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Critical scaling of the ac conductivity for a superconductor aboveTc

Robert A. Wickham* and Alan T. Dorsey†

Department of Physics, University of Florida, P.O. Box 118 440, Gainesville, Florida 32611-8440
~Received 7 June 1999!

We consider the effects of critical superconducting fluctuations on the scaling of the linear ac conductivity,
s(v), of a bulk superconductor slightly aboveTc in zero applied magnetic field. The dynamic renormalization-
group method is applied to the relaxational time-dependent Ginzburg-Landau model of superconductivity, with
s(v) calculated via the Kubo formula toO(e2) in thee542d expansion. The critical dynamics are governed
by the relaxational XY-model renormalization-group fixed point. The scaling hypothesiss(v)
;j22d1zS(vjz) proposed by Fisher, Fisher, and Huse is explicitly verified, with the dynamic exponentz
'2.015, the value expected for thed53 relaxationalXY model. The universal scaling functionS(y) is
computed and shown to deviate only slightly from its Gaussian form, calculated earlier. The present theory is
compared with experimental measurements of the ac conductivity of YBa2Cu3O72d nearTc , and the impli-
cations of this theory for such experiments is discussed.
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I. INTRODUCTION

The discovery of high-temperature superconductors h
for the first time, made it possible to experimentally pro
the critical region of the zero-field normal-superconduct
transition since fluctuation effects in these materials are
hanced by the short coherence length and the high-trans
temperatureTc . It is natural then to ask: If scaling and un
versality exist in the critical region, to which universali
class does the transition belong? From observations of
effects of critical superconducting fluctuations on thermo
namic properties, such as the penetration depth,1,2 magnetic
susceptibility,3–5 specific heat3,6 and thermal expansivity,7 a
consensus is emerging that the zero-field norm
superconducting transition is in thestatic universality class
of the three-dimensional, complex order-parameter~3D XY!
model. In contrast, the effect of critical fluctuations on tran
port properties, such as the conductivity, depends on the
ture of thedynamicsnearTc and is much less explored.

In general, conductivity measurements on high-Tc super-
conductors show an enhanced response aboveTc due to the
presence of superconducting fluctuations. Outside the cri
region this enhancement can be explained in terms of
Aslamazov-Larkin8 theory of noninteracting, Gaussian flu
tuations, and its extensions.9,10 In these theories the dynam
exponentz associated with the growth of the characteris
order-parameter time scale nearTc appears in the conductiv
ity and takes the valuez52. By examining the deviation o
z from 2 inside the critical region through linear dc,3,4,11–14

nonlinear dc,15–17and linear ac18 conductivity measurements
the dynamic universality class can, in principle, be det
mined. Currently, however, there is much variation in t
measured values forz and the dynamic universality class o
the zero-field normal-superconducting transition remains
certain. Unlike dc measurements, measurements of th
conductivity18 can test the scaling of the conductivity,s(v),
over a wide range of frequencies,v, thereby providing a
stringent test of theory. In the experiments of Ref. 18 the
conductivity exhibits a scaling collapse, which deviat
slightly from the Gaussian theory. However, the Gauss
PRB 610163-1829/2000/61~10!/6945~13!/$15.00
s,

n-
on

he
-

l-

-
a-

al
e

-

-
ac

c
s
n

theory is known to break down in the critical region. Thus,
sharpen the comparison between experiment and theory
go beyond the Gaussian description of fluctuations in t
paper and calculate the scaling behavior of the ac conduc
ity in the critical region of strong, interacting fluctuations.

Fisher, Fisher, and Huse~FFH! ~Ref. 19! have argued tha
near a second-order phase transition, if dynamic sca
holds, the ac fluctuation conductivity should scale as

s~v!;j22d1zS~vjz!, ~1.1!

where the correlation length for fluctuations in the superc
ducting order parameter at temperatureT is j;uT2Tcu2n

with the static exponentn,d is the spatial dimensionality,z is
the dynamic exponent andS(y)5S8(y)1 iS9(y) is a univer-
sal, complex function of the scaled frequencyy;vjz, with
real and imaginary partsS8 andS9, respectively. Outside the
critical region, and in the dc limit, Eq.~1.1! reduces to the
Aslamazov-Larkin theory. Since the conductivity is caus
and also finite for nonzero frequencies, Eq.~1.1! leads to the
power-law behavior atTc

s~v!;~2 iv!2(22d1z)/z, ~1.2!

reflecting the absence of a characteristic time scale at c
cality. At Tc the phase

f~v![tan21S S9~vjz!

S8~vjz!
D ~1.3!

of the conductivity is independent of frequency, with th
value10

f5
p

2 S 22d1z

z D . ~1.4!

