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We propose a characterization of zero-temperature phases in disordered superconductors on the basis of the
nature of quasiparticle transport. In three-dimensional systems, there are two distinct phases in close analogy
to the distinction between normal metals and insulators: the superconducting “metal” with delocalized qua-
siparticle excitations and the superconducting “insulator” with localized quasiparticles. We describe experi-
mental realizations of either phase, and study their general properties theoretically. We suggest experiments
where it should be possible to tune from one superconducting phase to the other, thereby probing a novel
“metal-insulator” transitioninsidea superconductor. We point out various implications of our results for the
phase transitions where the superconductor is destroyed at zero temperature to form either a normal metal or
a normal insulator.

[. INTRODUCTION mensions, however, both kinds of superconducting phases
are stable.

While Cooper pairing in a superconductor is usually as- It is clear that the issues raised above are germane to the
sociated with a gap in the energy spectrum, it is quite wellproperties of all superconducting systems. Consider, for in-
known that the gap is by no means indispensable. Indeedtance, the case of dirty typedtwave superconductors in
there are a number of situations in which superconductivitystrong magnetic fields. For fields aboMg,, and in the ab-
occurs with no gap in the quasiparticle excitation spectrumsence of impurities, such a superconductor exists in the Abri-
This possibility was discussed in pioneering work by Abri- kosov vortex lattice phase. The quasiparticle excitation spec-
kosov and GorkoVfor swave superconductors in the pres- trum in the presence of a single isolated vorteglevant
ence of magnetic impurities. Another interesting instance isvhen the field is just oveH.;) was shown by Caroli, de
provided by type-llsswave superconductors in strong mag- Gennes, and Matric8rio consist, at low energies, of a set of
netic fields close to, but smaller thad.,. Yet another ex- discrete energy levels corresponding to states bound to the
ample of gapless superconductivity, of much current interesgore of the vortex. The lowest lying excited state is separated
is thed,2_y2 superconductor; the-wave characteristics of from the ground state by an energy gap that is much smaller
the pairing is reflected in four nodes in the gap functionthan the bulk gap, but is nevertheless nonvanishing. Impuri-
along which gapless quasiparticle excitations result. In alties alter this density of states, and could potentially close the
cases, the presence of low-energy quasiparticle states hagraini)gap. Furthermore, the quasiparticle states are no longer
profound effect on the low-temperature thermodynamic anegxtended even along the direction of the vortex line due to
transport properties of the superconductor. the strong effects of localization by the disorder in one

The effect of static disorder introduced by frozen impuri- dimension’*# Impurities also destroy the translational order
ties in such a gapless superconductor raises a number of the Abrikosov vortex lattice, pinning the vortices into a
fundamental questions. The low-energy quasiparticles can eiflassy phase. When many vortices are present, the quasipar-
ther be delocalized and free to move through the sample, dicles can tunnel from the core of one vortex to the other. The
can be localized by the disorder. These two possibilities coramplitude to tunnel depends on the overlap of the wave func-
respond to two distinct superconducting phases that are di¢ions of the core states corresponding to the individual vor-
tinguished by the nature of quasiparticle transport. This distices. This in turn is determined by the density and spatial
tinction has a direct analogy in the physics of normalconfiguration of the vortices. At low fields, the tunneling is
(nonsuperconductingsystems where again there are two insignificant, and the quasiparticle states are localized.
possible phases distinguished by the nature of transport—the With increasing field, however, the density of vortices,
metal with diffusive transport at the longest length scales, oand hence the tunneling, increases. The nature of the quasi-
the insulator characterized by the absence of diffusion. Reparticle states—i.e., whether they are delocalized or
cent work~* has addressed the possible existence and progecalized—is determined by the interplay between tunneling
erties of these superconducting phases in the context of dirgnd the disorder. One can envision two scenarios for what
d,2_2 superconductors. In particular, it was shdwthat  happens as the field is increased towkkg at T=0. One
qguantum interference effects destabilize the superconductingpssibility is that the quasiparticle states remain localized all
phase with delocalized quasiparticles in two dimensions. Inthe way up toH.,. We suggest that this is the case if the
stead, the quasiparticle excitations in a two-dimensional suaonsuperconducting ground state obtainedHorH,, is a
perconductor are generically always localizeh three di- localized insulator. A second possibility is that the quasipar-
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ticle states undergo a delocalization transition at some fielduasiparticles could potentially modify the properties of ei-
H.4<H,, which therefore precedes the destruction of superther phase in important ways. These are analyzed next. In the
conductivity. We suggest that this happens if the ground'metal” phase, we show the existence of effects analogous
state atH>H, is a normal metal. to the Altshuler-Aronov singularities in a normal metal due
Similar considerations apply as well to the situation wherel© the interplay of diffusion and interactions. Interaction ef-

the superconductivity is destroyed at zero temperature anCts are more crucial in the “insulator”—we provide simple
zero magnetic field, say, by increasing the amount of impugrguments showing that. arbitrarily weak repulslve interac-
ity scattering. If the transition is to a normal metal, it is ions lead to the formation of free paramagnetic moments.

likely to be from a superconducting phase with delocalized! "€ Ultimate fate of the “insulator” in the presence of these
quasiparticle excitations. On the other hand, far from thdf& moments is a complicated problem, and we will not
transition in the superconducting phase, the quasiparticl@ddress it here(Weak attractive interactions, however, ap-
states at the Fermi energy, if any, will be strongly localized P&&" innocuous We then conclude by discussing the many

We expect therefore that a delocalization phase transitiofiPlications of this paper for experiments on various super-

from this phase to the superconductor with extended quasfenducting systems.

particle states precedes the ultimate transition from the su-

perconductor to the normal metal. Again, if the destruction Il. MODELS
of superconductivity leads to an insulating phase, it is natural

to expect that the transition is directly from the SUPErcoNyescribe the physics of the quasiparticles in a dirty supercon-

ductor with Iocalizgd quasiparticle excitat.ions. ... _ductor in the pinned vortex phase. We begin with a general
Thus the two kinds of superconducting phases, dlstm-BCS quasiparticle Hamiltonian:

guished by the nature of quasiparticle transport, are both re-
alizable in a variety of situations. Despite the analogies with J. ([—iﬁﬁ—(e/c)ﬁ(x)]z
t
C(X)
X

In this section, we will introduce models appropriate to

normal metals and insulators, as pointed out in Ref. 3, the H,=
problem of quasiparticle transport in a dirty superconductor

is conceptually very different from the corresponding prob- + + *

lem in apnorm);l m)e/tal. This is because, unlilfe in a normal T ()A00C )+, (0T ()¢ (X). @
metal, the charge of the quasiparticles in a superconductor iderem is the mass of the quasiparticles d@agd is the Fermi

not conserved, and hence cannot be transported through diénergy. The functio’/(x) is a random potential due to im-
fusion. However, theenergy of the quasiparticles is con- purities that scatter the quasiparticles. The physical magnetic

served, and in principle the energy density could diffuse. Irfield is introduced through the vector potential In the
addition, in a singlet superconduct@n the absence of spin- pinned vortex phase of a dirty superconductor, the gap func-
orbit scatteringthe spin of the quasiparticles is a good quan-tion A (x) may be considered a random complex function of
tum number and is conserved. Thus the quasiparticle Spithe positionx due to the random positions of the vortices.
density could also diffuse in the superconductor. We maysoth the vector potential and the complex gap function break
therefore characterize the two distinct kinds of superconductjme-reversal symmetry. As the phase/dfx) winds by 2
ors by means of their enerdgnd spin transport properties. on encircling a vortex, the corresponding term in the Hamil-
The phase with delocalized quasiparticle excitations has difqgnian that breaks time-reversal symmetry is of order the
fusive transport of energithough not of chargeat the long-  ;¢ro-field gap\,.
est length scales. It is hence appropriate to call it @ "Super-  The spinful quasiparticles experience a shift in energy due
conducting thermal metal.” In cases where_the.qua.5|part|cl<%0 Zeeman splittingnot included in the Hamiltonian Eq.
spin is conserved, this phase also has spin diffusion at th, )]. The largest field that we considef,, is of order
longest length _scal_es. On 'Fhe_ other handz in the_pha_se Wi c/e)/§2, where £, is the coherence length, making the
localized quasiparticle excitations, there is no diffusion Ofassociatoed Zeeman energy,, of order h2/mé2. As &, is

m (o)

energy or spin at the longest length scales. Hence such _
phase may be called a “superconducting thermal insulator.’r%Iated 104 by Ao~hvg /&, we have

