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Self-consistent theory of vortex dynamics in disordered superconductors
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The influence of pinning on vortex dynamics in type-1l superconductors is investigated. The vortex dynam-
ics is described by the Langevin equation, and a field-theoretic formulation of the pinning problem allows the
average over the quenched disorder to be performed exactly. A self-consistent theory is constructed using the
diagrammatic functional method for the effective action, allowing a determination of the vortex response to
external forces, the vortex fluctuations, and the pinning of vortices due to quenched disorder. The dependence
of the pinning force on vortex velocity, temperature, and disorder strength is calculated for independent
vortices as well as for a vortex lattice, and both analytical and numerical results for the pinning of vortices in
the flux flow regime are obtained. The validity of the self-consistent theory is ascertained by comparing with
numerical simulations of the Langevin equation. Furthermore, the influence of a Hall force on the pinning force
is considered. Finally, the influence of pinning on the dynamic melting of a vortex lattice is studied.

[. INTRODUCTION The cases of interacting as well as noninteracting vortices
are considered, the latter case being appropriate for low mag-
The advent of high-temperature superconductors has ledetic fields, where the vortices are so widely separated that
to a renewed interest in vortex dynamics, since highthe interaction between them can be neglected. The self-
temperature superconductors have large values of theonsistent theory is compared to numerical simulations of
Ginzburg-Landau parameter and ther-phase diagram is the dynamics of a single vortex, as well as with analytical
dominated by the vortex phase. At intermediate values of theesults obtained in limiting cases. The influence of a Hall
magnetic field, i.e., betwedr; andH,, the magnetic flux force on the pinning of a single vortex is also studied, and we
will penetrate a type-Il superconductor in the form of flux find that its effect is qualitatively different depending on the
tubes, each carrying the quantized magnetic tgx=-h/2e,  magnitude of the temperature. For the case of interacting
corresponding to vortex lines in the superconducting orde{ortices forming a vortex lattice, the dependence of the pin-
parameter. The pinning of vortices due to defects, e.g., tWiting force on velocity, temperature, and stiffness of the lat-
boundaries and impurities, is of importance for technologicatice is calculated. We then consider how the pinning of a
applications of superconductors, since a supercurrent in gortex lattice is influenced by a Hall force. Finally, we con-
perfect superconductor will lead to motion of the vortex lat-sider the dynamic melting transition of a vortex lattice. We
tice, resulting in dissipation. In this paper we report a dea|culate the relative vortex displacement fluctuations as a
tailed Study of the influence of quenched disorder on tthnction of Ve|0city, and by emp|oying a modified Linde-
vortex dynamics in type-Il superconductors in the flux flow mann criterion, we determine the velocity dependence of the
regime. melting temperature. We obtain the phase diagram for dy-
In recent years a large number of papers studying vorteyamic melting, and find that in contrast to perturbation
pinning experimentally as well as theoretically have ap-theory, the melting curve evaluated numerically from the

peared. Examples of the considered topics are pinning Afelf-consistent theory is in quantitative agreement with simu-
vortex liquidsT depinning of flux line€, and the interference |ations and experimental data.

effect between an external ac current and the intrinsic oscil- The paper is organized as follows. The model used to

lations of the vortex latticd Special interest has been paid to describe the vortex dynamics is presented in Sec. Il. In Sec.
the subject of dynamic melting of the vortex lattice, and ajj| we present the field-theoretic formulation of the pinning
number of experimental works have been repoft€everal  problem, and construct a self-consistent theory. The case of a
simulations of dynamic melting have also been repdrtedl  single vortex is studied in Sec. IV, and in Sec. V we study
lowing the original work on dynamic meltinfy. the pinning properties of a vortex lattice. In Sec. VI we con-

Vortex pinning in the flux flow regime was originally sjder the dynamic melting of a vortex lattice. Finally, in Sec.
considered by Schmid and Haugeand Larkin and v we summarize and conclude.

Ovchinnikov® In these works, the disorder was treated in
lowest-order perturbation theory. Later, s and Schmidl
applied the field-theoretical method of Cornwall, Jackiw, and
Tomboulig® to the pinning of vortices. The field-theoretical
method will be used in the present work, and extended to We consider a two-dimension&D) description of the
discuss the influence of a Hall force and dynamic melting ofvortices, since we have a thin superconducting film or a 3D
the vortex lattice. Furthermore, we have performed numeritayered superconductor with uncorrelated disorder between
cal simulations that allow a quantitative assessment of théhe layers in mind. We shall be interested in the influence of
validity of the self-consistent theory of vortex pinning. quenched disorder on the vortex dynamics in the flux flow

1. MODEL
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regime. The description of the vortex dynamics will be based/elocity is the only vector characterizing the vortex motion
on the Langevin equatidh which is invariant with respect to the change of the sign of
«, and the pinning force is therefore antiparallel to the
velocity 2 Thus, the pinning yields a renormalization of the

MU+ DU+ D, Prprln: =1 U3
RtT 7Rt 2 RRIER'E friction coefficient

R
=F+ aUg X Z— VV(R+Ug) + &re s 1) —V+Fp=— 7V, (8)

whereug, is the displacement, normal & at timet of the  The effective friction coefficient depends on the average ve-
vortex, which initially has equilibrium positioR, 7 is the  locity of the lattice, the disorder, the temperature, the inter-
friction coefficient, andm is a possible mass of the vortex action between the vortices, the Hall force, and a possible
(both per unit length The interaction between the vortices is mass of the vortex. In the absence of disorder, the effective
treated in the harmonic approximation and described by théiction coefficient reduces to the bare friction coefficient
dynamic matrix®rg, . The force(per unit length on the In the analytical and numerical calculations, the correlator
right side of Eq.(1) consists of the Lorentz forcef of the pinning potential shall be taken as a Gaussian function
= ¢hoj X 2, due to the transport current densjtywhich we  with ranger, and strengthvy:

eventually assume constant; the second term on the right side
is a possible Hall force, characterized by the parameter

Vo IN2jm 2 2,2
) — —(x=x")l2r — —rok
andV is the pinning potential due to the quenched disorder. (X=X 2 P, (k)= Pt (9)

The pinning is described by a Gaussian-distributed stochastic P
potential with zero mea{V(x))=0, and thus characterized
p(x=x)=(V(X)V(x')) 2 The average vortex motion is conveniently described by

reformulating the stochastic problem in terms of the field
The thermal noiset is the white noise stochastic processtheory of classical statistical dynamitsThe probability
with zero mean and correlation function specified accordingunctional for a realizatiofug,}r of the motion of the vortex
to the fluctuation-dissipation theorefwhere now the brack- lattice is expressed as a functional integral over a set of aux-
ets denote averaging with respect to the thermal foise jjiary variables{Ug}r, and we are led to consider the gen-

o erating functional
<§gt§R’t/>:ZWTﬁ(t_t,)éRR’éaa’ ’ (3)

and, since the forces are per unit length, the “temperatdre” Z[F,J]zf 11 DURJ I puggesew, (10
has the dimension of energy per unit length. R R

Upon averaging with respect to the thermal noise and th§yhere in the action
guenched disorder, the average restoring force of the lattice

vanishes, Su,ul=u(DRu+F-VV+§+Ju (19

the inverse free retarded Green’s function is specified by

_gz Dprr((Ur)) =0, 4)

since the average displacement is the same for all vortices, — D "Uge= MU, + PUpe+ >, Prprlii+ @ZX Ugy,
and a rigid translation of the vortex lattice does not change R’ (12)
its elastic energy, leaving the dynamic matrix with the sym-
metry property ie.,
-1 D! 4!
> ®pr/=0. 5 Pr (RERLE)
R’ =—PrpS(t—t')—[(MI2+ i) 1—iac¥d,]
Corresponding to the lattice reaching a constant steady-state
velocity v=((Ug,)), the average force on any vortex van-
ishes: where matrix notation is used for its Cartesian components;
i.e., 1 ando¥ denote the unit matritoccasionally suppressed
FtFi+Fu+Fp=0; ) for convenienceand the Pauli matrix in Cartesian space,
i.e., there will be a balance between the Lorentz fdfcéhe ~ respectively. The Fourier transform of the inverse free re-
average friction forcé;= — yv, the average Hall forcE,,  tarded Green’s function is therefore th&2 matrix in Car-
tesian space given by the expression

XéR’Rrg(t_t,), (13)

=avXz, and the pinning force

2 . .
_|._ —
Fo=—((VV(R+URy))). (7) D,;l(q w)= mw. e Ia.w —-d,. (14
. . . . " ’ iaw Mmw?+inw q
The pinning force is determined by the relative positions of

the vortices with respect to the pinning centers and is invariWe have in Eq(11) introduced matrix notation in order to
ant with respect to the change of the signaofThe average suppress the integrations over time and summations over
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vortex positions and Cartesian indices. Thus, for example, Dl—ll Dl—zl
uDx'u denotes the expression D=l p-1 pot
21 22
> | dtfc dtU, (Rt 2i P TS(t—t') Spe Srrr DRMRER',)
RR’ - - = -1 D/ 4! ’
a,a/:X,y DA (thaR 1t ) 0
, 24
XD (R,;;R',t" ) U, (R, t'). (15) (24)

