ in the
reflectivity R increasing from zero in Fig.(8) to R=0.9 in
Fig. 8(d).

WhenR=0, one sees in Fig.(8) two (zero width peaks /\
in the gap regione|<|A|. The peaks are due to the bound =2 -1 1 2
states well-known in the theory of anisotropic (b)
superconductord (see also Sec. IVB The é=0 bound
states exist near the trajectory point where the phas& of
changes abruptly byr. When the thicknesd, is finite, the
levels are at a finite eneréfdue to the overlap of the wave 6F
functions[e.g., of the states on the “2”-“4" and “5"-"7"
paths in Fig. 7a)] and the level repulsion. The overlap of the U

(6.2

x=|z/cosd|

separated in space levels and, therefore, the level splitting are ar
exponentially small wheD , is large. N
WhenR is finite, the splitting increases. First, the reflec-
tion gives rise to the on-knot overlap of the levels belonging 2
to the same knot, e.g., the “2"-"4" and “1"-"3" levels. 1t
By this mechanism, the level is split ta VR|A| [cf. Eq.
(4.14]. Second, the on-knot overlap in combination with the -2 -1 1 2
next neighbor overlap discussed earlier, mixes together all (c)
the bound states and transforms the discreet levels into
bands. This behavior is clearly seen in Fig&)88(d).

B. Sandwich

left region is a finite layer of thicknegk . As previously, the
order parameter is assumed to be constant in the layers.
The typical treelike trajectory formed by multiple reflec-
tions on the outer surfaces and the interface, is shown in Fig.
9(a). As in Fig. 7, the numbers tag the coordinate on the \/\ 1 /\V
trajectory. Topological structure ¢4 fragment ofthe tree is
shown in Fig. %b); the tagging is the same as in Figap
The center of the tree i{@rbitrarily) chosen at the “5”-"8" @
knot; the tree structure looks same if viewed from different
knots. The pieces of the tree with the arrows in the horizontal FiG. 8. The density of statetrajectory resolvexversus energy
direction correspond to the left layer, and points on the verz/A at the interface of a bulk superconductor with the pair potential
tical lines belong to the right layer. Generally, the treelikeA, and a filmA,=—A, (see Fig. J. The film thicknesd is mea-
trajectory covergalmos) all space but remains neverthelesssured along the trajectory in unitg||A|. The interface reflectivity
topologically one-dimensional: The features discussed before=0, 0.1, 0.5, 0.9 in(a), (b), (c), (d) respectively.

In this section we consider a more general case when the J 4
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These equations allow one to find the knot values of the
Green'’s function in the right region via the left region coun-
terparts.

In the same way one can derive expressions Wf)épare
related togs g

N 1

9805:“—A(é8+§]5+ 3[0s.05]-), (6.43
1+35[0s8.95]+

9= Fx exp(2iD 4, 95/v) |, (6.4D

T .
1- mgsoa

95=Fr . (6.40

) R T .
exp(2iD 0,,g§|/v)< 1- mgsos

layers system formed by multiple reflections on the outer surface Equations(6.3) and (6.4) allow one to find iteratively the
and the interface between layers. Numbers tag both the position @fnot values of the Green'’s function. Unless the reflection

the particle on the trajectory as well as the directidm.The struc-

ture of the treelike trajectory is shown. The points in real space an

on the tree are marked by the same numbei®)jirand (b).

are clearly seen here; that(ig if a line of the tree is cut, two
disconnected pieces are produced or, equivalefitlythere
are no closed loops on the tree.