For the sake of concreteness, we focus for most of the E,m #
paper on the properties of dirty type-ll superconductors in
strong magnetic fields. We discuss the possible phase dia-
grams, and analyze the properties of the two superconductingere p-=mug is the Fermi momentum. The last estimate
phases. This is first done in a BCS model of noninteractingises the fact that the coherence length is typically a few
quasiparticles, and assuming spin rotational invariance. Ithousand times larger than the Fermi wavelength in conven-
striking contrast to normafnon-superconductingsystems, tional low-T, superconductors. Thus the Zeeman energy is
quantum interference effects lead to singular corrections t@egligible compared to thé&ero-field gap, and we will ig-
the quasiparticle density of states in the superconddcfoe  nore it for most of our discussion. We will also, for the most
density of states at the Fermi energy is nonzero in the supepart, assume the absence of any strong spin-orbit scattering.
conducting “metal” phase, but has ¢ cusp as a function The system is then spin rotational invariant. The Hamiltonian
of energyE (measured from the Fermi enejgyThe super- above also describes noninteracting quasiparticles. Interac-
conducting “insulator” phase, on the other hand, has a vantion effects are potentially quite important, and will be dis-
ishing density of states at the Fermi energy. We will providecussed at some length later on in the paper.
supporting numerical evidence for this result in agreement It will often be convenient to think in terms of a lattice
with earlier analytical calculatiorfsinteractions between the version of the Hamiltonian Eq2):

M —Eg+V(X)|Cn(x)

2m

~10°3. 2
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Hermiticity implies the conditiortj;=t}, and spin rotation SUPERCONDUCTING |
: . : _ P, THERMAL METAL

invariance required; =A;; . Note that this is the most gen- —
eral spin rotational invariant Hamiltonian describing a super-

conductor with broken time-reversal symmetry. A general

c4g VORTEX

H
SUPERCONDUCTING STATE

and detailed analysis of the symmetry properties of super- THERMAL INSULATOR

conducting Hamiltonians of the form above may be found in ‘—*Hd

the work of Altland and Zirnbaué? on the random matrix MEISORER

theory of superconducting systems. STATE

For some purposes, it is useful to use an alternate repre-
sentation in terms of a new set dfoperators defined by 0 T
diT:CiT’ du:CiJri . (4) FIG. 1. A possible phase diagram for a dirty type-ll supercon-
ductor.
The Hamiltonian, Eq(3), then takes the form
I B B PR H=3 EdVioumm). (12
H =2 d, A* g dj=2 dfH;d;. (5 S n“z
1] ij ij 1]

Note thatSU(2) spin rotational invariance requires The ground state of the superconductor is obtained by filling

. all the negative energy levels, i.e., by occupying all the states
oyHijoy=—Hj. ©®  created byy; -

The advantage of going to tlterepresentation is that the
Hamiltonian conserves the numberaparticles. The trans- Phase diagrams
formation Eq.(4) implies that the number ol particles is

: : / . In this subsection, we discuss the zero-temperature phase
essentially thez component of the physical spin density:

diagram of the dirty type-ll superconductor in the mixed
A state when the vortices are pinned by the diso(dee Fig.
SZ:—(ddei—l)- (7) 1). We are interested in characterizing the nature of quasi-
2 particle transport in such a superconductor. By analogy with
A spin rotation about the axis corresponds to (1) rota-  hormal (nonsuperconductingsystems, we expect to distin-
tion of thed operators. Thi¢J(1) is clearly present in the  9uish two qualitatively different situations. The quasiparticle
Hamiltonian. Invariance under spin rotations abouttliey ~ Wave functions @, ,v,) for states at the Fermi enerdif

axes is, however, not manifest. any) may either be extended throughout the system, or they
The Hamiltonian may be diagonalized by the BogoliubovMay be localized. Again, in analogy with normal metals, we
transformation expect that the phase with extended quasiparticle wave func-

tions is characterized by diffusive transport. However, as em-

) . phasized in Ref. 3, the electric charge of the quasiparticles is

diT:; Un(i) ¥ny +on (D) 7np (8  not conserved by the BCS Hamiltonian, and hence cannot

diffuse. The energy and spin densities of the quasiparticles

are still conserved quantities and are thus capable of being

diizz Un(i) Ynp—up (i) ¥ - (9)  transported through diffusion. Thus the superconductor with
n extended quasiparticle states at the Fermi energy is charac-

Here they,,,v,, are fermionic operators, and the functions terized by diffusive transport of energy and spin at the largest

u,(i),v,(i) are determined by solving the eigenvalue equajength s_cales. We will refer to_ th_is ground state as a “super-
tion conducting thermal metal.” Similarly, the phase with local-

ized quasiparticle wave functions at the Fermi energy is
un(j) un(i) characterized at =0 by the absence of diffusion of energy
- N (100 and spin. We will refer to this phase as the “superconducting
on}) on(l) thermal insulator.”
Note that these are just the familiar Bogoliubov-deGennes Several recent theoretical papers have addressed issues of
equations. The symmetry Eq(6) which follows from physi-  Anderson localization in superconducting systémnfs.81112
cal spin rotation invariance then implies that In particular, Ref. 3 shows that for superconducting systems
with spin rotation invariance in two or lower dimensions, the
Un(i) vn (i) quasiparticle wave functions are generically always local-
on)) "] = ut (i) 1) jzed. Above two dimensions, however, phases with extended
or localized states are possible. While these results are simi-
is an eigenfunction oH with eigenvalue—E,. Thus the lar to the corresponding results in a normal metal, there is a
eigenvalues come in pair€f,—E,). In terms of they, striking difference® the quantum interference effects leading
operators, the Hamiltonian becomes to localization give rise to singular corrections in the quasi-

> Hj;

n

IO'y
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SUPERCONDUCTING SUPERCONDUCTING NORMAL ticle density of states at the Fermi energy is nonzero and
THERMAL INSULATOR THERMAL METAL METAL finite
‘ ‘ i ' , . - ,
Hel Hcd He2 H We may quantify the spin transport by defining a “spin

conductivity” in analogy with the electrical conductivity for
charge transport. The role of the chemical potential is played
by a Zeeman magnetic field coupling to, say, the com-

| ponent of the spin. The analog of the electric field is thus the

partl_cle den_s_lty of states unhke_ in a normal metal. We wil spatial derivative of the Zeeman field. The spin conductivity
provide additional support for this result, and explore its con-

sequences in later sections. s thus measures the component of the spin current _
First consider the situation at low fielésjust bigger than  induced in the system in response to an externally applied

H., when the intervortex spacing is large. For a single iso-Spatially varying Zeeman field along tizedirection of spin:

lated vortex, in the absence of impurities, there exist states . -

bound to the cofewhose energies form a discrete set of Js=—0sgusVB. (13

minibands.[The (mini)bandwidth is entirely due to motion Hereg is the gyromagnetic ratio, ands the Bohr magneton.

along the vortex lind.There still is a gap to all excitations of |; jg easy to show that, satisfies an Einstein relation,
orderAé/Ef. This is very small compared th,, which in

FIG. 2. A possible phase diagram for a dirty type-Il supercon-
ductor.

turn is of orderkgT.. In the presence of impurities, the D

. . . . . . sX0
guasiparticle wave functions are localized along the direction o= > (14
of the vortex line3* Further, for large intervortex spacing, (gue)

quasiparticle tunneling from the core of one vortex to aNyhere D, is the spin-diffusion constant, ang, is the spin

other is insignificant. Thus we expect no energy or spingsceptibility. In the approximation of ignoring quasiparticle
transport by the quasiparticles at the longest length Scaleﬁiteractions,)(o is simply proportional to the quasiparticle

the system is in the thermal insulator phase. density of stateg, at the Fermi energy:
Upon increasing the magnetic field towards,, it be-

comes important to include tunneling from the core of one (gugh)?
vortex to the other. If the tunneling is sufficiently strong, it Xo=—4 Po- (19
may become possible for the quasiparticle states to delocal-
ize, leading to a thermal metal phase. Consider, in particulain the thermal metal phase is finite and nonzero at zero
the situation where the ultimate destruction of the supercontemperature.
ductivity atH, leads to a normal metal. The normal metal is  In the vortex phase, the diffusion parallel to the magnetic
characterized by diffusive transport of charge, spin, and enfield, described by the diffusion constddf, is mainly along
ergy at the longest length scales. It is natural to expect thathe core of the vortices, while the diffusion perpendicular to
generically, the spin and thermal diffusion already exist init, with diffusion constantD, , is due to in-plane motion
the superconducting phase just belbly,. In other words, between vortices. The latter depends strongly on the inter-
we expect that a transition to a normal metaHab occurs  vortex tunneling strength, and in general we expect the dif-
from the superconducting thermal metal phase. Thus, in thifusion to be highly anisotropic. For ease of presentation, we
case, there are three distinct zero-temperature phases as thil, for the time being, assume that the diffusion is isotro-
magnetic field is increased from just abddg; to just above pic. When appropriate, we will take into account the aniso-
Hc,. The superconducting thermal insulator at low fieldstropic diffusion.
(aboveH,,) first undergoes a delocalization transition to the The energy diffusion is measured by the more familiar
superconducting thermal metal at some fielgh<<H., be-  thermal conductivityx. This too satisfies an Einstein rela-
fore the superconductor is destroyed to form the normation:
metal (see Fig. 2

