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We consider the effects of critical superconducting fluctuations on the scaling of the linear ac conductivity,
o(w), of a bulk superconductor slightly aboVe in zero applied magnetic field. The dynamic renormalization-
group method is applied to the relaxational time-dependent Ginzburg-Landau model of superconductivity, with
o(w) calculated via the Kubo formula ©(€?) in the e=4—d expansion. The critical dynamics are governed
by the relaxational XY-model renormalization-group fixed point. The scaling hypothesibw)
~ £279%25( 4, £7) proposed by Fisher, Fisher, and Huse is explicitly verified, with the dynamic expanent
~2.015, the value expected for tlie=3 relaxationalXY model. The universal scaling functid®(y) is
computed and shown to deviate only slightly from its Gaussian form, calculated earlier. The present theory is
compared with experimental measurements of the ac conductivity of(MB@,_ s nearT., and the impli-
cations of this theory for such experiments is discussed.

[. INTRODUCTION theory is known to break down in the critical region. Thus, to
sharpen the comparison between experiment and theory, we
The discovery of high-temperature superconductors hagio beyond the Gaussian description of fluctuations in this
for the first time, made it possible to experimentally probepaper and calculate the scaling behavior of the ac conductiv-
the critical region of the zero-field normal-superconductingity in the critical region of strong, interacting fluctuations.
transition since fluctuation effects in these materials are en- Fisher, Fisher, and HugeFH) (Ref. 19 have argued that
hanced by the short coherence length and the high-transitiomear a second-order phase transition, if dynamic scaling
temperaturel ;. It is natural then to ask: If scaling and uni- holds, the ac fluctuation conductivity should scale as
versality exist in the critical region, to which universality
class does the transition belong? From observations of the o(w)~ £ (wé?), (1.3

effeqts of crlthal superconducting quctqatlons on thermc’dy'where the correlation length for fluctuations in the supercon-
namic properties, such as the penetration déptmagnetic

susceptibility> > specific heat® and thermal expansivitya ducting order parameter at temperatilfds £~|T— T

consensus is emerging that the zero-field nOrmal_thhthestatlcexponent,d|sthespat|al dimensionality,is

1 p— ! H " H 1 _
superconducting transition is in tteatic universality class the dynamic exponent arfily) =S'(y) +iS'(y) is a univer

X b
of the three-dimensional, complex order-paraméser XY) ?:ell,l ;zrg?rlﬁ; ];Lrjlgft'ogg,tgi dsg,?lfgsfrggﬁfgcyggtéiévg?he
model. In contrast, the effect of critical fluctuations on trans- ginary p ’ P Y.

port properties, such as the conductivity, depends on the nz%”tlcal region, and in the dc limit, Eq1.1) reduces to the

ture of thedynamicsnearT, and is much less explored. sIamazo_v-_Larkm theory. Since the conductivity is causal,
o and also finite for nonzero frequencies, Efl) leads to the
In general, conductivity measurements on highsuper-

conductors show an enhanced response abgwiue to the power-law behavior al¢

presence of superconducting fluctuations. Outside the critical ()~ (—iw) @4+ (1.2
region this enhancement can be explained in terms of the ’ '
Aslamazov-Larkifi theory of noninteracting, Gaussian fluc- reflecting the absence of a characteristic time scale at criti-
tuations, and its extensiofis’ In these theories the dynamic cality. At T, the phase

exponentz associated with the growth of the characteristic

order-parameter time scale ndarappears in the conductiv- S (wé?)

ity and takes the value=2. By examining the deviation of P(w)=tan | ——— (1.3

z from 2 inside the critical region through linear &g~ S'(w¢f)

nonlinear dc;>~*"and linear at’ conductivity measurements, of the conductivity is independent of frequency, with the
the dynamic universality class can, in principle, be detergJye®©

mined. Currently, however, there is much variation in the

measured values farand the dynamic universality class of T
the zero-field normal-superconducting transition remains un- b= 2
certain. Unlike dc measurements, measurements of the ac

conductivity® can test the scaling of the conductivity(w), Equations(1.2) and (1.4) allow one to determine the dy-
over a wide range of frequencies, thereby providing a namic exponeniz independently of the static exponent
stringent test of theory. In the experiments of Ref. 18 the athrough a measurement of the ac conductivity at criticality.
conductivity exhibits a scaling collapse, which deviatesTo go beyond these two results and calculate the entire
slightly from the Gaussian theory. However, the Gaussiamniversal scaling functiors(y) requires knowledge of the

2—d+z

Z (1.9
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renormalization-group fixed point that determines the univer-
sality class for the dynamics nedg.

The time-dependent Ginzburg-LandeIDGL) model of
superconductivity provides an appropriate framework in—
which to study dynamic critical behavior in this systéhf!
Since this is the first detailed study of the dynamics in the
critical region of the superconductor, and given the uncer-
tainty as to which dynamic universality class describes the—=
transition, we consider here only the simplest, relaxational,
dynamics for fluctuations in the superconducting order-

0g10 |S(y)

parameter—modelA in the Hohenberg and Halperin o5 s s . . . . .
classificatior?>?? Previous studies of this model have imple- 4 15 16 17 18 18 20 21 2
mented the Gaussian approximation, where quartic interac log;oy

tions among fluctuations in the Ginzburg-Landau free energy
are neglected!® In this approximation, the conductivity FIG. 1. Comparison of the ac conductivity scaling function
scales as Eq1.1) with »=1/2 andz=2, the exponents for S(¥), Eq. (1.7, for the relaxational 3DXY critical theory (solid
the Gaussian fixed point, and the scaling functi(m&2) curve with the scaling function, Ed(3.7), for the Gaussian theory
has been explicitly calculated. (dashed curve To _facnlltate Iatt_ar comparison with experiments
In the critical region the Gaussian approximation breakdRef- 18, the magnitude of(y) is plotted against the scaled fre-
down since the quartic interactions become important, prodUencyy on a log-log scale.
ducing the critical fixed point for the relaxationalY

