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Superconducting ‘‘metals’’ and ‘‘insulators’’
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We propose a characterization of zero-temperature phases in disordered superconductors on the basis of the
nature of quasiparticle transport. In three-dimensional systems, there are two distinct phases in close analogy
to the distinction between normal metals and insulators: the superconducting ‘‘metal’’ with delocalized qua-
siparticle excitations and the superconducting ‘‘insulator’’ with localized quasiparticles. We describe experi-
mental realizations of either phase, and study their general properties theoretically. We suggest experiments
where it should be possible to tune from one superconducting phase to the other, thereby probing a novel
‘‘metal-insulator’’ transitioninsidea superconductor. We point out various implications of our results for the
phase transitions where the superconductor is destroyed at zero temperature to form either a normal metal or
a normal insulator.
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I. INTRODUCTION

While Cooper pairing in a superconductor is usually
sociated with a gap in the energy spectrum, it is quite w
known that the gap is by no means indispensable. Ind
there are a number of situations in which superconducti
occurs with no gap in the quasiparticle excitation spectru
This possibility was discussed in pioneering work by Ab
kosov and Gorkov1 for s-wave superconductors in the pre
ence of magnetic impurities. Another interesting instance
provided by type-IIs-wave superconductors in strong ma
netic fields close to, but smaller than,Hc2. Yet another ex-
ample of gapless superconductivity, of much current inter
is the dx22y2 superconductor; thed-wave characteristics o
the pairing is reflected in four nodes in the gap functi
along which gapless quasiparticle excitations result. In
cases, the presence of low-energy quasiparticle states h
profound effect on the low-temperature thermodynamic a
transport properties of the superconductor.

The effect of static disorder introduced by frozen impu
ties in such a gapless superconductor raises a numbe
fundamental questions. The low-energy quasiparticles ca
ther be delocalized and free to move through the sample
can be localized by the disorder. These two possibilities c
respond to two distinct superconducting phases that are
tinguished by the nature of quasiparticle transport. This d
tinction has a direct analogy in the physics of norm
~nonsuperconducting! systems where again there are tw
possible phases distinguished by the nature of transport—
metal with diffusive transport at the longest length scales
the insulator characterized by the absence of diffusion.
cent work2–4 has addressed the possible existence and p
erties of these superconducting phases in the context of
dx22y2 superconductors. In particular, it was shown3 that
quantum interference effects destabilize the superconduc
phase with delocalized quasiparticles in two dimensions.
stead, the quasiparticle excitations in a two-dimensional
perconductor are generically always localized5. In three di-
PRB 610163-1829/2000/61~10!/6966~16!/$15.00
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mensions, however, both kinds of superconducting pha
are stable.

It is clear that the issues raised above are germane to
properties of all superconducting systems. Consider, for
stance, the case of dirty type-IIs-wave superconductors in
strong magnetic fields. For fields aboveHc1, and in the ab-
sence of impurities, such a superconductor exists in the A
kosov vortex lattice phase. The quasiparticle excitation sp
trum in the presence of a single isolated vortex~relevant
when the field is just overHc1) was shown by Caroli, de
Gennes, and Matricon6 to consist, at low energies, of a set
discrete energy levels corresponding to states bound to
core of the vortex. The lowest lying excited state is separa
from the ground state by an energy gap that is much sma
than the bulk gap, but is nevertheless nonvanishing. Imp
ties alter this density of states, and could potentially close
~mini!gap. Furthermore, the quasiparticle states are no lon
extended even along the direction of the vortex line due
the strong effects of localization by the disorder in o
dimension.7,3,4 Impurities also destroy the translational ord
of the Abrikosov vortex lattice, pinning the vortices into
glassy phase. When many vortices are present, the quas
ticles can tunnel from the core of one vortex to the other. T
amplitude to tunnel depends on the overlap of the wave fu
tions of the core states corresponding to the individual v
tices. This in turn is determined by the density and spa
configuration of the vortices. At low fields, the tunneling
insignificant, and the quasiparticle states are localized.

With increasing field, however, the density of vortice
and hence the tunneling, increases. The nature of the qu
particle states—i.e., whether they are delocalized
localized—is determined by the interplay between tunnel
and the disorder. One can envision two scenarios for w
happens as the field is increased towardHc2 at T50. One
possibility is that the quasiparticle states remain localized
the way up toHc2. We suggest that this is the case if th
nonsuperconducting ground state obtained forH.Hc2 is a
localized insulator. A second possibility is that the quasip
6966 ©2000 The American Physical Society
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ticle states undergo a delocalization transition at some fi
Hc4,Hc2 which therefore precedes the destruction of sup
conductivity. We suggest that this happens if the grou
state atH.Hc2 is a normal metal.

Similar considerations apply as well to the situation wh
the superconductivity is destroyed at zero temperature
zero magnetic field, say, by increasing the amount of im
rity scattering. If the transition is to a normal metal, it
likely to be from a superconducting phase with delocaliz
quasiparticle excitations. On the other hand, far from
transition in the superconducting phase, the quasipar
states at the Fermi energy, if any, will be strongly localize
We expect therefore that a delocalization phase transi
from this phase to the superconductor with extended qu
particle states precedes the ultimate transition from the
perconductor to the normal metal. Again, if the destruct
of superconductivity leads to an insulating phase, it is natu
to expect that the transition is directly from the superco
ductor with localized quasiparticle excitations.

Thus the two kinds of superconducting phases, dis
guished by the nature of quasiparticle transport, are both
alizable in a variety of situations. Despite the analogies w
normal metals and insulators, as pointed out in Ref. 3,
problem of quasiparticle transport in a dirty superconduc
is conceptually very different from the corresponding pro
lem in a normal metal. This is because, unlike in a norm
metal, the charge of the quasiparticles in a superconduct
not conserved, and hence cannot be transported through
fusion. However, theenergy of the quasiparticles is con
served, and in principle the energy density could diffuse
addition, in a singlet superconductor~in the absence of spin
orbit scattering! the spin of the quasiparticles is a good qua
tum number and is conserved. Thus the quasiparticle
density could also diffuse in the superconductor. We m
therefore characterize the two distinct kinds of supercond
ors by means of their energy~and spin! transport properties
The phase with delocalized quasiparticle excitations has
fusive transport of energy~though not of charge! at the long-
est length scales. It is hence appropriate to call it a ‘‘sup
conducting thermal metal.’’ In cases where the quasipart
spin is conserved, this phase also has spin diffusion at
longest length scales. On the other hand, in the phase
localized quasiparticle excitations, there is no diffusion
energy or spin at the longest length scales. Hence su
phase may be called a ‘‘superconducting thermal insulato

For the sake of concreteness, we focus for most of
paper on the properties of dirty type-II superconductors
strong magnetic fields. We discuss the possible phase
grams, and analyze the properties of the two superconduc
phases. This is first done in a BCS model of noninteract
quasiparticles, and assuming spin rotational invariance
striking contrast to normal~non-superconducting! systems,
quantum interference effects lead to singular correction
the quasiparticle density of states in the superconductor.4 The
density of states at the Fermi energy is nonzero in the su
conducting ‘‘metal’’ phase, but has aAE cusp as a function
of energyE ~measured from the Fermi energy!. The super-
conducting ‘‘insulator’’ phase, on the other hand, has a v
ishing density of states at the Fermi energy. We will prov
supporting numerical evidence for this result in agreem
with earlier analytical calculations.4 Interactions between th
ld
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quasiparticles could potentially modify the properties of
ther phase in important ways. These are analyzed next. In
‘‘metal’’ phase, we show the existence of effects analogo
to the Altshuler-Aronov singularities in a normal metal d
to the interplay of diffusion and interactions. Interaction e
fects are more crucial in the ‘‘insulator’’—we provide simp
arguments showing that arbitrarily weak repulsive inter
tions lead to the formation of free paramagnetic momen
The ultimate fate of the ‘‘insulator’’ in the presence of the
free moments is a complicated problem, and we will n
address it here.~Weak attractive interactions, however, a
pear innocuous!. We then conclude by discussing the ma
implications of this paper for experiments on various sup
conducting systems.

II. MODELS

In this section, we will introduce models appropriate
describe the physics of the quasiparticles in a dirty superc
ductor in the pinned vortex phase. We begin with a gene
BCS quasiparticle Hamiltonian:

H05E
x
cs

†~x!S @2 i\¹W 2~e/c!AW ~x!#2

2m
2EF1V~x! D cs~x!