Equations~1.2! and ~1.4! allow one to determine the dy
namic exponentz independently of the static exponentn
through a measurement of the ac conductivity at critical
To go beyond these two results and calculate the en
universal scaling functionS(y) requires knowledge of the
6945 ©2000 The American Physical Society
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renormalization-group fixed point that determines the univ
sality class for the dynamics nearTc .

The time-dependent Ginzburg-Landau~TDGL! model of
superconductivity provides an appropriate framework
which to study dynamic critical behavior in this system.20,21

Since this is the first detailed study of the dynamics in
critical region of the superconductor, and given the unc
tainty as to which dynamic universality class describes
transition, we consider here only the simplest, relaxation
dynamics for fluctuations in the superconducting ord
parameter—modelA in the Hohenberg and Halperi
classification.21,22Previous studies of this model have impl
mented the Gaussian approximation, where quartic inte
tions among fluctuations in the Ginzburg-Landau free ene
are neglected.9,10 In this approximation, the conductivity
scales as Eq.~1.1! with n51/2 andz52, the exponents for
the Gaussian fixed point, and the scaling functionS(vj2)
has been explicitly calculated.

In the critical region the Gaussian approximation brea
down since the quartic interactions become important, p
ducing the critical fixed point for the relaxationalXY
model.23,24 In the e542d expansion, the exponents for th
fixed point are well known.20 An extrapolation of theO(e2)
results to three dimensions gives a correlation-length ex
nent of n'2/3 and a correlation function exponent ofh
'0.02. For relaxational dynamics the dynamic exponentz is,
to O(e2):24

z521ch ~1.5!

with

c56 ln 4/321, ~1.6!

giving z'2.015 in three dimensions.
In the critical region, and near four dimensions, we ver

that the ac fluctuation conductivity satisfies the FFH scal
hypothesis~1.1! for the relaxationalXY-model fixed point.
We compute the universal complex scaling formS(y) ap-
pearing in Eq.~1.1! to O(e2), with the result

S~y!5
2z2

~d221z!~d22!

1

y2 F12
d221z

z
iy

2~12 iy !(d221z)/zG , ~1.7!

wherey;vjz andz is given by Eq.~1.5! with Eq. ~1.6!. In
Eq. ~1.7!, S(y) is normalized so thatS(0)51. Equation~1.7!
is the main result of this paper, and is the product of a m
more involved analysis than that used to determine the
ponentz. Sections II–VI provide the details of the calcul
tion. The result~1.7! has the scaling behavior stated in E
~1.2!. The scaling functionS(y) for the critical theory is very
close to the Gaussian result calculated earlier~see Fig. 1!
since the Gaussian result is given by Eq.~1.7! with z52 and,
to O(e2),z for the critical theory in three dimensions is on
slightly different from two. In Sec. VII we compare the e
perimental ac conductivity data of Boothet al.18 to the criti-
cal theory, extrapolated to three dimensions, and comme
Sec. VIII on the implications of this work for such measur
ments.
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II. FORMALISM

A. The time-dependent Ginzburg-Landau model
of superconductivity

We describe the critical dynamics of a superconduc
with a complex order parameterc using the relaxationa
time-dependent Ginzburg-Landau model

]c

]t
52G0

dF

dc*
1z, ~2.1!

with the Ginzburg-Landau free-energy

F5E ddr S u¹cu21r 0ucu21
u0

2
ucu4D . ~2.2!

In Eq. ~2.1! G0 is the bare order-parameter relaxation ra
Both G0 and the bare coefficientu0, which appears in the
free energy~2.2!, can be considered temperature independ
near the transition; howeverr 0;T2Tc0 changes sign at the
mean-field transition temperatureTc0, becoming negative for
temperatures belowTc0. We choose units so that\5kBTc
51 andm51/2, wherem is the mass of a Cooper pair. Th
superconductor is assumed to be isotropic. The comp
noise fieldz in Eq. ~2.1! is taken to have zero mean an
correlations described by

^z~r ,t !z* ~r 8,t8!&52G0d~r2r 8!d~ t2t8!, ~2.3!

where the bracketŝ•••& denote an average over the noi
distribution, assumed to be Gaussian. The factor 2G0 in Eq.
~2.3! follows from the fluctuation-dissipation theorem an
ensures that the system relaxes to the proper equilibrium
tribution.