. . Il. FORMALISM
model?®?4In the e=4—d expansion, the exponents for this
fixed point are well knowr? An extrapolation of theD(e?) A. The time-dependent Ginzburg-Landau model
results to three dimensions gives a correlation-length expo- of superconductivity

nent of »=~2/3 and a correlation function exponent gf

X : . . We describe the critical dynamics of a superconductor
~0.02. For relaxational dynamics the dynamic exporzas;

with a complex order parametef using the relaxational

to O(€?):2* time-dependent Ginzburg-Landau model
z=2+cy (1.5 o SE
with G Tog e 2.
c=61n4/3-1, (1.6)  with the Ginzburg-Landau free-energy
giving z~2.015 in three dimensions. B q ) , Uo, 1,
In the critical region, and near four dimensions, we verify —f dr | [Vgl=trolp*+ [yl 2.2

that the ac fluctuation conductivity satisfies the FFH scaling ) .
hypothesis(1.1) for the relaxationalX Y-model fixed point. N Ed. (2.1 I'q is the bare order-parameter relaxation rate.
We compute the universal complex scaling foBfy) ap-  Both I'o and the bare coefficient,, which appears in the

pearing in Eq(1.1) to O(€?), with the result free energy2.2), can be considered temperature independent
near the transition; howevep~T— T, changes sign at the
252 1 d—2+7 mean-field transition temperatufg,, becoming negative for
S(y)= (d=2+2)(d=2) —2[ S iy temperatures below,. We choose units so thdt=KkgT,
y =1 andm=1/2, wherem s the mass of a Cooper pair. The

superconductor is assumed to be isotropic. The complex
(1.77  noise field¢ in Eq. (2.1) is taken to have zero mean and
correlations described by

_(1_iy)(d72+z)/z

wherey~wé&? andzis given by Eq.(1.5) with Eq. (1.6). In TN o L
Eq.(1.7), S(y) is normalized so tha®(0)= 1. Equation(1.7) (Gr,F (" 1)) =2ed(r=r)st=t"), (23

is the main result of this paper, and is the product of a muclwhere the bracketé- - -) denote an average over the noise
more involved analysis than that used to determine the exdistribution, assumed to be Gaussian. The facidg B Eq.
ponentz. Sections II-VI provide the details of the calcula- (2.3) follows from the fluctuation-dissipation theorem and
tion. The result(1.7) has the scaling behavior stated in Eg. ensures that the system relaxes to the proper equilibrium dis-
(1.2). The scaling functiors(y) for the critical theory is very  tribution.

close to the Gaussian result calculated earlsse Fig. 1 We will work in the symmetric phas&,>T., with zero
since the Gaussian result is given by Efj7) with z=2 and, applied magnetic field and consider order-parameter fluctua-
to O(€?),z for the critical theory in three dimensions is only tions about a mean of zero. Fluctuations of the vector poten-
slightly different from two. In Sec. VII we compare the ex- tial are neglected Since we will use the Kubo formula to
perimental ac conductivity data of Boo# al® to the criti-  calculate the linear conductivity from the system in zero
cal theory, extrapolated to three dimensions, and comment ielectric field, an electric field is not included in Ed2.1)—

Sec. VIII on the implications of this work for such measure-(2.2). In the classification scheme of Hohenberg and
ments. Halperin?! Egs.(2.1)—(2.3) constitute model A dynamics for
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a two-component(complex order parameter. Thus our In linear response, the conductivity is related to a current

model is in the dynamic universality class of the relaxationalcorrelation functiorvia the Kubo formule?® Near T, strong

XY model?324 superconducting fluctuations give a singular contribution to
Since the Ginzburg-Landau theory is coarse grained, ithe conductivity which dominates the nonsingular contribu-

contains an ultravioletUV) cutoff, A (corresponding, for tion due to normal electrons. Thus we may use the Kubo

example, to the lattice constasf This cutoff is manifest in  formula to calculate the real part of the conductivity due to

the definition of the Fourier transform of the order- superconducting fluctuations from the supercurrent correla-

parameter, tion function, evaluated &=0:°
A ik-r—iwt 1
w(r,t)=ka¢(k.w)e' el 2.9 (T’(w):E(Js(w)-Js(—w)>|E=0. (2.13
For convenience, we employ the short forms The supercurrent] is
fA— fA d’k 25 Jo(r,t) = —ieo(y* V=V i), (2.14
k (2m)¢ ' wheree, is the bare charge of a Cooper pair. The imaginary
part of the conductivity can be obtained by applying the
J’ :j do 2.6 Kramers-Kronig relatior§ to Eq. (2.13.
© (2) ' The average in Eq2.13 is a four-point order-parameter

) . average sincdg (2.14 is quadratic iny. Quite generally,
for the wave-vector and frequency integrals, with the wavethis four-point average can be written as the sum of a “dis-

vector integral restricted tk|<A. The existence of the cut- connected” producte®), of two two-point averages, and a
off will be crucial when we interpret the results of the theory. «connected” four point-average®:

The order-parameter correlation function and the response

function are central in what follows. The order-parameter o' (0)=0w)+c*(w), (2.15
correlation functionC(k,w), is defined as h
wit
C(k,w)=((k, ) * (k,w)). (2.7 0e? '
e
By adding a source term, o (w)= Tof K2C(ky,01)C(Ky, 01+ ),
1@1
(2.16
Fn= —J d (h* g+ hy), (2.9
and
to the free energy2.2) we can define thélinear response 2
function, G(k,w), as (4) _260 A (4) .
! ! ! g ((,())—_ kl'kZCC (kl!wlvk21w21w)y
kjoikowy
(K, w 2.1
G(k,w)E% 2.9 (2.1
(k) h=0 where the exact two-point order-parameter correlation func-

This measures the response of the order parameter to ﬂtlign, C(k,w), is defined in Eq(2.7) and
source h. Near equilibrium, the correlation and response (4) DN
functions are related though the fluctuation-dissipation ¢ (ky,01.kz, 02;0)=(ih(ky, 1)

relation?’ X (Ky, 01— o) p(Ky, w5)

2 X (Ky,wo+ @ 2.1
C(K,w)= —ImG(K,w). (2.10 v (kay0pt @) (2.18
@ is the connected four-point order-parameter correlation func-
tion.
B. The Kubo formula for the conductivity
The linear ac conductivityr(w), for an isotropic material C. Iterative dynamic perturbation theory

can be defined in terms of the current resporséwhich
includes normal and supercurrent contributioms an infini-
tesimal applied electric field;, through