~ is a symmetric matrix in all indices and variables, since the
The Jacobia/=| &g,/ Sur:|, guaranteeing the normaliza- inverse free advanced Green’s function is obtained by inter-

tion of the generating functional changing Cartesian indices as well as position and time vari-
ables:
Z[F,J=0]=1, (16)
is given by DA (R t;RO=Dg™* (RLR't'). (25
. - V(R Ugy) The interaction term originating from the disorder is
Joeexpg — >, f dtDRee ——————~|  (17) _ ,
Raa’ —© ' axar&Xa | * ® "~ Jd V(uRt_uR’t’)~a’
) . . . S\/[¢]:_§ 2 dt dt Ut o o Yrier-

where the proportionality constant is the determinant of the RR' J - J-o JUR{IURy
inverse free retarded Green’s functigfD g ") e gr1/|- In the “ (26)

case of a nonzero mass#0, the Jacobian is an irrelevant . .

constant? and in the case of zero mass, dropping the Jaco! N Source term introduced in ECLO),

bian from the integrand is equivalent to defining the retarded w0

free Green'’s function to vanish at equal tim9§=0, which Ju= E f dtJ(R,t)-u(R,1), (27)

in turn leads to the full retarded Green’s function satisfying R J==

the same initial condition. In terms of diagrams, the contri-yhere the sourcel(R,t) coupled to the vortex positions
bution from the Jacobian exactly cancels the tadpole diag(R t) is added to the action in order to generate the vortex

grams. ) . correlation functions. For example, we have for the average
The average with respect to both the thermal noise and thggsition

disorder is immediately performed, and we obtain the aver-

aged functional, dropping the irrelevant Jacobian, .8z
((Ur))y=—1 53— 28
Rtly=o0
Z[f]=<<z>>=f Depe'SlTite, (18
and the two-point unconnected Green’s function
We have employed a compact notation for the fields, 527
~ (UrtUrrt)) = —————ls=0- (29
¢Rt:(uRt’uRt):(¢1(R1t)l¢2(th))l (19) ‘ ! 5‘JRI5‘JR/I’
and for the external force and an introduced sould®,t), Here and in the following we use dyadic notation; i.e.,
UriUgrr IS the Cartesian matrix with the components
f(R,t):(F(R,t),J(R,t)) (20) Ua(R,t)Uar(R',t').
The action obtained upon averaging, which we also denote We note that the presented field-theoretic formulation of
by S consists of two terms the Langevin dynamics is the classical limit of the
Schwinger-Keldysh formulation of quantum statistical me-
S p1=So[ ]+ SV ¢]. (21)  chanics of a particle coupled linearly to an Ohmic
. . . . environment?®
The first term is quadratic in the field
1 . A. Effective action
Sol ¢]:§¢D 2 (22) In order to obtain self-consistent equations involving the

. . . o two-point Green'’s function in a two-particle-irreducible fash-
where the matrix notation now in addition includes the dy-i5 \we add a two-particle source ternto the action in the
namic, or Keldysh, indices; i.e¢D ~1¢ denotes the expres- geﬁerating functional

sion

i > dtf dt’ ¢*(R,t)
RRI — 0 — 00
aa'ij The generator of connected Green’s functions,

Z[f,K]=fD¢exp<i8[¢]+if¢+i§¢K¢ . (30

XDﬁlaa’(R,t;R,,t,)(ﬁja,(R,,t,)- (23 W[ f,K]=—iInZ[f,K], (31

The inverse free matrix Green’s function in Keldysh space,has accordingly derivatives
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— =Rt 32
SR ¢ (R1) (32)
and
oW 1_a ' Y
aa’ :§¢| (th)¢i' (R !t )
oK (RER, 1Y)
[ ,
whereg is the average field, with respect to the action
S o]+ fo+dKel2,
_ i
¢?<R,t>=f D¢¢?<R,t>exp(i8[¢]+if¢+§¢>K¢),
(34)
and G is the full connected two-point matrix Green’s func-
tion:
PW [ ((SURSUR))  ((SURBUR..))
GI]:_5f5f2_| o ~a o o ’
D ((OUROUR/ 1)) ((OUROUR/y/))
(35
where
SURt=Ugt— ((Ury)) (36)
and
5aRt:aRt_<<aRt>>' (37)

In the physical problem of interest, the souréesndJ
vanish,K=0 andJ=0, and the full matrix Green’s function
has, due to the normalization of the generating functional

Z[F,J=0, K=0]=1,
the structure in Keldysh space
| ( 0 (UguR. ) )
Gjj=—i w~al o ool
((URURr ) ((SUROUR))

0 Gh(RER )
, 9
Gh (RER' ) GE (RERt) 39

(39)

where we observe that the connected and unconnected re-
tarded(or advancefGreen’s functions are equal. Similarly,
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andGX_, is the correlation function, both matrices in Carte-
sian indices as indicated. The matrix Green’s function in
Keldysh space, Eq.39), has only two independent compo-
nents, since the advanced Green’s function is given by
G (RERt)=GF, (R t';R,1). (42)
Pursuing an equation for the pinning force, we introduce
the effective actionI’, the generator of two-particle-

irreducible vertex functions, i.e., the Legendre transform of
the generator of connected Green’s functions,

F[E,G]zwm,K]—fE—%gKE— '5 TrGK, (43

where Tr denotes the trace over all variables and indices; i.e.,
Tr GK denotes the expression

> dtfw dt' G

i’

(RER KA YR R,).

R,R’
a,a’ =xy
ii'=1,2
(44)
The effective action satisfies the equations
or _
—=—f-K¢ (45
o
and
or__! K 46
E A 40

The effective action can be written on the fdfm

_ i i i
[¢.G]=S[¢]+5 TnglG—ETrln D 1G- 5Tl

—j |n<eisint[$r '//]>GZP|,

(47)

where the quantit{p g !is the second derivative of the action
at the average field,

89 ¢]

Sbiddy

D[ pl(t,t")= (48)

in the absence of sources the expectation value of the auxil- — . o L
iary field vanishes, and the average field is therefore given b@nd Sin #,¢] is the part of the actior§ ¢+ ¢/ which is

bre=(({(Ure)) ((Ure))) = (O,V1), (40)

wherev is the average velocity of the vortex lattice.

The retarded Green's functioﬁ'za, yields a linear re-
sponse to the forc€, ; i.e., to linear order in the external
force we have

(W RON=3 [ dUGE (RUR IF (R 1),
" (@D

igher than second order i in an expansion around the
average field. The superscript “2PI” on the last term indi-
cates that only the two-patrticle irreducible vacuum diagrams
should be included in the interaction part of the effective
action, the last term in Eq47), and the subscript that propa-
gator lines represer; i.e., the brackets with subscri@
denote the average

(%)= (detiG)¥2 Dyeive uzgnison,
(49)
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() e
I'l¢,Gl=S[#]—5 TrinD lGJrETrD 1G—§Tr1

@ @ S+ ¥)e. (53
since

FIG. 1. Typical vacuum diagram not included in the Hartree (Sl @. 1) c=(SW ¢+ ¥])c—Sil ]
approximation for the effective action. The solid line represents the

The effective action can in the Hartree approximation be
rewritten in the form

correlation function or Keldysh componei@X of the matrix [ ” * , 525\/[¢]
Green’s function. The retarded Green’s functi®f is depicted as a 2 Trf,w dtf,m dt Sb.50. vt
wiggly line ending up in a straight line, and vice versa for the POy
advanced Green’s functic®”. The curly line ending up on the dot (54)

represents the first Keldysh component of the average field. A
dashed line attached to circles represents the impurity correlator ansthere the trace in the time variable has been written explic-
the additional dependence on the second component of the averatily for clarity.
field as explicitly specified in Eq51). In the physical situation of interest the two-particle source
K vanishes, and sincg is two-particle irreducible, Eq46)
B. Hartree approximation therefore becomes the Dyson equation

In order to obtain a closed expression for the self-energy I
in terms of the two-point Green’s function, we expand the G =D -3, (55)

exponential and keep only the lowest-order term . T
P pony where the self-energy in the Hartree approximation is the

i |n<eisim[g,§,,]>ép.: i In(1+iSim[$, ¢]>Gzp| matrix in Keldysh space:

~(Snd &, ¥])c; (50)

i.e., we consider the Hartree approximation, which in dia-

grammatic terms corresponds to neglecting diagrams Wher‘?he Dyson equation, Eq55), the self-energy expression,

d_n‘ferent Impurity correlatc_)rs are conqected by.Green S func'Eq. (56), and the equation relating the effective action to the
tions. A typical vacuum diagram not included in the Hartree

approximation for the effective action is shown in Fig. 1 andexternal force, Eq(45), constitute a set of self-consistent
PP : 9.4 equations for the Green'’s functions, the self-energies, and the
represents the expression

average field.
i 2
3

(56)
K=0, J=0

s - R LY CAR AN
ij= EA 0 =zl 5Gij

1\2 1 dk. dk The matrix self-energy in Keldysh space has only two
1 2 - i i
) f Ky 1(Ry,t) independent components since