We will work in the symmetric phase,T.Tc , with zero
applied magnetic field and consider order-parameter fluc
tions about a mean of zero. Fluctuations of the vector pot
tial are neglected.25 Since we will use the Kubo formula to
calculate the linear conductivity from the system in ze
electric field, an electric field is not included in Eqs.~2.1!–
~2.2!. In the classification scheme of Hohenberg a
Halperin,21 Eqs.~2.1!–~2.3! constitute model A dynamics fo

FIG. 1. Comparison of the ac conductivity scaling functio
S(y), Eq. ~1.7!, for the relaxational 3DXY critical theory ~solid
curve! with the scaling function, Eq.~3.7!, for the Gaussian theory
~dashed curve!. To facilitate later comparison with experimen
~Ref. 18!, the magnitude ofS(y) is plotted against the scaled fre
quencyy on a log-log scale.
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a two-component~complex! order parameter. Thus ou
model is in the dynamic universality class of the relaxatio
XY model.23,24

Since the Ginzburg-Landau theory is coarse grained
contains an ultraviolet~UV! cutoff, L ~corresponding, for
example, to the lattice constant!.26 This cutoff is manifest in
the definition of the Fourier transform of the orde
parameter,

c~r ,t !5E
kv

L

c~k,v!eik•r2 ivt. ~2.4!

For convenience, we employ the short forms

E
k

L

5EL ddk

~2p!d
~2.5!

E
v

5E dv

~2p!
~2.6!

for the wave-vector and frequency integrals, with the wa
vector integral restricted touku,L. The existence of the cut
off will be crucial when we interpret the results of the theo

The order-parameter correlation function and the respo
function are central in what follows. The order-parame
correlation function,C(k,v), is defined as

C~k,v![^c~k,v!c* ~k,v!&. ~2.7!

By adding a source term,

Fh52E ddr ~h* c1hc* !, ~2.8!

to the free energy~2.2! we can define the~linear! response
function,G(k,v), as

G~k,v![
d^c~k,v!&
dh~k,v!

U
h50

. ~2.9!

This measures the response of the order parameter to
source h. Near equilibrium, the correlation and respon
functions are related though the fluctuation-dissipat
relation,27

C~k,v!5
2

v
Im G~k,v!. ~2.10!

B. The Kubo formula for the conductivity

The linear ac conductivity,s(v), for an isotropic material
can be defined in terms of the current response,J ~which
includes normal and supercurrent contributions!, to an infini-
tesimal applied electric field,E, through

J~v!5s~v!E~v!. ~2.11!

Since the quantities in Eq.~2.11! are evaluated at zero wave
vector we suppress their wave-vector dependence. The
ductivity is complex and has a real dissipative response,s8,
and an imaginary reactive response,s9:

s~v!5s8~v!1 is9~v!. ~2.12!
l
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In linear response, the conductivity is related to a curr
correlation functionvia the Kubo formula.28 NearTc strong
superconducting fluctuations give a singular contribution
the conductivity which dominates the nonsingular contrib
tion due to normal electrons. Thus we may use the Ku
formula to calculate the real part of the conductivity due
superconducting fluctuations from the supercurrent corr
tion function, evaluated atE50:9

s8~v!5
1

2d
^Js~v!•Js~2v!&uE50 . ~2.13!

The supercurrent,Js is

Js~r ,t !52 ie0~c* ¹c2c¹c* !, ~2.14!

wheree0 is the bare charge of a Cooper pair. The imagina
part of the conductivity can be obtained by applying t
Kramers-Kronig relations28 to Eq. ~2.13!.

The average in Eq.~2.13! is a four-point order-paramete
average sinceJs ~2.14! is quadratic inc. Quite generally,
this four-point average can be written as the sum of a ‘‘d
connected’’ product,s (2), of two two-point averages, and
‘‘connected’’ four point-averages (4):

s8~v!5s (2)~v!1s (4)~v!, ~2.15!

with

s (2)~v!5
2e0

2

d E
k1v1

L

k1
2C~k1 ,v1!C~k1 ,v11v!,

~2.16!

and

s (4)~v!5
2e0

2

d E
k1v1k2v2

L

k1•k2Cc
(4)~k1 ,v1 ,k2 ,v2 ;v!,

~2.17!

where the exact two-point order-parameter correlation fu
tion, C(k,v), is defined in Eq.~2.7! and

Cc
(4)~k1 ,v1 ,k2 ,v2 ;v![^c~k1 ,v1!

3c* ~k1 ,v12v!c~k2 ,v2!

3c* ~k2 ,v21v!&c ~2.18!

is the connected four-point order-parameter correlation fu
tion.

C. Iterative dynamic perturbation theory

The order-parameter averages~2.7! and~2.18! that appear
in Eqs.~2.16! and ~2.17! can be expanded as a perturbati
series in the bare nonlinear couplingu0 appearing in Eq.
~2.2!. Dynamic perturbation theory for the time-depende
Ginzburg-Landau equation, Eq.~2.1!, can be implemented
either by using a Martin-Siggia-Rose field-theoretic
formalism,29,30 or by a direct iteration of the equation o
motion.20,31 The iterative approach involves less formal m
chinery and will be used here.