1c↑
†~x!D~x!c↓

†~x!1c↓~x!D* ~x!c↑~x!. ~1!

Herem is the mass of the quasiparticles andEF is the Fermi
energy. The functionV(x) is a random potential due to im
purities that scatter the quasiparticles. The physical magn
field is introduced through the vector potentialAW . In the
pinned vortex phase of a dirty superconductor, the gap fu
tion D(x) may be considered a random complex function
the positionx due to the random positions of the vortice
Both the vector potential and the complex gap function bre
time-reversal symmetry. As the phase ofD(x) winds by 2p
on encircling a vortex, the corresponding term in the Ham
tonian that breaks time-reversal symmetry is of order
zero-field gapD0.

The spinful quasiparticles experience a shift in energy d
to Zeeman splitting@not included in the Hamiltonian Eq
~1!#. The largest field that we consider,Hc2, is of order
(hc/e)/jo

2 , where jo is the coherence length, making th
associated Zeeman energyEzm of order \2/mjo

2 . As j0 is
related toD0 by D0;\vF /j0, we have

Ezm

D0
;

\

pFj0
;1023. ~2!

Here pF5mvF is the Fermi momentum. The last estima
uses the fact that the coherence length is typically a
thousand times larger than the Fermi wavelength in conv
tional low-Tc superconductors. Thus the Zeeman energy
negligible compared to the~zero-field! gap, and we will ig-
nore it for most of our discussion. We will also, for the mo
part, assume the absence of any strong spin-orbit scatte
The system is then spin rotational invariant. The Hamilton
above also describes noninteracting quasiparticles. Inte
tion effects are potentially quite important, and will be di
cussed at some length later on in the paper.

It will often be convenient to think in terms of a lattic
version of the Hamiltonian Eq.~1!:
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H0L5(
i j

t i j (
a

cia
† cj a1~D i j ci↑

† cj↓
† 1H.c.!. ~3!

Hermiticity implies the conditiont i j 5t j i* , and spin rotation
invariance requiresD i j 5D j i . Note that this is the most gen
eral spin rotational invariant Hamiltonian describing a sup
conductor with broken time-reversal symmetry. A gene
and detailed analysis of the symmetry properties of sup
conducting Hamiltonians of the form above may be found
the work of Altland and Zirnbauer10 on the random matrix
theory of superconducting systems.

For some purposes, it is useful to use an alternate re
sentation in terms of a new set ofd operators defined by

di↑5ci↑ , di↓5ci↓
† . ~4!

The Hamiltonian, Eq.~3!, then takes the form

HL5(
i j

di
†S t i j D i j

D i j* 2t i j*
D dj[(

i j
di

†Hi j dj . ~5!

Note thatSU(2) spin rotational invariance requires

syHi j sy52Hi j* . ~6!

The advantage of going to thed representation is that th
Hamiltonian conserves the number ofd particles. The trans-
formation Eq.~4! implies that the number ofd particles is
essentially thez component of the physical spin density:

Si
z5

\

2
~di

†di21!. ~7!

A spin rotation about thez axis corresponds to aU(1) rota-
tion of thed operators. ThisU(1) is clearly present in thed
Hamiltonian. Invariance under spin rotations about thex or y
axes is, however, not manifest.

The Hamiltonian may be diagonalized by the Bogoliub
transformation

di↑5(
n

un~ i !gn↑1vn* ~ i !gn↓ , ~8!

di↓5(
n

vn~ i !gn↑2un* ~ i !gn↓ . ~9!

Here thegn↑ ,gn↓ are fermionic operators, and the functio
un( i ),vn( i ) are determined by solving the eigenvalue eq
tion

(
i

Hi j Fun~ j !

vn~ j !
G5EnFun~ i !

vn~ i !
G . ~10!

Note that these are just the familiar Bogoliubov-deGen
equations.1 The symmetry Eq.~6! which follows from physi-
cal spin rotation invariance then implies that

isyFun~ i !

vn~ i !
G5F vn* ~ i !

2un* ~ i !
G ~11!

is an eigenfunction ofH with eigenvalue2En . Thus the
eigenvalues come in pairs (En ,2En). In terms of thegn
operators, the Hamiltonian becomes
-
l
r-

e-

-

s

HL5(
n

En~gn
†szgn!. ~12!

The ground state of the superconductor is obtained by fill
all the negative energy levels, i.e., by occupying all the sta
created bygn↓

† .

Phase diagrams

In this subsection, we discuss the zero-temperature ph
diagram of the dirty type-II superconductor in the mixe
state when the vortices are pinned by the disorder~see Fig.
1!. We are interested in characterizing the nature of qu
particle transport in such a superconductor. By analogy w
normal ~nonsuperconducting! systems, we expect to distin
guish two qualitatively different situations. The quasipartic
wave functions (un ,vn) for states at the Fermi energy~if
any! may either be extended throughout the system, or t
may be localized. Again, in analogy with normal metals, w
expect that the phase with extended quasiparticle wave fu
tions is characterized by diffusive transport. However, as e
phasized in Ref. 3, the electric charge of the quasiparticle
not conserved by the BCS Hamiltonian, and hence can
diffuse. The energy and spin densities of the quasipartic
are still conserved quantities and are thus capable of b
transported through diffusion. Thus the superconductor w
extended quasiparticle states at the Fermi energy is cha
terized by diffusive transport of energy and spin at the larg
length scales. We will refer to this ground state as a ‘‘sup
conducting thermal metal.’’ Similarly, the phase with loca
ized quasiparticle wave functions at the Fermi energy
characterized atT50 by the absence of diffusion of energ
and spin. We will refer to this phase as the ‘‘superconduct
thermal insulator.’’

Several recent theoretical papers have addressed issu
Anderson localization in superconducting systems.2–4,7,8,11,12

In particular, Ref. 3 shows that for superconducting syste
with spin rotation invariance in two or lower dimensions, t
quasiparticle wave functions are generically always loc
ized. Above two dimensions, however, phases with exten
or localized states are possible. While these results are s
lar to the corresponding results in a normal metal, there
striking difference:4 the quantum interference effects leadin
to localization give rise to singular corrections in the qua

FIG. 1. A possible phase diagram for a dirty type-II superco
ductor.
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particle density of states unlike in a normal metal. We w
provide additional support for this result, and explore its co
sequences in later sections.

First consider the situation at low fieldsH just bigger than
Hc1 when the intervortex spacing is large. For a single i
lated vortex, in the absence of impurities, there exist sta
bound to the core6 whose energies form a discrete set
minibands.@The ~mini!bandwidth is entirely due to motion
along the vortex line.# There still is a gap to all excitations o
order D0

2/Ef . This is very small compared toD0, which in
turn is of orderkBTc . In the presence of impurities, th
quasiparticle wave functions are localized along the direc
of the vortex line.7,3,4 Further, for large intervortex spacing
quasiparticle tunneling from the core of one vortex to a
other is insignificant. Thus we expect no energy or s
transport by the quasiparticles at the longest length sca
the system is in the thermal insulator phase.

Upon increasing the magnetic field towardsHc2, it be-
comes important to include tunneling from the core of o
vortex to the other. If the tunneling is sufficiently strong,
may become possible for the quasiparticle states to delo
ize, leading to a thermal metal phase. Consider, in particu
the situation where the ultimate destruction of the superc
ductivity atHc2 leads to a normal metal. The normal metal
characterized by diffusive transport of charge, spin, and
ergy at the longest length scales. It is natural to expect t
generically, the spin and thermal diffusion already exist
the superconducting phase just belowHc2. In other words,
we expect that a transition to a normal metal atHc2 occurs
from the superconducting thermal metal phase. Thus, in
case, there are three distinct zero-temperature phases a
magnetic field is increased from just aboveHc1 to just above
Hc2. The superconducting thermal insulator at low fiel
~aboveHc1) first undergoes a delocalization transition to t
superconducting thermal metal at some fieldHc4,Hc2 be-
fore the superconductor is destroyed to form the norm
metal ~see Fig. 2!.

In the other case where the destruction of superconduc
ity at Hc2 leads to a localized insulator, it is natural to expe
that the transition occurs from a superconductor where
quasiparticles are localized, i.e., directly from the superc
ducting thermal insulator~see Fig. 3!.

III. SUPERCONDUCTING THERMAL METAL

In this section, we examine the properties of the sup
conducting thermal metal phase in more detail. In this pha
there is diffusive transport of spin and energy. The quasip

FIG. 2. A possible phase diagram for a dirty type-II superco
ductor.

