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Self-consistent theory of vortex dynamics in disordered superconductors

Staffan Grundberg and Jo”rgen Rammer
Department of Theoretical Physics, Umea˚ University, S-901 87 Umea˚, Sweden

~Received 10 June 1999!

The influence of pinning on vortex dynamics in type-II superconductors is investigated. The vortex dynam-
ics is described by the Langevin equation, and a field-theoretic formulation of the pinning problem allows the
average over the quenched disorder to be performed exactly. A self-consistent theory is constructed using the
diagrammatic functional method for the effective action, allowing a determination of the vortex response to
external forces, the vortex fluctuations, and the pinning of vortices due to quenched disorder. The dependence
of the pinning force on vortex velocity, temperature, and disorder strength is calculated for independent
vortices as well as for a vortex lattice, and both analytical and numerical results for the pinning of vortices in
the flux flow regime are obtained. The validity of the self-consistent theory is ascertained by comparing with
numerical simulations of the Langevin equation. Furthermore, the influence of a Hall force on the pinning force
is considered. Finally, the influence of pinning on the dynamic melting of a vortex lattice is studied.
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I. INTRODUCTION

The advent of high-temperature superconductors has
to a renewed interest in vortex dynamics, since hig
temperature superconductors have large values of
Ginzburg-Landau parameter and theHT-phase diagram is
dominated by the vortex phase. At intermediate values of
magnetic field, i.e., betweenHc1 andHc2, the magnetic flux
will penetrate a type-II superconductor in the form of flu
tubes, each carrying the quantized magnetic fluxf05h/2e,
corresponding to vortex lines in the superconducting or
parameter. The pinning of vortices due to defects, e.g., t
boundaries and impurities, is of importance for technologi
applications of superconductors, since a supercurrent
perfect superconductor will lead to motion of the vortex l
tice, resulting in dissipation. In this paper we report a d
tailed study of the influence of quenched disorder on
vortex dynamics in type-II superconductors in the flux flo
regime.

In recent years a large number of papers studying vo
pinning experimentally as well as theoretically have a
peared. Examples of the considered topics are pinning
vortex liquids,1 depinning of flux lines,2 and the interference
effect between an external ac current and the intrinsic os
lations of the vortex lattice.3 Special interest has been paid
the subject of dynamic melting of the vortex lattice, and
number of experimental works have been reported.4 Several
simulations of dynamic melting have also been reported5 fol-
lowing the original work on dynamic melting.6

Vortex pinning in the flux flow regime was originall
considered by Schmid and Hauger7 and Larkin and
Ovchinnikov.8 In these works, the disorder was treated
lowest-order perturbation theory. Later, Mu¨llers and Schmid9

applied the field-theoretical method of Cornwall, Jackiw, a
Tomboulis10 to the pinning of vortices. The field-theoretic
method will be used in the present work, and extended
discuss the influence of a Hall force and dynamic melting
the vortex lattice. Furthermore, we have performed num
cal simulations that allow a quantitative assessment of
validity of the self-consistent theory of vortex pinning.
PRB 610163-1829/2000/61~1!/699~18!/$15.00
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The cases of interacting as well as noninteracting vorti
are considered, the latter case being appropriate for low m
netic fields, where the vortices are so widely separated
the interaction between them can be neglected. The s
consistent theory is compared to numerical simulations
the dynamics of a single vortex, as well as with analytic
results obtained in limiting cases. The influence of a H
force on the pinning of a single vortex is also studied, and
find that its effect is qualitatively different depending on t
magnitude of the temperature. For the case of interac
vortices forming a vortex lattice, the dependence of the p
ning force on velocity, temperature, and stiffness of the
tice is calculated. We then consider how the pinning o
vortex lattice is influenced by a Hall force. Finally, we co
sider the dynamic melting transition of a vortex lattice. W
calculate the relative vortex displacement fluctuations a
function of velocity, and by employing a modified Linde
mann criterion, we determine the velocity dependence of
melting temperature. We obtain the phase diagram for
namic melting, and find that in contrast to perturbati
theory, the melting curve evaluated numerically from t
self-consistent theory is in quantitative agreement with sim
lations and experimental data.

The paper is organized as follows. The model used
describe the vortex dynamics is presented in Sec. II. In S
III we present the field-theoretic formulation of the pinnin
problem, and construct a self-consistent theory. The case
single vortex is studied in Sec. IV, and in Sec. V we stu
the pinning properties of a vortex lattice. In Sec. VI we co
sider the dynamic melting of a vortex lattice. Finally, in Se
VII we summarize and conclude.

II. MODEL

We consider a two-dimensional~2D! description of the
vortices, since we have a thin superconducting film or a
layered superconductor with uncorrelated disorder betw
the layers in mind. We shall be interested in the influence
quenched disorder on the vortex dynamics in the flux fl
699 ©2000 The American Physical Society
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regime. The description of the vortex dynamics will be bas
on the Langevin equation11

müRt1hu̇Rt1(
R8

FRR8uR8t

5F1au̇Rt3 ẑ2¹V~R1uRt!1jRt , ~1!

whereuRt is the displacement, normal toẑ, at time t of the
vortex, which initially has equilibrium positionR, h is the
friction coefficient, andm is a possible mass of the vorte
~both per unit length!. The interaction between the vortices
treated in the harmonic approximation and described by
dynamic matrixFRR8 . The force~per unit length! on the
right side of Eq. ~1! consists of the Lorentz force,F
5f0j3 ẑ, due to the transport current densityj , which we
eventually assume constant; the second term on the right
is a possible Hall force, characterized by the parametera,
andV is the pinning potential due to the quenched disord
The pinning is described by a Gaussian-distributed stocha
potential with zero mean,̂V(x)&50, and thus characterize
by its correlation function

n~x2x8!5^V~x!V~x8!&. ~2!

The thermal noisej is the white noise stochastic proce
with zero mean and correlation function specified accord
to the fluctuation-dissipation theorem~where now the brack-
ets denote averaging with respect to the thermal noise!

^jRt
a jR8t8

a8 &52hTd~ t2t8!dRR8daa8 , ~3!

and, since the forces are per unit length, the ‘‘temperatureT
has the dimension of energy per unit length.

Upon averaging with respect to the thermal noise and
quenched disorder, the average restoring force of the la
vanishes,

2(
R8

FRR8^^uR8t&&50, ~4!

since the average displacement is the same for all vorti
and a rigid translation of the vortex lattice does not chan
its elastic energy, leaving the dynamic matrix with the sy
metry property

(
R8

FRR850. ~5!

Corresponding to the lattice reaching a constant steady-
velocity v5^^u̇Rt&&, the average force on any vortex va
ishes:

F1Ff1FH1Fp50; ~6!

i.e., there will be a balance between the Lorentz forceF, the
average friction forceFf52hv, the average Hall forceFH

5av3 ẑ, and the pinning force

Fp52^^¹V~R1uRt!&&. ~7!

The pinning force is determined by the relative positions
the vortices with respect to the pinning centers and is inv
ant with respect to the change of the sign ofa. The average
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velocity is the only vector characterizing the vortex moti
which is invariant with respect to the change of the sign
a, and the pinning force is therefore antiparallel to t
velocity.12 Thus, the pinning yields a renormalization of th
friction coefficient

2hv1Fp52heffv. ~8!

The effective friction coefficient depends on the average
locity of the lattice, the disorder, the temperature, the int
action between the vortices, the Hall force, and a poss
mass of the vortex. In the absence of disorder, the effec
friction coefficient reduces to the bare friction coefficienth.

In the analytical and numerical calculations, the correla
of the pinning potential shall be taken as a Gaussian func
with ranger p and strengthn0:

n~x2x8!5
n0

2pr p
2

e2(x2x8)2/2r p
2
, n~k!5n0e2r p

2k2
. ~9!

III. FIELD THEORY OF PINNING

The average vortex motion is conveniently described
reformulating the stochastic problem in terms of the fie
theory of classical statistical dynamics.13 The probability
functional for a realization$uRt%R of the motion of the vortex
lattice is expressed as a functional integral over a set of a
iliary variables$ũRt%R , and we are led to consider the ge
erating functional

Z@F,J#5E )
R

DuRtE )
R

DũRtJeiS[u,ũ] , ~10!

where in the action

S@u,ũ#5ũ~DR
21u1F2¹V1j!1Ju ~11!

the inverse free retarded Green’s function is specified by

2DR
21uRt5müRt1hu̇Rt1(

R8
FRR8uR8t1a ẑ3u̇Rt ,

~12!

i.e.,

DR
21~R,t;R8,t8!

52FRR8d~ t2t8!2@~m] t
21h] t!12 iasy] t#

3dR,R8d~ t2t8!, ~13!

where matrix notation is used for its Cartesian compone
i.e., 1 andsy denote the unit matrix~occasionally suppresse
for convenience! and the Pauli matrix in Cartesian spac
respectively. The Fourier transform of the inverse free
tarded Green’s function is therefore the 232 matrix in Car-
tesian space given by the expression

DR
21~q,v!5S mv21 ihv 2 iav

iav mv21 ihv
D 2Fq . ~14!

We have in Eq.~11! introduced matrix notation in order to
suppress the integrations over time and summations o
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vortex positions and Cartesian indices. Thus, for exam
ũDR

21u denotes the expression

(
RR8

a,a85x,y

E
2`

`

dtE
2`

`

dt8ũa~R,t !