) (2m? (2m)? . .
L Yo (RER =3, (R t";R), (57)
X[KGR(Ry,tp: Ry, 1)K [k GR(Ry,t1 Ry t1)Kq]
X[K;GR(R! .t RS Ko 1T KoGK(Ry 1o RS th)K a simple consequence of E@2) and the Dyson equation.
[kiGT(R 1Rz, )Ka k2GR (Ra 2Ry ) ko From Eq.(56) we obtain for a vortex lattice having a unit
> V(kl)eikl.[Rl—R1+v(t1—t1)] (Ky) cell of areaa® and consisting oN vortices, the self-energy

componentgeach a matrix in Cartesian space
x el kz-[Rz—Réw(tz—t;)], (51)

. . . . I -~ B! gl -
where integrations over time and summations over vortex SK(R,t;R’,t')=— — > v(k)kke ¢(RER" k)
positions are implied, and we have introduced the notation Na“ k

(58)
kGR(R,;R', 1)k’ =2 k,Gh (RER 1)K, (52  and

R Dt/

for Cartesian scalars. 2(RERLY)
In the Hartree approximation, E¢50), we can drop the =oRRLR 1) — SprrS(t—t")

superscript “2P1” since the actioB,,[ ¢, ] only generates
two-particle-irreducible vacuum diagrams, due to the appear- « E f“ dieRRERT) (59)
ance of only one impurity correlator. The Hartree approxi- g Jow e

mation can also be expressed as a Gaussian fluctuation cor-
rected saddle-point approximatith. where
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R(R,tR' ) choose the vortex magper unit length to be small, in fact
so small,m< 7% }/\/vo, that the case of zero mass only
1 ~m Rl deviates slightly from the presented results, i.e., at most a
_ R Dt/ —o(R,t;R",t";k;v) ’ ’
=z ; v(k)kk[KGR(R,t;R’,t")k]e ¢ . few percent.

(60)

We use dyadic notation; i.ekk denotes the matrix with the
Cartesian componentgk,. . The influence of thermal and
disorder-induced fluctuations is described by the fluctuatio
or damping exponent

A. Perturbation theory

At high velocities, the pinning force can be obtained from
lowest-order perturbation theory in the disorder, since the
rbinning force then is small compared to the friction force,
and only makes, according to E@), a small contribution to
o (RERt)=Ik[GK(R,t:R,1) — GX(R,t:R",t") Tk the total force on the vortex. We first consider the case of

k zero temperature, where we obtain the following set of equa-

6D tions by collecting terms of equal powers in the pinning po-
contained in tential:
o(R,G;Rt";k;v)=—ik-[R—R"+v(t—t") -
“ [ : —f dt' DR (L t)XO=F,, )
+o (RGRt). (62 -
The pinning force on a vortex, E7), is determined by the o . i ©
averaged equation of motion, E@), and the first Keldysh —f dt'Dg(t,t" )X = —=VV(x '), (66b)
component of Eq(45), which in the Hartree approximation o
yields .
. , —f dt' DR (t,t)x D= =V (xD- VV(x{?)). (660
-2 2 | dUDRM*(RGR )Vt -
R! C(, — 0

Assuming that the external force is independent of time, the
average vortex velocity will be constant in time, and in the

o, NSV P+ ¥l

=F¢ — , (63)  absence of disorder the average vortex position is
6¢1(R1t) ZR(:(Oth)
N . - ONy =yt = -
resulting in the expression for the pinning force: (X)) =vt= 7’ (67)
) o dk i.e., the friction force balances the external foreg;,=F.
':p:'2 dt J’ gk”(k) The first-order contribution to the vortex position vanishes
R J-= (2m) . . - .
upon averaging with respect to the pinning potential, and the
X(kGStR,t,k)e—;(R,t;R’,t';k;v)_ (64) second-order contribution to the average vortex velocity be-

comes, according to Eq&6),

The self-consistent theory is still intractable to analytical

treatment, except in the limiting cases considered in the fol- , . i (= 2, )
p g <<X§2)>>: B ;f ' DR f kk2VOe—k2rp+|k-v(t—t )

lowing, but it is manageable numerically. In the following tt ?)2

we shall study numerically the vortex dynamics in the Har-

tree approximation. The results obtained from the self- v (= vt [ vt\2 5
consistent theory will then be compared to analytical results =—5J diD}| — - TR e (VD% (BY)
obtained in perturbation theory and to simulations of the vor- 4mrgn’o o fp

tex dynamics. The second-order contribution is immediately calculated, and

for example for the case of a vanishing mass

<7?r3/\vo, we obtain
In order to study the essential features of the model and

the self-consistent method, we first consider the case of a

IV. SINGLE VORTEX

. ; . . . 2y Yo
single vortex, since this example will allow the important ()= Aot ? zvzv' (69)
test of comparing the results of the self-consistent theory p’
with simulations. The dynamics of a single vortex is de-The pinning force is then, according to E@), to lowest
scribed by the Langevin equation order in the disorder strength,, given by

mx+ X = — VV(x) +F+ &, (65) ’
wherex; is the vortex position at timé We defer the dis- Fp=— 4wrgnv2V; (70

cussion of the Hall force to Sec. IV E.
When presenting analytical and numerical results obi.e., the magnitude of the pinning force is inversely propor-
tained from the self-consistent theory, we shall alwaystional to the magnitude of the velocity. The perturbation re-
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sult is therefore valid for large velocities> \vo/ 713, ie.,
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valid, can be generalized to nonzero temperature. At high

when the friction force is much larger than the average forcevelocities v>/vg/7r;, the self-energies are according to

Vvo/r due to the disorder.

B. Self-consistent theory

Egs.(71) inversely proportional to the velocity, and they can

accordingly be neglected in the calculation of the pinning
force. We can therefore in this limit insert the free retarded
Green’s functions in the self-consistent expression for the

The self-energy equations for a single vortex reduce inth%inning force, Eq.(78), thereby obtaining an expression

Hartree approximation to

aE(t,t’)_é(t—t')ﬂc dToE(t,t_)},
(719

dk
R 1y —
SRt f—(zw)z

aR(t,t) = w(k)KK[KGR(t,t")k]e' V-t —altt),
(71b)

St =—i f (de)z p(K)kkelk vt-t) —extt’)
T
(719

with the fluctuation exponent

er(tt)=ik[GK(t,t) — GK(t,t") k. (72)

valid to lowest order in the disorder strengt),

Fp:—'—f o kkzvoe’rﬁszmdte‘k"’“kzw”, (79
nJ (2m)? 0

where again we only display the result for vanishing mass,
m< 7?r3/\lvo. The integration over time can then be per-
formed, and we obtain that the pinning force for large ve-
locities v>T/(r,7) is given by the perturbation theory ex-
pression, Eq(70).

It is also possible to obtain an analytical expression for
the pinning force at moderate velocities, provided the tem-
perature is high enough. At high temperatuiies \/v—o/rp,
the Keldysh component of the self-energy is inversely pro-
portional to the temperaturE,K(w=v/rp) ~ Voﬂ/(f,ng), and
its contribution to the fluctuation exponent is much smaller

Wr|t|ng out the Components of the Ke|dysh matrix Dyson than the contribution from the thermal fluctuations. Simi-
equation, Eq(55), we obtain the Cartesian matrix Green’s larly, at temperatures> \/V_o/(nfgv), the retarded self-

functions
GX(w)=GR(w)[ZK(w)—2i nT1]GA(w) (73
and
GR(w): W 1-w

Mo +igo— (@) | Mettine—SFw)
74

where the subscripts and L denote longitudinal and trans- _
verse components of the retarded self-energy with respect to P

the direction of the velocity:

SR(0)= 2 V38 (@), (75)
and

SR0)=2 3R (0)(0pw—VaVar)- (76)

energy is of orderER(w=v/rp)~vol(rgT). At moderate
velocitiesv=</v/(7r3), the free retarded Green’s function
can therefore be inserted in the expression for the pinning
force, and we can expand the exponential{g«t}, and
keep only the lowest-order term in the velocity, since the
inequality v<T/(7r,) is satisfied, and obtain that the pin-
ning force is proportional to the velocity and inversely pro-
portional to the square of the temperature:

_ Vom v
8mr5T? '

(80)

Thus, when the thermal energy exceeds the average disorder
barrier height\/v_olrp, the pinning force is very small com-
pared to the friction force, and pinning just leads to a slight
renormalization of the bare friction coefficient. In this high-
temperature limit, which can be realized in high-temperature
superconductors, we observe that the self-consistent theory,
at not too high velocities, yields a pinning force that has a
linear velocity dependence, in contrast to the case of low
temperatures where we obtain from the self-consistent

The advanced Green'’s function is obtained from the retardefheory as apparent from, for example, Fig. 2, that the veloc-

by complex conjugation and interchange of Cartesian indi

ces:

(77)

The expression for the pinning force, E§4), reduces for
a single vortex to

Gh . (0)=[G, ()]*.

® dk R ik ’ ’
_ , V(t—t) =g (t,t)
Fp—'ﬁxdt f(zw)zkv(k)(an,k)e' v o),
(78)

ity dependence of the pinning force is sublinear.