The order-parameter averag@s7) and(2.18 that appear
in Egs.(2.16 and(2.17 can be expanded as a perturbation
series in the bare nonlinear coupling appearing in Eq.
_ (2.2). Dynamic perturbation theory for the time-dependent
Nw)=o(w)E(w). 217 Ginzburg-Landau equation, E¢2.1), can be implemented
Since the quantities in E@2.11) are evaluated at zero wave- either by using a Martin-Siggia-Rose field-theoretical
vector we suppress their wave-vector dependence. The cofermalism?®% or by a direct iteration of the equation of
ductivity is complex and has a real dissipative responde, motion?°* The iterative approach involves less formal ma-
and an imaginary reactive respons€; chinery and will be used here.
The equation of motiori2.1) can be explicitly written in
o(w)=0'(w)+ioc"(w). (2.12 Fourier space as
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FIG. 2. The diagrammatic representation of the equation of mo-
tion (2.19. Wiggly lines correspond to the order paramegefa
starred wiggly line is/*). The dotted line represents the Gaussian
field . The Gaussian response functi@g (2.21) is shown as a
line with an arrow. The vertex, where the response function meets FIG. 3. The Saturn diagran},, for the self-energy consists of
three wiggly lines contains a facterug, as well asv (2.22), which two loops formed by two correlation function§, (lines with
conserves wave vector and frequency at the vertex. Iteration correircles and one response functidb, (line with an arrowy. Wave
sponds to replacing the wiggly lines on the right-hand side withvector and frequency flow through the diagram in accordance with

either the first or second term on the right-hand side. In this waythe discussion in Sec. Il C.

one generates a seriesug.

A
WK, w) = ho(K,w) —uGo(Kk,w) Vip(ky, 1)
kiwikowokzws
X ¥ (Kp,7) (K3, w3), (2.19
where
1
tﬁo(k,w)=F—OGo(k,w)§(k,w), (2.20
iw -1
Go(k,w)=(—r—+r0+k2 , (2.21)
0
and

V=02m)9"18(k—k;+ko—Kg) S(w— w1+ wp— w3).
(2.22

The Gaussian theory neglects the nonlinear interactign (

=0). In this case Eq2.19 reduces tay= iy, and the order
parameter is a Gaussian field by virtue of E220 and the

average, a series of graphs is generated with the proper sym-
metry factors. In dynamical perturbation theory there are two
propagators: the response functi@g, denoted by an arrow,
and the correlation functiol©,, denoted by a line with a
circle on it. Wave vector and frequency are assigned to these
lines on the basis of conservation of wave vector and fre-
quency at the graph vertices, given¥yn Eq. (2.22. Wave
vectors and frequencies flowing around loops are integrated
over. More details of the graph rules can be found in Refs. 20
and 31. An example of this procedure is the self-energy dia-
gram, Fig. 3, and the corresponding algebraic expression

(4.5).

D. Renormalization of the theory and theXY fixed point

It is well known that, near criticality, the expansion of the
theory in terms of the bare “coupling constantiy produces
infrared (IR) divergences due to the diverging correlation
length. One method to treat these divergences and produce
sensible results is to reorganize the expansion as an expan-
sion in e=4—d. To accomplish this, we must first ensure

fact that{ is Gaussian. The order-parameter correlation functhat all UV divergenceswe take A —x) ase—0 are ab-

tion (2.7) can then be evaluated using Eg.3) and is

Co(k, @) =(tho(k, @) 5 (k,w))

- 2T
w?+T(ro+k?)?

(2.23

If a term coming fromF}, (2.8) is included in the equation of

motion (2.19), it is straightforward to show thds, (2.21) is
the Gaussian response function. A glance at E21 and

(2.23 shows that the Gaussian theory satisfies theof

fluctuation-dissipation relation, E¢2.10).

Since ¢ appears in the integral on the right-hand side of
Eq.(2.19, this equation can be iterated to produce an expan-

sion for ¢ in powers of the bare coupling constanf. Av-

sorbed into a renormalization of the bare quantitigsug,

ey, andl'y. It is computationally convenient to dimension-
ally regularize the theory and renormalizga minimal
subtractior’®*? Following renormalization, we must relate
ug (or, more precisely the suitably renormalized and dimen-
sionless couplingu, defined belowto € by examining the
fixed-point structure of the renormalization-groifG) flow.
Below, we examine the renormalization of the theory and the
RG fixed point in more detail.

We define the renormalized coupling constantn terms
the bare coupling constanty, by

(2.29

and define the dimensionless, renormalized coupling con-

U=7Z,ug,

erages containings are then expressed as sums of highersStant,u as

point Gaussian averages ovel,, which break up into

products ofCy’s. To keep track of the algebra, it is helpful to

use the graphical representation of E2.19 shown in Fig.

2. In the graphical context iteration corresponds to “putting

Sy
2(2m)¢

(2.2

uxk™ €,

branches on the tree” and averaging corresponds to joining/here « is an arbitrary wave-vector scale an8y

two conjugate dashed linegs§) to form a correlation func-

tion Cy. By examining all possibilities for joining for a given dimensions. The renormalization constéhqt=1+ O(u

=27%T'(d/2) is the surface area of the unit spheredin

) _32
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Since onlyu? will appear in the conductivity, and we neglect

terms ofO(u®) and higher, we may approximafe,= 1.
Renormalization of the bare response funct{@rd) pro-

vides the remaining renormalization constants. The bare in-

verse response function including self-energy correctigns,
may be written

G Yk ,w)=GyY(k,w)—3(k,0). (2.26

The renormalized inverse response func@@l(k,w) may
be expressed in terms of the bare quaniy26 by

Grl(k,0)=Z,G Yk,w0), (2.27

where the renormalization constafy, comes from “wave-
function” renormalization(a rescaling ofy) and, in the
minimal subtraction scheme, is given®y®

z =1—EUZ+0(U3) (2.29
l// 6 . .
The renormalized “mass’t is defined as
r=Gr%0,0, (2.29

which, using Egs(2.21), (2.26), and(2.27), is related to the
bare mass, by

r=2,[ro—2(0,0)]. (2.30

NearT, the physical response function at zero wave numbe
and frequency behaves &y(0,0)=£2" 7«7, where 7 is
the usual correlation function exponent afids the order-
parameter correlation length that diverges as

E~|T-T 7, (2.3)
with the critical exponeni. Thus, from(2.29), we have
r=§ 2"k, (2.32

Since we are neglecting magnetic fluctuations and working

at the “uncharged” fixed point, the renormalized charge,
is simply the bare charge=e,. Finally, the bare relaxation
ratel’, appearing in the dynamic response functidr26 is
related to the renormalized relaxation rateoy

1 1

ro 7'
where, from minimal subtraction, the renormalization con-
stantZ for this relaxational model 183

(2.33
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beta functiong(u*) =032 This mechanism is responsible for

universality. To leading order in the expansionu* is®232
W= 10(e?) (2.35
5 . .