In the other case where the destruction of superconductiv- k=D+C, (16)

ity at H, leads to a localized insulator, it is natural to eXpethhereDT is the thermal diffusion constant, a@ithe spe-

that the transition occurs from a superconductor where thgifiC heat. In the approximation of ignoring quasiparticle in-

quasiparticles are localized, i.e., directly from the supercon; . o : . :
ducting thermal insulatofsee Fig. 3 teractions, the specific heat is determined by the density of

states. In particular, in the limif—0, whereT denotes the
temperature, we have

Ill. SUPERCONDUCTING THERMAL METAL )

ar
In this section, we examine the properties of the super- C= ?képoT. (17)
conducting thermal metal phase in more detail. In this phase,
there is diffusive transport of spin and energy. The quasiparFurthermore, in the noninteracting theory, as both spin and
energy transport are by the quasiparticles, the corresponding

SUPERCONDUCTING NORMAL diffusion constants are the same:
THERMAL INSULATOR INSULATOR
Hel He2 H Ds=D~. (18

FIG. 3. Another possible phase diagram for a dirty type-Il su-This then leads to a “Weidemann-Franz” law relating the
perconductor. spin and thermal conductivities:
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P(E) ing time and returns with spin up. Using the symmetry rela-
tion Eq.(21), this contribution tdGj; ;(t) can be written as

_ t) t t

1Gii 11| 5]1Gii 11| 5] =~ |Giinil 5
Now |Gj; ;,(t/2)|? is just the probability for the everit]
—i] in time t/2. For larget, this is half the total return
probability P(t). This in turn is determined by the condition

that thed particles diffuse through the system. For diffusing
particles in three dimensions, the return probability is

2

E P(t) (23

FIG. 4. Quasiparticle density of states of the superconductin
thermal metal.

 (4mD)3?

gI'his then leads to an energy dependent correction to the
density of states:

K 4772sz

Tos - 3K2

1
(19 N
P(E)=po 2772(Dsh)3’2\/E' (24
Though the quasiparticle density of states is finite and |f we take into account the anisotropic nature of the dif-

nonzero at the Fermi energy, as we show below, it varies agsion in the vortex phase, then the same result holds, but
VE on moving in energyE) away from the Fermi energy with an effective diffusion constar®s= (D2 D) *~,

(see Fig. 4. This is in sharp contrast to a normal metal of  The energy dependence of the density of states has impor-
noninteracting electrons, and has its origins in quantum intant consequences for the low-temperature thermodynamics
terference effects specific to the superconductor. This resuif the superconducting thermal metal phase. In particular,

can be established in a field theoretic analysis of quanturthe specific heat at low temperature behaves as
interference effects in the superconducting thermal metal

phase® Here, we provide instead a simple physical explana-
tion of the effect using a semiclassical argument developed
earlier in a different context® p o2 o

The symmetry Eq.6) of the Bogoliubov—de Gennes where y=(7“/3)kgpo, and the constant factor is given by

Hamiltonian implies that the amplitude iG;; .4

3/2

C=+vT+Db , (25

_B
A\ 27Dy

=(iale”M%|jB) (1) for a d particle to go from point, _ 15 1_i 5/ 26
. forac > ! : ca=—as| 1= =55| £(5/2). (26)
(pseudgspin B, to pointi, spin «, satisfies the relations (2) 2
Gy (D=—G% | (1), (200 Here §(5_/2_)=En(l/n5’2): Note thatbe, is a universal con-
stant. Similarly, the spin susceptibility at low temperatures
Gij,TL(t):Giﬁ,m(t)- (21) behaves as
The Fourier transform of this amplitude is given by (T)— :% kT |2 27)
XL T Xom b\ 274D,
Gij,apl@+i 77)=J’ dt Gy (1) The constanby, is again universal:
hT
_Lia ; is bsq:(g/v’«B) - 28)
(ho—H)Ih+in ' (2m)

The quasiparticle density of states at an endgway from with I=f§,°(dx/\/§)[1/(ex+ 1)]=1.07.

the Fermi energy may be obtained from this in the usual 't iS amusing to note that this correction has the same
manner: form as the Altshuler-Aronov effects in a diffusive, interact-

ing normal metal, though the physics is quite different. Later
1 _ on in the paper, when we consider interaction effects, we will
p(E)=— pur IM[G;j 1(E+in)+(T<])], (22  show the existence of an Altshuler-Aronov correction of the
same form in the superconducting thermal metal as well.
where the overbar denotes an ensemble average over impu-
rity configurations. Consider now the return amplitude IV. SUPERCONDUCTING THERMAL INSULATOR
Gii 11(t). This can be written as a sum over all possible
paths for this event. Consider in particular the contribution We now consider the properties of the superconducting
from the special class of paths where the particle traversethermal insulator phase. By definition, this is a supercon-
some orbit and returns to the poinin time t/2 with spin  ductor where the thermal conductivity has the limiting form
down, and then traverses the same orbit again in the remain/T—0 asT—0. Similarly, the spin conductivity is given
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by o,=0 at zero temperature. Thus this phase is a supercon Tw=02 s 2.w-05
ductor for charge transport, but an insulator for thermal and
spin transport.

In contrast to conventional disordered insulators, the den-
sity of quasiparticle states actualanishesn the supercon-
ducting thermal insulator. This can be seen by the following
simple argumerit.Consider the HamiltoniafB) in the limit
of strong on-site randomness and weak hopping betweel

dos
1o = N W & g o N

2 -1 0 1 2 -2 -1 0 1 2
sites. In the extreme limit of zero hopping, the sites are all Eneray Eneroy
decoupled. At each site, the Hamiltonian in terms of the ;5 Bw-09 25 dw-18
particles satisfies th8U(2) invariance requirement,Ho 3 ,
= —H*. This constrains the Hamiltonian to be of the form =s
H=to,+A o4+ Aoy with t,A;,A; random. Physicallyt a2 al®
can be thought of as a random on-site chemical potential, an 15 ©
A, A, as the real and imaginary parts of the random on-site o5
BCS order parametex. Considering now the case where the °°
joint probability distribution oft,A, ,A; has finite, nonzero e N W 0 2
weight at zero, we see immediately that the disorder aver- Enerey ey
aged density of states vanishesB%s Now consider weak FIG. 5. Density of states in the superconducting thermal insula-