C. Simulations

In order to ascertain the validity of the self-consistent
theory beyond the high-velocity regime, where perturbation
theory is valid, we perform numerical simulations of the
Langevin equation, Eq65). The pinning force is obtained
from Eq. (6), once the simulation result for the average ve-
locity as a function of the external force is determined. We
simulate the two-dimensional motion of a vortex in a region
of linear sizeL=20r,, and use periodic boundary condi-

The previous discussion of the high-velocity regime,tions. The disorder is generated on a grid consisting of
where lowest-order perturbation theory in the disorder is1024x 1024 points.
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FIG. 2. Pinning forcein units of v’r ;%) on a single vortex as FIG. 3. Pinning forcetin units of »5 ;) on a single vortex as

a function of velocity(in units of 7~ r; 2+ obtained from the @ function of velocity(in units of »~*r, %5/ The solid line rep-
self-consistent theory. The curves correspond to the different tenf€Sents the result obtained from the self-consistent theory, while the
peraturesT = 0.005,0.05,0.1,0.2,0.4,0(& units of vé’zlrp) where  dashed line represents the result of lowest order perturbation theory
. ,U.UO,U.1,U.£,U.4, ' . . _ 12, -1 _ 2.3 —1/

the uppermost curve corresponds t3=0.005, and m  inthe disorder {=0.0055"T," andm=0.17"r;vo ).
- —1y
—O.lnzrgvo vz,

. o . In the numerical calculations we shall always assume that

~ The disorder correlator is diagonal in the wave vectorsihe correlator of the pinning potential is the Gaussian func-

since averaged quantities are translationally invariant, tion, Eq. (9), with ranger, and strengthv,. In order to

simplify the numerical calculation, the self-consistent equa-

(V(k)V(k"))=v(K)L?8c, k-0, 81 tions for the self-energies and the Green’s functions, Egs.
and the real and imaginary parts of the disorder potential caff 2 Ed- (73), and Eq.(74), are brought to dimensionless
be generated independently according to form by mtro;:lucmg the following units for length, time, and

massr,, 7r/vy?, and »?r /vy,
\/V—o 2 We have solved the set of self-consistent equations nu-
ReV(k)= ——e " "q, (823  merically by iteration. In Fig. 2, the pinning force as a func-

tion of velocity is shown for different values of the tempera-
ture. We find that the pinning force has a nonmonotonic
D dependence as a function of velocity, and that the peak in the
7rpk /25 (82b) L . L .
' pinning force decreases rapidly with increasing temperature,
and develops into a plateau once the thermal energy is of the

whereo and § are normally distributed stochastic variables Order of the average barrier height. At the highest tempera-
with zero mean and unit standard deviation. The gradient ofure, the velocity dependence of the pinning force is seen in
the disorder potential at the grid points is obtained by emfig. 2 to approach the linear regime at low velocities in
ploying the finite difference scheme. The potential gradienficcordance with the analytical result obtained in the high-
at the vortex position is then obtained by interpolation of thetemperature limit, Eq(80). At high velocities, the pinning
values of the potential at the four nearest grid points. force is independent of the temperature as apparent from Fig.
The simulations show that the vortex follows a fairly nar- 2- In fact, the pinning force is inversely proportional to the
row channel through the potential landscape. In the absendéelocity at high velocities in agreement with the perturbation
of the Hall force, the vortex will traverse only a very limited theory result, Eq(70), as apparent from Fig. 3, where a
region of the generated potential due to the imposed periodi€omparison is made between the pinning force obtained from
boundary condition. To make better use of the generatetpwest-order perturbation theory and the numerically evalu-
potential, we therefore randomize the vortex position at equiated self-consistent result. The two results agree as expected
distant moments in time, and run the simulation for a shorfn the large velocity regime, whereas the perturbation theory
time without measuring the velocity, in order for the velocity fesult has an unphysical divergence at low velocities due to
to relax, before again starting to measure the velocity. In thighe neglect of fluctuations and a consequent absence of

way the number of generated potentials can be kept at @2mping by the fluctuation exponent in H@8).
minimum of 20. In order to check the validity of the self-consistent theory

beyond lowest-order perturbation theory, we have performed
numerical simulations. In Fig. 4, a comparison between the
self-consistent theory and a numerical simulation of the pin-
For any given average velocity of the lattice, the coupledning force as a function of velocity is presented. The agree-
equations of Green’s functions and self-energies may benent between the self-consistent theory and the simulation is
solved numerically by iteration: We start the iteration proce-good, except around the maximum value of the pinning
dure by first calculating the Green'’s functions for vanishingforce, where the simulation is found to yield a higher pinning
self-energies, corresponding to the absence of disorder, aridrce in comparison to the self-consistent theory. In this re-
the self-energies are then calculated from E@$). The pro-  gion the relative velocity fluctuations are large, and in fact
cedure is then iterated until convergence is reached. The pinhe self-consistent theory predicts that the relative velocity
ning force on a single vortex can then be evaluated numerifuctuations are diverging at zero velocity even at zero tem-
cally from Eq.(78). perature, as we discuss shortly. The self-consistent equations

ImV(k)=

D. Numerical results
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FIG. 4. Comparison of the pinning foré units of vy, 7) on FIG. 5. The valuesin units of vz~ r;“) of the expressions on

; ; e ; -1.-2_1/
a smgle vortex as a functhn of velocityn ur_uts_ of 7 “rp VOZ) .the two sides of the energy conservation relation, B%f), are
obtained from the self-consistent theory, solid line, and the numeri- . o . PR IRT
cal simulation, plus signsT(=0.1v22 -~ andm=0.17? 3v; shown as a function of the velocityn units of »~"r, v3?). The
’ AT T 7 ero dashed line and the plus symbols correspond to the left and right

; ; _ 172. -1 — 2.3 —1/ _
and their numerical solution, as well as the simulations, car?'des’ respectivelyl O'OSVOer andm=0.17°r v 9. The en

! G ) . 0
therefore be expected to be less accurate at low velocities.ergy conservation relation is fulfilled to within an accuracy of 1%.
The convergence of the iterative procedure can be monig,qq ingicating that fluctuations calculated from the self-
tored by checking that energy conservation is fulfilled. Theq,qistent theory are quantitatively correct. The velocity
energy _conservatlog rerl1at|on| |s.obtr;1|nhed by muItm:jIylng theyctuations approach at low average velocities their thermal
!_angevm ﬁqur?tlon Iy t 1€ ve Odc't%/ of the vrc]thdeZ.an dav_erag'valueT/ m. The relative velocity fluctuations diverge at zero
ing over the thermal noise and the quenched disorder: velocity even at zero temperature. This can be inferred from
.o : . . the energy conservation relation, €§4), and the sublinear
2 = — . . . . . ,- ! e
(% X))+ 7{06) = = (O VVOON +F-v+((x §1(>§'3 velocity dependence of the pinning force at low velocities,
) as, for example, apparent from Fig. 2. At intermediate aver-
The first term is proportional t6,((x?)), and vanishes since age velocities, the velocity fluctuations in the direction par-

averaged quantities are independent of time, as the externallel to the average velocitychosen along the axis), the
force_ is asgumed to be mdep_eno_lent of time. Th_e first term omyngitudinal velocity fluctuationg((x,—v)?)), are found to
the right side, the term originating from the disorder, van-pe |arger than the fluctuations perpendicular to the average

ishes for the same reason, since It can b? rewritten AFelocity, the transverse velocity fluctuatioy?)). The rea-
—{(V(x))). The energy conservation relation thereforeson behind this is that at not too high velocities, where the

1

becomesy=((x,)), force due to the disorder is strong compared to the friction
77<<(>.(t_V)2>>_<<)-(t‘§t>>:_V'Fp (84) 1.05 I T
or, in terms of the Green'’s functions, 1.04
—ind?tr Gl |~ +29Tatr Gy = —Vv-F,, (85 1.03
where tr denotes the trace with respect to the Cartesian indi- 1.02
ces. The energy conservation relation simply states that on
the average the work performed by the external and thermal 1.01
noise forces is dissipated due to friction. 1

In order to ascertain the convergence of the iteration pro-
cess, employed when solving the self-consistent equations,
we test how accurately the iterated solution satisfies the en- 5 6. Longitudinal and transverse velocity fluctuaticfiis

ergy conservation relation. In Fig. 5 the velocity dependencgits of 7~ 2r~*1,) as a function of the average velociip units of

; ; ; ; p
of the left and right sides of the energy conservation I‘E|atI0n,,771rr:2V(1)/2)_ The solid and dashed lines represent the results for

Eq. (85), is shown. After at the most 20 iterations, the energy,
conservation relation is satisfied by the iterated solution tci

within an accuracy of 1%. . . . consistent theory, respectively. The plus signs and crosses represent
texlrllaﬁiec((:e. \;L\évlet isshﬁﬂlle(r:gfrt])srgec)); ?n)g?(gltctcr)nceswtgz:?( ?Iiethveal\i/gig/the simulation results for the Iongitudinal and transverse /velocity

, : : _ 72, -1 _ 2.3 —1,
of the fluctuations predicted by the self-consistent theoryllﬁgjv?tlgcesgareSperw-e-lyT(_O'lvozrp and m=0.Ly7r,v ©).