3DR
21aa8~R,t;R8,t8!ua8~R8,t8!. ~15!

The JacobianJ5udjRt /dũR8t8u, guaranteeing the normaliza
tion of the generating functional

Z@F,J50#51, ~16!

is given by

J}expF2 (
Raa8

E
2`

`

dtDRt;Rt
Raa8

]2V~R1uRt!

]xa8]xa
G , ~17!

where the proportionality constant is the determinant of

inverse free retarded Green’s function,u(DR
21)Rt,R8t8

aa8 u. In the
case of a nonzero mass,mÞ0, the Jacobian is an irrelevan
constant,14 and in the case of zero mass, dropping the Ja
bian from the integrand is equivalent to defining the retard
free Green’s function to vanish at equal times,Dtt

R50, which
in turn leads to the full retarded Green’s function satisfyi
the same initial condition. In terms of diagrams, the con
bution from the Jacobian exactly cancels the tadpole
grams.

The average with respect to both the thermal noise and
disorder is immediately performed, and we obtain the av
aged functional, dropping the irrelevant Jacobian,

Z@ f #5^^Z&&5E DfeiS[f] 1 i f f. ~18!

We have employed a compact notation for the fields,

fRt5~ ũRt ,uRt!5„f1~R,t !,f2~R,t !…, ~19!

and for the external force and an introduced sourceJ(R,t),

f ~R,t !5„F~R,t !,J~R,t !…. ~20!

The action obtained upon averaging, which we also den
by S, consists of two terms

S@f#5S0@f#1SV@f#. ~21!

The first term is quadratic in the field

S0@f#5
1

2
fD21f, ~22!

where the matrix notation now in addition includes the d
namic, or Keldysh, indices; i.e.,fD21f denotes the expres
sion

i (
RR8

aa8 i j

E
2`

`

dtE
2`

`

dt8f i
a~R,t !

3Di j
21aa8~R,t;R8,t8!f j

a8~R8,t8!. ~23!

The inverse free matrix Green’s function in Keldysh spac
e,
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D215S D11
21 D12

21

D21
21 D22

21D
5S 2ihTd~ t2t8!daa8dRR8 DR

21~R,t;R8,t8!

DA
21~R,t;R8,t8! 0

D ,

~24!

is a symmetric matrix in all indices and variables, since
inverse free advanced Green’s function is obtained by in
changing Cartesian indices as well as position and time v
ables:

DA
21a8a~R8,t8;R,t !5DR

21aa8~R,t;R8,t8!. ~25!

The interaction term originating from the disorder is

SV@f#52
i

2 (
RR8
aa8

E
2`

`

dtE
2`

`

dt8ũRt
a ]2n~uRt2uR8t8!

]uRt
a ]uRt

a8
ũR8t8

a8 .

~26!

The source term introduced in Eq.~10!,

Ju5(
R

E
2`

`

dtJ~R,t !•u~R,t !, ~27!

where the sourceJ(R,t) coupled to the vortex position
u(R,t) is added to the action in order to generate the vor
correlation functions. For example, we have for the aver
position

^^uRt&&52 i
dZ

dJRt
U

J50

~28!

and the two-point unconnected Green’s function

^^uRtuR8t8&&52
d2Z

dJRtdJR8t8

uJ50 . ~29!

Here and in the following we use dyadic notation; i.e
uRtuR8t8 is the Cartesian matrix with the componen
ua(R,t)ua8(R8,t8).

We note that the presented field-theoretic formulation
the Langevin dynamics is the classical limit of th
Schwinger-Keldysh formulation of quantum statistical m
chanics of a particle coupled linearly to an Ohm
environment.15

A. Effective action

In order to obtain self-consistent equations involving t
two-point Green’s function in a two-particle-irreducible fas
ion, we add a two-particle source termK to the action in the
generating functional

Z@ f ,K#5E Df expS iS@f#1 i f f1
i

2
fKf D . ~30!

The generator of connected Green’s functions,

W@ f ,K#52 i ln Z@ f ,K#, ~31!

has accordingly derivatives
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dW

d f i
a~R,t !

5f̄ i
a~R,t ! ~32!

and

dW

dKii 8
aa8~R,t;R8,t8!

5
1

2
f̄ i

a~R,t !f̄ i 8
a8~R8,t8!

1
i

2
Gii 8

aa8~R,t;R8,t8!, ~33!

where f̄ is the average field, with respect to the acti
S@f#1 f f1fKf/2,

f̄ i
a~R,t !5E Dff i

a~R,t !expS iS@f#1 i f f1
i

2
fKf D ,

~34!

and G is the full connected two-point matrix Green’s fun
tion:

Gi j 52
d2W

d f id f j
52 i S ^^dũRt

a dũR8t8
a8 && ^^dũRt

a duR8t8
a8 &&

^^duRt
a dũR8t8

a8 && ^^duRt
a duR8t8

a8 &&
D ,

~35!

where

duRt5uRt2^^uRt&& ~36!

and

dũRt5ũRt2^^ũRt&&. ~37!

In the physical problem of interest, the sourcesK and J
vanish,K50 andJ50, and the full matrix Green’s function
has, due to the normalization of the generating functiona

Z@F,J50, K50#51, ~38!

the structure in Keldysh space

Gi j 52 i S 0 ^^ũRt
a uR8t8

a8 &&

^^uRt
a ũR8t8

a8 && ^^duRt
a duR8t8

a8 &&
D

5S 0 Gaa8
A

~R,t;R8,t8!

Gaa8
R

~R,t;R8,t8! Gaa8
K

~R,t;R8,t8!
D , ~39!

where we observe that the connected and unconnecte
tarded~or advanced! Green’s functions are equal. Similarly
in the absence of sources the expectation value of the a
iary field vanishes, and the average field is therefore given

f̄Rt5~^^ũRt&&,^^uRt&&!5~0,vt !, ~40!

wherev is the average velocity of the vortex lattice.
The retarded Green’s functionGaa8

R yields a linear re-
sponse to the forceFa8 ; i.e., to linear order in the externa
force we have

^^ua~R,t !&&5(
R8

E
2`

`

dt8Gaa8
R

~R,t;R8,t8!Fa8~R8,t8!,

~41!
re-

il-
y

andGaa8
K is the correlation function, both matrices in Cart

sian indices as indicated. The matrix Green’s function
Keldysh space, Eq.~39!, has only two independent compo
nents, since the advanced Green’s function is given by

Gaa8
A

~R,t;R8,t8!5Ga8a
R

~R8,t8;R,t !. ~42!

Pursuing an equation for the pinning force, we introdu
the effective action G, the generator of two-particle
irreducible vertex functions, i.e., the Legendre transform
the generator of connected Green’s functions,W,

G@f̄,G#5W@ f ,K#2 f f̄2
1

2
f̄Kf̄2

i

2
Tr GK, ~43!

where Tr denotes the trace over all variables and indices;
Tr GK denotes the expression

(
R,R8

a,a85x,y
i ,i 851,2

E
2`

`

dtE
2`

`

dt8Gii 8
aa8~R,t;R8,t8!Ki 8 i

a8a
~R8,t8;R,t !.

~44!

The effective action satisfies the equations

dG

df̄
52 f 2Kf̄ ~45!

and

dG

dG
52

i

2
K. ~46!

The effective action can be written on the form10

G@f̄,G#5S@f̄#1
i

2
Tr DS

21G2
i

2
Tr ln D21G2

i

2
Tr 1

2 i ln^eiSint[ f̄,c]&G
2PI, ~47!

where the quantityDS
21 is the second derivative of the actio

at the average field,

DS
21@f̄#~ t,t8!5

d2S@f̄#

df̄ tdf̄ t8

, ~48!

and Sint@f̄,c# is the part of the actionS@f̄1c# which is
higher than second order inc in an expansion around th
average field. The superscript ‘‘2PI’’ on the last term ind
cates that only the two-particle irreducible vacuum diagra
should be included in the interaction part of the effecti
action, the last term in Eq.~47!, and the subscript that propa
gator lines representG; i.e., the brackets with subscriptG
denote the average

^eiSint[ f̄,c]&G5~detiG !21/2E DceicG21c/2eiSint[ f̄,c] .

~49!
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B. Hartree approximation

In order to obtain a closed expression for the self-ene
in terms of the two-point Green’s function, we expand t
exponential and keep only the lowest-order term

2 i ln^eiSint[ f̄,c]&G
2PI.2 i ln^11 iSint@f̄,c#&G

2PI

.^Sint@f̄,c#&G; ~50!

i.e., we consider the Hartree approximation, which in d
grammatic terms corresponds to neglecting diagrams w
different impurity correlators are connected by Green’s fu
tions. A typical vacuum diagram not included in the Hartr
approximation for the effective action is shown in Fig. 1, a
represents the expression

S i

2D 2S 1

4! D
2E dk1

~2p!2

dk2

~2p!2
k2•f̄1~R2 ,t2!

3@k2GR~R2 ,t2 ;R1 ,t1!k1#@k1GR~R1 ,t1 ;R18 ,t18!k1#

3@k1GR~R18 ,t18 ;R28 ,t28!k2#@k2GK~R2 ,t2 ;R28 ,t28!k2#

3n~k1!eik1•[R12R181v(t12t18)]n~k2!