First we calculate the knot values of the Green’s func-

is too small, the iterations converge rather fast. For almost
‘iiransparent interfaceR<1, a slightly different procedure is
more efficient: as the periods, one chooses the paths like
“4" Y57 — U7 — 14" — Y16.”
Given the knot values, the Green’'s function at other
points can be calculated by formulas analogous to(E®).
Figure 10 shows the trajectory resolved density of states

tions, for the central knot “5”—"8.” Other knots are equiva- &t the interface, gz o 9 for the case when tha,=—A,

lent to the central knot. On both horizontal and verticaland the layers of equal thickneBs ,=D, ,=v/[A|.
branches in Fig. 9, the arrays of knots are periodical, sepa- AS €xpected, the sandwich with a transparent interface,
rated by D, ,, D, ,=d,/cosd for the horizontal branches R=0, has a considerable spectral weight at low energies

(the left layey and 2D, ,, D, ,=d,/cos6, on the vertical
branchegthe right layey.
As in the previous sectiorisee Sec. B for progf the

one-point Green’s function at 5@? is simply related to

the evolution operatod ¢, 5 advancing the wave function at
“5" to the periodically equivalent point “9”[see Fig. &)].
Crossing the knot from “5” to “8” with the help of the
transfer matrix,M , build analogously to Eq5.13,

AR T .
T2 | T TrRYes)

and moving from “8” to “9” by exp(2iD9,r§]§r), one gets

which is represented by the band centered-a0 [see Fig.
10(a)]. The overall picture is very different from the BCS
density of states: the spectrum is given by well-defined bands
with strong edge singularities. As in case of a film, the re-
flection splits thee=0 bound states, and the bands move
towards higher energies. When the reflectivity is as low as
0.1[see Fig. 1()], there are no states at, and in the vicinity
of e=0. The forbidden bands become more narrow, and the
edge singularities become smoother. From Figgc)land
10(d), one sees that fdR=0.5 the states are pushed to the
energies=A.

In the next section, we use these results to evaluate the
“superfluid density,” an observable sensitive to the shape of
the density of states.

09H5 as the ordered product of the two matrices. The same

matrices but multiplied in the different order, give the evo-

lution operatorUg. 5 and, therefor.
Changing notation in Eq5.17) and collecting formulas
together, one gets

N 1

97.6:“—A(é7+é6+ 3[97.961-),
1+§[g7196]+

(6.39
AR:.’F- 1—LA exp(2iD AR/v)-
Js R_ 1+R97.6 o.r%y )

(6.3b
@RZ}'-eXp(ZiD ok 1v) 1—L@ - (6.30
5 R_ 6,r90,r 1+R 7@6 _' .

Superfluid density

In this section we calculatps, a parameter which con-
trols the current densityinduced by a weak spatially homo-
geneous static vector potentid,

. c 1

1= =psg— A

N
\_ being the(bulk) London penetration depth at zero tem-
perature. In the two-fluid lexicomys is the “superfluid den-
sity” or the “fraction of superconducting electrons.”

In the present case of a two-layer system, the local current
induced by in-plane homogeneous vector potential is
z-dependent, being proportional to the local density of states.
The total current through the layers is proportional to the
average,
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FIG. 10. Trajectory resolved density of states versus enetdly
at the interface. The order parameter=—A,. The thickness of
both layers isv/|A,|. The reflectionR, shown at the top of the
pictures, is 0, 0.1, 0.6, and 0.9 {a), (b), (c), and(d), respectively.

1 d

Ps=4+d, 7d|dZPs(Z),

* afo
pi2=1- [ ae| -2 (69
wheref is the Fermi function, and(e,z) is the local den-
sity of states,

aQ, .
v(s,Z)=Ref E(QR(S,H,Z))H-

The averaged superfluid densjy in Eq. (6.5) is conve-
niently written as

ps=1—f de

wherev, (€) is the averaged density of states in the [&ft
and right(r) layers.

To calculater, (&), one finds the Green’s function, as
explained in the previous section, and perform integrations
with respect to the coordinate and the directiom. The
spatial dependence, found from the knot values by formulas
analogous to Eq6.2), is simple and the integration can be
done analytically. The averaged density of states in the right
region reads

- %)7(8), We)= d'y'(z);zr”(e) .

de
(6.6)

_ 1 1 ” ~ ~
Vr(s) :ESpTZRefO dﬂ( gg,r[gg,r 1g§]+

SIN2y., ~p
+2—yg§,r[g§,r J05]-

1- 2y\ An
+i(%)[g§,ﬁg§]_) N

&,

where u=cosb, v, ,=2d,& uv, gf; is the bulk Green’s
function, andgf is the knot value of the Green’s function on
the tree corresponding to the angldsee previous sectipn
After the substitutionr —1 andgf— g, Eq.(6.7) givesy,.