. : ; . - X ge velocities the fluctuations approach their thermal
against direct simulations of the Langevin equation. In ordeg 4 e T/m, which for the parameters and units in question equal 1.
to check the accuracy of the velocity fluctuations calculatedh intermediate average velocities the longitudinal velocity fluctua-
within the self-consistent theory, we have performed simulations are larger than the transverse, due to the jerky motion of the
tions of the velocity fluctuations. In Fig. 6, the velocity fluc- particle along the preferred direction of the external force, before
tuations obtained from the self-consistent theory are comreaching the same value at high average velocities where the effect
pared to simulations. The agreement between the selbf the disorder simply acts as an additional contribution to the tem-
consistent theory and the numerical simulations is seen to hegerature.

he longitudinal(parallel to the external forae(((x,—v)?)), and
ransverse,{(y2)), velocity fluctuations obtained from the self-
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force, the motion of the particle is jerky since the particle 0.14
slowly makes it to the disorder potential tops, and subse- 0.12
quently are accelerated by the disorder potential. Since the 0.1
average motion of the particle is due to the external driving F )

force, the jerky motion and, thereby, the velocity fluctuations » 0.08
are largest in that preferred direction. At high average veloc- 0.06
ity, the longitudinal and transverse velocity fluctuations satu- 0.04
rate and are seen to become equal, due to the strong friction 0.02

force causing a steadier motion. In this connection we should
also mention that we have noticed from our numerical cal-
culations that the second term on the left side of @B4) is FIG. 7. Pinning forcein units of v, %) on a single vortex as
independent of the average velocignd disordey; as is also  a function of velocity(in units of ™ r, v obtained from the
apparent by comparing Figs. 5 and 6. This thermal fluctuaself-consistent theory for various strengths of the Hall force. The
tion contribution to the velocity fluctuations is therefore different curves correspond @/ »=0,0.2,0.4,0.6,0.8,1, where the
given by its zero-velocity value, and is according to EBfl)  uppermost curve corresponds t0=0 (m=0.17%r3v, " and T
specified by the equilibrium velocity fluctuations and there-:0-1V<1)/2r;l)-

fore determined by equipartition. The saturation value of the

velocity fluctuations can therefore be determined from thdarded Green’s function and neglect the fluctuation exponent.
energy conservation relation, E@4). For example, in the Since the free retarded Green’s function is antisymmetric in
case of a small vortex massi< nzrg/\/y—, we can use the the Cartesian indices, only diagonal elements make a contri-
high_vek)city expression for the pinning force, qu)' and bution to the pinning force. The diagonal elements of the free
obtain that the saturation value equalen+ v/8mr37?, a  retarded Green's function are identic@{*=DfY, and
result in good agreement with Fig. 6. At high average velocgiven by

ity, the velocity fluctuations saturate, and the effect of the

disorder simply acts as an additional contribution to the tem- Rxx__ -7
perature. Do = a(t)n2+az

1+

a ot at
—sin— —cos— | e~ M|,
7o m m
(90)

] ) . ) and we obtain for the pinning force, for vanishing mass
In this section the effect of a Hall force is considered, and 772r3/\/y—
p H

the previous analysis of the dynamics of a single vortex is
extended to include the Hall force:

E. Hall force

Vo
. . .A Fp=——2 NYREAL (91
MX, + 7%= ax X 2— VV(X,) + F+ & . (86) Am(n°+a)ryv

We shall use the self-consistent theory to calculate théVe observe that the pinning force is suppressed by the Hall

) 3 3 B . . . . . — _2
pinning force, the velocity fluctuations, and the Hall angle force in the high-velocity limitvs\/vo(7°+a®) ™" 2,

and the high-velocity regime therefore sets in at a lower

Fu a value in the presence of the Hall force.
0=arctalj—F =arctanﬂ, (87) At high temperature3 > \/vy/r , and moderate velocities
V- €

v<m\vel[ (7*+a?)r?], the Hall force has the opposite ef-

which can be expressed in terms of the effective frictionfect; i.e., it increas_es the pinning force, as aca_lcu_lation simi-
coefficient lar to the one leading to E¢80) shows that the pinning force
: ; 3
is (m< 772rp/\/ vg)
1. Analytical results

. , . - vo( 7+ a?)
The inverse of the free retarded Green’s function acquires F=——->7 =7 (92)

according to Eq(86) off-diagonal elements P 87777T2r,2)

. mo?+inw —iaw We _have four_1d by solving the self-consistent equgtio_ns nu-
Dri(w)= e ma?+inw) (88 merically at high temperaturg= 10\/v,/r, that the pinning

force is linear at low velocities and increases with increasing
and the free retarded Green'’s function is given by Hall force. The deviation from linear behavior in the pres-
ence of the Hall force starts at a lower velocity value in
accordance with the high-velocity regime starting at a lower
: value in the presence of the Hall force.

(89

R 1 Mw+17n la

“ (@ri0)[(Mo+in)?—a?]

—ia Mo +in
2. Numerical results

In the high-velocity regime> \/vo/ (7r?3), where lowest- For any given average velocity of the vortex, the pinning
order perturbation theory in the disorder is valid, we canforce can be calculated from the self-consistent theory. We

neglect the self-energies in the self-consistent expression fdrave numerically calculated the pinning force for various
the pinning force, Eq(78); i.e., we can insert the free re- strengths of the Hall force. In Fig. 7, the resulting pinning
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FIG. 8. Pinning force(in units of 10 *»5T,“) on a single

vortex as a function of velocity. Comparison of the simulation re- 1
sults and the results of the self-consistent and lowest-order pertur-

bation theory, Eq(91), for the case of no Hall forceu 0, and a

moderately strong Hall forcea=7% (m=0.17%r 1/2 and T FIG. 10. Dependence of the single vortex velocity fluctuations
=0.1v5r,*). The solid line represents the self-con5|stent result('n un|ts of 7 %r,%vg) on the average velocityin units of
and the crosses the simulation result, while the upper dash-dotted * /2) for a=7 and a=0 (T=0.1r§%r, and m

line represents the perturbation theory result, all for the ease =0. 177 r3ve 9. The solid and dashed lines represent the longitu-
=0. The dashed line and the plus symbols represent the selflinal and transverse velocity fluctuations, respectively, calculated
consistent and simulation results, while the lower dash-dotted lingising the self-consistent theory for the case 5, and the plus

represents the perturbation theory result, all for the ease;. symbols and crosses represent the corresponding simulation results.
The two dash-dotted lines represent the longitudinal and transverse

f functi f th locity is sh for diff tvelocity fluctuations, respectively, calculated using the self-
orce as a tunction of tn€ velocCity 1S Shown Tor difierent ., qqient theory in the absence of the Hall forae; 0, which

strengths of Fhe Hell force for a temperature Iower than the, o e compared to simulations in Fig. 6.
average barrier height,< \/v_olrp. The Hall force is seen to
reduce the pinning force in this temperature regime exceptompared to simulations, and the agreement is seen to be
of course, at low velocities. good. As apparent from Fig. 9, an increase in the temperature
In Fig. 8 we compare the pinning force obtained from theincreases the Hall angle at low velocities, because the effec-
self-consistent theory with the result of perturbation theorytive friction coefficient decreases with increasing tempera-
valid at high velocities, Eq91), and simulations. According ture, and this feature vanishes at high velocities. From Fig. 9
to Fig. 8, the reduction of the pinning force due to the Hallwe can also infer the following behavior of the Hall angle at
force predicted by the self-consistent and the perturbatiozero velocity: At low temperatures it is zero, since the de-
theory is in good agreement at high velocities. The pinningpendence of the pinning force at low velocities is sublinear.
forces obtained from the self-consistent theory and the simuAt a certain temperature, the Hall angle at zero velocity
lations are also in good agreement in the presence of a Hgllmps to a finite value, since the pinning force then depends
force, even at lower velocities, in fact in much better agreedinearly on the velocity, and saturates at high temperatures at
ment than in the absence of the Hall force, in accordancéhe disorder independent value.
with the fact that the Hall force suppresses the velocity fluc- We have also determined the influence of the Hall force
tuations, as we demonstrate shortly. on the velocity fluctuations as shown in Fig. 10. We observe
The Hall angle calculated from the self-consistent theorythat the Hall force at low velocities slightly increases the
approaches from below the disorder-independent valugansverse velocity fluctuations, and decreases the longitudi-
arctang/z) at high velocities, as shown in Fig. 9. In Fig. 9, nal fluctuations, whereas the longitudinal and transverse ve-
the Hall angle obtained from the self-consistent theory is alsdocity fluctuations are strongly suppressed by the Hall force
at higher velocities, in particular the longitudinal fluctua-
0.8 tions. The suppression of the velocity fluctuations is due to
' the blurring by the Hall force of the preferred direction of

0.7 motion due to the external force, resulting in a less jerky

0.6 motion. At high average velocity, the longitudinal and trans-
g 0.5 verse velocity fluctuations saturate and become equal be-

0.4 cause of the strong friction. As previously discussed in the

0.3 absence of the Hall force, the saturation value can be deter-

0.2 mined from the energy conservation relatipmhich takes

0.1 1 L the same form, E(85), as in the absence of the Hall force,

0.5 1 1.5 since the Hall force does not perform any wpind the
v high-velocity expression for the pinning force, E1),