FIG. 3. Another possible phase diagram for a dirty type-II s
perconductor.
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ticle density of states at the Fermi energy is nonzero
finite.

We may quantify the spin transport by defining a ‘‘sp
conductivity’’ in analogy with the electrical conductivity fo
charge transport. The role of the chemical potential is pla
by a Zeeman magnetic fieldB coupling to, say, thez com-
ponent of the spin. The analog of the electric field is thus
spatial derivative of the Zeeman field. The spin conductiv
ss thus measures thez component of the spin currentjWs

z

induced in the system in response to an externally app
spatially varying Zeeman field along thez direction of spin:

jWs
z52ssgmB¹W B. ~13!

Hereg is the gyromagnetic ratio, andmB the Bohr magneton.
It is easy to show thatss satisfies an Einstein relation,

ss5
Dsx0

~gmB!2
, ~14!

whereDs is the spin-diffusion constant, andx0 is the spin
susceptibility. In the approximation of ignoring quasipartic
interactions,x0 is simply proportional to the quasiparticl
density of statesr0 at the Fermi energy:

x05
~gmB\!2

4
r0 . ~15!

In the thermal metal phase,ss is finite and nonzero at zero
temperature.

In the vortex phase, the diffusion parallel to the magne
field, described by the diffusion constantD i , is mainly along
the core of the vortices, while the diffusion perpendicular
it, with diffusion constantD' , is due to in-plane motion
between vortices. The latter depends strongly on the in
vortex tunneling strength, and in general we expect the
fusion to be highly anisotropic. For ease of presentation,
will, for the time being, assume that the diffusion is isotr
pic. When appropriate, we will take into account the anis
tropic diffusion.

The energy diffusion is measured by the more famil
thermal conductivityk. This too satisfies an Einstein rela
tion:

k5DTC, ~16!

whereDT is the thermal diffusion constant, andC the spe-
cific heat. In the approximation of ignoring quasiparticle i
teractions, the specific heat is determined by the density
states. In particular, in the limitT→0, whereT denotes the
temperature, we have

C5
p2

3
kB

2r0T. ~17!

Furthermore, in the noninteracting theory, as both spin
energy transport are by the quasiparticles, the correspon
diffusion constants are the same:

Ds5DT . ~18!

This then leads to a ‘‘Weidemann-Franz’’ law relating th
spin and thermal conductivities:

-

-
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k

Tss
5

4p2kB
2

3\2
. ~19!

Though the quasiparticle density of states is finite a
nonzero at the Fermi energy, as we show below, it varie
AE on moving in energy~E! away from the Fermi energy
~see Fig. 4!. This is in sharp contrast to a normal metal
noninteracting electrons, and has its origins in quantum
terference effects specific to the superconductor. This re
can be established in a field theoretic analysis of quan
interference effects in the superconducting thermal m
phase.4 Here, we provide instead a simple physical expla
tion of the effect using a semiclassical argument develo
earlier in a different context.9,10

The symmetry Eq.~6! of the Bogoliubov–de Genne
Hamiltonian implies that the amplitude iGi j ,ab
5^ iaue2 iHt /\u j b&u(t) for a d particle to go from pointj,
~pseudo!spin b, to point i, spina, satisfies the relations

Gi j ,↑↑~ t !52Gi j ,↓↓* ~ t !, ~20!

Gi j ,↑↓~ t !5Gi j ,↓↑* ~ t !. ~21!

The Fourier transform of this amplitude is given by

Gi j ,ab~v1 ih!5E dt ei (v1 ih)tGi j ,ab~ t !

5 K iaU 1

~\v2H !/\1 ih U j b L .

The quasiparticle density of states at an energyE away from
the Fermi energy may be obtained from this in the us
manner:

r~E!52
1

p\
Im@Ḡii ,↑↑~E1 ih!1~↑↔↓ !#, ~22!

where the overbar denotes an ensemble average over i
rity configurations. Consider now the return amplitu
Gii ,↑↑(t). This can be written as a sum over all possib
paths for this event. Consider in particular the contribut
from the special class of paths where the particle trave
some orbit and returns to the pointi in time t/2 with spin
down, and then traverses the same orbit again in the rem

FIG. 4. Quasiparticle density of states of the superconduc
thermal metal.
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ing time and returns with spin up. Using the symmetry re
tion Eq.~21!, this contribution toiGii ,↑↑(t) can be written as

iGii ,↑↓S t

2D iGii ,↓↑S t

2D52UGii ,↑↓S t

2D U2

.

Now uGii ,↑↓(t/2)u2 is just the probability for the eventi↑
→ i↓ in time t/2. For larget, this is half the total return
probability P(t). This in turn is determined by the conditio
that thed particles diffuse through the system. For diffusin
particles in three dimensions, the return probability is

P~ t !5
1

~4pDst !
3/2

. ~23!

This then leads to an energy dependent correction to
density of states:

r~E!2r05
1

2p2~Ds\!3/2
AE. ~24!

If we take into account the anisotropic nature of the d
fusion in the vortex phase, then the same result holds,
with an effective diffusion constantDs5(D'

2 D i)
1/3.

The energy dependence of the density of states has im
tant consequences for the low-temperature thermodynam
of the superconducting thermal metal phase. In particu
the specific heat at low temperature behaves as

C5gT1bcqS kBT

2p\Ds
D 3/2

, ~25!

whereg5(p2/3)kB
2r0, and the constant factor is given by

bcq5
15kB

~2!3/2S 12
1

23/2D z~5/2!. ~26!

Here z(5/2)5(n(1/n5/2). Note thatbcq is a universal con-
stant. Similarly, the spin susceptibility at low temperatur
behaves as

x~T!2x05
bsq

Ds
S kBT

2p\Ds
D 1/2

. ~27!

The constantbsq is again universal:

bsq5
~gmB!2\I

~2p!3/2
~28!

with I5*0
`(dx/Ax)@1/(ex11)#'1.07.

It is amusing to note that this correction has the sa
form as the Altshuler-Aronov effects in a diffusive, interac
ing normal metal, though the physics is quite different. La
on in the paper, when we consider interaction effects, we
show the existence of an Altshuler-Aronov correction of t
same form in the superconducting thermal metal as well

IV. SUPERCONDUCTING THERMAL INSULATOR

We now consider the properties of the superconduct
thermal insulator phase. By definition, this is a superc
ductor where the thermal conductivity has the limiting for
k/T→0 asT→0. Similarly, the spin conductivity is given

g
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by ss50 at zero temperature. Thus this phase is a super
ductor for charge transport, but an insulator for thermal a
spin transport.

In contrast to conventional disordered insulators, the d
sity of quasiparticle states actuallyvanishesin the supercon-
ducting thermal insulator. This can be seen by the follow
simple argument.4 Consider the Hamiltonian~3! in the limit
of strong on-site randomness and weak hopping betw
sites. In the extreme limit of zero hopping, the sites are
decoupled. At each site, the Hamiltonian in terms of thed
particles satisfies theSU(2) invariance requirementsyHsy
52H* . This constrains the Hamiltonian to be of the for
H5tsz1D rsx1D isy with t,D r ,D i random. Physically,t
can be thought of as a random on-site chemical potential,
D r ,D i as the real and imaginary parts of the random on-
BCS order parameterD. Considering now the case where th
joint probability distribution oft,D r ,D i has finite, nonzero
weight at zero, we see immediately that the disorder av
aged density of states vanishes asE2. Now consider weak
nonzero hopping. In the localized phase, perturbation the
in the hopping strength should converge, and we expec
recover the single site results at asymptotically low energ
If the joint probability distribution oft,D r ,D i has vanishing
weight at zero~as happens for instance, forD r ,D i nonran-
dom and nonzero, and onlyt random!, then the density of
states only vanishes even faster. To get a density of st
that vanishes slower thanE2, or is finite at the Fermi energy
requires a diverging probability density att5D r5D i50
which is presumably unphysical, and definitely nongene
Thus we conclude that the~disorder averaged! quasiparticle
density of states vanishes in the superconducting therma
sulator phase in the absence of quasiparticle interactions.
heuristic argument above may be supplemented by more
mal treatments4 which argue that the density of states in t
thermal insulator at low energies may be effectively d
scribed by the random matrix results10 obtained for super-
conducting Hamiltonians with the appropriate symmetri
i.e., those with spin rotation invariance and broken tim
reversal symmetry. Further evidence in support of a van
ing density of states in the localized phase is provided
explicit analytic calculations4 on a one-dimensional model.