The integration with respect o in Eq.(6.7) ande in Eq.

(6.6) can be performed only numerically. The integration in
Eq. (6.6) along the reak axes may be slowly converging due
to the band edge singularities; for better convergence, one
may integrate along line Im=i(T#/2) or transform the in-
tegral to the Matsubara sum.

We evaluated numerically the superfluid density for a
sandwich with equal thickness of the layeads,=v/|A |
and thew differences in the order parameter phase=
—A,. In Fig. 11, the superfluid density as a function of
temperature is shown for different reflectivii/

The curve forR=0 shows large negatives at low tem-
peratures which would lead to amplification of the applied
magnetic field rather than the Meissner screening. This fea-
ture is due to the large low energy spectral weight seen in
Fig. 10@@). Therefore, our data support the recent idea put
forward by Fauchere, Belzig, and Blafttabout the para-
magnetic instability near the surface where the order param-
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1 ' kinetic theory in the framework of the Boltzmann-type equa-
tions, for which it provides the boundary condition for the
distribution function of the excitations:®

For a general case, i.e., when the disorder and inelastic
collisions are allowed, the boundary value of the two-
component wave functiong= () factorizing the trajectory
Green’s function are found in Sec. V. Since the mean field
equations are linear, this result can be recast as the boundary
condition for the Andreev amplitudes/v of the Riccati
equation approach. In a most compact and symmetric form,
the boundary condition is given by E¢p.5). For the specu-

a -1

.l — R0 | lar interface, the boundary condition for the Riccati equation
B - gjg-gl is given by Eq.(5.7), or explicitly by Egs.(5.8) and(5.9).

One more form of the boundary condition is presented in
Sec. V B, where the expression for the transfer matrix is
3 ‘ , ‘ derived. The transfer matrix, which couples the wave func-

0 05 1 15 2 tions or the one-point Green’s functions on the chosen pair

A of in and out channels, absorbs information about all other

FIG. 11. The effective superfluid density of a system of two 2(N—1) channels. This modification of the boundary condi-
layers,| andr, of equal thicknessl;=d,=v/|A,| with the 7 phase  tion is convenient when one solves the Eilenberger equations

difference A= —A, for different reflectivity of the interfacek ~ for the one-point Green’s function. In the simplest two-
=0,0.01,0.04. channel casdspecular reflection this boundary condition
reproduces Zaitsev's resuftsThe new form seems to be