3eik2•[R22R281v(t22t28)] , ~51!

where integrations over time and summations over vor
positions are implied, and we have introduced the notati

kGR~R,t;R8,t8!k85(
aa8

kaGaa8
R

~R,t;R8,t8!ka8
8 ~52!

for Cartesian scalars.
In the Hartree approximation, Eq.~50!, we can drop the

superscript ‘‘2PI’’ since the actionS int@f̄,c# only generates
two-particle-irreducible vacuum diagrams, due to the appe
ance of only one impurity correlator. The Hartree appro
mation can also be expressed as a Gaussian fluctuation
rected saddle-point approximation.16

FIG. 1. Typical vacuum diagram not included in the Hartr
approximation for the effective action. The solid line represents
correlation function or Keldysh componentGK of the matrix
Green’s function. The retarded Green’s functionGR is depicted as a
wiggly line ending up in a straight line, and vice versa for t
advanced Green’s functionGA. The curly line ending up on the do
represents the first Keldysh component of the average field
dashed line attached to circles represents the impurity correlator
the additional dependence on the second component of the av
field as explicitly specified in Eq.~51!.
y

-
re
-

x

r-
-
or-

The effective action can in the Hartree approximation
rewritten in the form

G@f̄,G#5S0@f̄#2
i

2
Tr ln D21G1

i

2
Tr D21G2

i

2
Tr 1

1^SV@f̄1c#&G , ~53!

since

^Sint@f̄,c#&G5^SV@f̄1c#&G2SV@f̄#

2
i

2
TrE

2`

`

dtE
2`

`

dt8
d2SV@f̄#

df̄ tdf̄ t8

Gt8t ,

~54!

where the trace in the time variable has been written exp
itly for clarity.

In the physical situation of interest the two-particle sour
K vanishes, and sinceG is two-particle irreducible, Eq.~46!
therefore becomes the Dyson equation

G215D212S, ~55!

where the self-energy in the Hartree approximation is
matrix in Keldysh space:

S i j 5S SK SR

SA 0 D 52i
d^SV@f̄1c#&G

dGi j
U

K50, J50

. ~56!

The Dyson equation, Eq.~55!, the self-energy expression
Eq. ~56!, and the equation relating the effective action to t
external force, Eq.~45!, constitute a set of self-consisten
equations for the Green’s functions, the self-energies, and
average field.

The matrix self-energy in Keldysh space has only tw
independent components since

Saa8
A

~R,t;R8,t8!5Sa8a
R

~R8,t8;R,t !, ~57!

a simple consequence of Eq.~42! and the Dyson equation
From Eq.~56! we obtain for a vortex lattice having a un
cell of areaa2 and consisting ofN vortices, the self-energy
components~each a matrix in Cartesian space!

SK~R,t;R8,t8!52
i

Na2 (
k

n~k!kke2w̃(R,t;R8,t8;k;v)

~58!

and

SR~R,t;R8,t8!

5sR~R,t;R8,t8!2dRR8d~ t2t8!

3(
R̃

E
2`

`

d t̃sR~R,t;R̃, t̃ !, ~59!

where

e

A
nd
age
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sR~R,t;R8,t8!

5
1

Na2 (
k

n~k!kk @kGR~R,t;R8,t8!k#e2w̃(R,t;R8,t8;k;v).

~60!

We use dyadic notation; i.e.,kk denotes the matrix with the
Cartesian componentskaka8 . The influence of thermal and
disorder-induced fluctuations is described by the fluctua
or damping exponent

w
k
~R,t;R8,t8!5 ik@GK~R,t;R,t !2GK~R,t;R8,t8!#k

~61!

contained in

w̃~R,t;R8,t8;k;v!52 ik•@R2R81v~ t2t8!#

1w
k
~R,t;R8,t8!. ~62!

The pinning force on a vortex, Eq.~7!, is determined by the
averaged equation of motion, Eq.~6!, and the first Keldysh
component of Eq.~45!, which in the Hartree approximatio
yields

2(
R8

(
a8

E
2`

`

dt8DR
21aa8~R,t;R8,t8!va8t8

5FR
a1

d^SV@f̄1c#&G

df̄1
a~R,t !

U
f̄Rt5(0,vt)

, ~63!

resulting in the expression for the pinning force:

Fp5 i(
R8

E
2`

`

dt8E dk

~2p!2
kn~k!

3~kGRtR8t8
R k!e2w̃(R,t;R8,t8;k;v). ~64!

The self-consistent theory is still intractable to analytic
treatment, except in the limiting cases considered in the
lowing, but it is manageable numerically. In the followin
we shall study numerically the vortex dynamics in the H
tree approximation. The results obtained from the s
consistent theory will then be compared to analytical res
obtained in perturbation theory and to simulations of the v
tex dynamics.

IV. SINGLE VORTEX

In order to study the essential features of the model
the self-consistent method, we first consider the case
single vortex, since this example will allow the importa
test of comparing the results of the self-consistent the
with simulations. The dynamics of a single vortex is d
scribed by the Langevin equation

mẍt1h ẋt52¹V~xt!1Ft1jt , ~65!

wherext is the vortex position at timet. We defer the dis-
cussion of the Hall force to Sec. IV E.

When presenting analytical and numerical results
tained from the self-consistent theory, we shall alwa
n
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choose the vortex mass~per unit length! to be small, in fact
so small,m!h2r p

3/An0, that the case of zero mass on
deviates slightly from the presented results, i.e., at mos
few percent.

A. Perturbation theory

At high velocities, the pinning force can be obtained fro
lowest-order perturbation theory in the disorder, since
pinning force then is small compared to the friction forc
and only makes, according to Eq.~6!, a small contribution to
the total force on the vortex. We first consider the case
zero temperature, where we obtain the following set of eq
tions by collecting terms of equal powers in the pinning p
tential:

2E
2`

`

dt8DR
21~ t,t8!xt8

(0)
5Ft , ~66a!

2E
2`

`

dt8DR
21~ t,t8!xt8

(1)
52¹V~xt

(0)!, ~66b!

2E
2`

`

dt8DR
21~ t,t8!xt8

(2)
52¹„xt

(1)
•¹V~xt

(0)!…. ~66c!

Assuming that the external force is independent of time,
average vortex velocity will be constant in time, and in t
absence of disorder the average vortex position is

^^xt
(0)&&5vt5

Ft

h
; ~67!

i.e., the friction force balances the external force,hv5F.
The first-order contribution to the vortex position vanish
upon averaging with respect to the pinning potential, and
second-order contribution to the average vortex velocity
comes, according to Eqs.~66!,

^^ẋt
(2)&&52

i

hE2`

`

dt8Dtt8
R E dk

~2p!2
kk2n0e2k2r p

2
1 ik•v(t2t8)

5
n0

4pr p
5h
E

0

`

dtDt0
R Fvt

r p
2S vt

2r p
D 2Ge2(vt/2r p)2

. ~68!

The second-order contribution is immediately calculated, a
for example for the case of a vanishing massm
!h2r p

3/An0, we obtain

^^ẋt
(2)&&52

n0

4pr p
4h2v2

v. ~69!

The pinning force is then, according to Eq.~6!, to lowest
order in the disorder strengthn0, given by

Fp52
n0

4pr p
4hv2

v; ~70!

i.e., the magnitude of the pinning force is inversely prop
tional to the magnitude of the velocity. The perturbation
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sult is therefore valid for large velocitiesv@An0/hr p
2 , i.e.,

when the friction force is much larger than the average fo
An0/r p

2 due to the disorder.

B. Self-consistent theory

The self-energy equations for a single vortex reduce in
Hartree approximation to

SR~ t,t8!5E dk

~2p!2 Fsk
R~ t,t8!2d~ t2t8!E

2`

`

d t̄sk
R~ t, t̄ !G ,

~71a!

sk
R~ t,t8!5n~k!kk @kGR~ t,t8!k#eik•v(t2t8)2wk(t,t8),

~71b!

SK~ t,t8!52 i E dk

~2p!2
n~k!kkeik•v(t2t8)2wk(t,t8),

~71c!

with the fluctuation exponent

wk~ t,t8!5 ik@GK~ t,t !2GK~ t,t8!#k. ~72!

Writing out the components of the Keldysh matrix Dys
equation, Eq.~55!, we obtain the Cartesian matrix Green
functions

GK~v!5GR~v!@SK~v!22ihT1#GA~v! ~73!

and

GR~v!5
v̂v̂

mv21 ihv2S i
R~v!

1
12 v̂v̂

mv21 ihv2S'
R~v!

,

~74!

where the subscriptsi and' denote longitudinal and trans
verse components of the retarded self-energy with respe
the direction of the velocity:

S i
R~v!5 (

a,a8
v̂aSaa8

R
~v!v̂a8 ~75!

and

S'
R~v!5 (

a,a8
Saa8

R
~v!~daa82 v̂av̂a8!. ~76!

The advanced Green’s function is obtained from the retar
by complex conjugation and interchange of Cartesian in
ces:

Gaa8
A

~v!5@Ga8a
R

~v!#* . ~77!

The expression for the pinning force, Eq.~64!, reduces for
a single vortex to

Fp5 i E
2`

`

dt8E dk

~2p!2
kn~k!~kGtt8

R k!eik•v(t2t8)2w
k
(t,t8).

~78!