We now further demonstrate the validity of this argume
by direct numerical calculation of the density of eigensta
of the Bogoliubov–de Gennes equations in the spin insu
ing phase. The simulations were done in one spatial dim
sion. The advantage of doing so is threefold: as localiza
effects are strongest in one dimension, it is easier to ac
the properties of the localized phase ind51. Further, it is
possible to go to fairly large system sizes ind51 and hence
the results are more reliable. Finally, we expect that the pr
erties of the localized phase are qualitatively the same in
dimension. Hence it is sufficient to consider thed51 case. A
physical realization of a one-dimensional system to wh
our results are directly applicable is obtained by consider
the quasiparticle states in the core of a single, isolated vo
in the presence of disorder.

To simulate the density of states of thed particles, we
employ the Hamiltonian in Eq.~5!:

H5(
i , j

di
†~ t i j sz1D i j

(1)sx1D i j
(2)sy!dj , ~29!
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where now the sitesi and j reside on a one-dimensiona
lattice with periodic boundary conditions. It is convenient
picture the Hamiltonian in terms of coupled spin-up a
spin-down sublattices.

We now employ the Hamiltonian in Eq.~29! to explore
the density of states numerically for various models and
grees of disorder. We begin with a model which shows a g
in the density of states in the absence of disorder. We se
nearest-neighbor couplingt i i 11 to a constantt and takeD
5d i j D

0 to be on site and real. The pure Hamiltonian can
diagonalized trivially. The resulting single particle excit
tions have a dispersion

E56A~D0!214t2 cosk, ~30!

with a gap 2D0 about E50, and a bandwidth
2A(D0)214t2. We now introduce disorder by allowing th
on-site couplingst i i , D i i

(1) , andD i i
(2) to take the valuesV1,

D01V2, andV3, respectively. TheVi are random variables
drawn from a uniform distribution with zero mean and wid
W which acts as a measure of the disorder strength. Note
a nonzero value ofD (2) breaks time-reversal invariance, a
one would expect for the vortex phase.

As seen in Fig. 5, impurities begin to fill in the gap~the
precise manner is specific to the distribution of disord
which we verified by using different forms for the probab
ity distribution of theVi). One can observe the symmet
aboutE50 which is a result of the particle-hole symmet
of the Bogoliubov–de Gennes Hamiltonian. As the disord
strength is increased, there is an increasing density of st
in the gap. But the density of states at the Fermi ene
nevertheless always vanishes. Closer examination of the
sity of states near the Fermi energy~see Fig. 6! shows that it
actually vanishes as

r~E!5AuEu2, ~31!

where A is a constant. This power law is exactly what
predicted by the simple argument outlined at the beginn
of this section.

FIG. 5. Density of states in the superconducting thermal insu
tor showing evolution with increased disorderW. The energy scale
is set by the bandwidth of the pure dispersion in Eq.~30!.
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FIG. 6. Density of states of the superconduc
ing thermal insulator at low energies. Here, th
constantA of Eq. ~31! decreases with increasin
disorder strengthW that ranges from 0.8 to 2.
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We now consider the situation where the density of sta
is a constant in the absence of disorder. We set the nea
neighbor couplingt i i 11 and gapD i i 11 to be real constantst
andD, respectively. We then obtain for the dispersion of t
single-particle excitations the form

E52AD21t2 cosk, ~32!

with a bandwidth 4AD21t2. We introduce disorder by let
ting the on-site couplingst i i , D i i

(1) , andD i i
(2) take the values

V1, V2, and V3, respectively, where theVi ’s are random
variables as specified for the case with the pure gapped
persion. As seen in Fig. 7, disorder reduces the densit
states at the Fermi energy, ultimately forcing it to vanish
E2.

FIG. 7. Evolution of the density of states with disorderW for the
model where the density of states is constant in the clean limit. H
the energy scale is set by the bandwidth specified by the pure
persion of Eq.~32!.
s
st-

is-
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In summary, the superconducting thermal insulator ph
has the remarkable feature that the quasiparticle densit
states actually vanishes at the Fermi energy. This is in st
ing contrast to a conventional Anderson insulator, and
several obvious consequences for the low-temperature t
modynamic properties of the phase.

The vanishing density of states also has consequence
thermal and spin transport at finite temperature which is p
sumably through variable-range hopping. This can be see
follows: for a hop between two localized quasiparticle sta
separated by a distanceR, the overlap of the two state
;e2R/j wherej is the localization length. The typical en
ergy separationER between these states is determined by
density of states. When this vanishes asE2, the total number
of states in a radiusR in an energy intervalE about the Fermi
energy is of orderE3R3 ~in three dimensions!. Therefore the
typical spacingER;1/R. The total rate for hopping a dis
tanceR is proportional toe2(2R/j1c/RT). The first term in the
exponential is the square of the wave-function overlap, a
the second is the activation energy cost for the hop~herec is
some unknown constant determined by the density of sta!.
The total hopping rate, as measured by the spin or ther
conductivities, is obtained by summing over hops of all po
sible distancesR. For low temperature, it is clear that th
sum will be dominated by hops of sizeR;1/AT. Thus the
total hopping rate~and hence the spin/thermal conductivitie!

;e2A(T0 /T). Note that the exponent 1/2 differs from the co
ventional Mott exponent of 1/4, and is due to the density
states vanishing asE2.

V. INTERACTIONS

Our discussion of the properties of the two supercondu
ing phases has thus far been based on the nonintera
quasiparticle Hamiltonian of Eqs.~1! or ~3!. In this section,
we consider the effects of interactions between the quasi
ticles. A discussion of the microscopic origin of these inte
actions is provided in Appendix A. Here we take a mo
phenomenological approach. It is important to note that

re
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interactions are short ranged in space—the long-range C
lomb repulsion between the underlying electrons is scree
out by the condensate. We keep only the interactions in
triplet channel to get the Hamiltonian

H5H01Hint , ~33!

Hint5E ddx ut~x2y!SW ~x!•SW ~y!, ~34!

whereut is short ranged, andSW (x) is the spin density. Note
that as the charge density is not a hydrodynamic mode,
singlet interaction is expected to be quite innocuous, and
simply drop it. As discussed in Appendix A, the sign ofut
could be either positive or negative, with negativeut corre-
sponding to repulsive interactions.

Interactions can also be included instead in the lat
model Eq.~3!. We expect that the universal properties of t
two superconducting phases are insensitive to the deta
form of the interaction Hamiltonian. So we may consider a
short-ranged interaction with the right symmetries~spin con-
servation!. A particularly simple choice is provided by a
on-site Hubbard interaction:

HL5HL01HU , ~35!

HU5
U

2 (
i

ni~ni21!, ~36!

where ni5ci
†ci is the number operator for site ‘‘i . ’’ For

repulsive interactions,U.0. In the rest of this section, w
will use these model interaction Hamiltonians to discu
their effects on the two superconducting phases.

A. Superconducting thermal metal

Interaction effects lead to significant changes in the pr
erties of diffusive normal metals,13 as was shown by Alt-
shuler and Aronov. In the superconducting thermal me
phase, it is natural to expect similar effects due to the in
play of spin diffusion and interactions. We demonstrate t
below with some simple calculations.

Consider the free energy of the interacting quasipartic
in the superconducting thermal metal. To calculate this, i
convenient to pass to a functional integral representation
the partition function:

Z5E @Dc#e2(S01Sint), ~37!

S05E dt ddxF c̄~x,t!
]

]t
c~x,t!1H0~ c̄,c!G , ~38!

Sint5E dt ddx ddy ut~x2y!SW ~x,t!•SW ~y,t!. ~39!

As we show below, all the singular corrections to the fr
energy come from the diffusive nature of the spin fluctu
tions. ~The charge density does not diffuse, and hence
singlet interaction does not contribute to any singular corr
tions; we are justified in dropping it.! The first-order correc-
tion to the free energy due to interactions is given by
u-
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VbDF5^Sint&

5E dt ddx ddy ut~x2y!^SW ~x,t!•SW ~y,t!&,

~40!

whereV is the system volume,b the inverse temperature,F
the free-energy density, andDF the correction to the free
energy density due to interactions. The expectation value
the right-hand side is to be evaluated in the noninterac
theory. The overline denotes an average over all realizat
of the disorder. The expectation value can be related dire
to the spectral weight for spin-density fluctuations as f
lows:

^SW ~x,t!•SW ~y,t!&5^SW ~x,0!•SW ~y,0!&

5(
nm

e2bEn

Z0
^nuSW ~x!um&•^muSW ~y!un&,

whereun&,um& are exact eigenstates~with energiesEn ,Em ,
respectively! of the noninteracting HamiltonianH0, andZ0
5Tr e2bH0 is the corresponding partition function. Now th
spectral weight for spin-density fluctuations in the nonint
acting theory can be expressed as

x9~x,y;v!5(
nm

e2bEn

Z0
^nuSW ~x!um&•^muSW ~y!un&

3~2p!dS v2
~Em2En!