The equation of motion~2.1! can be explicitly written in
Fourier space as
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c~k,v!5c0~k,v!2u0G0~k,v!E
k1v1k2v2k3v3

L

Vc~k1 ,v1!

3c* ~k2 ,v2!c~k3 ,v3!, ~2.19!

where

c0~k,v!5
1

G0
G0~k,v!z~k,v!, ~2.20!

G0~k,v!5S 2
iv

G0
1r 01k2D 21

, ~2.21!

and

V5~2p!d11d~k2k11k22k3!d~v2v11v22v3!.
~2.22!

The Gaussian theory neglects the nonlinear interactionu0
50). In this case Eq.~2.19! reduces toc5c0, and the order
parameter is a Gaussian field by virtue of Eq.~2.20! and the
fact thatz is Gaussian. The order-parameter correlation fu
tion ~2.7! can then be evaluated using Eq.~2.3! and is

C0~k,v![^c0~k,v!c0* ~k,v!&

5
2G0

v21G0
2~r 01k2!2

. ~2.23!

If a term coming fromFh ~2.8! is included in the equation o
motion ~2.19!, it is straightforward to show thatG0 ~2.21! is
the Gaussian response function. A glance at Eqs.~2.21! and
~2.23! shows that the Gaussian theory satisfies
fluctuation-dissipation relation, Eq.~2.10!.

Sincec appears in the integral on the right-hand side
Eq. ~2.19!, this equation can be iterated to produce an exp
sion for c in powers of the bare coupling constantu0. Av-
erages containingc are then expressed as sums of high
point Gaussian averages overc0, which break up into
products ofC0’s. To keep track of the algebra, it is helpful t
use the graphical representation of Eq.~2.19! shown in Fig.
2. In the graphical context iteration corresponds to ‘‘putti
branches on the tree’’ and averaging corresponds to join
two conjugate dashed lines (c0) to form a correlation func-
tion C0. By examining all possibilities for joining for a given

FIG. 2. The diagrammatic representation of the equation of m
tion ~2.19!. Wiggly lines correspond to the order parameterc ~a
starred wiggly line isc* ). The dotted line represents the Gauss
field c0. The Gaussian response functionG0 ~2.21! is shown as a
line with an arrow. The vertex, where the response function m
three wiggly lines contains a factor2u0, as well asV ~2.22!, which
conserves wave vector and frequency at the vertex. Iteration c
sponds to replacing the wiggly lines on the right-hand side w
either the first or second term on the right-hand side. In this w
one generates a series inu0.
-

e

f
n-

-

g

average, a series of graphs is generated with the proper s
metry factors. In dynamical perturbation theory there are t
propagators: the response functionG0, denoted by an arrow
and the correlation functionC0, denoted by a line with a
circle on it. Wave vector and frequency are assigned to th
lines on the basis of conservation of wave vector and
quency at the graph vertices, given byV in Eq. ~2.22!. Wave
vectors and frequencies flowing around loops are integra
over. More details of the graph rules can be found in Refs.
and 31. An example of this procedure is the self-energy d
gram, Fig. 3, and the corresponding algebraic express
~4.5!.

D. Renormalization of the theory and theXY fixed point

It is well known that, near criticality, the expansion of th
theory in terms of the bare ‘‘coupling constant’’u0 produces
infrared ~IR! divergences due to the diverging correlatio
length. One method to treat these divergences and prod
sensible results is to reorganize the expansion as an ex
sion in e542d. To accomplish this, we must first ensu
that all UV divergences~we takeL→`) as e→0 are ab-
sorbed into a renormalization of the bare quantitiesr 0 , u0 ,
e0, andG0. It is computationally convenient to dimension
ally regularize the theory and renormalizevia minimal
subtraction.30,32 Following renormalization, we must relat
u0 ~or, more precisely the suitably renormalized and dime
sionless couplingū, defined below! to e by examining the
fixed-point structure of the renormalization-group~RG! flow.
Below, we examine the renormalization of the theory and
RG fixed point in more detail.

We define the renormalized coupling constant,u, in terms
of the bare coupling constant,u0, by

u[Zuu0 , ~2.24!

and define the dimensionless, renormalized coupling c
stant,ū as

ū[
Sd

2~2p!d
uk2e, ~2.25!

where k is an arbitrary wave-vector scale andSd
52pd/2/G(d/2) is the surface area of the unit sphere ind

dimensions. The renormalization constantZu511O(ū).32

-

ts

re-
h
y,

FIG. 3. The Saturn diagram,Ss , for the self-energy consists o
two loops formed by two correlation functionsC0 ~lines with
circles! and one response functionG0 ~line with an arrow!. Wave
vector and frequency flow through the diagram in accordance w
the discussion in Sec. II C.
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Since onlyū2 will appear in the conductivity, and we negle
terms ofO(ū3) and higher, we may approximateZu51.