The previous discussion of the high-velocity regim
where lowest-order perturbation theory in the disorder
e

e

to

d
i-

,
s

valid, can be generalized to nonzero temperature. At h
velocities v@An0/hr p

2 , the self-energies are according
Eqs.~71! inversely proportional to the velocity, and they ca
accordingly be neglected in the calculation of the pinni
force. We can therefore in this limit insert the free retard
Green’s functions in the self-consistent expression for
pinning force, Eq.~78!, thereby obtaining an expressio
valid to lowest order in the disorder strengthn0,

Fp52
i

hE dk

~2p!2
kk2n0e2r p

2k2E
0

`

dteik•vt2k2Tt/h, ~79!

where again we only display the result for vanishing ma
m!h2r p

3/An0. The integration over time can then be pe
formed, and we obtain that the pinning force for large v
locities v@T/(r ph) is given by the perturbation theory ex
pression, Eq.~70!.

It is also possible to obtain an analytical expression
the pinning force at moderate velocities, provided the te
perature is high enough. At high temperaturesT@An0/r p ,
the Keldysh component of the self-energy is inversely p
portional to the temperature,SK(v5v/r p);n0h/(r p

2T), and
its contribution to the fluctuation exponent is much smal
than the contribution from the thermal fluctuations. Sim
larly, at temperaturesT@An0/(hr p

3v), the retarded self-
energy is of orderSR(v5v/r p);n0 /(r p

4T). At moderate
velocitiesv<An0/(hr p

2), the free retarded Green’s functio
can therefore be inserted in the expression for the pinn
force, and we can expand the exponential exp$ik•vt%, and
keep only the lowest-order term in the velocity, since t
inequality v!T/(hr p) is satisfied, and obtain that the pin
ning force is proportional to the velocity and inversely pr
portional to the square of the temperature:

Fp52
n0h

8pr p
2T2

v. ~80!

Thus, when the thermal energy exceeds the average diso
barrier heightAn0/r p , the pinning force is very small com
pared to the friction force, and pinning just leads to a slig
renormalization of the bare friction coefficient. In this hig
temperature limit, which can be realized in high-temperat
superconductors, we observe that the self-consistent the
at not too high velocities, yields a pinning force that has
linear velocity dependence, in contrast to the case of
temperatures where we obtain from the self-consist
theory, as apparent from, for example, Fig. 2, that the vel
ity dependence of the pinning force is sublinear.

C. Simulations

In order to ascertain the validity of the self-consiste
theory beyond the high-velocity regime, where perturbat
theory is valid, we perform numerical simulations of th
Langevin equation, Eq.~65!. The pinning force is obtained
from Eq. ~6!, once the simulation result for the average v
locity as a function of the external force is determined. W
simulate the two-dimensional motion of a vortex in a regi
of linear sizeL520r p , and use periodic boundary cond
tions. The disorder is generated on a grid consisting
102431024 points.
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The disorder correlator is diagonal in the wave vecto
since averaged quantities are translationally invariant,

^V~k!V~k8!&5n~k!L2dk1k850 , ~81!

and the real and imaginary parts of the disorder potential
be generated independently according to

ReV~k!5
An0L

A2
e2r p

2k2/2s, ~82a!

Im V~k!5
An0L

A2
e2r p

2k2/2d, ~82b!

wheres andd are normally distributed stochastic variabl
with zero mean and unit standard deviation. The gradien
the disorder potential at the grid points is obtained by e
ploying the finite difference scheme. The potential gradi
at the vortex position is then obtained by interpolation of
values of the potential at the four nearest grid points.

The simulations show that the vortex follows a fairly na
row channel through the potential landscape. In the abse
of the Hall force, the vortex will traverse only a very limite
region of the generated potential due to the imposed peri
boundary condition. To make better use of the genera
potential, we therefore randomize the vortex position at eq
distant moments in time, and run the simulation for a sh
time without measuring the velocity, in order for the veloc
to relax, before again starting to measure the velocity. In
way the number of generated potentials can be kept
minimum of 20.

D. Numerical results

For any given average velocity of the lattice, the coup
equations of Green’s functions and self-energies may
solved numerically by iteration: We start the iteration proc
dure by first calculating the Green’s functions for vanishi
self-energies, corresponding to the absence of disorder,
the self-energies are then calculated from Eqs.~71!. The pro-
cedure is then iterated until convergence is reached. The
ning force on a single vortex can then be evaluated num
cally from Eq.~78!.

FIG. 2. Pinning force~in units ofn0
1/2r p

22) on a single vortex as
a function of velocity~in units of h21r p

22n0
1/2) obtained from the

self-consistent theory. The curves correspond to the different t
peraturesT50.005,0.05,0.1,0.2,0.4,0.5~in units of n0

1/2/r p), where
the uppermost curve corresponds toT50.005, and m
50.1h2r p

3n0
21/2.
,

n
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In the numerical calculations we shall always assume
the correlator of the pinning potential is the Gaussian fu
tion, Eq. ~9!, with range r p and strengthn0. In order to
simplify the numerical calculation, the self-consistent equ
tions for the self-energies and the Green’s functions, E
~71!, Eq. ~73!, and Eq.~74!, are brought to dimensionles
form by introducing the following units for length, time, an
mass:r p , hr p

3/n0
1/2, andh2r p

4/n0
1/2.

We have solved the set of self-consistent equations
merically by iteration. In Fig. 2, the pinning force as a fun
tion of velocity is shown for different values of the temper
ture. We find that the pinning force has a nonmonoto
dependence as a function of velocity, and that the peak in
pinning force decreases rapidly with increasing temperat
and develops into a plateau once the thermal energy is o
order of the average barrier height. At the highest tempe
ture, the velocity dependence of the pinning force is see
Fig. 2 to approach the linear regime at low velocities
accordance with the analytical result obtained in the hi
temperature limit, Eq.~80!. At high velocities, the pinning
force is independent of the temperature as apparent from
2. In fact, the pinning force is inversely proportional to th
velocity at high velocities in agreement with the perturbati
theory result, Eq.~70!, as apparent from Fig. 3, where
comparison is made between the pinning force obtained f
lowest-order perturbation theory and the numerically eva
ated self-consistent result. The two results agree as expe
in the large velocity regime, whereas the perturbation the
result has an unphysical divergence at low velocities due
the neglect of fluctuations and a consequent absenc
damping by the fluctuation exponent in Eq.~78!.

In order to check the validity of the self-consistent theo
beyond lowest-order perturbation theory, we have perform
numerical simulations. In Fig. 4, a comparison between
self-consistent theory and a numerical simulation of the p
ning force as a function of velocity is presented. The agr
ment between the self-consistent theory and the simulatio
good, except around the maximum value of the pinn
force, where the simulation is found to yield a higher pinni
force in comparison to the self-consistent theory. In this
gion the relative velocity fluctuations are large, and in fa
the self-consistent theory predicts that the relative veloc
fluctuations are diverging at zero velocity even at zero te
perature, as we discuss shortly. The self-consistent equa

-

FIG. 3. Pinning force~in units ofn0
1/2r p

22) on a single vortex as
a function of velocity~in units of h21r p

22n0
1/2). The solid line rep-

resents the result obtained from the self-consistent theory, while
dashed line represents the result of lowest order perturbation th
in the disorder (T50.005n0

1/2r p
21 andm50.1h2r p

3n0
21/2).
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and their numerical solution, as well as the simulations,
therefore be expected to be less accurate at low velociti

The convergence of the iterative procedure can be m
tored by checking that energy conservation is fulfilled. T
energy conservation relation is obtained by multiplying t
Langevin equation by the velocity of the vortex and aver
ing over the thermal noise and the quenched disorder:

m^^ẋt• ẍt&&1h^^ẋt
2&&52^^ẋt•¹V~xt!&&1F•v1^^ẋt•jt&&.

~83!

The first term is proportional to] t^^ẋt
2&&, and vanishes since

averaged quantities are independent of time, as the exte
force is assumed to be independent of time. The first term
the right side, the term originating from the disorder, va
ishes for the same reason, since it can be rewritten
2] t^^V(xt)&&. The energy conservation relation therefo
becomes,v5^^ẋt&&,

h^^~ ẋt2v!2&&2^^ẋt•jt&&52v•Fp ~84!

or, in terms of the Green’s functions,

2 ih] t
2 tr Gtt8

K u t85t12hT] t tr Gtt8
R u t85t52v•Fp , ~85!

where tr denotes the trace with respect to the Cartesian
ces. The energy conservation relation simply states tha
the average the work performed by the external and ther
noise forces is dissipated due to friction.

In order to ascertain the convergence of the iteration p
cess, employed when solving the self-consistent equati
we test how accurately the iterated solution satisfies the
ergy conservation relation. In Fig. 5 the velocity depende
of the left and right sides of the energy conservation relati
Eq. ~85!, is shown. After at the most 20 iterations, the ener
conservation relation is satisfied by the iterated solution
within an accuracy of 1%.