\ D ~12e2b\v!.

Clearly then, we have

^SW ~x,0!•SW ~y,0!&5E
2`

` dv

2p

x9~x,y;v!

12e2b\v
. ~41!

Upon averaging over the disorder, translation invariance
restored, and we have

x9~x,y;v!5E ddq

~2p!d
eiqW •(x2y)x9~q,v!. ~42!

The singular contributions to the free energy all come fro
the smallq,v behavior ofx9. This is entirely determined by
the diffusive nature of spin transport,

x9~q,v!5
6\ssvq2

v21Ds
2q4

, ~43!

wheress is the spin conductivity andDs is the spin-diffusion
constant.~There is an extra factor of 3 in the expressi
above from the standard form, which is due to summing o
all three components of the spin.! We can now evaluate the
free-energy correction~see Appendix B for details!. The re-
sult is given by

DF~T!2DF~0!;2ũtT
5/2 ~44!

in three dimensions.@Here we haveũt5*ddx ut(x).# This
then leads to a correction to the specific heat due to inte
tions of the form
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DC5bciS kBT

2p\Ds
D 3/2

, ~45!

where the coefficientbci is given by

bci52
45

8
ũt

xo

~gmB!2
kBz~5/2!. ~46!

Note that this is similar in form to the correction due
quantum interference pointed out in Sec. III, but has a
ferent physical origin.@As before, with anisotropic diffusion
Ds is replaced by the effective diffusion consta
(D'

2 D i)
1/3.# The total specific heat in the superconducti

thermal metal phase therefore is

C5gT1b̃cS kBT

2p\Ds
D 3/2

, ~47!

where the constantbc has contributions from both quantum
interference and interaction effects:

bc5bcq1bci . ~48!

Note thatbcq is a universal number, whilebci depends on the
interaction strength and the zero-temperature spin susc
bility. This should allow experimental determination of th
importance of interaction effects by simultaneous meas
ments of the specific heat and the spin or thermal diffus
constant. The deviation of the coefficientbc from the univer-
sal valuebcq gives a measure of the interaction strength.

Similar effects exist in the spin susceptibility as well. T
see this, consider evaluating the free energy in the pres
of an externally applied Zeeman magnetic field coupling
the z component of the spin. This does not affect the dif
sion of Sz , but the diffusion ofSx ,Sy gets cut off. The pre-
cise manner in which this happens can be found from hyd
dynamic considerations by including the effect of t
precession of the spin density under the external magn
field in the classical diffusion equation. To that end, first n
that in the presence of a small magnetic fieldB coupling to
the z component of the spin, the ground state has a s
density

SW 5 ẑ
x0

gmB
B. ~49!

Consider small deviations of the local spin density from
ground state:

SW ~x,t !5S dSx~x,t !,dSy~x,t !,
x0

gmB
B1dSz~x,t ! D . ~50!

Quite generally, this satisfies the equation of motion

]SW

]t
1SW 3~gmBBW !52] i jWs

i , ~51!

wherei 51,2,3 is a spatial coordinate index andjWs
i is the spin

current vector in the spatial directioni. The second term on
the left-hand side arises from the precession of the spin u
the external magnetic field. In the absence of this term,
equation above reduces to the familiar continuity equat
expressing spin conservation. To derive theS1S2 correlator,
-
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introduce a small additional magnetic fieldb(x,t) coupling
to Sx . Then, the spin currentsj s

xi , j s
yi are related to gradient

of the spin density and the fieldb through

j s
xi52Ds] idSx1~gmBss!] ib, ~52!

j s
yi52Ds] idSy, ~53!

whereDs ,ss are the spin-diffusion constant and spin co
ductivity, respectively. We may now determine the respo
of the spin density to the fieldb from these equations:

ds1~k,v!5
gmBss

Ds
F Dsk

22 iB̃

2 i ~v1B̃!1Dsk
2Gb~k,v!, ~54!

where B̃5gmBB. We have used the Einstein relation E
~14! to expressx0 in terms ofss andDs . A similar expres-
sion, but withB→2B, holds fords2(k,v). The response
function xxx(k,v) can now be read off to be

xxx~k,v!5
ss

2Ds
F21S iv

2 i ~v1B̃!1Dsk
2

1~B̃→2B̃!D G .

~55!

This then determinesxxx9 (k,v) through the equality

xxx9 ~k,v!52\ Im xxx~k,v!. ~56!

The result is

xxx9 ~q,v!5\ssvk2F 1

~v1B̃!21~Dsk
2!2

1~B̃→2B̃!G .

~57!

Exactly the same expression holds forxyy9 . Notice that the
form of the spectral weight given in Eq.~43! may be ob-
tained from the above by setting the magnetic fieldB to zero.
It is now possible to evaluate the change in free energy
to the magnetic field. For details, see Appendix B. The s
ceptibility is then obtained by differentiating with respect
the field. We find, for the interaction correction,

Dx0~T!5
bsi

Ds
S kBT

2p\Ds
D 1/2

~58!

in three spatial dimensions. The coefficientbsi is given by

bsi52
\ũtx0I8

8p3/2
, ~59!

whereI85*0
`(dy/Ay)(d/dy)@y/(ey21)#.

The full low-temperature behavior of the spin susceptib
ity is then given by

x~T!2x05
bs

Ds
S kBT

2p\Ds
D 1/2

, ~60!

where againbs has contributions from both quantum inte
ference and interaction corrections:

bs5bsq1bsi . ~61!

Note again thatbsq is a universal constant whilebsi depends
on the interaction strength.@With anisotropic diffusion,Ds is
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replaced by (D'
2 D i)

1/3.# Thus measurements of the tempe
ture dependence of the spin susceptibility can also be use
infer the relative importance of interaction and quantum
terference effects.

The simple calculations above demonstrate the existe
of Altshuler-Aronov effects in the thermodynamic properti
of the superconducting thermal metal.14 It is also possible to
show that interaction effects lead to a suppression of
electron tunneling density of states. For the tunneling ofd
particle, the result can be established in quite a straight
ward way along the lines of Ref. 15. However, the physi
tunneling process involves tunneling of an electron. In A
pendix B, we show that under certain further approxim
tions, the tunneling density of states of electrons is the sa
as that of thed particles. Thus interaction effects lead to
suppression of the physical tunneling density of states in
superconducting thermal metal as well.

B. Superconducting thermal insulator

We now move on to consider the effects of interactions
the superconducting thermal insulator. In a phase with a
in the quasiparticle spectrum, weak interactions are irrelev
and lead to no significant effects~this is analogous to the
insignificance of weak interactions in an ordinary band in
lator!. So we consider the more interesting case of a gap
superconducting thermal insulator. We argued in Sec.
that, in the absence of interactions, the disorder avera
density of states vanishes, generically asuEu2, on approach-
ing the Fermi energy. Despite this, we show here that a
tarily weak repulsive interactions lead to the formation
free paramagnetic moments. This result is quite analogou
what happens in a conventional Anderson insulator; a
trarily weak repulsive short-ranged interactions lead to
formation of free paramagnetic moments.~Note, however,
that the density of states is a constant in the conventio
Anderson insulator.!

The discussion is simplest in terms of the lattice Hubba
type Hamiltonian Eq.~36!. As in Sec. IV, consider the cas
of strong on-site randomness and weak hopping. In the l
of zero hopping, the resulting single-site problem can
solved exactly even in the presence of the interaction te
To that end, consider the single site Hamiltonian

H5H01HU , ~62!

H05t(
a

ca
†ca1Dc↑

†c↓
†1D* c↓c↑ , ~63!

HU5Un~n21!, ~64!

with n5(aca
†ca . For the time being, we assumeU.0,

making the interactions repulsive. It is convenient to go
the d representation:

H05d†~ tsz1D rsx1D isy!d, ~65!

HU5U@~d†szd!21d†szd#. ~66!