Renormalization of the bare response function~2.9! pro-
vides the remaining renormalization constants. The bare
verse response function including self-energy correctionsS,
may be written

G21~k,v!5G0
21~k,v!2S~k,v!. ~2.26!

The renormalized inverse response functionGR
21(k,v) may

be expressed in terms of the bare quantity~2.26! by

GR
21~k,v![ZcG21~k,v!, ~2.27!

where the renormalization constantZc comes from ‘‘wave-
function’’ renormalization~a rescaling ofc) and, in the
minimal subtraction scheme, is given by32,33

Zc512
1

e
ū21O~ ū3!. ~2.28!

The renormalized ‘‘mass’’r is defined as

r[GR
21~0,0!, ~2.29!

which, using Eqs.~2.21!, ~2.26!, and~2.27!, is related to the
bare massr 0 by

r 5Zc@r 02S~0,0!#. ~2.30!

NearTc the physical response function at zero wave num
and frequency behaves asGR(0,0)5j22hk2h, whereh is
the usual correlation function exponent andj is the order-
parameter correlation length that diverges as

j;uT2Tcu2n, ~2.31!

with the critical exponentn. Thus, from~2.29!, we have

r 5j221hkh. ~2.32!

Since we are neglecting magnetic fluctuations and work
at the ‘‘uncharged’’ fixed point, the renormalized charge,e,
is simply the bare charge:e5e0. Finally, the bare relaxation
rateG0, appearing in the dynamic response function~2.26! is
related to the renormalized relaxation rateG by

1

G0
5ZG

1

G
, ~2.33!

where, from minimal subtraction, the renormalization co
stantZG for this relaxational model is30,33

ZG512
c

e
ū21O~ ū3!. ~2.34!

The constantc is given by Eq.~1.6!.
Even after we renormalize the conductivity as describ

above, some poles ine will remain. These poles are due t
UV divergences in the theory for the conductivity that app
even at the Gaussian level and have nothing to do with
critical behavior. These poles must be eliminated by addin
constant to the conductivity, as will be discussed in Sec.

NearTc , as one probes the long-wavelength physics,
coupling ū flows towards the fixed-point valueū* deter-
mined by the IR-stable zeros of the renormalization-gro
n-

r

g

-

d

r
e
a

I.
e

p

beta functionb(ū* )50.32 This mechanism is responsible fo
universality. To leading order in thee expansion,ū* is32,33

ū* 5
e

10
1O~e2!. ~2.35!

This is the Wilson-Fisher23 fixed point for theXY model.
The correlation function exponenth is related toZc , ~2.28!
and has the following expansion inū* :

h52~ ū* !21O@~ ū* !3#. ~2.36!

The resultn'2/3 quoted in the Introduction, which also ap
pears in Eq.~2.31!, is an extrapolation of thee-expansion
result to three dimensions. Finally, the dynamic exponentz is
related toZG ~2.34! for the relaxational dynamics, and i
given byz521ch.

Our calculational strategy in what follows is to anticipa
that ū will be O(e) and to keep terms up toO(ū2) @O(u2)#
since we will calculate toO(e2). It is advantageous to ini-
tially keepū in the calculation and expand everything else
powers ofe since this provides a check on whether the po
in e have been minimally subtracted at each order inū. Fi-
nally, by using the fixed-point valueū* for the coupling, and
reorganizing the theory as an expansion ine, the IR diver-
gences near criticality can be sensibly treated and lea
corrections to the Gaussian exponents and scaling funct

III. THE CONDUCTIVITY IN THE GAUSSIAN
APPROXIMATION

We now review earlier work on the ac conductivity in
volving noninteracting, Gaussian fluctuations,9,10 and setu0
50 in Eq. ~2.2!. In the Gaussian approximation the co
nected piece of the conductivity, Eq.~2.17!, is zero. Thus,
from Eqs.~2.15! and ~2.16! one has

s8~v!5
2e0

2

d E
k1v1

L

k1
2C0~k1 ,v1!C0~k1 ,v11v!, ~3.1!

whereC0 is given by~2.23!. The calculation of the integra
in Eq. ~3.1! involves a contour integration over the frequen
variable, and then a straightforward evaluation of the rema
ing wave-vector integral, with the cutoffL set to infinity.
The complex conductivity takes the form:9,10

s~v!5
e0

2

2G0
s̄

j0
42d

42d
SG~y0!, ~3.2!

where

s̄5
Sd

~2p!d
G~d/2!G~32d/2! ~3.3!

and the scaled frequencyy0 is

y05
vj0

2

2G0
. ~3.4!