eter changes its sign. However, one sees in Fig. 10 that th@ore flexible and convenient.
effect is very sensitive to the presence of the partially reflec- For the derivation, we use the technique of the two-point
tive interface: reflection with the probability as low as 4% Green’s function. In our opinion, the technique provides an
makesp, positive at any temperature. adequate language to discuss the semiclassical physics in su-
perconductors which we qualitatively considered in Sec. .
The two-point Green'’s function gives a full description of
the coherent propagation of electron and hole along a com-
In this paper we have reconsidered the part of the quasimon classical path. In spite of the fact that observables can
classical theory of superconductivity which concerns interbe expressed via the one-point Green’s function only, the
faces between superconduct¢®$S) or a normal metal and a language of the quasiclassical two-point Green’s function on
superconductofNIS). Since the interface violates the condi- classical paths is not redundant: Offering a physically trans-
tion of applicability of the quasiclassical approximation, theparent formalism, it is free from some uniqueness problems
reflection and transmission processes must be included viav#hich plague the standardé“integrated” formulation. Note
boundary condition. In the approach taken in the paper, th@lso that with all possible simplifications already done, the
master boundary condition in EB.1) is formulated for the —quasiclassical two-point Green’s function obeys E@s2)
effective wave functions factorizing the two-point Green'sand (2.3) which, unlike the Eilenberger equations, have a
function. In the boundary condition, the two-component am-familiar form of an equation for a propagator. Therefore, one
plitudes inN incoming andN outgoing channels are related may directly apply the intuition and experience gained in
to each other via th& matrix. The latter is sensitive to mi- other fields of the quantum theory.
croscopic details of the interface and is considered as an Another attractive feature of the two-point Green’s func-
input in the quasiclassical theory. The theory is equally aption technique is that it allows one to define effective wave
plicable to specular interfaceBlE 2), as well as to the many  functions. The latter factorize the Green’s function averaged
channel case which models a rough surface or interface. Iwith respect to disorder or phonons. Although these “wave
Secs. IV, V, and V B, the master boundary condition is re-functions” have usual quantum mechanical meaning only in
formulated in various forms, suitable for the one or the otheiballistic case, it seems to be advantageous that one may use
application. the unified language of trajectories and wave functions dis-
In Sec. IV, we have presented a general solution to th€ussing both the ballistic motion and the propagation in the
ballistic problem of the scattering of electronlike and hole-presence of disorder or inelastic collisions.
like excitation This result extends the theory of the NIS  The effective wave functiongp=() obeys the linear
interfacé’ to the many channel situation; SIS case is alsoAndreev-type equation Eq2.6). There is a variety of meth-
included. As in Ref. 20, the solution is general in the sens@ds one can chose to solve the system of two linear differ-
that it expresses the full amplitude of the multiple processegntial equations fou andv. One of them is to derive the
of the Andreev electron— hole conversion and ordinary equation for the ratia/v which turns out to be the Riccati
scattering via the amplitudes of the elementary processes. Byquation suggested in Refs. 24 and 25. As the logarithmic
this, the problem is split into independent and more simplederivative '/ in the usual Schidinger equation does, the
problems. The theory of multichannel bound states is alsehoice of the ratiau/v has the indisputable practical advan-
considered. The formulation which operates with excitationdage which is due to insensitivity of the ratio to the normal-
rather than bare particles, is especially convenient for thézation of ¢. The Riccati equation approach which has

VIl. CONCLUSIONS
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proven to be very convenient and efficient for numerics,utions are related to each other as
finds rather natural physical interpretation in the two-point R R
Green’s function technique of the present pag€or the P =ir(d)*, Pr=iT(PD)*. (A1)
latest development of the Riccati equation approach includ- )
ing the interface boundary condition, see recent communica- 1he Andreev amplitudea and b Eq. (2.16 are related
tion of Eschrig®’) now as

An important part of this paper is the understanding that af=1/(aR)* bA=1/(bR)*
the classical trajectory transforms to a topologically one- ’ ’
dimensional simply connected tree in the case of many interand Green’s functions as
faces and/or boundaries. The extended arguments in favor of . . ~
this point of view have been presented in Sec. I. Although 97%(X1,%2) = 7@ (X1, X2) 7.
this assertion may look wrong in simple idealized geom- . .
etries, like, e.g., a sandwich with strictly parallel outer and For, future_ refe_ren(_:es, the symmetry in the one-point
the interface planes Fig. 2, we argue that small deviation%r_een s functions s given by the following well-known re-
from the perfection eliminate accidental crossings of trajeciations(e=(e.n),&* =(e*,n)]:
tories(as in nonintegrable billiardsIn our opinion, the dif- AR N~ A ~ ~R,\_ AR
ficulties with the qurgsiclassical theory encopuntered nRefs.7  9:(N=" @M, giN=@ ()"
and 8 are due to the fact that some interference contributionghe first of them follows from Eq(Al), and the second one
survive the procedure of the integration with respect to th SR__ T A 7
layer thickness: Indeed, rigid variations of the layer thickneszreerCtS the symmetrit, == r,H=.7.
do not eliminate all the loops. We believe that some rough-
ness, larger than the Fermi wavelength but small and invis-
ible on the quasiclassical scale, will restore the quasiclassical To prove validity of Eq.(2.26), one first solves the 2