In Sec. VI we shall consider dynamic melting of the vo
tex lattice, and it is therefore of interest to check the valid
of the fluctuations predicted by the self-consistent the
against direct simulations of the Langevin equation. In or
to check the accuracy of the velocity fluctuations calcula
within the self-consistent theory, we have performed simu
tions of the velocity fluctuations. In Fig. 6, the velocity flu
tuations obtained from the self-consistent theory are co
pared to simulations. The agreement between the s
consistent theory and the numerical simulations is seen t

FIG. 4. Comparison of the pinning force~in units ofn0
1/2r p

22) on
a single vortex as a function of velocity~in units of h21r p

22n0
1/2)

obtained from the self-consistent theory, solid line, and the num
cal simulation, plus signs, (T50.1n0

1/2r p
21 andm50.1h2r p

3n0
21/2).
n
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good, indicating that fluctuations calculated from the se
consistent theory are quantitatively correct. The veloc
fluctuations approach at low average velocities their ther
valueT/m. The relative velocity fluctuations diverge at ze
velocity even at zero temperature. This can be inferred fr
the energy conservation relation, Eq.~84!, and the sublinear
velocity dependence of the pinning force at low velocitie
as, for example, apparent from Fig. 2. At intermediate av
age velocities, the velocity fluctuations in the direction p
allel to the average velocity~chosen along thex̂ axis!, the
longitudinal velocity fluctuationŝ^( ẋt2v)2&&, are found to
be larger than the fluctuations perpendicular to the aver
velocity, the transverse velocity fluctuations^^ ẏt

2&&. The rea-
son behind this is that at not too high velocities, where
force due to the disorder is strong compared to the frict

i-

FIG. 5. The values~in units ofn0h21r p
24) of the expressions on

the two sides of the energy conservation relation, Eq.~85!, are
shown as a function of the velocity~in units of h21r p

22n0
1/2). The

dashed line and the plus symbols correspond to the left and r
sides, respectively (T50.05n0

1/2r p
21 andm50.1h2r p

3n0
21/2). The en-

ergy conservation relation is fulfilled to within an accuracy of 1%

FIG. 6. Longitudinal and transverse velocity fluctuations~in
units ofh22r p

24n0) as a function of the average velocity~in units of
h21r p

22n0
1/2). The solid and dashed lines represent the results

the longitudinal~parallel to the external force!, ^^( ẋt2v)2&&, and

transverse,̂ ^ ẏt
2&&, velocity fluctuations obtained from the sel

consistent theory, respectively. The plus signs and crosses repr
the simulation results for the longitudinal and transverse velo
fluctuations, respectively (T50.1n0

1/2r p
21 and m50.1h2r p

3n0
21/2).

At low average velocities the fluctuations approach their therm
value,T/m, which for the parameters and units in question equa
At intermediate average velocities the longitudinal velocity fluctu
tions are larger than the transverse, due to the jerky motion of
particle along the preferred direction of the external force, bef
reaching the same value at high average velocities where the e
of the disorder simply acts as an additional contribution to the te
perature.
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force, the motion of the particle is jerky since the partic
slowly makes it to the disorder potential tops, and sub
quently are accelerated by the disorder potential. Since
average motion of the particle is due to the external driv
force, the jerky motion and, thereby, the velocity fluctuatio
are largest in that preferred direction. At high average vel
ity, the longitudinal and transverse velocity fluctuations sa
rate and are seen to become equal, due to the strong fric
force causing a steadier motion. In this connection we sho
also mention that we have noticed from our numerical c
culations that the second term on the left side of Eq.~84! is
independent of the average velocity~and disorder!, as is also
apparent by comparing Figs. 5 and 6. This thermal fluct
tion contribution to the velocity fluctuations is therefo
given by its zero-velocity value, and is according to Eq.~84!
specified by the equilibrium velocity fluctuations and the
fore determined by equipartition. The saturation value of
velocity fluctuations can therefore be determined from
energy conservation relation, Eq.~84!. For example, in the
case of a small vortex mass,m!h2r p

3/An0, we can use the
high-velocity expression for the pinning force, Eq.~70!, and
obtain that the saturation value equalsT/m1n0/8pr p

4h2, a
result in good agreement with Fig. 6. At high average vel
ity, the velocity fluctuations saturate, and the effect of
disorder simply acts as an additional contribution to the te
perature.

E. Hall force

In this section the effect of a Hall force is considered, a
the previous analysis of the dynamics of a single vortex
extended to include the Hall force:

mẍt1h ẋt5a ẋt3 ẑ2¹V~xt!1Ft1j t . ~86!

We shall use the self-consistent theory to calculate
pinning force, the velocity fluctuations, and the Hall angl

u5arctan
FH

v̂•F
5arctan

a

heff
, ~87!

which can be expressed in terms of the effective frict
coefficient.

1. Analytical results

The inverse of the free retarded Green’s function acqu
according to Eq.~86! off-diagonal elements

DR
21~v!5S mv21 ihv 2 iav

iav mv21 ihv
D , ~88!

and the free retarded Green’s function is given by

Dv
R5

1

~v1 i0!@~mv1 ih!22a2#
S mv1 ih ia

2 ia mv1 ih D .

~89!

In the high-velocity regimev@An0/(hr p
2), where lowest-

order perturbation theory in the disorder is valid, we c
neglect the self-energies in the self-consistent expression
the pinning force, Eq.~78!; i.e., we can insert the free re
-
he
g
s
-
-
on
ld
l-

-

-
e
e

-
e
-

d
s

e

s

n
or

tarded Green’s function and neglect the fluctuation expon
Since the free retarded Green’s function is antisymmetric
the Cartesian indices, only diagonal elements make a co
bution to the pinning force. The diagonal elements of the f
retarded Green’s function are identical,Dt0

Rxx5Dt0
Ryy, and

given by

Dt0
Rxx5u~ t !

2h

h21a2 F11S a

h
sin

at

m
2cos

at

m De2ht/mG ,
~90!

and we obtain for the pinning force, for vanishing massm
!h2r p

3/An0,

Fp52
hn0

4p~h21a2!r p
4v2

v. ~91!

We observe that the pinning force is suppressed by the
force in the high-velocity limitv@An0(h21a2)21/2r p

22 ,
and the high-velocity regime therefore sets in at a low
value in the presence of the Hall force.

At high temperaturesT@An0/r p and moderate velocities
v,hAn0/@(h21a2)r p

2#, the Hall force has the opposite e
fect; i.e., it increases the pinning force, as a calculation si
lar to the one leading to Eq.~80! shows that the pinning force
is (m!h2r p

3/An0)

Fp52
n0~h21a2!

8phT2r p
2

v. ~92!

We have found by solving the self-consistent equations
merically at high temperatureT510An0/r p that the pinning
force is linear at low velocities and increases with increas
Hall force. The deviation from linear behavior in the pre
ence of the Hall force starts at a lower velocity value
accordance with the high-velocity regime starting at a low
value in the presence of the Hall force.

2. Numerical results

For any given average velocity of the vortex, the pinni
force can be calculated from the self-consistent theory.
have numerically calculated the pinning force for vario
strengths of the Hall force. In Fig. 7, the resulting pinnin

FIG. 7. Pinning force~in units ofn0
1/2r p

22) on a single vortex as
a function of velocity~in units of h21r p

22n0
1/2) obtained from the

self-consistent theory for various strengths of the Hall force. T
different curves correspond toa/h50,0.2,0.4,0.6,0.8,1, where th
uppermost curve corresponds toa50 (m50.1h2r p

3n0
21/2 and T

50.1n0
1/2r p

21).
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force as a function of the velocity is shown for differe
strengths of the Hall force for a temperature lower than
average barrier height,T,An0/r p . The Hall force is seen to
reduce the pinning force in this temperature regime exc
of course, at low velocities.

In Fig. 8 we compare the pinning force obtained from t
self-consistent theory with the result of perturbation the
valid at high velocities, Eq.~91!, and simulations. According
to Fig. 8, the reduction of the pinning force due to the H
force predicted by the self-consistent and the perturba
theory is in good agreement at high velocities. The pinn
forces obtained from the self-consistent theory and the si
lations are also in good agreement in the presence of a
force, even at lower velocities, in fact in much better agr
ment than in the absence of the Hall force, in accorda
with the fact that the Hall force suppresses the velocity fl
tuations, as we demonstrate shortly.

The Hall angle calculated from the self-consistent the
approaches from below the disorder-independent va
arctan(a/h) at high velocities, as shown in Fig. 9. In Fig.
the Hall angle obtained from the self-consistent theory is a

FIG. 8. Pinning force~in units of 1024n0
1/2r p

22) on a single
vortex as a function of velocity. Comparison of the simulation
sults and the results of the self-consistent and lowest-order pe
bation theory, Eq.~91!, for the case of no Hall force,a50, and a
moderately strong Hall force,a5h (m50.1h2r p

3n0
21/2 and T

50.1n0
1/2r p

21). The solid line represents the self-consistent res
and the crosses the simulation result, while the upper dash-do
line represents the perturbation theory result, all for the casa
50. The dashed line and the plus symbols represent the
consistent and simulation results, while the lower dash-dotted
represents the perturbation theory result, all for the casea5h.

FIG. 9. Hall angle as a function of velocity for a single vorte
The curves represent the self-consistent results for the three
peraturesT50,0.1,1 ~in units of n0

1/2r p
21), where the uppermos

curve corresponds to the highest temperature. The plus sym
represent the simulation results for the temperatureT
50.1n0

1/2r p
21 . The parametera/h is one andm50.1h2r p

3n0
1/2.
e
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compared to simulations, and the agreement is seen to
good. As apparent from Fig. 9, an increase in the tempera
increases the Hall angle at low velocities, because the ef
tive friction coefficient decreases with increasing tempe
ture, and this feature vanishes at high velocities. From Fig
we can also infer the following behavior of the Hall angle
zero velocity: At low temperatures it is zero, since the d
pendence of the pinning force at low velocities is subline
At a certain temperature, the Hall angle at zero veloc
jumps to a finite value, since the pinning force then depe
linearly on the velocity, and saturates at high temperature
the disorder independent value.