Here D r ,i are the real and imaginary parts ofD. We will
assume thatt,D r ,D i are random variables with a probabilit
distribution that has finite nonzero weight when all thr
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variables are zero. As we argued in Sec. III, in that case,
quasiparticle density of states of the noninteracting Ham
tonian goes to zero asuEu2.

To diagonalize the full interacting Hamilonian, note th
the d particle number is conserved even with interactio
Thus we may look for eigenstates with fixedd particle num-
ber nd5(ada

†da . The physical spin is determined entire
by nd @Eq. ~7!# through the relationSz5

1
2 (nd21). For the

single-site problem, the Hilbert space consists of four sta
u0&, u↑&5d↑

†u0&, u↓&5d↓
†u0&, andu↑↓&5d↑

†d↓
†u0&. The states

u0& and u↑↓& are immediately seen to be eigenstates w
energy 0. Diagonalizing the Hamiltonian in the space of
remaining two statesu↑&, u↓&, we find two other eigenstate
u1&,u2& with the eigenvaluesE65U6A(t1U)21uDu2.
Note that the lower of the two eigenvaluesE2 is negative if
22tU,t21uDu2 ~the other eigenvalueE1 is always posi-
tive!. If E2,0, then the ground state is the stateu2&. This
lies in the subspace withnd51, and hence has physical sp
50. If E2.0, then the ground state is twofold degenera
with both u0& and u↑↓& having zero energy. These corre
spond to states where the ground state has a physical
1/2.

Thus a free magnetic moment is formed in the grou
state of a single site whenever the conditiont21uDu2,
22tU is satisfied. For a collection of sites with a gene
random distributionP(t,D rD i) of t, D r , andD i , there will
always be some weight where this condition is satisfi
Hence there will be a finite probability of forming a fre
moment at any site. This leads to a finite density of magn
moments for the full system.

It is natural to expect that inclusion of weak hopping b
tween sites does not change the result above, so long a
are in the localized phase. So we conclude that arbitr
weak repulsive interactions lead to the formation of fr
paramagnetic moments in the superconducting thermal in
lator.

What is the ultimate fate of these magnetic moments
low energies? There are two generic possibilities: the sp
can freeze into a spin glass phase, or stay unfrozen in a p
with random singlet bonds16 between pairs of spins. It is a
difficult matter to decide on the conditions for realizing e
ther of these possibilities, and we will not attempt it here

The analysis above has assumed that the interaction
repulsive. If the interaction is attractive, i.e.,U,0, the so-
lution of the single-site problem shows that the ground st
has no net spin. Thus there is no local moment instability
that case. The spin susceptibility vanishes at zero temp
ture, as in the noninteracting case.

VI. SYSTEMS WITH TIME-REVERSAL INVARIANCE

In this section, we will briefly consider systems with tim
reversal invariance. Ans-wave superconductor with weak o
moderate impurity scattering has a gap in the quasipart
excitation spectrum, and hence is in the superconduc
thermal insulator phase. Strong impurity scattering will d
stroy the superconductor. When this happens, the resu
phase is most likely an insulator. However, we see no rea
of principle forbidding a transition to a normal metal~in
three spatial dimensions! when the superconductor is de
stroyed. We propose that the transition then occurs from
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superconducting thermal metal phase, i.e., as the impu
strength is increased, there is a transition from the super
ducting thermal insulator to the superconducting therm
metal which precedes the ultimate transition to the norm
metal ~see Fig. 8!. On the other hand, if the transition is t
the insulator, we propose that it is directly from the sup
conducting thermal insulator~Fig. 9!.

The properties of the superconducting thermal me
phase in this case~with time-reversal symmetry! are quite
similar to the case where time-reversal symmetry is abs
Differences exist, however, in the superconducting ther
insulator phase. The heuristic argument,4 in the beginning of
Sec. IV, for the quasiparticle density of states now sho
that it vanishes in this case as well, but only as fast as
faster thanuEu, and once more, this is consistent with ra
dom matrix predictions.10 As in Sec. IV, we will provide
supporting numerical evidence for this statement by calcu
ing the density of states of the Bogoliuobov–de Genn
equations appropriate for a time-reversal invariant system
one dimension. In order to preserve time-reversal symme
we set the imaginary part of the gap functionD (2) in the
Hamiltonian of Eq.~29! of Sec. IV to zero. Apart from this
important difference, the models that we use here are
same as those of Sec. IV. Again, we first display results fo
one-dimensional model where there is a gap in the cl
limit.

As seen in Fig. 10, the density of states clearly vanishe
zero energy. Closer examination of the low-energy beha
~see Fig. 11! shows that it actually vanishes asuEu in agree-
ment with the simple argument above.

We also considered the situation where the density
states is a constant in the clean limit. The results are sh
in Fig. 12. Again, the density of states vanishes linearly
strong disorder.

VII. PHASE TRANSITIONS

In this section, we study some general properties of
various transitions between the phases that we have
cussed~see Fig. 13!. The most striking phase transition i
our phase diagram is the one between the supercondu
thermal metal and the superconducting thermal insula
This is a localization transition that occursinside the super-
conducting phase, and should be accessible experimen
On approaching the transition from the thermal metal si
the spin conductivity goes to zero continuously. Similar
the low-temperature ratioA5k/T, which is nonzero in the
thermal metal, vanishes at the transition. The lo
temperature thermal transport in the superconducting the
insulator is presumably through variable-range hopping,
k;e2(T0 /T)x

with x51/2. In the critical region near the tran
sition point, various physical quantities are expected to h
universal singular behavior. In the model of noninteract

FIG. 8. Zero-temperature phase diagram for t
superconductor–normal-metal transition in the presence of ti
reversal invariance. The parameterW is a measure of the strength o
the disorder.
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quasiparticles, it is possible to develop systematic calcu
tions of the universal critical exponents.17 However, we ex-
pect universal properties even with interactions present.

On approaching the transition at zero temperature
varying the field strength towardsHc4, there is a length scale
j ~which may be interpreted as the quasiparticle localizat
length in the localized phase! that diverges as

j;uH2Hc4u2n. ~67!

Similarly, moving away from the critical point by turning o
a finite temperature introduces a length scalejT which be-
haves as

jT;T21/z. ~68!

Note that the two Eqs.~67! and ~68! define the two critical
exponentsn andz.

On approaching the transition point from the delocaliz
side, the coefficientA introduced above goes to zero. Pr
cisely at the transition pointH5Hc4, but at finite tempera-
ture,k(T);T11f with f.0 being a universal exponent. I
general, for fields close toHc4 and low temperatures, we
may write down a scaling form

k

T
5c1TfỸS jT

j D . ~69!

The constantc1 is nonuniversal, while the functionỸ is uni-
versal. Equivalently, we may use Eqs.~67! and~68! to write

k

T
5c1TfYS c2

uH2Hc4u

T1/zn D . ~70!

FIG. 9. Zero-temperature phase diagram for the supercondu
insulator transition in the presence of time-reversal invariance.

FIG. 10. Density of states in theT-invariant superconducting
thermal insulator showing evolution with increased disorderW. The
energy scale is set by the bandwidth of the pure dispersion of
~30! of Sec. IV.
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FIG. 11. Density of states in the time
reversal-invariant superconducting thermal ins
lator at low energies. Decreasing slope corr
sponds to increasing disorder strengthW that
ranges from 0.8 to 4.
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Here c2 is also nonuniversal, andY is a universal scaling
function such thatY(0) is a finite constant. Further, requi
ing that k;T as T→0 on the metallic side, we see th
Y(x→1`);xznf. This then implies that the coefficientA
introduced above vanishes, on approachingHc4, as (H
2Hc4)znf. Further, if we make the assumption that t
fixed-point theory controlling the transition obeys hypersc
ing, then conventional scaling arguments can be used
show the exponent equality

f5
d22

z
. ~71!

Similar scaling forms, but with different exponents and sc
ing functions, describe the transition in the time-revers
invariant case as well.

FIG. 12. Evolution of density of states with disorderW in the
model where it is constant in the clean limit. Here, the energy s
is set by the bandwidth of the pure dispersion given by Eq.~32! of
Sec. IV.
-
to

l-
l-

Our phase diagram has important implications for t
phase transitions at zero temperature where the super
ducting phase is destroyed. For the superconductor–nor
metal transition, we suggest that the transition is generic
from the superconducting thermal metal phase, i.e., from
superconductor with spin and energy diffusion atT50. Fur-
ther this implies that the superconductor-normal transit
generically occurs from a gapless superconductor with a
nite, nonzero density of quasiparticle states at the Fermi
ergy. The presence of gapless quasiparticle excitations in
superconducting side should affect strongly the critical pr
erties of the superconducting–normal-metal transition: pre
ous theoretical treatments of this transition18 which have ig-
nored this feature are hence expected to be incorr
Similarly, the superconductor-insulator transition is gene
cally from the superconducting thermal insulator.