This is the Wilson-Fishé? fixed point for theXY model.
The correlation function exponent is related toZ,,, (2.28

and has the following expansion uf :

7=2(u*)*+O[(u*)?]. (2.36
The resultv=2/3 quoted in the Introduction, which also ap-
pears in Eq.2.31), is an extrapolation of the-expansion
result to three dimensions. Finally, the dynamic expozeésit
related toZp (2.34 for the relaxational dynamics, and is
given byz=2+cn.

Our calculational strategy in what follows is to anticipate
thatu will be O(€) and to keep terms up ©(u?) [O(u?)]
since we will calculate t@(€?). It is advantageous to ini-

tially keepu in the calculation and expand everything else in
powers ofe since this provides a check on whether the poles

in e have been minimally subtracted at each ordeu.irFi-

nally, by using the fixed-point valug* for the coupling, and
reorganizing the theory as an expansiorejrthe IR diver-
gences near criticality can be sensibly treated and lead to
Forrections to the Gaussian exponents and scaling function.

[ll. THE CONDUCTIVITY IN THE GAUSSIAN
APPROXIMATION

We now review earlier work on the ac conductivity in-
volving noninteracting, Gaussian fluctuatioh',and setu,
=0 in Eqg. (2.2. In the Gaussian approximation the con-
nected piece of the conductivity, E€R.17), is zero. Thus,
from Egs.(2.15 and(2.16 one has
e

d

A
o' (0)= fk kiCo(k1,@1)Co(ky, w1+ @), (3.1)

1®01
whereCy is given by(2.23. The calculation of the integral
in Eq.(3.1) involves a contour integration over the frequency
variable, and then a straightforward evaluation of the remain-
ing wave-vector integral, with the cutoff set to infinity.
The complex conductivity takes the fortt?

e2 4—d

050
Zr=1- S+ o) (2.34
r=1=2u"+0(u). : where

The constant is given by Eq.(1.6). Sy

Even after we renormalize the conductivity as described o= d1“(d/2)1“(3—d/2) (3.3
above, some poles ia will remain. These poles are due to )
UV divergences in 'Fhe theory for the condugtmty that appearng the scaled frequengy is
even at the Gaussian level and have nothing to do with the
critical behavior. These poles must be eliminated by adding a wfg
constant to the conductivity, as will be discussed in Sec. VI. y0=f. (3.9

0

NearT,., as one probes the long-wavelength physics, the

couplingiflows towards the fixed-point value* deter- The Gaussian order-parameter correlation lenghs de-
mined by the IR-stable zeros of the renormalization-groudined as
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Eo=ro 2, (3.5 G Hk,w)=Gyl(k,w)—[2(k,w)—2(0,0], (4.2

thus £,~|T—Te| Y2 and v=1/2 in the Gaussian theory. Where now
The real part of the scaling fori8g is computed from Eqg.

(3.1 to be ro—=r/Zy, 4.3
1 Fy—T1Z¢ (4.9

' - il SO 2diAnnd —tan-1
Sa(Yo) = d(d—2) yg[l (1+yo) CO% 2tan yo”' in Gy (2.2 and C, (2.23. To O(u?) only the “Saturn”

(3.6) diagram2 (k,w) shown in Fig. 3 contributes to Ed4.2)
since, to this order, it is the only piece of the self-energy that

The imaginary part of the conductivity is obtained from Eq.is wave-vector and frequency dependent. Applying the rules

(3.6) using the Kramers-Kronig relations. The result for theoutlined in Sec. Il C to Fig. 3 gives

complex scaling form is then

8 d Es(k,w)=6u2f Co(kz,w2)Co(k3, w3)
_ ; iy di2 kowokzwg
Se(yo)—m—2 1=3iyo=(1~1yo) } 3.7
Yo X Go(k—ky—Kz,0— wp— w3). (4.5
The Gaussian result, E(3.2) with the definition(3.4), sat-  The correlation functiorC is then obtained from Eq2.10
isfies the FFH hypothesid.1) with z=2. and (4.2):

We note two properties of these results that will be im-
portant later. The first is that E¢3.2) has a factor ok=4 2 )
—d in the denominator. This is a consequence of setting the C(K, @) =Co(k, ) + —Im{Gg(k, 0)[25(k,w) = 24(0,0]}
cutoff A to infinity, and indicates that even the Gaussian
theory is sensitive to the cutoff in four dimensions. The sec- +0(ud). (4.6

ond property is thaG; (3.6) has thee expansion Thus the disconnected piece of the conductivityl) can be

o expressed in terms of the integrals
St(yo) =1+ 2, €S(¥o). (3.9 2e?
l1(w)= Tfk kiCo(ky,w1)Co(ky, w1+ w) (4.7)
The coefficient ofe in Eqg. (3.8), 191

and
S1(¥0) = 3+ 5[ (1= YIn(1+y3)— 4yctan ] 4¢? 1
4 ayg l2(w) = —5Im f kiCo(ky,w1)——Gj(ky, 01+ w)
(3.9 kyos @1 e
is interesting because it appears later in both the discon- X[Zs(ky, 01+ @) =240,0], (4.8
nected and the connected pieces of the conductivity. by writing
IV. DISCONNECTED PIECE OF THE CONDUCTIVITY dP(w)=11(w)+21,(w)+0(ud). 4.9

To go beyond the Gaussian theory requires the calculatiorach integral is dealt with separately below.
of both the full two-point correlation functiof®.7), includ-
ing self-energy corrections, and the four-point averdg&8 A. The integral |,
which appear in the conductivity through Eq2.16 and
(2.17). The calculations must be performed@gu?), where
the first corrections to the Gaussian requ#t2 occur. In this
section we examine the disconnected piece of the conducti
ity (2.16). The next section tackles the connected piece.
We first dimensionally regularize and renormalize the e2__ x¢ 5
theory as outlined in Sec. Il D. From E(2.16), the discon- ()= SFoK € Z5°ZrSg(y), (4.10
nected contribution to the conductivity is then €