We have also determined the influence of the Hall fo
on the velocity fluctuations as shown in Fig. 10. We obse
that the Hall force at low velocities slightly increases t
transverse velocity fluctuations, and decreases the longit
nal fluctuations, whereas the longitudinal and transverse
locity fluctuations are strongly suppressed by the Hall fo
at higher velocities, in particular the longitudinal fluctu
tions. The suppression of the velocity fluctuations is due
the blurring by the Hall force of the preferred direction
motion due to the external force, resulting in a less jer
motion. At high average velocity, the longitudinal and tran
verse velocity fluctuations saturate and become equal
cause of the strong friction. As previously discussed in
absence of the Hall force, the saturation value can be de
mined from the energy conservation relation@which takes
the same form, Eq.~85!, as in the absence of the Hall forc
since the Hall force does not perform any work# and the
high-velocity expression for the pinning force, Eq.~91!,
since our numerical results show that the second term on
left side of Eq.~84! is independent of the Hall force an
velocity ~and disorder!. This observation tells us that the su
pression of the velocity fluctuations caused by the Hall for
according to the energy conservation relation, Eq.~84!, is in
correspondence with the suppression of the pinning fo
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ed
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FIG. 10. Dependence of the single vortex velocity fluctuatio
~in units of h22r p

24n0) on the average velocity~in units of
h21r p

22n0
1/2) for a5h and a50 (T50.1n0

1/2/r p and m
50.1h2r p

3n0
21/2). The solid and dashed lines represent the long

dinal and transverse velocity fluctuations, respectively, calcula
using the self-consistent theory for the casea5h, and the plus
symbols and crosses represent the corresponding simulation re
The two dash-dotted lines represent the longitudinal and transv
velocity fluctuations, respectively, calculated using the se
consistent theory in the absence of the Hall force,a50, which
were compared to simulations in Fig. 6.
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We note from Fig. 10 that the high-velocity regime sets in
lower velocities than in the absence of the Hall force. In F
10, the velocity fluctuations calculated using the se
consistent theory are also compared to simulations, and
agreement is seen to be good.

We have ascertained the convergence of the nume
iteration process by testing that the obtained solutions sa
the energy conservation relation. We find that the ene
conservation relation is fulfilled within an accuracy of 2%
except at the lowest velocities.

V. VORTEX LATTICE

After having gained confidence in the Hartree approxim
tion studying the case of a single vortex, we consider in t
section the influence of pinning on a vortex lattice in the fl
flow regime, where the lattice moves with a constant aver
velocity ^^u̇Rt&&5v, since the external force is assumed
dependent of time. We consider a triangular Abrikosov v
tex lattice, and treat the interaction between the vortices
the harmonic approximation. The free retarded Green’s fu
tion of the vortex lattice

Dqv
R 5(

b

eb~q!eb~q!

mv21 ihv2Kb~q!
~93!

is obtained by diagonalizing the dynamic matrix, and inve
ing the inverse free retarded Green’s function specified
Eq. ~14! ~for the moment we neglect the Hall force!. The
sum in Eq.~93! is over the two modes,b51,2, correspond-
ing to eigenvectorseb(q) and eigenvaluesKb(q), respec-
tively. The eigenvalues and eigenvectors of the dynamic
trix are periodic with respect to translations by recipro
lattice vectors.

Since the lattice distortions of interest are of small wa
length compared to the lattice constant, the dynamic ma
of the vortex lattice is specified by the continuum theory
elastic media, i.e., through the compression modulusc11 and
the shear modulusc66 according to18

Fq5
f0

B S c11qx
21c66qy

2 ~c112c66!qxqy

~c112c66!qxqy c66qx
21c11qy

2 D , ~94!

whereq belongs to the first Brillouin zone,B is the magni-
tude of the external magnetic field, andf0 /B is therefore
equal to the areaa2 of the unit cell of the vortex lattice. In
the continuum limit we obtain a longitudinal branc
el(q)•q̂51, with corresponding eigenvaluesKl(q)
5c11a

2q2, and a transverse branchet(q)•q̂50, with corre-
sponding eigenvaluesKt(q)5c66a

2q2.

A. High-velocity limit

At high velocities v@An0/(hr p
2), where lowest-order

perturbation theory in the disorder is valid, we can negl
the self-energies in the self-consistent expression for the
ning force, Eq.~64!; i.e., we can insert the free retarde
Green’s function for the lattice and, assumingv@T/(hr p),
neglect the fluctuation exponent, and obtain for the pinn
force
t
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Fp52E dk

~2p!2
kn~k! (

b5 l ,t

hk•v@k•eb~k!#2

~hk•v!21@Kb~k!#2
. ~95!

The maximum values, attained at the boundaries of the B
louin zones, of the transverse and longitudinal eigenval
are specified by the compression and shear moduliKt;c66
andKl;c11. The compression modulus is much greater th
the shear modulus,c11@c66, in thin films and high-
temperature superconductors.19 The order of magnitude o
the first term in the denominator of Eq.~95! is hv2r p

22 ,
since the range of the impurity correlator isr p , and at inter-
mediate velocitiesc66r p /h!v!c11r p /h, only the trans-
verse mode therefore contributes to the pinning force,
we obtain

Fp52E dk

~2p!2
kn~k!

@k•et~k!#2

hk•v
. ~96!

The eigenvalueset(k) are periodic in reciprocal lattice, an
assuming short-range disorderr p!a, the rest of the inte-
grand is slowly varying, and we obtain for the pinning for

Fp52
1

2E dk

~2p!2
k
n~k!k2

hk•v
52

n0

8pr p
4hv2

v. ~97!

At very high velocitiesv@c11r p /h, the eigenvalues of the
dynamic matrix in Eq.~95! can be neglected compared to th
velocity-dependent term in the denominator, and the long
dinal and transverse parts of the free retarded Green’s fu
tion give equal contributions to the pinning force, and w
obtain

Fp52
n0

4pr p
4hv2

v. ~98!

This result is identical to the expression for the pinning for
on a single vortex, Eq.~70!, in the high-velocity regimev
@An0/(hr p

2), since the influence of the elastic interaction
negligible.

B. Numerical results

In this section we consider the pinning force on the vor
lattice obtained from the self-consistent theory. For a
given average velocity of the lattice, the coupled equatio
of Green’s functions and self-energies, Eq.~55! and Eq.~56!,
may be solved numerically by iteration. In order to simpli
the numerical calculation, the self-consistent equations
brought to dimensionless form by introducing the followin
units for length, time, and mass:a, ha3/n0

1/2, andh2a4/n0
1/2.

Starting by neglecting the self-energies, we obtain num
cally the response and correlation functions. From Eq.~64!
we can then determine the pinning force as a function of
velocity. We have calculated the velocity dependence of
pinning force for vortex lattices of sizes 434, 838, and
16316 using the self-consistent theory, and the results
shown in Fig. 11. The difference between the results
tained for the 838 and the 16316 lattice is small, and we
conclude that the pinning force is fairly insensitive to t
size of the lattice.
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In Fig. 12 we compare the pinning force as a function
the velocity for lattices of different stiffnesses, and we fi
that the pinning force decreases with increasing stiffnes
the lattice. Generally, the interaction between the vorti
lowers the pinning force, since the neighboring vortices i
moving lattice drag a vortex over the potential barriers. T
can be inferred from the self-consistent theory by compar
the pinning forces depicted in Figs. 2 and 14, and in per
bation theory by noting the extra term originating from t
elastic interaction in the denominator of the expression
the pinning force, Eq.~95!.

When the temperature is increased, the pinning force
creases, except at very high velocity, as apparent from
13. This feature is common to the single-vortex case,
simply reflects that thermal noise helps a vortex over
potential barriers.

The convergence of the iterative procedure is monito
by checking that energy conservation is fulfilled. The ene
conservation relation for a vortex lattice is obtained as
Sec. IV E 2, and since the term originating from the h
monic interaction between the vortices disappears due to
symmetry property of the dynamic matrix, Eq.~5!, we obtain
for a vortex lattice the energy conservation relation

FIG. 11. Pinning force~in units of n0
1/2a22) as a function of

velocity ~in units of h21n0
1/2a22) obtained from the self-consisten

theory for three different lattice sizes. The stars correspond
434 lattice, and the two curves correspond to 838 and 16316
lattices, respectively. The mass and temperature are chosen
zero, the elastic constants are given byc66a

35100n0
1/2 and c11a

3

5104n0
1/2, and the range of the disorder correlator is chosen to

r p50.1a.

FIG. 12. Pinning force~in units of n0
1/2a22) on a vortex lattice

of size 16316 as a function of velocity~in units of h21n0
1/2a22)

obtained from the self-consistent theory for the compression mo
lus given by c11a

35104n0
1/2 and three different shear modul

c66a
3550n0

1/2 ~upper dashed line!, c66a
35100n0

1/2 ~solid line!, and
c66a

35200n0
1/2 ~lower dashed line!. The mass and temperature a

both chosen to be zero, andr p50.1a.
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h] t tr@2 i ] tG
K~R,t;R,t8!12TGR~R,t;R,t8!#u t85t

52v•Fp . ~99!