FIG. 9. Hall angle as a function of velocity for a single vortex. Since our numerical results show that the second term on the
The curves represent the self-consistent results for the three tereft side of Eq.(84) is independent of the Hall force and
peraturesT=0,0.1,1(in units of v3r, %), where the uppermost Velocity (and disordex This observation tells us that the sup-
curve corresponds to the highest temperature The plus symbopression of the velocity fluctuations caused by the Hall force,
represent the simulation results for the temperatuTe according to the energy conservation relation, 84), is in
=0.1v5r,*. The parameter/ 7 is one andm=0.17%r v, correspondence with the suppression of the pinning force.
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We note frqm Fig. 10_ that the high-velocity regime sets in_at dk k- VK- e,(k)]?
lower velocities than in the absence of the Hall force. In Fig. Fo=— 5 kv(k) > > 5. (95
10, the velocity fluctuations calculated using the self- ) b=T.t (7K-Vv)“+[Ky(k)]

consistent theory are also compared to simulations, and th1%he maximum values, attained at the boundaries of the Bril-
agreement is seen 10 be good. I?uin zones, of the transverse and longitudinal eigenvalues

_We have ascertameql the convergence of the_ numericay.o specified by the compression and shear md€iuti cgg
iteration process by testing that the obtained solutions satis ndK.~c.+. The compression modulus is much areater than
the energy conservation relation. We find that the energy el P 9

conservation relation is fulfilled within an accuracy of 2% he shear moduluscy>Cee, in thin films and high-
o y o temperature superconductdrsThe order of magnitude of
except at the lowest velocities.

the first term in the denominator of E¢O5) is nvzrgz,
since the range of the impurity correlatorris, and at inter-
V. VORTEX LATTICE mediate velocitiesceer ,/ 7<v<Cyir,/7, only the trans-

After having gained confidence in the Hartree approxima—verse mode therefore contributes to the pinning force, and

tion studying the case of a single vortex, we consider in thig"® obtain
section the influence of pinning on a vortex lattice in the flux s
i i - dk [k-e(k)]
flow regime, where the lattice moves with a constant average Fo=_ J' kw(K) — (96)
velocity ((Ugy))=V, since the external force is assumed in- . (2m)? 7K-v
dependent of time. We consider a triangular Abrikosov vor- . o . ]
tex lattice, and treat the interaction between the vortices if he eigenvalues,(k) are periodic in reciprocal lattice, and
the harmonic approximation. The free retarded Green’s funcassuming short-range disordeg<a, the rest of the inte-

tion of the vortex lattice grand is slowly varying, and we obtain for the pinning force
1 dk  w(k)k? v
en(9)ey(q) E :__f ™ e
D§,= 93 P 2 k. a2V
qo % M+ i nw—Ky(q) (93 2) (2m)? nk-v 8 v

At very high velocitiesv>cq;r,/ 5, the eigenvalues of the
dynamic matrix in Eq(95) can be neglected compared to the
3(/elocity—dependent term in the denominator, and the longitu-

: : o dinal and transverse parts of the free retarded Green'’s func-
sum in E_q.(93) is over the two r_nodesb—1,2, correspond- tion give equal contributions to the pinning force, and we
ing to eigenvectors,(q) and eigenvalue¥,(q), respec- obtain

tively. The eigenvalues and eigenvectors of the dynamic ma-

trix are periodic with respect to translations by reciprocal

lattice vectors. F=—— 9
Since the lattice distortions of interest are of small wave- . 47-rrg77v2

length compared to the lattice constant, the dynamic matrix_ o ) ) o

of the vortex lattice is specified by the continuum theory of This re.sult is identical to the_expres§|on for th.e pinning force

elastic media, i.e., through the compression modalysnd 0N @ single vortex, Eq(70), in the high-velocity regime/

the shear modulusgg according té° >\/§/_E)|77rp), since the influence of the elastic interaction is

negligible.

is obtained by diagonalizing the dynamic matrix, and invert-
ing the inverse free retarded Green'’s function specified b
Eq. (14) (for the moment we neglect the Hall fonceThe

oy, (98)

_¢o 1105+ CeeQi (C11—Cee)UxAy

2 > |, (99 B. Numerical results
B\ (C11—Cee)dx0y  Coelx T C11ly

Dy
In this section we consider the pinning force on the vortex
whereq belongs to the first Brillouin zoneB is the magni- lattice obtained from the self-consistent theory. For any
tude of the external magnetic field, ari}/B is therefore  given average velocity of the lattice, the coupled equations
equal to the area? of the unit cell of the vortex lattice. In 0f Green’s functions and self-energies, Esp) and Eq.(56),
the continuum limit we obtain a longitudinal branch may be solved numerically by iteration. In order to simplify
e(q)-§=1, with corresponding eigenvaluesK,(q) the numerical calculation, the self-consistent equations are
=c,,a%g?, and a transverse branel{q)-§=0, with corre-  brought to dimensionless form by introducing the following
sponding eigenvalueg,(q) = Cea2g>. units for length, time, and masa; 7a% v3?, and?a*/ v3?.
Starting by neglecting the self-energies, we obtain numeri-
cally the response and correlation functions. From (©4)
we can then determine the pinning force as a function of the
At high velocities v> \/V—O/(ﬂr;), where lowest-order velocity. We have calculated the velocity dependence of the
perturbation theory in the disorder is valid, we can neglecpinning force for vortex lattices of sizes>x44, 8x8, and
the self-energies in the self-consistent expression for the pirt6x 16 using the self-consistent theory, and the results are
ning force, Eq.(64); i.e., we can insert the free retarded shown in Fig. 11. The difference between the results ob-
Green’s function for the lattice and, assumwg T/(7r ), tained for the &8 and the 1& 16 lattice is small, and we
neglect the fluctuation exponent, and obtain for the pinningconclude that the pinning force is fairly insensitive to the
force size of the lattice.

A. High-velocity limit
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FIG. 11. Pinning force(in units of vi%a~2) as a function of FIG. 13. Pinning forcdin units of v3%a~2) on a vortex lattice

velocity (in units of 7~ 1v}%a~2) obtained from the self-consistent of size 16<16 as a function of velocityin units of 7~ *v§%a™?2)
theory for three different lattice sizes. The stars correspond to @btained from the self-consistent theory for two different tempera-
4x4 lattice, and the two curves correspond ta88and 16<16  tures. The elastic constants are givendgya®=100v5? andcy,a’
lattices, respectively. The mass and temperature are chosen to bel0*»5?, and r,=0.1a, and m=1.0x10 *»?a’vy 2. The
zero, the elastic constants are given dya®=100v3? and c,;a° dashed line corresponds td=0, and the solid line toT
=10*»%?2, and the range of the disorder correlator is chosen to be=0.5v5%a .

r,=0.1a.

ot —i9,GX(R,t;R, 1)+ 2TGR(R,t;R,t") |1 —¢
In Fig. 12 we compare the pinning force as a function of
the velocity for lattices of different stiffnesses, and we find =-Vv-Fp. (99)
that the pinning force decreases with increasing stiffness of 41,4 convergence of the iteration procedure, employed

the lattice. Generally, the interaction between the vorticeg,an solving the self-consistent equations, has been checked

Iowe_rs the pinning force, since the neighbor_ing vor_tices in_aDy numerically calculating the terms in E¢99). We find
moving lattice drag a vortex over the potential barriers. This; ot the right and left sides of the energy conservation rela-

can be inferred from the self-consistent theory by comparinqion differ by no more than a few percent after 20 iterations.
the pinning forces depicted in Figs. 2 and 14, and in pertur-

bation theory by noting the extra term originating from the
elastic interaction in the denominator of the expression for
the pinning force, Eq(95). We now consider the influence of a Hall force on the
When the temperature is increased, the pinning force dedynamics of a vortex lattice. The motion of the vortex lattice,
creases, except at very high velocity, as apparent from Figvith its associated magnetic field, induces an average electric
13. This feature is common to the single-vortex case, andield. The relationship between the average vortex velocity
simply reflects that thermal noise helps a vortex over theand the induced electric fieldE=vXB, and the expression
potential barriers. for the Lorentz force, yields for the resistivity tensor of a
The convergence of the iterative procedure is monitoreguperconducting film
by checking that energy conservation is fulfilled. The energy
conservation relation for a vortex lattice is obtained as in boB
Sec. IVE 2, and since the term originating from the har- 2. 2
monic interaction between the vortices disappears due to the
symmetry property of the dynamic matrix, E§), we obtain  where the effective friction coefficienjq; was introduced in
for a vortex lattice the energy conservation relation Eq. (8), and has previously only been determined to lowest
order in the disordet’ According to Eq(100), the following

C. Hall force

(100

Meft & )
T 77eff’

2 2
Mest T @

6 T - T T relationship between the transvergg,, and the longitudi-
5 7 Tl nal resistivitiesp,,, is obtained:
/II \\\\\\\ = 2
F, AT i e (102
sk T Pl en
Y If the Hall force is smalla< 7.4, the scaling law
1 1 1 1 1 a
0 10 20 30 40 50 Pxy= pixB—% (102
v

FIG. 12. Pinning forcdin units of v%a~2) on a vortex lattice is seen to be obeyed. This scaling law is valid for all veloci-
of size 16<16 as a function of velocityin units of 7 1»¥%a-2)  ties of the vortex, provided the Hall force is small compared
obtained from the self-consistent theory for the compression moduf0 the friction force,a< 7. We note that the scaling law is
lus given by cy,;2°=10"¢ and three different shear moduli: also valid at small vortex velocities for arbitrary values of
cesa®=50v52 (upper dashed linecgsa®= 10032 (solid line), and  the Hall force, if the effective friction coefficient diverges at
Ccesa®=200v3 (lower dashed line The mass and temperature are small velocities. This occurs if the pinning force decreases
both chosen to be zero, ang=0.1a. slower than linearly in the vortex velocity. This is indeed the
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larger than for an independent vortex, except at high veloci-

ties where they saturate at the same value. A similar behavior
of the Hall angle at zero velocity as observed for a single

vortex in Sec. IV E 2 pertains to a vortex lattice.