The only differences betweeh, (4.7) and the starting
point (3.1) of the Gaussian calculation are the substitutions:
Eqgs.(4.3), (4.4), andey,—e. Transcribing the real part of the
Gaussian result3.2) gives

with S given in Eq.(3.6) and

2 2¢? 5
o (w)=T k1w1k1C(k1,w1)C(k1,w1+w), (4.7 wZ,Zy

y= oTr (4.1)

whereC is the full correlation function2.7), including self-

energy corrections. We will calculate the response functiorf he dimensionless measure of the nearness to the transition
G (2.9 to O(u?) and use the fluctuation-dissipation relation IS
(2.10 to getC. With the definition(2.30 of the renormal-
ized massy, the inverse response functid@.26 may be = 4.12
written as K’ ’



PRB 61 CRITICAL SCALING OF THE ac CONDUCTIVITY FQR . .. 6951

where the arbitrary wave-vector scatevas introduced ear- B. The integral I,

lier in Eq. (2.25. From the expressio(R.32 for r we have The calculation ofl,, Eq. (4.8), is involved so we only

outline it here. The first step is to rescale the internal wave

x=(&x) 1T, (4.13  vectors and frequencies in E@.8) by
The functionS;(y) can be expressed in terms of the scaled ki— k] (4.19
frequencyy,
w—Troj, (4.20
z,.72—2
_wgx wherei=1,2,3 (remember thal ¢ contains an integral over
y (4.14 :
2r k,wokzws), and write
with z given by Eq.(1.5), by the expansion 12 _
l2(w)= TK_E(UK_G)ZX_3EI 2(Y). (4.21
~ ~ 1 ~
Se(Y)=Sg(y)+d,Ss(y)(y—y) + Eaisé(y)(y—y)% .-+, The dimensionless integral in E(#.21),
(4.19 ) ~ L
|()=16|mf K2Co(Ky,q)———
whered, indicates a derivative with respectyoThe results 2y kiwikowokgwg POt g +2y

(2.28 for Z,,, (2.32 for r and (2.34) for Z are used to ~5 ~ ~
obtain the following relation between andy: X Go(ky, 01+ 2y)Colkz, @) Co(ks, w3)

X[Go(ky—ka—kz,2y+ w1~ wy— w3)

y—y=y(c+1)

1
Inx— —u?
K €

+0(u%). (4.19 —Bo(—Ky—Ks,— wp— w3)], (4.22

. . . , is written in terms of the dimensionless functions
Using equation(4.16), the expansior(3.8) of S;, and the

fact that» (2.36) is O(€?), we write Eq.(4.15 as 1
éo(k,w)Z Tl—f—kz (4.23
S6(Y) =1+ €Sy(y) + €Sy(y) + €¥S5(y) + e(c+1) "
and
1
x| ninx- ;uz) [yaySi(y) + eydySa(y)]
_ Colk,0)= ————, (4.24
+O(W2e, €. (4.17) T (1 K)?

) where, for convenience, in E¢4.22 we have dropped the
We now use the expansiori2.28 of Z, and(2.34 of Zr  himes on the dimensionless wave vectors and dimensionless
together with Eq(4.17) to write I, (4.10 as a series i,  frequencies. Sincé, is alreadyO(u?) we have simply re-
with coefficients expanded in powers aof. Terms of placed all bare coefficients in E¢4.21) by renormalized
O(u?¢,€%) and higher are neglectddince the fixed-point ones, and used the scaled frequepdyom Eq. (4.14).

value u* (2.35 is O(e) we are effectively working to The second step is to evaluate the three frequency inte-
O(€?)]. The result, written in a form that will be convenient 9rals in Eq.(4.22) by contour integration. The calculation is
for later analysis, is straightforward and yields
o2 L . 1 To(y)=ReT5(y) +T5(y) +T5(y)], (4.25
_ o —€ T2 T2
|1(a))—fO'K (1—EU)[—?U +z with
+ Sinx- CUZS( )—CHUZ a,Si(y)—Inx T4( )—fld (1 )f k2 2 !
€ € 1 y € y y=L y 2 y 0 v v k1k2k3 ! ai (a1+lyv)3
+ 2 2= S s - (e !
nx)“— —(Inx —(e—cu’)Inx
2 6 € ><a2a3(a2+a3+ ay)(as+2iy)’ (4.26
2
€ J—
+ = (Inx)?|Sy(y)+ (e—cu?)(1—€lnx - 1 1
5 (INX)7|S1(y) +( )( )Sa(Y) |2(y):3f do(1-0) 2
0

o kykoks 1(a1+iyv)4a2a3
+€2Sy(y) +(c+1)(p+u?)yd,S;(y)Inx
1 1

artaztas a,t+atay,

, (4.27

—(c+ 1)U2yaysz(y)+0(i26,e3)} . (4.18
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- 1
s=-3iy [ da-u |
0 kikoks
1
>< . . 1
(a1+va)4a2a3(a2+a3+a4)(a5+2ly)
(4.28
where, for convenience, we define
=1+k?, i=1,23, (4.29
a,=1+(k;+ky+ks)?, (4.30
a,=1+(kyt+k3)?, (4.3)
as=a;t+a,tazta,. (4.32

Note that we have used the Feynman formula

1 I'la,+ 1
—= (a1t ap) dv(l—v)a 1yl
C,? F(al'(az) Jo

ay

¢

1
X
[(1_U)C1+002]a1+az

(4.33

with the Feynman parameterto group and simplify terms
in Egs.(4.26—(4.29.

The final step is to evaluate the wave-vector integrals in

Egs. (4.26—(4.28 using (4.33 and e-expand the resulting
integrals over Feynman parameterste®). An example of
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O

FIG. 4. The topologically distinct diagrams in the expansion of
the four-point order-parameter avera@el18 to O(u?). The dia-
grammatic symbols are the same ones used in Fig. 3. Each diagram
corresponds to several possible wave-vector and frequency assign-
ments, which are not shown.

y)—lyf dv 1+|y (4.39

It is straightforward to show that
Re f1(y)]=—Su(y), (4.40
Re f(y)]=—2S,(y) —ydySi(y), (4.41

whereS; was given in Eq(3.9). We use this result, along
with Egs. (ﬁ.25) and (4.34—(4.36 to write 1, (4.21) as a
product ofu? and a series ir. In particular, we have

e’ c—2
——oKk U2 -

2r 362 €

(c+1)

c—2 c—2

2l,(w)= Inx+

Si(y)

0.787
+ —+2 36 Inx

yaySi(y)—

this procedure appears in Appendix A. The results for Egs.