The Gaussian order-parameter correlation lengthj0 is de-
fined as
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j0[r 0
21/2, ~3.5!

thus j0;uT2Tc0u21/2 and n51/2 in the Gaussian theory
The real part of the scaling formSG is computed from Eq.
~3.1! to be

SG8 ~y0!5
8

d~d22!

1

y0
2 F12~11y0

2!d/4cosS d

2
tan21y0D G .

~3.6!

The imaginary part of the conductivity is obtained from E
~3.6! using the Kramers-Kronig relations. The result for t
complex scaling form is then

SG~y0!5
8

d~d22!

1

y0
2 F12

d

2
iy02~12 iy0!d/2G . ~3.7!

The Gaussian result, Eq.~3.2! with the definition~3.4!, sat-
isfies the FFH hypothesis~1.1! with z52.

We note two properties of these results that will be i
portant later. The first is that Eq.~3.2! has a factor ofe54
2d in the denominator. This is a consequence of setting
cutoff L to infinity, and indicates that even the Gaussi
theory is sensitive to the cutoff in four dimensions. The s
ond property is thatSG8 ~3.6! has thee expansion

SG8 ~y0!511(
i 51

`

e iSi~y0!. ~3.8!

The coefficient ofe in Eq. ~3.8!,

S1~y0!5
3

4
1

1

4y0
2 @~12y0

2!ln~11y0
2!24y0tan21y0#,

~3.9!

is interesting because it appears later in both the disc
nected and the connected pieces of the conductivity.

IV. DISCONNECTED PIECE OF THE CONDUCTIVITY

To go beyond the Gaussian theory requires the calcula
of both the full two-point correlation function~2.7!, includ-
ing self-energy corrections, and the four-point average~2.18!
which appear in the conductivity through Eqs.~2.16! and
~2.17!. The calculations must be performed toO(u2), where
the first corrections to the Gaussian resultz52 occur. In this
section we examine the disconnected piece of the condu
ity ~2.16!. The next section tackles the connected piece.

We first dimensionally regularize and renormalize t
theory as outlined in Sec. II D. From Eq.~2.16!, the discon-
nected contribution to the conductivity is then

s (2)~v!5
2e2

d E
k1v1

k1
2C~k1 ,v1!C~k1 ,v11v!, ~4.1!

whereC is the full correlation function~2.7!, including self-
energy corrections. We will calculate the response funct
G ~2.9! to O(u2) and use the fluctuation-dissipation relatio
~2.10! to get C. With the definition~2.30! of the renormal-
ized mass,r, the inverse response function~2.26! may be
written as
.

-

e

-

n-

n

iv-

n

G21~k,v!5G0
21~k,v!2@S~k,v!2S~0,0!#, ~4.2!

where now

r 0→r /Zc , ~4.3!

G0→G/ZG ~4.4!

in G0 ~2.21! and C0 ~2.23!. To O(u2) only the ‘‘Saturn’’
diagramSs(k,v) shown in Fig. 3 contributes to Eq.~4.2!
since, to this order, it is the only piece of the self-energy t
is wave-vector and frequency dependent. Applying the ru
outlined in Sec. II C to Fig. 3 gives

Ss~k,v!56u2E
k2v2k3v3

C0~k2 ,v2!C0~k3 ,v3!

3G0~k2k22k3 ,v2v22v3!. ~4.5!

The correlation functionC is then obtained from Eq.~2.10!
and ~4.2!:

C~k,v!5C0~k,v!1
2

v
Im$G0

2~k,v!@Ss~k,v!2Ss~0,0!#%

1O~u3!. ~4.6!

Thus the disconnected piece of the conductivity~4.1! can be
expressed in terms of the integrals

I 1~v!5
2e2

d E
k1v1

k1
2C0~k1 ,v1!C0~k1 ,v11v! ~4.7!

and

I 2~v!5
4e2

d
ImE

k1v1

k1
2C0~k1 ,v1!

1

v11v
G0

2~k1 ,v11v!

3@Ss~k1 ,v11v!2Ss~0,0!#, ~4.8!

by writing

s (2)~v!5I 1~v!12I 2~v!1O~u3!. ~4.9!

Each integral is dealt with separately below.

A. The integral I 1

The only differences betweenI 1 ~4.7! and the starting
point ~3.1! of the Gaussian calculation are the substitutio
Eqs.~4.3!, ~4.4!, ande0→e. Transcribing the real part of the
Gaussian result~3.2! gives

I 1~v!5
e2

2G
s̄k2e

x2e

e
Zc

e/2ZGSG8 ~ ỹ!, ~4.10!

with SG8 given in Eq.~3.6! and

ỹ5
vZcZG

2Gr
. ~4.11!

The dimensionless measure of the nearness to the trans
is

x5
Ar

k
, ~4.12!
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where the arbitrary wave-vector scalek was introduced ear
lier in Eq. ~2.25!. From the expression~2.32! for r we have

x5~jk!211h/2. ~4.13!