nonzero hopping. In the localized phase, perturbation theorior showing evolution with increased disord&t The energy scale
in the hopping strength should converge, and we expect t& set by the bandwidth of the pure dispersion in E3f).
recover the single site results at asymptotically low energies.
If the joint probability distribution oft,A, ,A; has vanishing where now the sites andj reside on a one-dimensional
weight at zero(as happens for instance, far. ,A; nonran- lattice with periodic boundary conditions. It is convenient to
dom and nonzero, and onlyrandon), then the density of picture the Hamiltonian in terms of coupled spin-up and
states only vanishes even faster. To get a density of statepin-down sublattices.
that vanishes slower thdg?, or is finite at the Fermi energy We now employ the Hamiltonian in Eq29) to explore
requires a diverging probability density at=A,=A;=0 the density of states numerically for various models and de-
which is presumably unphysical, and definitely nongenericgrees of disorder. We begin with a model which shows a gap
Thus we conclude that th@isorder averaggdjuasiparticle in the density of states in the absence of disorder. We set the
density of states vanishes in the superconducting thermal irearest-neighbor coupling;,; to a constant and takeA
sulator phase in the absence of quasiparticle interactions. The &;;A° to be on site and real. The pure Hamiltonian can be
heuristic argument above may be supplemented by more fodiagonalized trivially. The resulting single particle excita-
mal treatmentswhich argue that the density of states in thetions have a dispersion
thermal insulator at low energies may be effectively de-
scribed by the random matrix resdftsobtained for super- E=+(A%)2+4t?cosk, (30)
conducting Hamiltonians with the appropriate symmetries, . .
i.e., those with spin rotation invaria%rt):e pand br())/ken time-W'th a_gap A° abput E:O’, and a bandwdth
reversal symmetry. Further evidence in support of a vanish? V(A7) “+4t°. We nov(vl)lntroduc(ez)msorder by aIIowmgl the
ing density of states in the localized phase is provided by’n-Siteé couplingg;;, Aji”’, andAj® to take the value¥™,
explicit analytic calculatiorfson a one-dimensional model. A°+V?, andV?, respectively. The/' are random variables
We now further demonstrate the validity of this argumentdraW"_‘ from a uniform distribution w[th zero mean and width
by direct numerical calculation of the density of eigenstated/V Which acts as a measure of the disorder strength. Note that
of the Bogoliubov—de Gennes equations in the spin insulatd Nonzero value oh® breaks time-reversal invariance, as
ing phase. The simulations were done in one spatial dimer2ne would expect for the vortex phase.
sion. The advantage of doing so is threefold: as localization AS Seen in Fig. 5, impurities begin to fill in the géthe
effects are strongest in one dimension, it is easier to acceg¥€cise manner is specific to the distribution of disorder,
the properties of the localized phasedr1. Further, itis ~Which we verified by using different forms for the probabil-
possible to go to fairly large system sizesdirr 1 and hence 'Y distribution of theV'). One can observe the symmetry
the results are more reliable. Finally, we expect that the propaboutE=0 which is a result of the particle-hole symmetry
erties of the localized phase are qualitatively the same in angf the Bogoliubov—de Gennes Hamiltonian. As the disorder
dimension. Hence it is sufficient to consider the 1 case. A  strength is increased, there is an increasing density of states
physical realization of a one-dimensional system to whicHn the gap. But the density of states at the Fermi energy
our results are directly applicable is obtained by consideringi€vertheless always vanishes. Closer examination of the den-
the quasiparticle states in the core of a single, isolated vorteXity of states near the Fermi ener@ee Fig. 6 shows that it
in the presence of disorder. actually vanishes as
To simulate the density of states of tleparticles, we
employ the Hamiltonian in Eq5): P p(E)=AlEP?, (3D
where A is a constant. This power law is exactly what is
H:Z diT(tijO'z"_ Ai(;)gx+ APgd (29) predicted by the simple argument outlined at the beginning
B ' oy of this section.
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D.O.S
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FIG. 6. Density of states of the superconduct-
ing thermal insulator at low energies. Here, the
constantA of Eq. (31) decreases with increasing
disorder strengtiw that ranges from 0.8 to 2.

0

Energy

0.2

We now consider the situation where the density of states In summary, the superconducting thermal insulator phase
is a constant in the absence of disorder. We set the neares$tas the remarkable feature that the quasiparticle density of

neighbor coupling;; 1, and gapA;; . ; to be real constants

states actually vanishes at the Fermi energy. This is in strik-

andA, respectively. We then obtain for the dispersion of theing contrast to a conventional Anderson insulator, and has

single-particle excitations the form

E=2vAZ+t2cosk,

with a bandwidth 4/AZ+t?. We introduce disorder by let-
ting the on-site couplingt; , A{, andA{? take the values
V!, V2, and V3, respectively, where th¥'"’s are random

several obvious consequences for the low-temperature ther-
modynamic properties of the phase.

The vanishing density of states also has consequences for
thermal and spin transport at finite temperature which is pre-
sumably through variable-range hopping. This can be seen as
follows: for a hop between two localized quasiparticle states
separated by a distand® the overlap of the two states
~e R& where ¢ is the localization length. The typical en-

variables as specified for the case with the pure gapped digrgy separatioiEg between these states is determined by the
persion. As seen in Fig. 7, disorder reduces the density dfiensity of states. When this vanishesE4s the total number
states at the Fermi energy, ultimately forcing it to vanish asf states in a radiuB in an energy intervaE about the Fermi
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FIG. 7. Evolution of the density of states with disoréféfor the

0
Energy

energy is of ordeE°R? (in three dimensions Therefore the
typical spacingEr~1/R. The total rate for hopping a dis-
tanceR is proportional tae™ @R¢T¢RT)  The first term in the
exponential is the square of the wave-function overlap, and
the second is the activation energy cost for the timrec is
some unknown constant determined by the density of gtates
The total hopping rate, as measured by the spin or thermal
conductivities, is obtained by summing over hops of all pos-
sible distancesR. For low temperature, it is clear that the
sum will be dominated by hops of size~1/\T. Thus the
total hopping ratéand hence the spin/thermal conductivijies

~e V{To/N_Note that the exponent 1/2 differs from the con-
ventional Mott exponent of 1/4, and is due to the density of
states vanishing &a&2.

V. INTERACTIONS

Our discussion of the properties of the two superconduct-
ing phases has thus far been based on the noninteracting
quasiparticle Hamiltonian of Eq$l) or (3). In this section,
we consider the effects of interactions between the quasipar-

model where the density of states is constant in the clean limit. Herécles. A discussion of the microscopic origin of these inter-
the energy scale is set by the bandwidth specified by the pure digctions is provided in Appendix A. Here we take a more

persion of Eq(32).

phenomenological approach. It is important to note that the
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interactions are short ranged in space—the long-range Cou- VA F=(S;,,)
lomb repulsion between the underlying electrons is screened
out by the condensate. We keep only the interactions in the

_ dy, d /& &
triplet channel to get the Hamiltonian _j d7d® dy u(x=y){S(x,7)- Sy, 7)),

(40)

whereV is the system volume3 the inverse temperaturd;
> > the free-energy density, amilF the correction to the free-
Hine= f dX U (x=y)S(x) - S(y), (34) energy density due to interactions. The expectation value on
R the right-hand side is to be evaluated in the noninteracting

whereu, is short ranged, an8(x) is the spin density. Note theory. The overline denotes an average over all realizations
that as the charge density is not a hydrodynamic mode, thef the disorder. The expectation value can be related directly
singlet interaction is expected to be quite innocuous, and Wey the spectral weight for spin-density fluctuations as fol-
simply drop it. As discussed in Appendix A, the signwgf  |ows:
could be either positive or negative, with negatiyecorre-

H="Ho+ Hint, (33

sponding to repulsive interactions. (S(x,7)-S(y,7)=(S(x,0)- S(y,0))
Interactions can also be included instead in the lattice
model Eq.(3). We expect that the universal properties of the e PEn R
two superconducting phases are insensitive to the detailed :% Zs (n[S(x)[m)-(m[S(y)[n),

form of the interaction Hamiltonian. So we may consider any
short-ranged interaction with the right symmetrispin con-  where|n),|m) are exact eigenstatéwith energiest,, ,E,,,
servation. A particularly simple choice is provided by an respectively of the noninteracting Hamiltonia{,, andZ,

on-site Hubbard interaction: =Tre #Mo s the corresponding partition function. Now the
spectral weight for spin-density fluctuations in the noninter-
Hi=Hot+Hy, (35  acting theory can be expressed as
U e PEn )
Hy=% 2 m(n—1), (39 X' (xy5@) = 2 ——(n[SO0[m)-(m] S(y)|m)
where ni=ci*ci is the number operator for sitei!” For (Em—En) ~Bho
repulsive interactiond)>0. In the rest of this section, we X(2m)6| 0= 5 (1-e )-
will use these model interaction Hamiltonians to discuss
their effects on the two superconducting phases. Clearly then, we have
) . - » dw x"(X,y; )
A. Superconducting thermal metal . :j RRNRATR S S
(Sx0)-S(y.0)=| 57— 0. @D

Interaction effects lead to significant changes in the prop-
erties of diffusive normal metalS,as was shown by Alt-  Upon averaging over the disorder, translation invariance is
shuler and Aronov. In the superconducting thermal metatestored, and we have
phase, it is natural to expect similar effects due to the inter-
play of spin diffusion and interactions. We demonstrate this - dig .-
below with some simple calculations. X"(X,Y§w)=f LY (g, 0). (42)