(4.26—(4.28 are

T3(y)= Ad

1 | 4 1 | 4
3 2 1(Y)n§

0.003
+—+.7-' 5(y)+O(e) |,

(4.34)
— 1 0.104
By =Ag — 5+ 2. =+ A+ 0o,
(435
~ 4
15(y)=Ad — 5 fa(Y)Ing +75(y) +O(e) |, (4.36

whereF3, F5, andF$ areO(€®) functions ofy that we do
not need to determine,

_ S ’ _ 2 _
Ad_(z&m") [T(2—€/2)]T(3—€/l2)T(1+3€/2),
(4.37

and

fl(y)=foldv(l—v)ln(l—kiyv), (4.39

3(c— )

(INx)?=3(c—2)S(y)Inx

—3(c+1)ydySi(y)Inx+D(y)+O(e) |,

(4.42
with

D(y)=0.233-(c—2)Si(y) = (c+1)yd,Si(y)

+12Re[F3(y)+ Fy)+ F5(y)].  (4.43

V. CONNECTED PIECE OF THE CONDUCTIVITY

The topologically distinct diagrams resulting from the ex-
pansion of the connected four-point order-parameter average
(2.18 to O(u?) are shown in Fig. 4. Self-energy corrections
are included in these diagrams since we have renormalized
the theory, following dimensional regularization. The alge-
braic expressions for each allowed permutation of wave vec-
tor and frequency in these diagrams is insertea (2.17),
thereby giving a contribution to the conductivity. T&u)
diagram in Fig. 4a) does not contribute to the conductivity
since in this case the integré?.17) separates into a product
of odd integrals ovek; andk,. The remaining diagrams in
Fig. 4 areO(u?), and produce
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dr
XRATo(y) +TO(y) +TE(y)]

when inserted into Eq(2.17). The diagram in Fig. @) is
responsible for the contribution

2,,— 3¢

od®(w)=—

Kk (UK~ )X

(5.9

Tb(y):f kl'kZGO(klvwl)éo(klywl_zy)
kiwikowokzwy

X Co(kz,w2)ColKy, wa+2y)Go(kz, w3)

Xao(k1+k2+k3,wl+w2—w3) (52)
in Eq. (5.1) with y defined in Eq(4.14 andG, andC, given
by Egs.(4.23 and(4.24), respectively. The diagram in Fig.
4(c) produces the other two integrals,

Té”(y)= Ky kZéO(klvwl)éo(klaZy_ w3)
kiwikowokgzws
X Co(Kz,w)Co(ky, @, +2y)Co(kz,w3)
X Co(ky+ kot kg, w1+ wy+ w3) (5.3
and
Téz)(y): k- kyGo(ky, @)

kywikpwokzws
X Co(ky,w1—2y)Co(ky,w5)Go(ky, — 2y — w))

X Co(K3,w3)Co(ky+ kot k3, w1+ 0+ w3),
(5.4)
in Eq. (5.1). As with the integral ,(y) (4.22) for the discon-

nected piece, we evaluate the frequency integrals in Egs.

(5.2—(5.4 with contour integration and use the Feynman
formula (4.33 to perform the wave-vector integrals. Upon
e-expanding the results we have

Agl(1 1 4\1 (3 3 41
h(Y)=—g6l |77 2"3 2 4~ 23/ RAM]
0.057
+——+F(y) +0(e) |, (5.9
2 4 6 4
I(Cl)(y):_g_g Elng——lngRG[fl(y)]
0279
+T+f£ y)+0(e) |, (5.6
- A4[0.618

where Ay and f; were defined in Eqs(4.37) and (4.39,
respectively. As before/,, F, and £ are O(€)

functions ofy that do not need to be determined. Equations
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(5.5—(5.7) are substituted into Eq5.1) and the result, ex-
pressed in terms of a product of and a series i, is

) _e_z_ ey — — | +ES
o (w)—ZFO'K u 3e? X+ 1(Y)

0.086
+T—0.258Inx+3(|nx)2—681(y)lnx
+C(y)+0(e) |, (5.9

where

2
C(y)=0.787-2S,(y) + R 4Fp(y) + F U (y) + FEUy)].
(5.9

In Eq. (5.8) we have used the relatiqd.40 betweenf; and
S, Eq.(3.9.

VI. ADDITIVE RENORMALIZATION
OF THE CONDUCTIVITY

The real part of the conductivity2.195 is a sum of the
disconnected contributions, Eq&l.18 and (4.42), and the
connected piece, Eg5.9):

[1

2

e?_ _
o' (w)= =0k <(1—2.6u%)

2 — 14 |
> < 32 >cu +—€u—nx

€
2

e+2cu? €
(Inx)%— E(In x)3

2

+ Siy)

_ 62
1—(e+2cu?)Inx+ ?(In X)?

+(e+2cu?)(1—€elnx)Sy(y)

+(c+1)(p—2u?)yd,S(y)Inx+u2A(y)

+0(U26,e3)J , (6.2)
where
62
f(y)=2.181(y)—3c82(y)+?Sa(yHD(y)
+C(y)—(c+1)yd,Sy(y) (6.2

is anO( %) function ofy [remember thati is O(e)]. Even
after renormalizing the bare quantities in the theory some
poles ine remain in Eq.(6.1). In fact, this problem arises
even in the Gaussian thedjthe 1k term in(6.1)] and indi-
cates that we must be more careful when we set the citoff
to infinity. We should write the conductivity fat<4 as

o' (w;d,A)=0'(w;d,)—A(w;d,A), (6.3
with

A(w;d,A)=0"(w,d,°)—0c'(w;d,A). (6.4
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The o' (w;d,») term in Eq.(6.3) is just Eq.(6.1). By sub-
tractingA (6.4) from ¢’ (w;d,») we render the conductivity ]
finite in four dimensions, since we recover the theory withand asT—T. we write

finite A. At low frequencies, neaf;, we expect to be able o2 (£x)P

to approximateA by its value afT; and w=0: near critical- / — e 2 3
ity, the IR singularities, which appear io’'(w;d,«), are 7r(®) ar’” p [1+PSI)+ P75 (y) + O]
absent inA since only UV physics contributes to the differ- (6.12
ence in(6.4). In the minimal subtraction scheme the poles of |, Eqg. (6.12, the series irp coincides, toO(p?), with the e

X P=(£k)P[1+0O(€%)], (6.11

o'(0=0;d,) which contain no singular temperature de- gxpansjon for the Gaussian scaling fogg, Eq. (3.9). Thus,

pendence are simply subtracted from Eg1). This situation

is reminiscent of the additive renormalization of the specific

heat in the static theor}?.
Inspection of Eq(6.1) gives

eZ

A= —EKf(l—z.aTZ){

1 2
2T €

— 14 —
—cu2+Tu2+O(u3) :

3€?
(6.5

and thus we write the fully renormalized conductivity

op(w)=0'(w)—A as

2 12

, e — — et+2cu
O'R(w):f(J'K (1-2.6u°)) —Inx+

> (Inx)?