The functionSG8 ( ỹ) can be expressed in terms of the sca
frequencyy,

y5
vjzkz22

2G
~4.14!

with z given by Eq.~1.5!, by the expansion

SG8 ~ ỹ!5SG8 ~y!1]ySG8 ~y!~ ỹ2y!1
1

2
]y

2SG8 ~y!~ ỹ2y!21•••,

~4.15!

where]y indicates a derivative with respect toy. The results
~2.28! for Zc , ~2.32! for r and ~2.34! for ZG are used to
obtain the following relation betweenỹ andy:

ỹ2y5y~c11!S h ln x2
1

e
ū2D1O~ ū2e!. ~4.16!

Using equation~4.16!, the expansion~3.8! of SG8 , and the
fact thath ~2.36! is O(e2), we write Eq.~4.15! as

SG8 ~ ỹ!511eS1~y!1e2S2~y!1e3S3~y!1e~c11!

3S h ln x2
1

e
ū2D @y]yS1~y!1ey]yS2~y!#

1O~ ū2e2,e4!. ~4.17!

We now use the expansions~2.28! of Zc and ~2.34! of ZG

together with Eq.~4.17! to write I 1 ~4.10! as a series inū,
with coefficients expanded in powers ofe. Terms of
O(ū2e,e3) and higher are neglected@since the fixed-point
value ū* ~2.35! is O(e) we are effectively working to
O(e2)#. The result, written in a form that will be convenie
for later analysis, is

I 1~v!5
e2

2G
s̄k2eS 12

1

2
ū2D H 2

c

e2
ū21

1

e

1
c

e
ū2ln x2

c

e
ū2S1~y!2

c11

e
ū2y]yS1~y!2 ln x

1
e2cū2

2
~ ln x!22

e2

6
~ ln x!31F12~e2cū2!ln x

1
e2

2
~ ln x!2GS1~y!1~e2cū2!~12e ln x!S2~y!

1e2S3~y!1~c11!~h1ū2!y]yS1~y!ln x

2~c11!ū2y]yS2~y!1O~ ū2e,e3!J . ~4.18!
d

B. The integral I 2

The calculation ofI 2, Eq. ~4.8!, is involved so we only
outline it here. The first step is to rescale the internal wa
vectors and frequencies in Eq.~4.8! by

k i→Ark i8 ~4.19!

v i→Grv i8 , ~4.20!

wherei 51,2,3 ~remember thatSs contains an integral ove
k2v2k3v3), and write

I 2~v!5
12e2

dG
k2e~uk2e!2x23e Ĩ 2~y!. ~4.21!

The dimensionless integral in Eq.~4.21!,

Ĩ 2~y!516 ImE
k1v1k2v2k3v3

k1
2C̃0~k1 ,v1!

1

v112y

3G̃0
2~k1 ,v112y!C̃0~k2 ,v2!C̃0~k3 ,v3!

3@G̃0~k12k22k3 ,2y1v12v22v3!

2G̃0~2k22k3 ,2v22v3!#, ~4.22!

is written in terms of the dimensionless functions

G̃0~k,v!5
1

2 iv111k2
~4.23!

and

C̃0~k,v!5
1

v21~11k2!2
, ~4.24!

where, for convenience, in Eq.~4.22! we have dropped the
primes on the dimensionless wave vectors and dimension
frequencies. SinceI 2 is alreadyO(u2) we have simply re-
placed all bare coefficients in Eq.~4.21! by renormalized
ones, and used the scaled frequencyy from Eq. ~4.14!.

The second step is to evaluate the three frequency i
grals in Eq.~4.22! by contour integration. The calculation i
straightforward and yields

Ĩ 2~y!5Re@ Ĩ 2
a~y!1 Ĩ 2

b~y!1 Ĩ 2
c~y!#, ~4.25!

with

Ĩ 2
a~y!5E

0

1

dv~12v !E
k1k2k3

k1
2F 2

a1
3

2
1

~a11 iyv !3G
3

1

a2a3~a21a31a4!~a512iy !
, ~4.26!

Ĩ 2
b~y!53E

0

1

dv~12v !E
k1k2k3

k1
2 1

~a11 iyv !4a2a3

3F 1

a21a31a4
2

1

a21a31ā4
G , ~4.27!
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Ĩ 2
c~y!523iyE

0

1

dv~12v !E
k1k2k3

k1
2

3
1

~a11 iyv !4a2a3~a21a31a4!~a512iy !
,

~4.28!

where, for convenience, we define

ai[11ki
2 , i 51,2,3, ~4.29!

a4[11~k11k21k3!2, ~4.30!