Consider the free energy of the interacting quasiparticles (2m)
in the superconducting thermal metal. To calculate this, it isThe singular contributions to the free energy all come from
convenient to pass to a functional integral representation fofhe smallg, @ behavior ofy”. This is entirely determined by

d

the partition function: the diffusive nature of spin transport,
2
Z:f [Dyle™ (o Sind), (37 X//(q,w):%—swq, (43)
w’+ ng4
_ d 7 whereoy is the spin conductivity anB is the spin-diffusion
So ded X ¥(x,7) ar Y1)+ Ho(4 )|, (38) constant.(There is an extra factor of 3 in the expression

above from the standard form, which is due to summing over
d R R all three components of the spinie can now evaluate the
Snt:f drd™ d% u(x=y)S(x,7)-S(y,7). (39  free-energy correctiofsee Appendix B for details The re-

sult is given by
As we show below, all the singular corrections to the free
energy come from the diffusive nature of the spin fluctua- AF(T)—AF0)~ —u, T2 (44)
tions. (The charge density does not diffuse, and hence the 5
singlet interaction does not contribute to any singular correcin three dimensionsiHere we haveu,= [d% u,(x).] This
tions; we are justified in dropping jtThe first-order correc- then leads to a correction to the specific heat due to interac-
tion to the free energy due to interactions is given by tions of the form
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kgT %7 introduce a small additional magnetic fiebdx,t) coupling
AC:bci(m) , (45 toS,. Then, the spin currenig’ ,jY' are related to gradients
s of the spin density and the fieldthrough
where the coefficienb; is given by ,
js = —Ds# 68+ (gugos)dib, (52)
45 Xxo )
bei=— gutwkséw@- (46) jY'=—-Dg 69, (53)

whereDg, o0 are the spin-diffusion constant and spin con-

Note that this is similar in form to the correction due to ductivity. respectivelv. We mav now determine the response
qguantum interference pointed out in Sec. lll, but has a dif- Y, resp y: Y P

ferent physical origin[As before, with anisotropic diffusion, of the spin density to the field from these equations:
Dy is replaced by the effective diffusion constant

(D?Dy)*3.] The total specific heat in the superconducting sst(k,w)=
thermal metal phase therefore is

DKk?—iB
—i(w+B)+Dk?

Jupos
Ds

b(k,w), (54

keT |32 whereB=gugB. We have used the Einstein relation Eq.
57D, (47) (1) to expressyg in terms ofag andDg. A similar expres-

s sion, but withB— —B, holds for s (k,w). The response
where the constarti, has contributions from both quantum function y,(k,w) can now be read off to be
interference and interaction effects:

Cc= yT—i—BC(

Os

be=beq+bei (48) Xax(K @)= 551 2
S

+( — +(§q—§>>
—i(w+B)+Dgk?
Note thatb. is a universal number, while;; depends on the (55)
interaction strength and the zero-temperature spin suscep
bility. This should allow experimental determination of the
importance of interaction effects by simultaneous measure- XK @) =27 1M xy(K, ). (56)
ments of the specific heat and the spin or thermal diffusion _
constant. The deviation of the coefficidntfrom the univer- ~ The result is
sal valueb., gives a measure of the interaction strength.
Similar effects exist in the spin susceptibility as well. To " () =howk? 1

see this, consider evaluating the free energy in the presenceXXX 9 s (w+B)%+(Dk?)?
of an externally applied Zeeman magnetic field coupling to (57)
the z component of the spin. This does not affect the diffu- . .

Exactly the same expression holds . Notice that the

sion of S,, but the diffusion ofS,,S, gets cut off. The pre- . . .
cise manner in which this happens can be found from hydroform Of the spectral weight given in EG43) may be ob-

dynamic considerations by including the effect of the tained from the above by setting the magnetic figl zero.

precession of the spin density under the external magnetift IS Now possible to evaluate the change in free energy due

field in the classical diffusion equation. To that end, first note!® theé magnetic field. For details, see Appendix B. The sus-

that in the presence of a small magnetic figi¢oupling to cepti.bility is th_en obtained_ by diffgrentiating .with respect to
the z component of the spin, the ground state has a spiﬁhe field. We find, for the interaction correction,

t'hwis then determineg,,(k,w) through the equality

+(§—>—§)

density AT by kgT |2 s
-~ Xo Xo(MW=5"127%D. (58
S=z—-B8. 49 . L . T
guB in three spatial dimensions. The coefficidnt is given by
Consider small deviations of the local spin density from the BT T
ground state: b= — X0 (59)
sl 871.3/2 !

= X
S(x,t) = 5Sx(X,t),5Sy(X,t),g—oB+ 8S,(x,t)|. (500 whereZ’ = [5(dy/\y)(d/dy)[y/(e—1)].
Ke The full low-temperature behavior of the spin susceptibil-

Quite generally, this satisfies the equation of motion ity is then given by
(9§ o - . b kgT 2
— ol —ya=m— —
o +SX(gueB)= —dils, (51) x(T) = Xxo DS(ZWhDs) : (60)

where agairbg has contributions from both quantum inter-

wherei=1,2,3 is a spatial coordinate index aﬂds the spin y . .
ference and interaction corrections:

current vector in the spatial directionThe second term on
the left-hand side arises from the precession of the spin under b.=b. +b. 61)
the external magnetic field. In the absence of this term, the L R

equation above reduces to the familiar continuity equatiorNote again thabg is a universal constant whilgs; depends
expressing spin conservation. To derive 8168~ correlator,  on the interaction strengtfiwith anisotropic diffusionDg is
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replaced by DfDH)m.] Thus measurements of the tempera-variables are zero. As we argued in Sec. lll, in that case, the
ture dependence of the spin susceptibility can also be used fuasiparticle density of states of the noninteracting Hamil-
infer the relative importance of interaction and quantum in-tonian goes to zero d&|2.
terference effects. To diagonalize the full interacting Hamilonian, note that
The simple calculations above demonstrate the existendéie d particle number is conserved even with interactions.
of Altshuler-Aronov effects in the thermodynamic properties Thus we may look for eigenstates with fixdgarticle num-
of the superconducting thermal metélt is also possible to  ber nd=2adlda. The physical spin is determined entirely
show that interaction effects lead to a suppression of th&y ny [Eq. (7)] through the relatiorS,=3(ny—1). For the
electron tunneling density of states. For the tunneling df a single-site problem, the Hilbert space consists of four states:
particle, the result can be established in quite a straightfor0), |T>:d;f|o>, |l>:dI|o>, anleU:d%rdﬂO)- The states
ward way along the lines of Ref. 15. However, the physical0) and|1]) are immediately seen to be eigenstates with
tunneling process involves tunneling of an electron. In Ap-energy 0. Diagonalizing the Hamiltonian in the space of the
pendix B, we show that under certain further approxima-remaining two statef/), || ), we find two other eigenstates
tions, the tunneling density of states of electrons is the samey ) | —) with the eigenvaluesE. =U= \/(t+U)Z+ A%
as that of thed particles. Thus interaction effects lead to a Note that the lower of the two eigenvaluEs is negative if
suppression of the physical tunneling density of states in the- 2ty <t2+-|A|2 (the other eigenvalu€. is always posi-

superconducting thermal metal as well. tive). If E_<O0, then the ground state is the sthte). This
lies in the subspace withy=1, and hence has physical spin
B. Superconducting thermal insulator =0. If E_>0, then the ground state is twofold degenerate

We now move on to consider the effects of interactions inWith both [0) and |T]) having zero energy. These corre-
the superconducting thermal insulator. In a phase with a gapPond to states where the ground state has a physical spin
in the quasiparticle spectrum, weak interactions are irreleva 2. i ) )
and lead to no significant effectshis is analogous to the ~ 1Nhus a free magnetic moment is formed in the zground
insignificance of weak interactions in an ordinary band insuState of a single site whenever the cpnd|t|t_?n+|A| <
lator). So we consider the more interesting case of a gapless 2tU is satisfied. For a collection of sites with a generic
superconducting thermal insulator. We argued in Sec. [vandom distributiorP(t,A,A) of t, A, and4;, there will
that, in the absence of interactions, the disorder averagedlways be some weight where this condition is satisfied.
density of states vanishes, generically| B, on approach- Hence there W|II_ be a_flnlte probab_lll_ty of formmg a free_
ing the Fermi energy. Despite this, we show here that arbimoment at any site. This leads to a finite density of magnetic
tarily weak repulsive interactions lead to the formation ofmoments for the full system. _ _
free paramagnetic moments. This result is quite analogous to It IS natural to expect that inclusion of weak hopping be-
what happens in a conventional Anderson insulator; arbifWeen sites does not change the result above, so long as we
trarily weak repulsive short-ranged interactions lead to thédr® in the localized phase. So we conclude that arbitrary
formation of free paramagnetic momentdlote, however, weak repuls_lve mteractl_ons lead to the formatlon of f_ree
that the density of states is a constant in the conventiondl@ramagnetic moments in the superconducting thermal insu-
Anderson insulatoy. ator. _ _