The convergence of the iteration procedure, employ
when solving the self-consistent equations, has been che
by numerically calculating the terms in Eq.~99!. We find
that the right and left sides of the energy conservation re
tion differ by no more than a few percent after 20 iteration

C. Hall force

We now consider the influence of a Hall force on t
dynamics of a vortex lattice. The motion of the vortex lattic
with its associated magnetic field, induces an average ele
field. The relationship between the average vortex veloc
and the induced electric field,E5v3B, and the expression
for the Lorentz force, yields for the resistivity tensor of
superconducting film

r5
f0B

heff
2 1a2 S heff a

2a heff
D , ~100!

where the effective friction coefficientheff was introduced in
Eq. ~8!, and has previously only been determined to low
order in the disorder.17 According to Eq.~100!, the following
relationship between the transverse,rxy , and the longitudi-
nal resistivities,rxx , is obtained:

rxy5rxx
2 a

Bf0
S 11

a2

heff
2 D . ~101!

If the Hall force is small,a!heff , the scaling law12

rxy5rxx
2 a

Bf0
~102!

is seen to be obeyed. This scaling law is valid for all velo
ties of the vortex, provided the Hall force is small compar
to the friction force,a!h. We note that the scaling law i
also valid at small vortex velocities for arbitrary values
the Hall force, if the effective friction coefficient diverges
small velocities. This occurs if the pinning force decreas
slower than linearly in the vortex velocity. This is indeed t

a

be

e

u-

FIG. 13. Pinning force~in units of n0
1/2a22) on a vortex lattice

of size 16316 as a function of velocity~in units of h21n0
1/2a22)

obtained from the self-consistent theory for two different tempe
tures. The elastic constants are given byc66a

35100n0
1/2 andc11a

3

5104n0
1/2, and r p50.1a, and m51.031024h2a3n0

21/2. The
dashed line corresponds toT50, and the solid line toT
50.5n0

1/2a21.
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712 PRB 61STAFFAN GRUNDBERG AND JO”RGEN RAMMER
case, according to the self-consistent theory, at tempera
lower than the average barrier height,T!An0/r p , as indi-
cated by the low-velocity behavior of the pinning force
Fig. 14. This behavior of the pinning force is also obtain
for noninteracting vortices as apparent from Fig. 7.

In Fig. 14 is shown the pinning force obtained from t
self-consistent theory as a function of velocity for the case
zero temperature. As expected there is no influence of
Hall force on the pinning force at low velocities, but we fin
a suppression at intermediate velocities, and at very h
velocities v@c11a/h we recover the high-velocity limit of
the single vortex result, i.e., Eq.~91!. By comparison of Figs.
7 and 14, we find that the Hall force has a much wea
influence at intermediate velocities on the pinning of an
teracting vortex lattice than on a system of noninteract
vortices. Furthermore, the influence of the Hall force on
pinning force is more pronounced for a stiff than a soft l
tice as seen from the inset in Fig. 14. In Fig. 15 the dep
dence of the Hall angle on the velocity is presented for v
ous stiffnesses of the vortex lattice; the stiffest lattice has
greatest Hall angle. Since the pinning force is reduced by
interaction between the vortices, the Hall angle for a lattic

FIG. 14. Pinning force~in units of n0
1/2a22) on a vortex lattice

of size 16316 as a function of velocity~in units of h21n0
1/2a22)

obtained from the self-consistent theory. The solid and dashed
correspond toa50 anda5h, respectively. The temperature an
mass are both chosen to be zero, andr p50.1a. The elastic con-
stants are given byc11a

35104n0
1/2 andc66a

35100n0
1/2. Inset: pin-

ning force as a function of velocity fora50 anda5h, respec-
tively. Here c66a

35300n0
1/2 and the other parameters a

unchanged.

FIG. 15. Hall angle obtained from the self-consistent theory
a vortex lattice of size 16316 as a function of velocity~in units of
h21n0

1/2a21) for a moderately strong Hall force,a5h. The com-
pression modulus is given byc11a

35104n0
1/2, and the three curves

correspond to decreasing values of the shear modulus:c66a
3

5200n0
1/2, 100n0

1/2, and 50n0
1/2. The mass and temperature are bo

chosen to be zero, andr p50.1a.
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larger than for an independent vortex, except at high velo
ties where they saturate at the same value. A similar beha
of the Hall angle at zero velocity as observed for a sin
vortex in Sec. IV E 2 pertains to a vortex lattice.

VI. DYNAMIC MELTING

In this section we consider the influence of quenched d
order on the dynamic melting of a vortex lattice. This no
equilibrium phase transition has been studi
experimentally4 as well as through numerical simulation an
a phenomenological theory and perturbation theory.6,20,21

The notion of dynamic melting refers to the melting of
moving vortex lattice where in addition to the thermal flu
tuations, fluctuations in vortex positions are induced by
disorder. A temperature-dependent critical velocity dist
guishes a transition between a phase where the vortices
a moving lattice, the solid phase, and a vortex liquid pha

Before solving the self-consistent equations by numer
iteration in order to obtain the phase diagram, we consi
the heuristic argument for determining the phase diagram
dynamic melting of a vortex lattice presented in Ref.
There, the disorder-induced fluctuations were estimated
considering the correlation function

kaa8~x,t !5^^ f a
(p)~x,t ! f a8

(p)
~0,0!&& ~103!

of the pinning force density

f(p)~x,t !52(
R

d~x2R2uRt!¹V~x2vt !. ~104!

Neglecting the interdependence of the fluctuations of
vortex positions and the fluctuations in the disorder potent
the pinning force correlation function factorizes:

kaa8~x,t !.(
RR8

^^d~x2R2uRt!d~R82uR80!&&

3¹a¹a8^^V~x2vt !V~0!&&. ~105!

Introducing the Fourier transform (A is the area of the film!

CRR8~q,t !5A21^^e2 iq•(R1uRt2R82uR80)&& ~106!

of the vortex density-density correlation function

CRR8~x,t !5^^d~x2R2uRt!d~R82uR80!&&, ~107!

and employing the translational invariance yields

kaa8~x,t !52n
V(

RR8
^^d~x2R2uRt2R82uR80!&&

3¹a¹a8n~x2vt !, ~108!

wheren
V

is the density of vortices. In the fluidlike phase th
motion of different vortices is ‘‘incoherent’’ and the off
diagonal termsRÞR8 can be neglected, yielding

kaa8~x,t !52n
V
d~x!¹a¹a8n~vt !. ~109!

In analogy with the noise correlator, the effect of disord
induced fluctuations is then represented by a ‘‘shaking te
perature’’
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Tsh5
1

4hn
V

(
a

E dxE
2`

`

dtkaa~x,t !5
1

4A2p

n0

hvr p
3

5
1

4A2p

n0

Fr p
3

, ~110!

where in the last equality it is assumed that the pinning fo
is small compared to the friction force, i.e.,hv.F. An ef-
fective temperature is then obtained by adding the ‘‘shak
temperature’’ to the temperature,T eff5T1Tsh, and accord-
ing to Eq. ~110! the effective temperature decreases w
increasing external force, i.e., with increasing average ve
ity of the vortices. As the external force is increased the fl
thus freezes into a lattice. The value of the external force
which the moving lattice melts, the transition forceFt , is in
this ‘‘shaking’’ theory defined as the value for which th
effective temperature equals the melting temperatureTm in
the absence of disorder,

T eff~F5Ft!5Tm, ~111!

and has therefore in the shaking theory the temperature
pendence

Ft~T!5
n0

4A2pr p
3~Tm2T!

, ~112!

for temperatures below the melting temperature of the id
lattice. We note that the transition force for strong enou
disorder exceeds the critical force for which the lattice
pinnedFt.Fc;n0

1/2/r p
2 .

We now describe the calculation within the self-consist
theory of the physical quantities of interest for dynamic me
ing. The conventional way of determining a melting tran
tion is to use the Lindemann criterion, which states that
lattice melts when the displacement fluctuations reach a c
cal value^u2&5cL

2a2, wherecL is the Lindemann paramete
which is typically in the interval ranging from 0.1 to 0.2, an
a2 is the area of the unit cell of the vortex lattice. In tw
dimensions the position fluctuations of a vortex diverge e
for a clean system, and the Lindemann criterion implies t
a two-dimensional vortex lattice is always unstable aga
thermal fluctuations. However, a quasi-long-range tran
tional order persists up to a certain melting temperature.20 As
a criterion for the loss of long-range translational orde
modified Lindemann criterion involving the relative vorte
fluctuations

^@u~R1a0 ,t !2u~R,t !#2&52cL
2a2, ~113!

wherea0 is a primitive lattice vector, has successfully be
employed,20 and its validity verified within a variationa
treatment.22 The relative displacement fluctuations of th
vortices are specified in terms of the correlation funct
according to

^^@u~R1a0 ,t !2u~R,t !#2&&52i tr@GK~0,0!2GK~a0,0!#,
~114!

where the translation invariance of the Green’s functions
been exploited. The correlation function is determined by
Dyson equation, Eq.~73!, where the influence of the
e
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quenched disorder appears explicitly throughSK and implic-
itly through SR and SA in the retarded and advanced r
sponse functions. Furthermore, the self-energies depend
consistently on the response and correlation functions.
have calculated numerically the Green’s functions and s
energies and thereby the vortex fluctuations for a vortex
tice of size 838, and evaluated the pinning force from E
~64!.