APPENDIX B: EVOLUTION IN PERIODIC POTENTIAL

results. X2 eigenvalue problem
To show the new theory in action, we solve in Sec. VI R
two simple problems(i) a film separated from a bulk mate- UL (X) (X)) = yip(x)

rial by a partially transparent interfac@i) a two layer sys-
tem with arbitrary transparent interfad@he latter was clas-
sified in Ref. 8 as quasiclassically unsolvapMotivated by
recent ideas about the origin of the paramagnetic effase
evaluate the density of states and the superfluid density when y1y.=1.

the phase of the order parameters in the layers differs ia ) . .
scenario of paramagnetic instability suggested in Ref. 26Denotey; the eigenvalue for whicly;| <1, and normalize
Our results confirm the very possibility that the superfluidthe eigenfunctions to satisfy,¢,=1. (When considering
densityps may be negativéMeissner“antiscreening”) but  gR, the variables has a finite imaginary part and the matrix
we observe also that is strongly affected by reflection on (4R ig not Hermitian. Then, the evolution matrix is not uni-

the interface: .when the .prqbability of the 'refk_acti('m tary and|y;J#1) It is clear now thaty,(x) continued
>0.04, the Meissnescreeningis restored. The implications along the trajectory with the help of the evolution matrix

iorrsitggﬁi?yrreesquul?fe;ofrura;hreeraslﬁt(lj(*ietsheory of the paramagnetlca L(x) gives the solution denoted in Eq.10 as ¢ (X):
Indeed, it satisfies Eq2.6) and decays at— > as 'y){/ L. By

the same argumentp_=i,. From Eq.(2.20, the Green
ACKNOWLEDGMENTS function now reads

and finds the eigenfunctiong, , (with x as a parametgand
the eigenvaluesy; ,. It follows from the conservation of
normalization in Eq(2.9) that DetU=1, and, therefore,

We are thankful to W. Belzig and C. Bruder for discus- SR Tt h i)
sions, and to D. Rainer for very useful comments. This study 9=yt Yo
began during the stay of one of (&.S,) at the Institut fu Seeing that the evolution’22 matrix can be expanded in
Theorie der Kondensierten Materie, Universitearisruhe,  iis normalized eigenfunctions as
and A.S. would like to thank all the staff for their hospitality

and der Deutschen Forschungsgemeinsct@&fB 195 for U () =3 (y1+ ¥) 1+ 3 (y1— v2) (P1dhot thothy),
support. In part this work was supported by the Swedish ~ ~
Natural Science Research Council. the traceless part dfl, (x) is proportional togR. The nor-

malization condition fixes the proportionality coefficient, and
one comes to Eq2.26).
To build the evolution matrix, one may use the following
The advanced Green’s functigif\(x,,x,) is constructed procedure. First consider two fundamental solutions to Eq.
in the same manner as the retarded one: One fingdrom  (2.6), ¢, andyy,, , which satisfy the following boundary con-
Eqg. (2.6) with FIR substitutes foid? and builds the Green's ditions:
function as in Eqs(2.12), (2.13), and(2.22. 1 0
Combining Egs.(2.5 and (2.7), one can see that the IM(X):( ) Py (X+ L)=( )
7(dD* with ¢ from Eq. (2.6) satisfies the corresponding 0 1
equation in theA case. Then, the normalized EQ.11) so-  and find¢,(x+L) and ¢, (x),

APPENDIX A: ADVANCED GREEN’S FUNCTIONS
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l,b|(X+ L):eicpl-(x) lljll(x):eich(x)

BL(x)
1

a’L(X))1

The exponential factor is same fgf and ¢, as required by
the conservation of the normalization in EQ.9). The pa-
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x+L

a (X)=ag(x+L;x), d),_(x)zJ dx’ (eR(x")