As shown in Fig. 13, direct transitions from the superco
ducting thermal metal to the normal insulator or from t
superconducting thermal metal to the normal metal are p
sible at a special multicritical point. We will, however, no
attempt to describe the properties of such a multicriti
point here.

VIII. DISCUSSION

One of the main purposes of this paper is to point out t
all superconductors fall into one of two categories—tho

le
FIG. 13. Zero-temperature phase diagram showing transit

where the superconducting phase is destroyed. The axes repr
external tuning parameters such as, for instance, disorder and
magnetic field.
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that, apart from being superconducting, share many pro
ties with conventional metals, and those that share m
properties with conventional insulators. This distinction c
be made quite precise, and indeed corresponds to the
tence of two distinct zero-temperature superconduc
phases which are distinguished by the nature of quasipar
transport. In this final section, we will discuss various expe
mental implications. This will be followed by a discussion
various peripheral matters that have been omitted from
considerations so far, and their effects on experimental
tems.

A. Experiments

A powerful way of probing quasiparticle transport in
superconductor is through thermal conductivity measu
ments. In the superconducting ‘‘insulator’’ phase, the ra
k/T goes to zero as the temperature goes to zero. On
other hand, in the superconducting ‘‘metal,’’k/T goes to a
constant as the temperature goes to zero.

The type-II s-wave superconductor offers a definite o
portunity for tuning between these two phases. At low fiel
this is in the superconducting insulator phase. Conseque
k/T→0 as T→0. Upon increasing the field, there coul
under conditions we have outlined, be a delocalization tr
sition to the superconducting metal phase withk/T going to
a constant. It should also be possible to explore the pro
ties of the phase transition between the superconducting
sulator and the superconducting metal. Right at the crit
point, the thermal conductivityk;T11f with f.0. We are
not aware of any experimental investigations of this ‘‘met
insulator’’ transition inside the superconducting phase so
In performing the heat transport measurements, it is ne
sary to ensure that the phonon contributions have been
tracted out.19

Another interesting experimental possibility is provid
by three-dimensional dirtys-wave superconductors in the a
sence of any external magnetic fields. Upon varying the
purity concentration to destroy superconductivity, if the tra
sition is to a normal metal, we have proposed that it occ
from the superconducting metal phase. As the superc
ductor is in the superconducting insulator phase at low
purity concentrations, there will then be a phase transition
the superconducting metal with increasing impurity conc
tration before the destruction of superconductivity. This t
can be probed by thermal transport measurements. The p
transition in this case is similar to the metal-insulator tran
tion discussed above, but belongs to a different universa
class due to the presence of time-reversal symmetry.

Recent measurements20 of the low-temperature in-plan
thermal conductivity in the high-temperature supercondu
ors show thatk/T goes to a constant asT→0. Whether this
is indicative of a true three-dimensional superconduct
metal phase stabilized by interlayer quasiparticle hopping
just a two-dimensional weakly localized superconducting
sulator~see below! is difficult to ascertain at present.

A number of experimental predictions follow from ou
study of the properties of either phase. We start with
superconducting metal. For systems with negligible sp
orbit scattering, this phase is characterized by the presen
spin diffusion at zero temperature. Measurements of
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spin-diffusion constant should then show a nonzero valu
zero temperature. The spin susceptibility, as measured
instance, by the Knight shift is also predicted to saturate t
finite, nonzero value at zero temperature. Note, however,
due to quantum interference, and interaction effects, we
dict a AT dependence in the temperature dependence of
spin susceptibility at low temperatures. Similarly the spec
heat has aT3/2 correction. As we emphasized in Sec. V
either the specific heat or the susceptibility measureme
may be used to quantify the relative importance of inter
tion and quantum interference effects.

In the superconducting thermal insulator phase, the s
conductivity is zero at zero temperature. Further, if the int
actions are weak, then the vanishing density of states in
noninteracting quasiparticle model manifests itself in
thermodynamic properties. For instance, the specific h
vanishes faster thanTa11 with a51,2 depending on whethe
time reversal is a good symmetry or not. Similarly, the sp
susceptibility vanishes faster thanTa. Interaction effects be-
come important at the lowest temperatures—formation
free paramagnetic moments would initially give rise to
Curie term in the susceptibility which would then be alter
at even lower temperatures due to exchange between t
moments.

So far, we have neglected the Zeeman coupling and s
orbit interactions. In making contact with experiments, it
essential to have some understanding of the effects of inc
ing these. We discuss that next.

B. Zeeman coupling

Weak Zeeman coupling does not affect the existence
the two kinds of superconducting phases, but modifies th
properties. For a magnetic field along, thez direction of spin,
the components of spin along thex,y axes are no longe
conserved. This cuts off their diffusion at long length a
time scales in the superconducting metal phase. Thez com-
ponent of the spin and the energy continue to diffuse thou
Further, both the quantum interference and Altshuler-Aron
interaction corrections to the thermodynamic quantities
the metallic phase are cut off by the finite Zeeman coupli
For instance, this leads to a field dependent spin suscep
ity at the lowest temperatures of the form

x~B!2x0;B1/2. ~72!

For the interaction correction, this is demonstrated in App
dix B. For the quantum interference contribution, this res
may be understood by noting that the Zeeman magnetic fi
acts as a ‘‘chemical potential’’ for thed particles ~as it
couples to the physical spin; d-particle number!. The den-
sity of states at the Fermi energy~and hence the spin susce
tibility ! is then given by Eq.~24! to be;B1/2. On the spin-
insulating side, in the approximation of ignoring interaction
the effect of finite Zeeman coupling depends on whethe
not a hard gap exists in the quasiparticle excitation spectr
If gapped, weak Zeeman coupling is innocuous, and can
ignored. On the other hand, if the system is gapless wit
density of states vanishing asuEua (a51,2 depending on
whether time reversal is a good symmetry or not!, then weak
Zeeman coupling leads to a finite density of states at
Fermi energy, proportional touBua.
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C. Spin-orbit effects

Spin-orbit scattering, like Zeeman coupling, does not
fect the existence of the two kinds of superconducting pha
in three dimensions, but modifies their properties. In
presence of spin-orbit scattering, no component of the s
diffuses in the superconductor with delocalized quasipa
cles. Energy continues to diffuse in this phase, howev
Thus this phase is characterized by a finite value ofk/T as
T→0. In contrast to systems with conserved spin, the d
sity of states in the noninteracting quasiparticle theory ha
AE enhancement8 at low energies. Similarly, in the localize
insulator, in the non-interacting theory, spin-orbit effec
allow8 for the possibility of a finite density of quasipartic
states at the Fermi energy.

D. Two-dimensional systems

Throughout this paper, we have focused on thr
dimensional systems. Here we make some brief rema
about two-dimensional systems. For systems with conse
spin, quantum interference effects lead3 to an absence of spin
and energy diffusion at the longest length scales. The su
conducting thermal metal therefore does not exist in t
dimensions, at least if quasiparticle interactions are igno
The superconductor-insulator transition in two dimensio
therefore occurs from the superconducting thermal insul
phase. Spin-orbit scattering can stabilize7,8 a phase with de-
localized quasiparticles in the two-dimensional superc
ductor in the approximation of ignoring quasiparticle inte
actions. The resulting phase has a divergentk/T as T→0,
and a divergent density of quasiparticle states at the Fe
energy.8
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APPENDIX A: INTERACTION HAMILTONIAN

Here, we provide some microscopic justification for t
interaction Hamiltonian Eq.~34!. For simplicity, we consider
a clean system ind52. This may be described by the mod
Hamiltonian

H5H01Hcoul1Hel2ph , ~A1!

H05E d2x(
s

cs
† S 2

¹W 2

2m
2m Dcs , ~A2!

Hcoul5 (
s,s8

E
x,x8

cs
†~x!cs~x!V~x2x8!cs8

†
~x8!cs8~x8!.

~A3!

Here V(x2x8);1/ux2x8u is the Coulomb interaction
Hel2ph is the electron-phonon interaction which we do n
specify in detail other than to assume that it leads to
effective attractive interaction at energies smaller than
Debye frequencyvD!EF about the Fermi energy. We firs
imagine integrating out all modes21 except those withinvD
about the Fermi energy. In the resulting low-energy theo
-
es
e
in
i-
r.