62

5 (INx)3+| 1—(e+2cu?)Inx

2

+ %(In %)2|Sy(y) + (e+26W)(1— eI X)Sy(y)

+(c+1)(n—2u?)ya,Sy(y)Inx+uF(y)

+0(U25,e3)] . (6.6)

Now we have a theory that is UV convergentas 0, but
has IR divergences ab— T, and x—0. Near four dimen-

sions, the coupling constant flows in the IR to its
XY-model fixed-point valueu* [see EQ.(2.39], with 7

=2(u*)? [see Eq(2.36] and, after resumming, the series in

€ takes the form

, e [xP-1 -
OR(®)=roK € +XPS,(y) +px PSy(y)

p2

+ o7V O |, (6.7
wherep is O(€) and is defined as

p=e+cny (6.9
=2—-d+z+0(€) (6.9

2
=E(2—d+z)+0(53). (6.10

The (1—- 2.6172) factor in Eq.(6.7) has been absorbed by

changing the normalization afg(w=0). As T—T, andx
—0 terms proportionalx P in Eq. (6.7 dominate the
conductivity> From Eq.(4.13 we have

by resumming the series in E(6.12) we obtain, correct to
O(€?), the Gaussian scaling for®;, Eq. (3.6, now as a
function of the critical scaled frequengy(4.14 and with
occurrences oé replaced byp. Resummation of the series in
Eq. (6.12 is necessary if one is to have a scaling function
which is uniform iny (here uniform means the expansion is
asymptotic ine for all y). In particular, resummation is nec-
essary if one is to recover the power-law behavib?) at
large-scaled frequencies.

The final result for complex ac conductivity in the critical
regime is thendropping theR suffix)

e2_ (gK)Z—d-%—Z
= — —€e-> 7 0 3
o(0)=3r0k “GgrgSW+O(E)], (613
with the scaled frequencygiven by Eq.(4.14) and the uni-
versal complex scaling functio(y) given by Eq.(1.7).

VIl. COMPARISON WITH EXPERIMENT

It is instructive to compare the universal functi®qy),
Eq. (1.7), for the critical theory(extrapolated tal = 3), with
both the prediction of the Gaussian theory, E217), and the
experimental results of Ref. 18. Strictly speaking, it is incon-
sistent to compare scaled data from different theories and
experiments if the axes have been scaled using different ex-
ponents. However, for the sake of comparison, we take the
viewpoint that the theory and experiment each determine a
particular universal functional dependensgy) and ignore
exactly howS(y) andy are achieved.

In this spirit, the magnitude d&(y) as a function ofy is
plotted on a log-log scale in Fig. 1 for the critical and Gauss-
ian theories. Since=2 in the critical theory, the power-law
behavior at largey [a consequence dfl.2)] for the critical
theory lies only slightly below the Gaussian theory.

In Fig. 5, the critical theory is compared with measure-
ments of the microwave conductivity of a thin-film sample of
YBa,Cw,0;_ 5 in the range 45 MHz-45 GHz nedr,.'® In
this experiment, the exponeri= 2.65+ 0.3 and the transition
temperatureT;=89.1+0.1 K, were determined from the
power-law behavio(1.2) expected afl.. The best scaling
collapse of the data determined the value1.0+ 0.2 for the
static exponent® In Fig. 5a) the magnitude o8(y) is again
plotted as a function of on a log-log scale. The Gaussian
theory is not plotted since it lies so close to the critical
theory. Sincd’, «, and the prefactor of, which appear in
both the scaled frequengy (4.14) and the prefactor to the
conductivity (6.13, are parameters in the TDGL theory,
there is freedom to choose the horizontal and vertical posi-
tioning of the theory so as to give the best fit to the data. As
with the Gaussian theory, the critical theory fits the experi-
mental scaling curve well over almost four decades in scaled
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VIIl. CONCLUSIONS
(a)

We have examined a theory for the ac conductivity of a
superconductor that includes the strong, interacting order-
parameter fluctuations expected near criticality. The FFH
scaling hypothesis, Ed1.1), is shown to hold aD(€?) in
the e expansion for relaxationad Y-model critical dynamics.
. The universal scaling functio(y) appearing in Eq(1.1) is
explicitly calculated toO(e?) for this dynamics, with the
result given in Eq(1.7). The frequency and phase behavior
o . . . . . . L expected af;, Egs.(1.2) and(1.4), respectively, is demon-

4 15 16 17 18 1y 320 ;22 strated. The critical scaling functio8(y) generalizes the

logioy Gaussian result, E3.7), and reduces to it whea=2.

These results are quite general and hold, in the critical re-
gime, for any bulk superconductor described by a complex
order parameter with relaxational dynamics.

Since z=2 for this model, the scaling function of Eq.
(1.7) is, for practical purposes, indistinguishable from the
prediction of the Gaussian theofsee Fig. 1 Therefore, in a
measurement of the ac conductivity, the only indication of a
crossover from the Gaussian to critical fluctuation regime
would be a crossover in the static exponentThis may
explain why the Gaussian theory fits the experimental data of
Booth et al!® so well over much of the curve in Fig. 5, even
though the experiment is supposedly accessing the critical
regime.
logioy The inclusion of critical order-parameter fluctuations in
he framework of relaxational dynamics does not seem suf-
from Boothet al, Ref. 18, on YBCO and the relaxational 30Y icient to explain the deviation between the Gaussian scaling