The discussion is simplest in terms of the lattice Hubbard- What is the ultimate fate of these magnetic moments at
type Hamiltonian Eq(36). As in Sec. IV, consider the case low energies? Ther_e are two generic possibilities: t_he spins
of strong on-site randomness and weak hopping. In the limifan freeze into a spin glass phase, or stay unfrozen in a phase
of zero hopping, the resulting single-site problem can ba¥ith random singlet bondS between pairs of spins. It is a
solved exactly even in the presence of the interaction ternfifficult matter to decide on the conditions for realizing ei-

To that end, consider the single site Hamiltonian ther of these possibilities, and we will not attempt it here.
The analysis above has assumed that the interaction was
H="Hy+Hy, (62)  repulsive. If the interaction is attractive, i.¢J,<0, the so-

lution of the single-site problem shows that the ground state
has no net spin. Thus there is no local moment instability in
Ho=t2, clic,+Acfc]+A*c ¢y, (63 that case. The spin susceptibility vanishes at zero tempera-
* ture, as in the noninteracting case.

Hy=Un(n—1), (64)
VI. SYSTEMS WITH TIME-REVERSAL INVARIANCE
with n=2aclca. For the time being, we assumé>0,
making the interactions repulsive. It is convenient to go to
the d representation:

In this section, we will briefly consider systems with time
reversal invariance. Ag-wave superconductor with weak or
moderate impurity scattering has a gap in the quasiparticle

Ho=d"(to,+A 0y +Ajay)d, (65)  excitation spectrum, and hence is in the superconducting
thermal insulator phase. Strong impurity scattering will de-
Hy=U[(dTo,d)2+dTo,d]. (66) stroy the superconductor. When this happens, the resulting
phase is most likely an insulator. However, we see no reason
Here A, ; are the real and imaginary parts af We will of principle forbidding a transition to a normal metah

assume thatt,A, ,A; are random variables with a probability three spatial dimensiopsvhen the superconductor is de-
distribution that has finite nonzero weight when all threestroyed. We propose that the transition then occurs from the
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FIG. 8. Zero-temperature phase diagram for the FIG. 9. Zero-temperature phase diagram for the superconductor-
superconductor—normal-metal transition in the presence of timeinsulator transition in the presence of time-reversal invariance.
reversal invariance. The parametiis a measure of the strength of
the disorder. quasiparticles, it is possible to develop systematic calcula-

tions of the universal critical exponerltsHowever, we ex-
superconducting thermal metal phase, i.e., as the impuritgect universal properties even with interactions present.
strength is increased, there is a transition from the supercon- On approaching the transition at zero temperature by
ducting thermal insulator to the superconducting thermalarying the field strength towards,,, there is a length scale
metal which precedes the ultimate transition to the normag (which may be interpreted as the quasiparticle localization

metal (see Fig. 8 On the other hand, if the transition is to |ength in the localized phas¢hat diverges as
the insulator, we propose that it is directly from the super-

conducting thermal insulatdfig. 9). E~H—Hg| ™" (67)
The properties of the superconducting thermal metal
phase in this caséwith time-reversal symmetjyare quite
similar to the case where time-reversal symmetry is absenﬁ
Differences exist, however, in the superconducting thermal
insulator phase. The heuristic arguméit,the beginning of E~T 712, (68)
Sec. IV, for the quasiparticle density of states now shows ] -
that it vanishes in this case as well, but only as fast as oNote that the two Eqs(67) and (68) define the two critical
faster than E|, and once more, this is consistent with ran- €xponentss andz. N . _
dom matrix prediction&® As in Sec. IV, we will provide ' On approachmg thg transition point from the delocalized
supporting numerical evidence for this statement by calculatSide, the coefficienA introduced above goes to zero. Pre-
ing the density of states of the Bogoliuobov—de Gennne§isely at the transition poiriti =H.,, but at finite tempera-
equations appropriate for a time-reversal invariant system iftre, <(T)~T"¢ with ¢>0 being a universal exponent. In
one dimension. In order to preserve time-reversal symmetnygeneral, for fields close télc, and low temperatures, we
we set the imaginary part of the gap functiad® in the — May write down a scaling form
Hamiltonian of Eq.(29) of Sec. IV to zero. Apart from this

gimilarly, moving away from the critical point by turning on
finite temperature introduces a length scgjewhich be-
aves as

important difference, the models that we use here are the fzclTW(é). (69)
same as those of Sec. IV. Again, we first display results for a T §
one-dimensional model where there is a gap in the clea

I:f‘he constant;, is nonuniversal, while the functiovi is uni-

limit. . .
As seen in Fig. 10, the density of states clearly vanishes é{ersal. Equivalently, we may use E467) and(68) to write
|H - Hc4| )

zero energy. Closer examination of the low-energy behavior
(see Fig. 11shows that it actually vanishes f&| in agree- fzcl-pby /
ment with the simple argument above. T TYzv
We also considered the situation where the density of
states is a constant in the clean limit. The results are showr ,, tw-o2 2w=05

in Fig. 12. Again, the density of states vanishes linearly for ,
strong disorder. 10
-1
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VIl. PHASE TRANSITIONS

In this section, we study some general properties of the
various transitions between the phases that we have dis - : )
cussed(see Fig. 13 The most striking phase transition in Energy Energy
our phase diagram is the one between the superconductin 3.w-08 4.w-35

thermal metal and the superconducting thermal insulator.

This is a localization transition that occurssidethe super- 4 15

conducting phase, and should be accessible experimentally s .

On approaching the transition from the thermal metal side, =, !

the spin conductivity goes to zero continuously. Similarly, 1 05
-1 0 1

8
6
4
2
0

o
N
|
o
N

the low-temperature ratié= /T, which is nonzero in the
thermal metal, vanishes at the transition. The low- 9, 2 L re— o s 1
temperature thermal transport in the superconducting therma. Energy Energy

insulator isxpresumably through variable-range hopping, and FIG. 10. Density of states in th&invariant superconducting
k~e~ To/M" with x=1/2. In the critical region near the tran- thermal insulator showing evolution with increased disoitleihe
sition point, various physical quantities are expected to havenergy scale is set by the bandwidth of the pure dispersion of Eq.
universal singular behavior. In the model of noninteracting(30) of Sec. IV.
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FIG. 11. Density of states in the time-
reversal-invariant superconducting thermal insu-
lator at low energies. Decreasing slope corre-
sponds to increasing disorder strengtt that
ranges from 0.8 to 4.

Energy

Here c, is also nonuniversal, an¥ is a universal scaling Our phase diagram has important implications for the
function such thaty(0) is a finite constant. Further, requir- phase transitions at zero temperature where the supercon-
ing that k~T as T—0 on the metallic side, we see that ducting phase is destroyed. For the superconductor—normal-
Y(x— +x)~x?%. This then implies that the coefficiedt metal transition, we suggest that the transition is generically
introduced above vanishes, on approachidg,, as (H  from the superconducting thermal metal phase, i.e., from a
—Hea)??. Further, if we make the assumption that thesuperconductor with spin and energy diffusioriTat0. Fur-
fixed-point theory controlling the transition obeys hyperscal-ther this implies that the superconductor-normal transition
ing, then conventional scaling arguments can be used tgenerically occurs from a gapless superconductor with a fi-

show the exponent equality nite, nonzero density of quasiparticle states at the Fermi en-
ergy. The presence of gapless quasiparticle excitations in the
d-2 superconducting side should affect strongly the critical prop-