+AR(X") a(x";x)).
Similarly,
BL(X)=Bo(X, X+ L),

rametersy (X), BL(x), and®d (x) can be calculated conve- where[ Bo(x,%o)] L is the solution to Eq(2.23 with the

niently in the Riccati equation technique.
Denoteag(X;Xg) solution to Eq(2.23 with the boundary
condition ag(X=Xg;Xq) =0; then[see Eq(2.29)]

. _ 1
UL(X):e@L(X)(

The traceless part of it:JL(x), reads

Up to the normalization factor, this matrix is equalg®(x).

APPENDIX C: FORMAL SOLUTION: |

Here, we analyze some formal linear algebra aspects

the matching conditions in Eq3.1).

Generally, the wave functions may be presented in th

following form:

1 Vi
=R , $i=B; 1/ (Cy
My
Denote |X) the column with elementXy, ... Xy or
X1, ... Xy . One obtains from Eqg3.1) and (3.2
|A)=5v[B), [B)=8'p|A). (c2

where . and v are diagonal matricel X N with ()
= e and @) = vy
The two equalities in Eq.C2) are compatible only if

D({v},{u})=def1-5»Su|=0. (C3

As expected, the parametetss and v's are not indepen-
dent: Eq.(C3) gives a relation among them, whichligear
in each of the parametefsee Appendix ) making it pos-
sible to express one of the's or v’s through all others.

For instance, one may give any valuesus and v’s in
all channels excepting tHéh incoming one. Them, is fixed
by Eq.(C3),

v t=(1ISTRS), (C4

where

§=(8"-»08"w) 1, (C5)

1—e 24 o (x)BL(X)

boundary conditionBy(x=Xg,X) =0.
Building the evolution matrix from the fundamental solu-

tions, one gets

—BL(x) )

a (x) e AP —g (x)B(x)

—2B.(x) )

—1+e 2P — @ (x)BL(X)

e

and»() denotes the matrix which differs fromonly in that
the element ¢"), =0; here and belowi|Q|j)=Q;; .

From Eq.(C2) one finds now the coefficienfs's andB'’s,
tpey are proportional to one of them, dBy. It is convenient

%% putB,szfl. In this way, one gets the solution to the

matching conditions in Eq3.1) corresponding to the given

Vm
l L

Set Of/.Lkr and Vi ¢|’S:

1 .
1), Yl =C(m|STuS|I)

(O e 1

i =C(K'[ST) : (C6)
My
Here v, is given by Eq.(C4), k,m=1, ... N, andC is arbi-
trary.
In the same way one builds the solution where all gfie

andv’s are given as input excepting,, adjusted to meet the
condition in Eq.(C3):

-1
, M ) ann 1
y=c L) wﬁ’?;.,=c<k'|8v82,|n’>( )
M

(n") at (o[ Ym

k", m=1,... N,
“1_ 0858 |

w, =(n'|SrS;,In"), (C8)
and

&, = (3 ™51, (€9
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APPENDIX D: FORMAL SOLUTION: Il

_ S atn o e yat Bl =—<klﬁ<“>s‘r @SB 1),
Transforming FSvS'u=(1-Sv"'S'u)(1-vY(S
— 08 ) “H1)(1|ST ), and using identity det(%|X)(Y|)
=1+(Y|X), one gets (')_ (k |B©S, B 1).
D} {uh) =D v} {uh (1= O[S uS1),
(DY) APPENDIX E: TRANSFER MATRIX
with % in Eq. (C5), and»") denotes the matrix which differs  Another possibility for resolving the matching conditions
from v only in that the elementy()), =0. is via the transfer matrix\,, . |
Similarly,
'/’n’:MnU—I ¢| ’

DU} ) =D (w1 - (0158 In")),

where§', is defined in Eq(C9).
Sometimes calculations become shorter when one ’ (u|) ’ (un,>
1= ’ n'=

which couples the wave functions

changes the representation. Since $matrix in Eq.(3.1) is

. : N v
a scalar in the electron-hole space, the matching condition is !