VI. DYNAMIC MELTING

In this section we consider the influence of quenched dis-
order on the dynamic melting of a vortex lattice. This non-
50 equilibrium  phase transiton has been studied

experimentall§ as well as through numerical simulation and

FIG. 14. Pinning forcein units of vJ?%a~2) on a vortex lattice a phenomenological theory and perturbation thégf?
of size 16< 16 as a function of velocityin units of 7~ 'v3?%a~?) The notion of dynamic melting refers to the melting of a
obtained from the self-consistent theory. The solid and dashed linesioving vortex lattice where in addition to the thermal fluc-
correspond tax=0 anda= 7, respectively. The temperature and tuations, fluctuations in vortex positions are induced by the
mass are both chosen to be zero, apet0.1a. The elastic con-  disorder. A temperature-dependent critical velocity distin-
stants are given by;ja®= 105 andcga®= 100v52. Inset: pin-  guishes a transition between a phase where the vortices form
ning force as a function of velocity for=0 anda=17, respec- 3 moving lattice, the solid phase, and a vortex liquid phase.
tively. Here cea®=300r3” and the other parameters are  Before solving the self-consistent equations by numerical
unchanged. iteration in order to obtain the phase diagram, we consider

the heuristic argument for determining the phase diagram for
case, according to the self-consistent theory, at temperatur@gnamic melting of a vortex lattice presented in Ref. 6.
lower than the average barrier heigfit</vo/r,, as indi-  There, the disorder-induced fluctuations were estimated by
cated by the low-velocity behavior of the pinning force in considering the correlation function
Fig. 14. This behavior of the pinning force is also obtained
for noninteracting vortices as apparent from Fig. 7. Kw,(x,t)=<<ffyp)(x,t)fg’,)(0,0))> (103

In Fig. 14 is shown the pinning force obtained from the o )
self-consistent theory as a function of velocity for the case off the pinning force density
zero temperature. As expected there is no influence of the
Hall force on the pinning force at low velocities, but we find fP(x,t)=— 2 S(X—R—Ug)VV(X—Vt). (104
a suppression at intermediate velocities, and at very high R

velocitiesv>cy,a/7 we recover the high-velocity limit of - negjecting the interdependence of the fluctuations of the

the single vortex result, i.e., ECR1). By comparison of Figs. vortex positions and the fluctuations in the disorder potential,
7 and 14, we find that the Hall force has a much weakegng hinning force correlation function factorizes:

influence at intermediate velocities on the pinning of an in-
teracting vortex lattice than on a system of noninteracting

e
00 W0 o b0 W ST

=}
—
o
&)
S
@
o
S
o

vortices. Furthermore, the influence of the Hall force on the Kaar (X,)= 2 ((8(x—R—Ugy) 8(R"—Ugr0)))
pinning force is more pronounced for a stiff than a soft lat- RR
tice as seen from the inset in Fig. 14. In Fig. 15 the depen- XV Vo {{V(X—=Vt)V(0))). (105

dence of the Hall angle on the velocity is presented for vari- ) ) ) )
ous stiffnesses of the vortex lattice; the stiffest lattice has théntroducing the Fourier transformA(is the area of the filin
greatest Hall angle. Since the pinning force is reduced by the 1) (R U= R — )

interaction between the vortices, the Hall angle for a lattice is Crre(@:t)=A"((e R Ro))) (106

of the vortex density-density correlation function

Crr/(X%,1) =((8(Xx—R—Ug) 8(R"—Ur1())), (107
and employing the translational invariance yields

0.8
0.7
0.6
0.5
0.4

0.3 : 1 1 1 |
0 10 20 30 40 50 wheren,_ is the density of vortices. In the fluidlike phase the

v
motion of different vortices is “incoherent” and the off-

FIG. 15. Hall angle obtained from the self-consistent theory fordiagonal term&fk+R’ can be neglected, yielding
a vortex lattice of size 1816 as a function of velocityin units of

7 *vg?a™1) for a moderately strong Hall force;= 7. The com- Koo (X, 1)=—1_8(X)V V , v(Vt). (109
pression modulus is given ln;;a%=10"132, and the three curves v

correspond to decreasing values of the shear modulyg® In analogy with the noise correlator, the effect of disorder-
=200v32, 100032, and 5032, The mass and temperature are both induced fluctuations is then represented by a “shaking tem-
chosen to be zero, ang=0.1a. perature”

Kaw (61 ==1 2 ((8(X—R—Ug—R'~Ugro)))
RR’

XV V0 v(X— V1), (108
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where in the last equality it is assumed that the pinning force= 3| & 00165 ) ks
is small compared to the friction force, i.epy=F. An ef- 25 £ o016 . R %
fective temperature is then obtained by adding the “shaking 2} 1 —— o o i-
temperature” to the temperatur€ =T+ Tg,, and accord- 15F % | & -
ing to Eq. (110 the effective temperature decreases with b= oo " N
increasing external force, i.e., with increasing average veloc- v x mE'E'
. . . . 0.5 « X JE— ~
ity of the vortices. As the external force is increased the fluid | o e a8
thus freezes into a lattice. The value of the external force for 0.005 0.0055 006 0.0065 0.007

which the moving lattice melts, the transition for€e, is in

this “shaking” theory defined as the value for which the  FiG, 16. Phase diagram for the dynamic melting transition. The
effective temperature equals the melting temperalysein  melting curve separates the two phases—for values of the external

the absence of disorder, force larger than the transition force the moving vortices form a
solid and for smaller values a liquid. The dots in the boxes represent
Ter(F=F)=Tn, (11D points on the melting curve obtained from the self-consistent theory

and has therefore in the shaking theory the temperature dé;;‘,ing a vortex lattice of size>88, while the three stars represent
pendence the simulation results of Ref. 6. The crosses represent the lowest-

order perturbation theory results. The dashed line is the curve
F(T)=1.77x10%(0.007T), the melting curve predicted by the
FuT)= L, (112 shaking theory. Upper inset: relationship between temperature and
4\/Er§(Tm— T) the inverse transition force obtained from the self-consistent theory,
close to the melting temperature, for the particular value of the
for temperatures below the melting temperature of the idealindemann parametey, =0.124, for which the curve intersects the
lattice. We note that the transition force for strong enoughyertical axis aff,,=0.00701. The set of points calculated from the
disorder exceeds the critical force for which the lattice isself-consistent theoryplus sign$ coincides with a straight line in
pinnedF,>F .~ vé’zlr2 . excellent agreement with the prediction for the critical exponent by
We now describe the calculation within the self-consistenthe shaking theory being 1. Lower inset: relative displacement fluc-
theory of the physical quantities of interest for dynamic melt-tuations as a function of velocity. The dots to the left are calculated
ing. The conventional way of determining a melting transi-using the self-consistent theory and the dots to the right using
tion is to use the Lindemann criterion, which states that thdowest-order perturbation theoffor the temperaturd =0.0065).
lattice melts when the displacement fluctuations reach a criti-
cal value(u?)=c2a?, wherec, is the Lindemann parameter, quenched disorder appears explicitly throdfhand implic-
which is typically in the interval ranging from 0.1 to 0.2, and itly through =® and 3* in the retarded and advanced re-
a? is the area of the unit cell of the vortex lattice. In two SPonse functions. Furthermore, the self-energies depend self-
dimensions the position fluctuations of a vortex diverge evergonsistently on the response and correlation functions. We
for a clean system, and the Lindemann criterion implies thapave calculated numerically the Green'’s functions and self-
a two-dimensional vortex lattice is always unstable agains€nergies and thereby the vortex fluctuations for a vortex lat-
thermal fluctuations. However, a quasi-long-range translatice of size 8<8, and evaluated the pinning force from Eq.
tional order persists up to a certain melting temperattifes (64).
a criterion for the loss of long-range translational order a We determine the phase diagram for dynamic melting of

modified Lindemann criterion involving the relative vortex the vortex lattice by calculating the relative displacement
fluctuations fluctuations for a set of velocities, and interpolate to find the

transition velocityv,, i.e., the value of the velocity at which
([u(R+ag,t)—u(R,t)]%)=2c?a?, (113 the fluctuations fulfill the modified Lindemann criteridtne