7 (71) erties of the superconducting—normal-metal transition: previ-

ous theoretical treatments of this transifidwhich have ig-
Similar scaling forms, but with different exponents and scal-nored this feature are hence expected to be incorrect.
ing functions, describe the transition in the time-reversal-Similarly, the superconductor-insulator transition is generi-

invariant case as well. cally from the superconducting thermal insulator.
As shown in Fig. 13, direct transitions from the supercon-
. 1. Pure system a5 2.w=005 ducting thermal metal to the normal insulator or from the
s superconducting thermal metal to the normal metal are pos-
6 25 sible at a special multicritical point. We will, however, not
" " 2 attempt to describe the properties of such a multicritical
3¢ Sis point here.
> 1
05
o o VIIl. DISCUSSION
-2 -1 0 1 2 -2 -1 0 1 2
E Ei . . . .
s e One of the main purposes of this paper is to point out that
. W= 0. W= . .
25 1 all superconductors fall into one of two categories—those
2 0.8
@ 15 « 0.6
s, S, NORMAL METAL NORMAL INSULATOR
e o2 SUPERCONDUCTING SUPERCONDUCTING
0 0 THERMAL METAL THERMAL INSULATOR
-2 - 0 1 2 -4 -2 0 2 4
Energy Energy
FIG. 12. Evolution of density of states with disordéft in the FIG. 13. Zero-temperature phase diagram showing transitions

model where it is constant in the clean limit. Here, the energy scalevhere the superconducting phase is destroyed. The axes represent
is set by the bandwidth of the pure dispersion given by B8) of external tuning parameters such as, for instance, disorder and/or a
Sec. IV. magnetic field.
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that, apart from being superconducting, share many propespin-diffusion constant should then show a nonzero value at
ties with conventional metals, and those that share mangero temperature. The spin susceptibility, as measured, for
properties with conventional insulators. This distinction caninstance, by the Knight shift is also predicted to saturate to a
be made quite precise, and indeed corresponds to the exinite, nonzero value at zero temperature. Note, however, that
tence of two distinct zero-temperature superconductinglue to quantum interference, and interaction effects, we pre-
phases which are distinguished by the nature of quasiparticigict a T dependence in the temperature dependence of the
transport. In this final section, we will discuss various experi-spin susceptibility at low temperatures. Similarly the specific
mental implications. This will be followed by a discussion of heat has &ar®? correction. As we emphasized in Sec. V,
various peripheral matters that have been omitted from ougither the specific heat or the susceptibility measurements
considerations so far, and their effects on experimental sysnay be used to quantify the relative importance of interac-
tems. tion and quantum interference effects.
In the superconducting thermal insulator phase, the spin
conductivity is zero at zero temperature. Further, if the inter-
A. Experiments actions are weak, then the vanishing density of states in the

A powerful way of probing quasiparticle transport in a noninteracting_ quasipar_ticle mO(_jeI manifests itself_ _in all
superconductor is through thermal conductivity measurethermodynamic properties. For instance, the specific heat
ments. In the superconducting “insulator” phase, the ratiovanishes faster thaf*** with =1,2 depending on whether
/T goes to zero as the temperature goes to zero. On tHEMe reversal is a good symmetry or not. Similarly, the spin
other hand, in the superconducting “metalg/T goes to a suscep_tlblllty vanishes faster thdf. Interaction effects pe—
constant as the temperature goes to zero. come important at the lowest temperatures—formation of

The type-ll swave superconductor offers a definite op- free' paramagnetic moments Wou'ld initially give rise to a
portunity for tuning between these two phases. At low fields Curie term in the susceptibility which would then be altered
this is in the superconducting insulator phase. Consequentlft €ven lower temperatures due to exchange between these
kIT—0 asT—0. Upon increasing the field, there could, Moments. _ .
under conditions we have outlined, be a delocalization tran- S0 far, we have neglected the Zeeman coupling and spin-
sition to the superconducting metal phase Wi going to orbit interactions. In making contact with experiments, it is
a constant. It should also be possible to explore the prope{e_ssentlal to havg some understanding of the effects of includ-
ties of the phase transition between the superconducting id?9 these. We discuss that next.
sulator and the superconducting metal. Right at the critical
point, the thermal conductivitg~T** % with ¢>0. We are B. Zeeman coupling

not aware of any experimental investigations of this “metal-  \yeak Zeeman coupling does not affect the existence of

insulator” t_ransition inside the superconducting ph_as_e S0 falihe two kinds of superconducting phases, but modifies their
In performing the heat transport measurements, it is neceR

" roperties. For a magnetic field along, thdirection of spin,
sary to ensure that the phonon contributions have been suf;o components of spin along they axes are no longer
9

tracted OU&_ , . L . conserved. This cuts off their diffusion at long length and

Another interesting 'experlmental possibility is provided time scales in the superconducting metal phase. ZTtem-
by three-dimensional dirtg-wave superconductors in the ab- ,,nent of the spin and the energy continue to diffuse though.
sence of any external magnetic fields. Upon varying the imgiiher hoth the quantum interference and Altshuler-Aronov
purity concentration to destroy superconductivity, if the ran-jyieraction corrections to the thermodynamic quantities in
sition is to a normal metal, we have proposed that it 0CCUr§ne metallic phase are cut off by the finite Zeeman coupling.

from the superconducting metal phase. As the SUpercortq instance, this leads to a field dependent spin susceptibil-
ductor is in the superconducting insulator phase at low im-

. i . - ity at the lowest temperatures of the form
purity concentrations, there will then be a phase transition to
the superconducting metal with increasing impurity concen- B)— yv.~ B2 72
. . L . X(B)—=xo (72
tration before the destruction of superconductivity. This too
can be probed by thermal transport measurements. The phalser the interaction correction, this is demonstrated in Appen-
transition in this case is similar to the metal-insulator transi-dix B. For the quantum interference contribution, this result
tion discussed above, but belongs to a different universalitynay be understood by noting that the Zeeman magnetic field
class due to the presence of time-reversal symmetry. acts as a “chemical potential” for the particles (as it
Recent measuremeftsof the low-temperature in-plane couples to the physical spir d-particle number The den-
thermal conductivity in the high-temperature superconductsity of states at the Fermi ener¢gnd hence the spin suscep-
ors show thak/T goes to a constant &—0. Whether this tibility) is then given by Eq(24) to be ~B2, On the spin-
is indicative of a true three-dimensional superconductingnsulating side, in the approximation of ignoring interactions,
metal phase stabilized by interlayer quasiparticle hopping, othe effect of finite Zeeman coupling depends on whether or
just a two-dimensional weakly localized superconducting in-not a hard gap exists in the quasiparticle excitation spectrum.
sulator(see belowis difficult to ascertain at present. If gapped, weak Zeeman coupling is innocuous, and can be
A number of experimental predictions follow from our ignored. On the other hand, if the system is gapless with a
study of the properties of either phase. We start with thedensity of states vanishing 4&|* («=1,2 depending on
superconducting metal. For systems with negligible spinwhether time reversal is a good symmetry or)ntiten weak
orhit scattering, this phase is characterized by the presence geeman coupling leads to a finite density of states at the
spin diffusion at zero temperature. Measurements of thé&ermi energy, proportional tB|.
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C. Spin-orbit effects only a small number of qualitatively different interaction am-
plitudes are allowed due to geometrical restrictions imposed

Spin-orbit scattering, like Zeeman coupling, does not af )
b g Ping the scattering processé@sThese correspond to charge

fect the existence of the two kinds of superconducting phas k PR . X .
in three dimensions, but modifies their properties. In th ensity—charge density‘singlet” channel), spin density-

presence of spin-orbit scattering, no component of the spigPin density(“triplet” channel) interactions and to two in-

diffuses in the superconductor with delocalized quasiparti{€ractions between spin singlet and spin triplet Cooper pair

cles. Energy continues to diffuse in this phase, howeverOPerators. Perturbative renormalization-group argurients
Thus this phase is characterized by a finite valuadF as show that the S|_nglet and triplet amplitudes are marginal up
T—.0. In contrast to systems with conserved spin, the dent© N loop, while the Cooper channel amplitudes are mar-

sity of states in the noninteracting quasiparticle theory has gnally relevant if attractive. We assume such an attractive
JE enhancemehit low energies. Similarly, in the localized Interaction Ieads_to a flow towa_rds a _spln_-smglet BCS Super-
insulator, in the non-interacting theory, spin-orbit effectsconductor. Treating the attractive spin-singlet Cooper inter-

allow? for the possibility of a finite density of quasiparticle e}ct|on_|n meaq-f|eld theory,. and ignoring the O‘h‘?f Interac-
states at the Fermi energy. tions in the singlet and triplet channels is equivalent to