critical theory.(a) The scaling functior5(y), Eq. (1.7), using the ff?fm_a”d experlmeﬁ observed neafl, (see.Flg: 3 As .
relaxational 3DXY value z=2.015 (dashed curveand using the Nighlighted by the fit of the “pseudo” theory in Fig. 5, this
experimental value=2.65 (dotted curvg are compared with the deviation is connected to the large valzre 2.65 obtained in
experimental resultésolid curves. The magnitude o(y) is plot-  the experiment, which cannot be explained within any
ted againsy on a log-log scale. The theory is fit to the experiment Present theory® It is possible that this discrepancy may be
using horizontal and vertical offsefthe horizontal offset depends due to the strong influence that uncertainties in the experi-
on the value of used. (b) The normalized phase{y)/w, ofthe ~ mental determination of . have on the scaling of the data
conductivity is plotted against legy for the relaxational 3DXY  closest toT,. More ac conductivity measurements with
critical theory withz=2.015 (dashed curve the theory using the higher temperature resolution nélar may resolve this issue,
experimental value=2.65 (dotted curvg and experimentsolid  allow a more accurate determination nf and provide a
curveg. The horizontal offsets are the same asan check on the scaling collapse for largelt is also possible
that the films studied contain strong disorder, which could

frequencyy, but deviates from the experimental data takenaffect the scaling near.. .
nearest o . In this paper we have identified and dealt with the tech-

The dynamic exponent for the relaxational 30 model nical challenges involved in the organization and renormal-
is known to have the value~2.015. Nevertheless. it is in- ization of the theory for the ac conductivity in the critical
structive to consider theappearing irs(y), Eq. (1'7)’ as an region. This work serves as a basis for examining more com-

adjustable parameter. By choosing the experimental value plicated models, such as modé of Hohenberg and
:% 65 andpadjusting.thg horizont%l offsetpof the theory inHaIperir?1 involving reversible couplings to a conserved
Fig. 5, a better fit to the experimental data closesTids o o 9y Mass density field, as in superfidide. In three di-

. : mensionsz=3/2 for modelF,3%3" which, although not ob-
achieved—at the expense of worse agreement with the "e8brved in the ac conductivity datiis seen in some dc con-
of the data. This comparison emphasizes that the experime

tal value 7— 2.65 seems to originate in the data set tak n%'uctivity experiments’?1* and simulations® Another
callos;sfcntaoT_ 05 seems 1o originate € data set laken,ytension of the present theory is to consider a nonzero mag-
-

The phases(y). Eq. (1.3, of the conductivity is plotted netic field, with the aim of examining the crossover from the

. TN " zero-field critical scaling of the 3IXY model to the lowest-
against loggy in Fig. 5b) for the critical theory £=2.015), ) : : T 9
“pseudo”-theory (z—2.65) and the experimeit.As with Landau-level scaling which obtains in high fiefds’
the Gaussian theory, the critical theory predicts a smaller
phase neafT. than seen experimentally. The “pseudo”
theory is in better agreement with experiment n€arthan
the critical theory, but again does a poorer job fitting the rest The authors would like to thank Gene Mazenko and An-
of the curve. drei Varlamov for useful comments, and Steve Anlage for

logyg |S(y) |

08

0.6

2p(y) o4

0.2

0.0

FIG. 5. Comparison between the scaled ac conductivity dat
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APPENDIX A

To illustrate the calculation of wave-vector integrals, we

use this appendix to provide the details of thexpansion of

T4(y), Eq. (4.26, which is reproduced, in the notation of

Sec. IV B, as

- 1
I%(y)=f dv(l—v)f ki
0 kqkoks

1
X —
a,as(a,+az+ay)(as+2iy)

2 1
al (a;+iyv)®

(A1)

We parametrize the wave-vector factors in the denominator
of Eq. (Al) in pairs using the Feynman parameterization

(4.33, beginning with factors on the right containikg. The

denominator of théks integral is thereby transformed into a
qguadratic form ink; and the integral is solved. The process
is repeated for the remaining two wave-vector integrals, pro-

ducing
—a Ag (L
|2(y): §f0 dv(1-v)[2J(v=0y)—J(v,y)] (A2)
with
1
J(v,y)= fo dulduzdugdu4u2(1+u2)6*1u§/2

= —3el2

_ g
X (L= u)2u§ e, (A3)
g9 0
where we have defined
Go=(1—Uy)(1+iyv)+Uuygo, (Ad)
91=1+u,(g;—- 1), (A5)
gozl_U3+ U3(1+ U2){l+ UZ[2+ U1(1+ 2|y)]},

UzUs
91:I{92[1+ Up(1+uy)]—upug}, (A7)
92:1_U3+ U2U3(2+ Uz). (A8)

In the € expansion] in Eq. (A3) is O(e 1) at leading order.
The singularity ine is isolated by writingd as

‘J(U1y):‘]a(v1y)+‘]b(v1y)v (Ag)

1
Ja(u,y)=(1+iyv)—3f/2f du,dugdu,u,
0

€l2

3 e—1
2-e2Ya
9>

X(1+uy)€?t

(A10)

€2
3 e—1
2_ei2Ya
92

1
Jp(v,y)= fo dusduydugduguy(1+uy)€?

= —3el2

(1 Uy)2=s

X
~3—el2
g7 ¢

—(1+iyv)3f’2]. (A11)

In the e expansion, Eq(A10) becomes

uo 3

101
J.(v, =—f du,dug————
a(v,y) ), 0% 3g§(1+u2) 2

u;

1
XIn(1+i f du,dus—————
(rye) | dedt )

1
In(1+u,)+ Eln Us

1 Uy
+f duzdu32—
0 g5(1+u,)

+ €F4(v,y)+O(€?), (A12)

1
+§Ingz

whereF,(v,y) is a function ofv andy. The integrals in Eq.
(A12) are evaluated to produce

1 4 3 4 .
Ja(vy)= ng— §|n§>< IN(1+iyv)—0.087 eFy(v,y)

+0(€?). (A13)
The nonsingular integral,, Eqg. (Al1), has the expansion

Uy 1[(1-uy? )
(1+up) Us| g}

1
Jp(v,y)= fo du;,du,duzdu, o
2

+eFp(v,y)+ O(Ez)

=0.103+ eF,(v,y) + O(€?), (A14)

where F,(v,y) is a function ofv andy. By combining Egs.
(A13) and(A14) in Eq. (A9) we may use this result fatin

T3, Eq. (A2), to obtain the result quoted in E¢+.34), with

11
)= 3| do1-v) 2 F0y)+ A 0y)]

_[fa(vvy)—i_]:b(viy)]}' (AlS)
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