) o ] determination of the Lindemann parameter is discussed
whereag IS a primitive lattice vector, has successfully beengpqrily). An example of such a set of velocities is presented
employed2,2 and its validity verified within a variational i, the lower inset in Fig. 16, where the relative displacement
trea_tmenlz. The relative displacement fluctuations of the fctyations as a function of velocity are shown. The magni-
vortices are specified in terms of the correlation functiony,qe of the transition force is determined by the averaged
according to equation of motion

_ 2\ _ i K _ K
(uR+ 20,0 = W(RO) =21 G 00 -G (@0 e et Fo(ve) (119

where the translation invariance of the Green’s functions haand is then obtained by using the numerically calculated pin-
been exploited. The correlation function is determined by thening force. Repeating the calculation of the transition force
Dyson equation, Eq.(73), where the influence of the for various temperatures determines the melting curve, i.e.,
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the temperature dependence of the transition foFGET), liquid phase—i.e., freezing of the vortex liquid was
separating two phases in tRd plane: a high-velocity phase considered—the melting curve we obtained from the self-
where the vortices form a moving solid when the externalconsistent theory is calculated in the solid phase; i.e., we
force exceeds the transition forceé>F,(T), and a liquid consider melting of the moving lattice. Furthermore, the
phase for forces less than the transition force. melting of the vortex lattice was in the simulation indicated
In order to be able to compare the results of the selfby an abrupt increase in the structural disoftiget another

consistent theory to the simulation results, we use the sammelting criterion, and the agreement of the self-consistent
parameters as input to the self-consistent theory as used theory with the simulation data therefore further validates the
the literaturé® There, the melting temperature in the absenceuse of the modified Lindemann criterion.

of disorder is given byT,,=0.007 [the unit of energy per As apparent from the upper inset in Fig. 16, the critical
unit length is taken to be 24,/47\)?] as obtained by simu- exponent obtained from the self-consistent theory, 1.0, is in
lations of clean systenfs, and assumed equal to the excellent agreement with the prediction of the shaking

Kosterlitz-Thouless temperatdfe® theory, where the critical exponent equals 1. Furthermore,
5 we find that the self-consistent theory vyields the value
_ Ceel 1.65x 10" 4 for the magnitude of the slop&,, which is in
KT=— - (116) : 3y_
Aar good agreement with the valueyy/(4y27ry)=1.77

The shear modus i therfoe detemined 0 have e vaifg ¢ BeCled i shecng eor, epreseted b e
Cgs=0.088(asa is taken as the unit of lengthThe range of '

the vortex interaction. was approximately equal to the lat- appropriateness of characterizing the disorder induced fluc-

tice spacin iving for the compression modultls tuations effectively by a temperature.
P %o, gVINg P It is of interest to compare the melting curves obtained

from the self-consistent theory and perturbation theory. Ex-

2
c11=16L2C66~—~50c56:4.4. (1170  panding the Keldysh ‘component of the Dyson equation, Eq.
ag (55), to lowest order in the disorder we obtain

The range and strength of the disorder correlator in the SimU-GK(l):DR K _2i »TYDA —2i nkaTDR (SRWPR
lations are in the chosen units,=0.2 and v, b a0 > o 7T)Dg =21 ke TDgu (X g0 Daa

=1.42x10°5, and since the simulations are done for an +D5, 205 DE, (119
overdamped system, the vortex mass in the self-consistent )
theory should be set to zero. where3 R 3AM) and3 () are the lowest-order approxi-

As described above, our numerical results for the re|ativénati0ns of the Self—energieS, i.e., calculated to first order in
displacement fluctuations can be used to obtain the dynamito- The relative vortex displacement fluctuations, Edl4),
phase diagram once the Lindemann parameter is determineggn then be obtained in perturbation theory from 8d.9).

In order to do so we calculate “melting” curves using the In Fig. 16 are shown the melting curve predicted by pertur-
self-consistent theory for a set of different values of the Lin-bation theory, i.e., where we for the transition velocity inter-
demann parameter. We find that these curves have the sariélation use the relative vortex fluctuations obtained from
shape, close to the melting temperature, as the melting cunierturbation theory, an example of which is shown in the

obtained from the shaking theory, Ed.12), lower inset. As to be expected, the perturbation theory result
is in good agreement with the self-consistent theory, and the

C, shaking theory, at high velocities. However, we observe

T=C;— F (118 from Fig. 16 that the melting curve obtained from lowest-

order perturbation theory deviates markedly at intermediate
The curve which intersects at the melting temperaflitfe  velocities from the prediction of the nonperturbative self-
=0.007, the one depicted in the upper inset in Fig. 16, i.e.consistent theory, and thereby from the shaking theory,
the one for whichC, is closest to the value 0.007, is then which is known to account well for the measured melting
chosen, determining the Lindemann parameter to be given byurve (see Hellerqviset al?).
the valuec, =0.124. The shaking theory is seen to be in remarkable good
Having determined the Lindemann parameter, we can deagreement with the self-consistent theory for the parameter
termine the melting curve, and the corresponding phase diaralues considered above. We have investigated whether this
gram obtained from the self-consistent theory is shown irfeature persists for stronger disorder. As apparent from Fig.
Fig. 16. The simulation resuftare also presented, as well as 17, there is a more pronounced difference between the shak-
the melting curve obtained from the shaking theory. We noténg theory and the self-consistent theory at stronger disorder.
the agreement of the simulation with the self-consisteniVhereas the deviation between the self-consistent and shak-
theory, as well as with the shaking theory, although theing theory for the previous parameter values typically is 5%,
simulation data are not in the large velocity regime and then the case of a fivefold stronger disordgy=7.1x10"°, it
shaking argument is therefore retpriori valid. is more than 15%.
In view of the good agreement between the self-consistent
theory, the shaking theory, and the simulation, and the fact
that we only have one fitting parameter at our disposal, the
melting temperature in the absence of disorder, it is of inter- We have studied the influence of pinning on vortex dy-
est to recall that while the melting curve obtained from thenamics in the flux flow regime. A self-consistent theory for
shaking theory was based on an argument only valid in théhe vortex correlation and response functions was con-

VIl. CONCLUSION
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lowest-order perturbation theory. The suppression of the pin-
» - ning force was caused by the Hall force through its reduction
of the response function, while the effect of fluctuations
/ through the fluctuation exponent at not too high temperatures
4 could be neglected. The situation at high temperatures was
— - - the opposite, since in that case the thermal fluctuations were
of importance, and the Hall force then increased the pinning
I | force because it suppressed the fluctuation exponent.
0.006 0.0065 0.007 We also studied a vortex lattice treating the interaction
T between the vortices in the harmonic approximation. The
FIG. 17. Phase diagram for the dynamic melting transition forPNNINY force on the Vor_tex_ lattice was found _to be reduc_ed
the disorder strengthyg=7.1x10 5. The plus signs represent by the interaction. The .pmnmg fqrce asa f.L!nCtlon of velacity
points on the melting curve obtained from the self-consistent theor;Q'Splayed a p!ateau at |nt§rmed|ate_ yeIOC|tle§, bgfore eventu-
for a vortex lattice of size 88, while the dashed curve is the curve ally approaching at very high velocities the pinning force on

F.(T)=8.85<10%/(0.007-T), the melting curve predicted by the @ Single vortex. Analytical results for the pinning force were
shaking theory. obtained in different velocity regimes depending on the mag-

nitude of the compression modulus of the vortex lattice. Fur-

structed, allowing a nonperturbative treatment of the disor:thermore' we mcl_ud(_ad the Hall force and showed that its
fluence on the pinning force was much weaker on a vortex

der. The validity of the self-consistent theory was establishe ttice th inal ;
by comparison with numerical simulations of the Langevin atiice than on a singie vortex. .
We developed a self-consistent theory of the dynamic

equation. . o : .
The self-consistent theory was first applied to a singlemfEItIng transition of a vortex Iattlce_, enabling us to deter-
vortex, appropriate for low magnetic fields where the vortj-Mne numerically the melting curve directly from the dynam-

ces are so widely separated that the interaction between thelffp of the vortices. The presented self-consistent theory cor-

can be neglected. The result for the pinning force was Comr_oborated the phase diagram obtained from the

pared to lowest-order perturbation theory and good agreé:ghenomenologlcal shaking theory far better than lowest-

ment was found at high velocities, whereas perturbatior?rder perturbation theory. The melting curve obtained from

theory failed to capture the nonmonotonic behavior at lowt!€ Self-consistent theory was found to be in good quantita-

velocities, a feature captured by the self-consistent theor)}.'ve agreement with simulations and experimental data.
The influence of the Hall force on the pinning force on a
single vortex was then considered using the self-consistent
theory. The Hall force was observed to suppress the pinning It is a pleasure to acknowledge helpful discussions with
force, an effect also confirmed by our simulations. The supDr. Johannes Miers. This work was supported by the
pression of the pinning force was at high velocities shown tcSwedish Natural Research Council through Contract Nos.
be in agreement with the analytical result obtained fromF-AA/FU 10199-314(S.G) and F-AA/FU 10199-313J.R).
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