n’

unchanged by any rotatiop— o= O, on a selected pair of trajectoriésand.n’; the parameters
Mk =n @and v, are supposed to be given.
. 1 1 -y As usual, the transfer matrix can be built out of the ele-
0= 1= povel\ — e 1 ments of two particular solutiong'"". Take W' to be the

solution in Eq.(C6) with w,/ put to zero,

2 ")—<n|5n/|||><) ‘/’::(<||ST[L<’}’)§|II>>

After the rotation, the basis wave function in Eq1) has
the same form with {--)—(---)p

) | . .
Ok 1 o’ andV¥'" the solution Eq(C7) with »,=0,
. h o [(n'|S¥OS] 7Y ~r 0
bo— Vi— Vg , gl 'J/() ( L n’l , l/f|(“):<||s:r||n> 1)
1= povi
where
Ao A 1—pprvo
ok TR T, R N . a o an
1-povo S =(ST=2MSTum) =2 &7 =(5—pMS0)~1L,
B..—B 1— oy Requiring that the transfer matrix reproduces the relations
O — pove betweeny,,, and ¢, in the two solutions, one gets the fol-
lowing result:

One sees that by proper rotations any pajr ,v; can be
nullified in the intermediate calculations. Of course, all other A R A B
coefficients will also be changed. Calculations done, one gets My =(l |S:,||n’>‘1( c 1 ) , (ED
to the original basis.
Equations(4.8) and (4.9) can be written in a more com- \yhere
pact form. From Eq(D1),

A=(n'[Syll)(11S;n")

1 D,
1-afda® Do’ =8 M N [SYOF] ),
where B=(n'|30&" [n),  C=(I|5 A1),
Do=D({¥} {«™}) . o
g The determinant of the transfer matrix is

an

D= D({a@}{(aM) 1}, D] 1= Sl

<I|Sn’||n’>

AbsorbingD; into S, i.e., 5;=D,S, and using obvious
[1YB@* = B@* ||, etc., the scattering amplitudes read The inverse matrix reads

1 n A 1 -B
Bfl):ﬁo«l|STa(e)S|||>—'D|a{|(e)), nHI <n |Sn’l||> (C A ) (EZ)
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Applying the matching conditions for the conjugated One recognizes the combinations entergiyin Eq. (2.17)
wavesy in Eg. (3.3), one can check that the correspondingwith the important difference that, andu,, are parameters

transfer matrix is given by the inverse of that fari.e., of the wave functions not at the same point but across the
Jn’ :%M,}i. . kn(I):ti.nally,

Since.ﬂl,)wff,).:ﬂl)M;,lflj\A/ln,H A=y y? the con- 145 R

servation law in Eq(2.9) is not affected by knots. C T~ 1— 1TS§]2"2 , (E5)

Transfer matrix 2 X2 case
. _ whereS=|s|?, R=1-S, and
The transfer matrix for the case when the knot mixes two

in to two out trajectories, can be obtained from the general

expression in Eq(E1). Algebraic simplifications of rather - B 1 1t pavy, —2vw;
awkwar_d expression gives a pretty compact result. H(_ere, an 92’02_1_M2,V2 20y —1— fhoi vy
alternative derivation, algebraically more transparent, is pre-

sented.

. . ~2 _ @ ” H
Call the trajectories of interest by 1 and, and consider IS normalizedgy, o,=1, “across-the-knot” Green function.

calculation of/1;,_; for given u, andw, in Eq. (C1). First It can be presented in a factorized form as follows:
note superconductivity influences the transfer matrix only via

the trajectories 2 and’2 Note also that in the normal metal 1 . 1 1
case whenu, = v,=0, the transfer matrix is simply 5(1+92e2)= (1, —vy). (E6
—Morva\ M
s O
~ (0) 10 1/0 O o . iy -
M= 0 i =s 0 0 +S—* 0 1/’ (E3) Upto normal|zat|on,Igz,)=¢>(+ ) where¢?") is the knot
s* value of¢ . on the trajectory 2, and @, —v2) =$(,1). Tak-
wheres=S,/;. ing into consideration Eq$2.14) and(2.21), one concludes