-
a

-
ks
ed

r-
o
d.
s
or

-

i

-
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e

,

only a small number of qualitatively different interaction am
plitudes are allowed due to geometrical restrictions impo
on the scattering processes.21 These correspond to charg
density–charge density~‘‘singlet’’ channel!, spin density-
spin density~‘‘triplet’’ channel! interactions and to two in-
teractions between spin singlet and spin triplet Cooper p
operators. Perturbative renormalization-group argumen21

show that the singlet and triplet amplitudes are marginal
to one loop, while the Cooper channel amplitudes are m
ginally relevant if attractive. We assume such an attract
interaction leads to a flow towards a spin-singlet BCS sup
conductor. Treating the attractive spin-singlet Cooper int
action in mean-field theory, and ignoring the other intera
tions in the singlet and triplet channels is equivalent
conventional BCS mean-field theory. Going beyond the B
theory requires reinstating the singlet and triplet interactio
and including fluctuations of the BCS order parameter. T
order parameter fluctuations may be integrated out in
superconducting phase leading to an effective four ferm
interaction which renormalizes the singlet amplitude. T
then leads to an effective action for the quasiparticles in
superconductor which includes quasiparticle interactions

Consider now the system we have focused on the mo
the type-II superconductor in a field in the presence of d
order. In principle, the interaction Hamiltonian contains bo
the singlet~charge-density! interactions and the triplet~spin-
density! interactions. However, the charge density is no
hydrodynamic mode in the superconductor, and does not
fuse. Consequently, the singlet interaction is expected to
quite innocuous. We therefore retain only the spin trip
interaction.

The sign of the~bare! triplet interactionut is determined
by the balance between the repulsive Coulomb interac
amplitude in the triplet channel and the attractive~phonon!
interaction amplitude in the same channel. This is, in pr
ciple, different from the balance in the Cooper channel wh
a net attractive interaction is required for superconductiv
Thusut can be either positive or negative. It can be sho
that ut,0 corresponds to repulsive interactions.

APPENDIX B: ALTSHULER-ARONOV CORRECTIONS

In this appendix, we provide details of the calculation
the singular corrections to the properties of the superc
ducting thermal metal phase due to interactions.

1. Specific-heat correction

As shown in Sec. V, the correction to the free energy
zero magnetic field is given by

DF56\ssE dkW
dv

2p
ut~k!S 1

12e2b\vD vk2

v21Ds
2k4

,

where ut(k)5*d3x e2 ik•xut(x) is the Fourier transform of
the triplet interactionut(x). The k integral is restricted to
uku,L;1/l e wherel e is the elastic mean free path@we have
denoteddkW[d3k/(2p)3#. The v integral runs from2` to
1`. If the range of the short-ranged interactionut(x) is
much smaller than the mean free path~which we assume!,
then the Fourier transformut(k) may be approximated by its
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value atk50, i.e., ut(k)'ũt5*d3x ut(x). Subtracting out
the zero-temperature correction to the free energy, we g

dTDF[DF~T!2DF~0!,

dTDF
6\ũtss

5E dkW
dv

2p S 1

12e2b\v
2u~v!D vk2

v21Ds
2k4

5
1

2p3E0

L

dk k4E
0

`

dvS 1

eb\v21
D v

v21Ds
2k4

.

In going to the second line, we have integrated over
angular coordinates of the momentumkW , and have reduced
the frequency integral to one over positivev alone. We now
make the change of variablesy5b\v, x5Ab\Dsk to get

p3dT~DF!

3\ũtss

5S kBT

\Ds
D 5/2E

x,y
x4S y

ey21
D S 1

y21x4D .

Here *x,y[*0
x0dx*0

`dy and x05LA\Ds /kBT. The integral
over x,y above can clearly be rewritten as

p2

6
x02E

0

x0
dxE

0

`

dyS y3

ey21
D S 1

y21x4D .

The first term contributesO(T2) to the free energy, and i
hence nonsingular. All the singular corrections come fr
the second term. As thex integral is ultraviolet convergent in
this term, we setx05` and evaluate it explicitly to obtain
the singular correction to the free energy:

DF~T!2DF~0!52
9\ũtss

4~2p!3/2
z~5/2!S kBT

\Ds
D 5/2

. ~B1!

Expressingss in terms ofDs andx0 using the Einstein re-
lation Eq. ~14!, and differentiating with respect toT to get
the specific heat, we get the result quoted in Sec. V.

2. Susceptibility correction

The field-dependent term in the correction to the free
ergy is

DF~B!52\ũtE dkW
dv

2p

1

12e2b\v
xxx9 ~k,v!.

The factor of 2 in front accounts for the contribution fro
both theSxSx andSySy correlators, andxxx9 (k,v) is given by
Eq. ~57!. To calculate the susceptibility, we imagine eva
ating the free energy in a large, finite box of linear sizeL.
We differentiate with respect to the field, and takeB→0 to
get the susceptibility. The limitL→` is taken at the end
This gives
e

-

Dx~T!

2\ssũt~gmB!2
52E dkW

dv

2p

vk2

12e2b\v

]2

]v2

1

v21Ds
2k4

52E dkW
dv

2p

]2

]v2 S vk2

eb\v21
D 1

v21Ds
2k4

.

It is assumed that thek integral is cut off at the lower end by
the inverse system sizeL21 and at the upper end by th
inverse mean free path. In going to the second line, we h
performed an integration by parts twice. We may now p
ceed exactly as for the specific-heat correction above.
first replace the frequency integral by one that runs o
positivev alone, and integrate over the angular compone
of the momentum to get

p3Dx~T!

\ũt~gmB!2ss

52E
k,v

k4
]2

]v2 S v

eb\v21
D 1

v21Ds
2k4

~we denote*k,v5*L21
L dk*0

`dv). The k integral is infrared
convergent, and may be performed first as before. The
gular contribution may be evaluated exactly as for the s
cific heat above, and yields the result quoted in Sec. V.

3. Electron tunneling density of states

Here we show that the electron tunneling density of sta
is, under certain approximations, essentially the same as
d-particle tunneling density of states. For concreteness,
consider a lattice electron Hamiltonian. The single-parti
electron density of states@Nc(E)# is related to the electron
Green’s functionG by

Nc~E!52
1

p
Im Gi i ~E1 ih!, ~B2!

where the overline denotes averaging over the disorder ai
is a site index on the lattice. The Green’s functionG may be
obtained by analytic continuation from imaginary freque
cies:

Gi i ~ iv!5^ci↑~v!c̄i↑~v!1~↑→↓ !&. ~B3!

Transfoming to thed fields, the right-hand side becomes

^di↑~v!d̄i↑~v!2di↓~2v!d̄i↓~2 iv!&.

Defining the d-particle Green’s function Gii ,aa( iv)
5^dia(v)d̄ia(v)&, this becomes

Gii ,↑↑~ iv!2Gii ,↓↓~2 iv!.

Now spin SU(2) invariance requires ci↑(v) c̄i↑(v)
5ci↓(v) c̄i↓(v) which implies that

Gii ,↑↑~ iv!52Gii ,↓↓~2 iv!. ~B4!

We therefore have
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Gi i ~ iv!52Gii ,↑↑~ iv!. ~B5!

The d-particle tunneling density of states is

Nd~E!52
1

p
Im@Gii ,↑↑~E1 ih!1Gii ,↓↓~E1 ih!#.

~B6!

Using Eqs.~B4! and ~B5!, we may rewrite this as

Nd~E!52
1

2p
Im@Gi i ~E1 ih!2Gi i ~2E2 ih!# ~B7!

5
1

2
@Nc~E!1Nc~2E!#. ~B8!

If we now finally assume that asymptotically close to t
Fermi energy, there is a statistical particle-hole symmetry
ev

e

din

ue
r

the electrons, thenNc(E)'Nc(2E) asE→0. We then have
Nc(E)→Nd(E) asE→0.

The methods of Ref. 15 can be used to show in a straig
forward way the existence of aAE singularity due to inter-
actions inNd(E) in the superconducting thermal metal
three dimensions. As we noted in Sec. III,Nd(E) has singu-
larities due to quantum interference as well. We theref
have, for the electron density of statesNc(E), at low ener-
gies

Nc~E!2Nc~0!;AE, ~B9!

with contributions from both quantum interference and int
action effects.
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