We determine the phase diagram for dynamic melting
the vortex lattice by calculating the relative displaceme
fluctuations for a set of velocities, and interpolate to find t
transition velocityv t , i.e., the value of the velocity at which
the fluctuations fulfill the modified Lindemann criterion~the
determination of the Lindemann parameter is discus
shortly!. An example of such a set of velocities is presen
in the lower inset in Fig. 16, where the relative displacem
fluctuations as a function of velocity are shown. The mag
tude of the transition force is determined by the averag
equation of motion

Ft5hv t1Fp~v t! ~115!

and is then obtained by using the numerically calculated p
ning force. Repeating the calculation of the transition for
for various temperatures determines the melting curve,

FIG. 16. Phase diagram for the dynamic melting transition. T
melting curve separates the two phases—for values of the exte
force larger than the transition force the moving vortices form
solid and for smaller values a liquid. The dots in the boxes repre
points on the melting curve obtained from the self-consistent the
using a vortex lattice of size 838, while the three stars represe
the simulation results of Ref. 6. The crosses represent the low
order perturbation theory results. The dashed line is the cu
Ft(T)51.7731024/(0.0072T), the melting curve predicted by th
shaking theory. Upper inset: relationship between temperature
the inverse transition force obtained from the self-consistent the
close to the melting temperature, for the particular value of
Lindemann parametercL50.124, for which the curve intersects th
vertical axis atTm50.00701. The set of points calculated from th
self-consistent theory~plus signs! coincides with a straight line in
excellent agreement with the prediction for the critical exponent
the shaking theory being 1. Lower inset: relative displacement fl
tuations as a function of velocity. The dots to the left are calcula
using the self-consistent theory and the dots to the right us
lowest-order perturbation theory~for the temperatureT50.0065).
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the temperature dependence of the transition force,Ft(T),
separating two phases in theFT plane: a high-velocity phas
where the vortices form a moving solid when the exter
force exceeds the transition force,F.Ft(T), and a liquid
phase for forces less than the transition force.

In order to be able to compare the results of the s
consistent theory to the simulation results, we use the s
parameters as input to the self-consistent theory as use
the literature.6 There, the melting temperature in the absen
of disorder is given byTm50.007 @the unit of energy per
unit length is taken to be 2(f0/4pl)2# as obtained by simu
lations of clean systems,23 and assumed equal to th
Kosterlitz-Thouless temperature24,25

TKT5
c66a

2

4p
. ~116!

The shear modulus is therefore determined to have the v
c6650.088~asa is taken as the unit of length!. The range of
the vortex interactionl was approximately equal to the la
tice spacinga0, giving for the compression modulus11

c115
16pl2c66

a0
2

.50c66.4.4. ~117!

The range and strength of the disorder correlator in the si
lations are in the chosen unitsr p50.2 and n0
51.4231025, and since the simulations are done for
overdamped system, the vortex mass in the self-consis
theory should be set to zero.

As described above, our numerical results for the rela
displacement fluctuations can be used to obtain the dyna
phase diagram once the Lindemann parameter is determ
In order to do so we calculate ‘‘melting’’ curves using th
self-consistent theory for a set of different values of the L
demann parameter. We find that these curves have the s
shape, close to the melting temperature, as the melting c
obtained from the shaking theory, Eq.~112!,

T5C12
C2

Ft
. ~118!

The curve which intersects at the melting temperatureTm
50.007, the one depicted in the upper inset in Fig. 16, i
the one for whichC1 is closest to the value 0.007, is the
chosen, determining the Lindemann parameter to be give
the valuecL50.124.

Having determined the Lindemann parameter, we can
termine the melting curve, and the corresponding phase
gram obtained from the self-consistent theory is shown
Fig. 16. The simulation results6 are also presented, as well a
the melting curve obtained from the shaking theory. We n
the agreement of the simulation with the self-consist
theory, as well as with the shaking theory, although
simulation data are not in the large velocity regime and
shaking argument is therefore nota priori valid.

In view of the good agreement between the self-consis
theory, the shaking theory, and the simulation, and the
that we only have one fitting parameter at our disposal,
melting temperature in the absence of disorder, it is of in
est to recall that while the melting curve obtained from t
shaking theory was based on an argument only valid in
l
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liquid phase—i.e., freezing of the vortex liquid wa
considered—the melting curve we obtained from the s
consistent theory is calculated in the solid phase; i.e.,
consider melting of the moving lattice. Furthermore, t
melting of the vortex lattice was in the simulation indicat
by an abrupt increase in the structural disorder,6 yet another
melting criterion, and the agreement of the self-consist
theory with the simulation data therefore further validates
use of the modified Lindemann criterion.

As apparent from the upper inset in Fig. 16, the critic
exponent obtained from the self-consistent theory, 1.0, is
excellent agreement with the prediction of the shak
theory, where the critical exponent equals 1. Furthermo
we find that the self-consistent theory yields the va
1.6531024 for the magnitude of the slopeC2, which is in
good agreement with the value,n0 /(4A2pr p

3)51.77
31024, predicted by the shaking theory, represented by
lower dashed line. That the values are so close testifies to
appropriateness of characterizing the disorder induced fl
tuations effectively by a temperature.

It is of interest to compare the melting curves obtain
from the self-consistent theory and perturbation theory. E
panding the Keldysh component of the Dyson equation,
~55!, to lowest order in the disorder we obtain

Gqv
K(1)5Dqv

R ~Sqv
K(1)22ihT!Dqv

A 22ihkBTDqv
R ~Sqv

R(1)Dqv
R

1Dqv
A Sqv

A(1)!Dqv
A , ~119!

whereSR(1), SA(1), andSK(1) are the lowest-order approxi
mations of the self-energies, i.e., calculated to first orde
n0. The relative vortex displacement fluctuations, Eq.~114!,
can then be obtained in perturbation theory from Eq.~119!.
In Fig. 16 are shown the melting curve predicted by pert
bation theory, i.e., where we for the transition velocity inte
polation use the relative vortex fluctuations obtained fro
perturbation theory, an example of which is shown in t
lower inset. As to be expected, the perturbation theory re
is in good agreement with the self-consistent theory, and
shaking theory, at high velocities. However, we obse
from Fig. 16 that the melting curve obtained from lowes
order perturbation theory deviates markedly at intermed
velocities from the prediction of the nonperturbative se
consistent theory, and thereby from the shaking theo
which is known to account well for the measured melti
curve ~see Hellerqvistet al.4!.

The shaking theory is seen to be in remarkable go
agreement with the self-consistent theory for the param
values considered above. We have investigated whether
feature persists for stronger disorder. As apparent from
17, there is a more pronounced difference between the s
ing theory and the self-consistent theory at stronger disor
Whereas the deviation between the self-consistent and s
ing theory for the previous parameter values typically is 5
in the case of a fivefold stronger disordern057.131025, it
is more than 15%.

VII. CONCLUSION

We have studied the influence of pinning on vortex d
namics in the flux flow regime. A self-consistent theory f
the vortex correlation and response functions was c
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structed, allowing a nonperturbative treatment of the dis
der. The validity of the self-consistent theory was establis
by comparison with numerical simulations of the Langev
equation.

The self-consistent theory was first applied to a sin
vortex, appropriate for low magnetic fields where the vo
ces are so widely separated that the interaction between
can be neglected. The result for the pinning force was co
pared to lowest-order perturbation theory and good ag
ment was found at high velocities, whereas perturbat
theory failed to capture the nonmonotonic behavior at l
velocities, a feature captured by the self-consistent the
The influence of the Hall force on the pinning force on
single vortex was then considered using the self-consis
theory. The Hall force was observed to suppress the pinn
force, an effect also confirmed by our simulations. The s
pression of the pinning force was at high velocities shown
be in agreement with the analytical result obtained fr

FIG. 17. Phase diagram for the dynamic melting transition
the disorder strengthn057.131025. The plus signs represen
points on the melting curve obtained from the self-consistent the
for a vortex lattice of size 838, while the dashed curve is the curv
Ft(T)58.8531024/(0.0072T), the melting curve predicted by th
shaking theory.
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lowest-order perturbation theory. The suppression of the p
ning force was caused by the Hall force through its reduct
of the response function, while the effect of fluctuatio
through the fluctuation exponent at not too high temperatu
could be neglected. The situation at high temperatures
the opposite, since in that case the thermal fluctuations w
of importance, and the Hall force then increased the pinn
force because it suppressed the fluctuation exponent.

We also studied a vortex lattice treating the interact
between the vortices in the harmonic approximation. T
pinning force on the vortex lattice was found to be reduc
by the interaction. The pinning force as a function of veloc
displayed a plateau at intermediate velocities, before eve
ally approaching at very high velocities the pinning force
a single vortex. Analytical results for the pinning force we
obtained in different velocity regimes depending on the m
nitude of the compression modulus of the vortex lattice. F
thermore, we included the Hall force and showed that
influence on the pinning force was much weaker on a vor
lattice than on a single vortex.

We developed a self-consistent theory of the dynam
melting transition of a vortex lattice, enabling us to dete
mine numerically the melting curve directly from the dynam
ics of the vortices. The presented self-consistent theory
roborated the phase diagram obtained from
phenomenological shaking theory far better than lowe
order perturbation theory. The melting curve obtained fro
the self-consistent theory was found to be in good quant
tive agreement with simulations and experimental data.
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