Since theS matrix is an electron-hole scalar, E®.1) is  from Eq. (E6) that (1+ 0, 2)*(1+7,/)(1+7,) so that
invariant relative to rotations in the electron-hole spage.
— o= Oy, and one can resolve the matching conditions in (140 02) =N H(1+05)(1+0y),
arbitrary basis.

The rotation

1

1 . -
R 1 -7, R 1 Vo N= ESF(1+92')(1+92). (E7)
o= 1 ) 0_1:( )

1_/.L2/V2 - M2 Mo 1 R

where the normalizatiod Sp(1+ 9, ¢,) =1 fixes the pro-
1 1 _(1 0 e
transforms (7 ) 1o (,;)o=(o) and (?) to (;) as if in the portionality coefficient A. This formula expresses the
normal state. Therefore, after the rotation, the transfer matrixacross-the-knot” function via Green’s function on the tra-
is given by Eq.(E3), whereas in the original picture jectories 2 and 2
After some algebra, one gets another form of Ejl):

~ ~_ 1~ (0 -
erH]_:O 1Mg_r)(710.

Inserting Eq.(E3), the transfer matrix reads - 1 R
Qex=—7 02 t0at E[gzr /92— |.
R 1 1 1(vy 1+5[92:,02]
Ml’%]_:—(S( )(1, _Vz)——*( ) 2 +
1_M27V2 M2r S 1
(The anticommutatot [, ,g,]. in the denominator is pro-
X(pgr, 1)). (E4) portional to the unit matrix and does not pose any problem.
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the same equation. Thuge(r,t)=y;(r.t) provided ye(r.0) 265 | Faychere, W. Belzig, and G. Blatter, Phys. Rev. L8g,
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13Taking the L bit le, the elect d hol 3336(1999.
a_ 'Tg . eharmor c()jr |s_as anl eT(amp € the eetc rc:n Ia(m_ 007 A, V. Svidzinskii, Spatially Inhomogeneous Problems in the
circle in t e same |re9tlon, clockwise or counterclockwise. Theory of SuperconductivitiNauka, Moscow, 1982(in Rus-
However, their trajectories are not the same: from @) one

. e h) sian. ;
can see that the Larmor circle center posmch§ for the 28 p Gorkov and N. B. Kopnin, Zh. I&p. Teor. Fiz.64, 356
electron and hole, created &t 0 at the samey—py point, are

. g O created B0 &t (1973 [Sov. Phys. JETR7, 183 (1973,
14 different (R"—ro)-Po=—(R." o) po, o _ 29The phase of the exponents in E8.1) is the free motion classi-
Suppose that the trajectory without magnetic fleld Is a straight cal action. If the particle is subject to a smooth time-reversal
line in thex direction. In a weak magnetic fie||z the Lorentz symmetry conserving potential, it can be easily incorporated into
force transforms the straight line into the parabgle,h) = the scheme. In this case the trajectory is found from the classical
+x?/2R, in the x-y plane; heret (—) refers to electrorihole)

| equation of motion.
and R.=v/w, w,=|eB/md being the cyclotron frequency.

30 IR : : 2
More generally, the matrixH"™ has the contribution { ®)1,
The broadeningv(x) of a packet where both the electron and her(gCD—e J): /2 is the gauge invariant potential m:de)of the
hole component are present, is of the orderwdi)~|y(e) w —epTxicl gaug P

—y(h)|~x?/R;. The packet acquires the transverse width scalar pgtentialp a”q thexphase of :[he order pe}rqm@teﬂ'he
~ £22/R, when the characteristic time-7#/A has elapsed and substitution g—expl(i [ 2dx ®(x))g(x1,xz) eliminates
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