conventional BCS mean-field theory. Going beyond the BCS
) . theory requires reinstating the singlet and triplet interactions,
D. Two-dimensional systems and including fluctuations of the BCS order parameter. The
Throughout this paper, we have focused on threeorder parameter fluctuations may be integrated out in the
dimensional systems. Here we make some brief remarksuperconducting phase leading to an effective four fermion
about two-dimensional systems. For systems with conserveiiteraction which renormalizes the singlet amplitude. This
spin, quantum interference effects |1&anlan absence of spin then leads to an effective action for the quasiparticles in the
and energy diffusion at the longest length scales. The supesuperconductor which includes quasiparticle interactions.
conducting thermal metal therefore does not exist in two Consider now the system we have focused on the most—
dimensions, at least if quasiparticle interactions are ignoredhe type-Il superconductor in a field in the presence of dis-
The superconductor-insulator transition in two dimensiongrder. In principle, the interaction Hamiltonian contains both
therefore occurs from the superconducting thermal insulatoihe singlet(charge-densityinteractions and the tripléspin-
phase. Spin-orbit scattering can stabifi2e@ phase with de- density interactions. However, the charge density is not a
localized quasiparticles in the two-dimensional superconhydrodynamic mode in the superconductor, and does not dif-
ductor in the approximation of ignoring quasiparticle inter-fuse. Consequently, the singlet interaction is expected to be
actions. The resulting phase has a divergefit asT—0, quite innocuous. We therefore retain only the spin triplet
and a divergent density of quasiparticle states at the Ferniinteraction.
energf‘ The sign of the(bare triplet interactionu, is determined
by the balance between the repulsive Coulomb interaction
ACKNOWLEDGMENTS amplitude in the triplet channel and the attract{p&ionon
interaction amplitude in the same channel. This is, in prin-
This research was supported by NSF Grant Nos. DMR<iple, different from the balance in the Cooper channel where

97-04005, DMR95-28578, and PHY94-07194. a net attractive interaction is required for superconductivity.
Thusu, can be either positive or negative. It can be shown
APPENDIX A: INTERACTION HAMILTONIAN thatu,<0 corresponds to repulsive interactions.

Here, we provide some microscopic justification for the
interaction Hamiltonian Eq.34). For simplicity, we consider
a clean system id=2. This may be described by the model  |n this appendix, we provide details of the calculation of
Hamiltonian the singular corrections to the properties of the supercon-
ducting thermal metal phase due to interactions.

APPENDIX B: ALTSHULER-ARONOV CORRECTIONS

H:H0+Hcoul+HeI7ph1 (A1)
2 1. Specific-heat correction
Hozf d2x >, ¢,E( ~ o /. (A2) As shown_ in Sec. V,_the correction to the free energy at
v zero magnetic field is given by
2
Heour= 2, fxX,‘ﬁi(X)w(,(x)Wx—x’)wf,&x’)dmx’)- Afzeﬁasf A u (k| —— e
o0 ) 2 1—eiﬁh’w (1)2+ Dsk4

(A3)

Here V(x—x')~1/x—x'| is the Coulomb interaction. Whereu,(k)=Jd*x e ™*u(x) is the Fourier transform of
Her-pn iS the electron-phonon interaction which we do notthe triplet interactionu,(x). The k integral is restricted to
specify in detail other than to assume that it leads to ank|<A~1/l, wherel, is the elastic mean free paftive have
effective attractive interaction at energies smaller than thelenotedd Ezd3k/(27r)3]. The w integral runs from—< to
Debye frequencywp<<Eg about the Fermi energy. We first +oo. If the range of the short-ranged interactiaf(x) is
imagine integrating out all mod&sexcept those withinwp much smaller than the mean free pd&tthich we assumge
about the Fermi energy. In the resulting low-energy theorythen the Fourier transformy (k) may be approximated by its
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value atk=0, i.e.,ut(k)mﬁt=fd3x U (x). Subtracting out Ax(T) do  ok? 5 1
the zero-temperature correction to the free energy, we get ————= =~ f 5= —
P 9y ¢ 2hoU(gug)? 27 1—e P 92 w2+ ng4

SIAF=AFT)—AFO0),

f dlzdw &2 ( wk? 1
- 2m o 2| aBho_ 2 24"
5TA‘7: do 1 wkZ 2 Jw*\ e 1w +Dsk
= =fdk——_h—0(w)—2 32 . _ _
67U 2w\ 1—eg Pho o“+Dgk It is assumed that thieintegral is cut off at the lower end by
the inverse system size™! and at the upper end by the
1 ra . 1 inverse mean free path. In going to the second line, we have
_ _J' dk k4f de @ _ performed an integration by parts twice. We may now pro-
2m3Jo 0 efho—1] w?+ ng4 ceed exactly as for the specific-heat correction above. We

first replace the frequency integral by one that runs over
In going to the second line, we have integrated over thé)ositivew alone, and integrate over the angular components

angular coordinates of the momentlmand have reduced of the momentum to get

the frequency integral to one over positisealone. We now 3 5

make the change of variablgs= 8fiw, x=\/BADk to get mAx(M _f k4‘9_
fiu(gue)’os ke g’

0 1
efho— 1) w?+D2k*

(we denotefk,wsz_ldkfgdw). Thek integral is infrared
convergent, and may be performed first as before. The sin-
gular contribution may be evaluated exactly as for the spe-
Here fx,yzfgodxfg’dy andx,=AVAD¢/kgT. The integral cific heat above, and yields the result quoted in Sec. V.
over x,y above can clearly be rewritten as

3hUo, |\ ADs -1

T3S (AF) (kBT)s’ZJ 4( y
= X
Xy

1
y2+ x4

3. Electron tunneling density of states
1
yz + x4

w2 Xo * Here we show that the electron tunneling density of states
B X0~ J; dxfo dy : is, under certain approximations, essentially the same as the
d-particle tunneling density of states. For concreteness, we
consider a lattice electron Hamiltonian. The single-particle

. . 2 .
The first term contnbuteQ(T_) fo the free energy, and is electron density of statddN (E)] is related to the electron
hence nonsingular. All the singular corrections come from

the second term. As theintegral is ultraviolet convergent in Green's functiong by
this term, we seko=2 and evaluate it explicitly to obtain 1
the singular correction to the free energy: N (E)=— ;Img“(EH 7, (B2)

y3
ey—1

AF(T)— AFO)= — Mo £(5/2) keT)>? (B1) where the overline denotes averaging over the disorder and
4(2m)32 hiDg is a site index on the lattice. The Green’s functimay be
obtained by analytic continuation from imaginary frequen-

Expressingos in terms ofDg and x, using the Einstein re- cies:

lation Eq. (14), and differentiating with respect td to get o
the specific heat, we get the result quoted in Sec. V. Gi(iw)=(ci1(w)Cit(w)+(T—1)). (B3)

2. Susceptibility correction Transfoming to thal fields, the right-hand side becomes

N Th_e field-dependent term in the correction to the free en- <dn(w)am(w)—di¢(—w)au(—iw))-
gy is
Defining the d-particle Green's function Gj; ,,(iw)
- ( do 1 . =(d; (»)d;,(w)), this becomes
Aj:(B):ZﬁUtf dkﬁ mxxx(k,w).

Gji 11(iw)=Gj | (—iw).
The factor of 2 in front accounts for the contribution from ] ) ) ) —
both theS,S, andS, S, correlators, and,(k, ) is given by Now spin SU(2) invariance requires cjj(w)ci;(w)
Eq. (57). To calculate the susceptibility, we imagine evalu- =¢;|(®)c; (w) which implies that
ating the free energy in a large, finite box of linear size
We differentiate with respect to the field, and teke>0 to Gji11(lw)==Gjj | |(—iw). (B4)
get the susceptibility. The limiL—o is taken at the end.
This gives We therefore have
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Gi(iw)=2G;j; 11(iw). (B5) the electrons, theN (E)~N.(—E) asE—0. We then have
N.(E)—Ny(E) asE—0.
The methods of Ref. 15 can be used to show in a straight-
1 forward way the existence of dE singularity due to inter-
Nd(E):_;Im[Gii,ﬂ(E'H77)+Gii,u(E+i77)]- actions inNy4(E) in the superconducting thermal metal in
(B6) three dimensions. As we noted in Sec. NIy(E) has singu-
larities due to quantum interference as well. We therefore
have, for the electron density of statds(E), at low ener-
1 gies
Zlm[gii(E_HU)_gii(_E_iﬂ)] (B7)

The d-particle tunneling density of states is

Using Eqgs.(B4) and(B5), we may rewrite this as

Ng(E)=—

1 N.(E)—Ng(0)~ \E, (B9)
=5 [N(E)+No(~E)]. (B8)

Fermi energy, there is a statistical particle-hole symmetry foaction effects.
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