ā4[11~k21k3!2, ~4.31!

a5[a11a21a31a4 . ~4.32!

Note that we have used the Feynman formula

1

c1
a1c2

a2
5

G~a11a2!

G~a1!G~a2!
E

0

1

dv~12v !a121va221

3
1

@~12v !c11vc2#a11a2
~4.33!

with the Feynman parameterv to group and simplify terms
in Eqs.~4.26!–~4.28!.

The final step is to evaluate the wave-vector integrals
Eqs. ~4.26!–~4.28! using ~4.33! and e-expand the resulting
integrals over Feynman parameters toO(e0). An example of
this procedure appears in Appendix A. The results for E
~4.26!–~4.28! are

Ĩ 2
a~y!5AdF 1

6e2
ln

4

3
1

1

2e
f 1~y!ln

4

3

1
0.003

e
1F 2

a~y!1O~e!G , ~4.34!

Ĩ 2
b~y!5AdF2

1

12e2
1

1

4e
f 1~y!2

0.104

e
1F 2

b~y!1O~e!G ,

~4.35!

Ĩ 2
c~y!5AdF2

1

2e
f 2~y!ln

4

3
1F 2

c~y!1O~e!G , ~4.36!

whereF 2
a , F 2

b, andF 2
c areO(e0) functions ofy that we do

not need to determine,

Ad5S Sd

2~2p!dD 3

@G~22e/2!#2G~32e/2!G~113e/2!,

~4.37!

and

f 1~y!5E
0

1

dv~12v !ln~11 iyv !, ~4.38!
n

s.

f 2~y!5 iyE
0

1

dv
12v

11 iyv
. ~4.39!

It is straightforward to show that

Re@ f 1~y!#52S1~y!, ~4.40!

Re@ f 2~y!#522S1~y!2y]yS1~y!, ~4.41!

whereS1 was given in Eq.~3.9!. We use this result, along
with Eqs. ~4.25! and ~4.34!–~4.36! to write I 2 ~4.21! as a
product ofū2 and a series ine. In particular, we have

2I 2~v!5
e2

2G
s̄k2eū2Fc22

3e2
2

c22

e
ln x1

c22

e
S1~y!

1
~c11!

e
y]yS1~y!2

0.787

e
12.36 lnx

1
3~c22!

2
~ ln x!223~c22!S1~y!ln x

23~c11!y]yS1~y!ln x1D~y!1O~e!G ,

~4.42!

with

D~y!50.2332~c22!S1~y!2~c11!y]yS1~y!

112 Re@F 2
a~y!1F 2

b~y!1F 2
c~y!#. ~4.43!

V. CONNECTED PIECE OF THE CONDUCTIVITY

The topologically distinct diagrams resulting from the e
pansion of the connected four-point order-parameter ave
~2.18! to O(u2) are shown in Fig. 4. Self-energy correction
are included in these diagrams since we have renormal
the theory, following dimensional regularization. The alg
braic expressions for each allowed permutation of wave v
tor and frequency in these diagrams is inserted ins (4) ~2.17!,
thereby giving a contribution to the conductivity. TheO(u)
diagram in Fig. 4~a! does not contribute to the conductivit
since in this case the integral~2.17! separates into a produc
of odd integrals overk1 andk2. The remaining diagrams in
Fig. 4 areO(u2), and produce

FIG. 4. The topologically distinct diagrams in the expansion
the four-point order-parameter average~2.18! to O(u2). The dia-
grammatic symbols are the same ones used in Fig. 3. Each dia
corresponds to several possible wave-vector and frequency as
ments, which are not shown.
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s (4)~v!52
128e2

dG
k2e~uk2e!2x23e

3Re@4 Ĩ b~y!1 Ĩ c
(1)~y!1 Ĩ c

(2)~y!# ~5.1!

when inserted into Eq.~2.17!. The diagram in Fig. 4~b! is
responsible for the contribution

Ĩ b~y!5E
k1v1k2v2k3v3

k1•k2G̃0~k1 ,v1!C̃0~k1 ,v122y!

3C̃0~k2 ,v2!C̃0~k2 ,v212y!G̃0~k3 ,v3!

3C̃0~k11k21k3 ,v11v22v3! ~5.2!

in Eq. ~5.1! with y defined in Eq.~4.14! andG̃0 andC̃0 given
by Eqs.~4.23! and ~4.24!, respectively. The diagram in Fig
4~c! produces the other two integrals,

Ĩ c
(1)~y!5E

k1v1k2v2k3v3

k1•k2G̃0~k1 ,v1!G̃0~k1,2y2v1!

3C̃0~k2 ,v2!C̃0~k2 ,v212y!C̃0~k3 ,v3!

3C̃0~k11k21k3 ,v11v21v3! ~5.3!

and

Ĩ c
(2)~y!5E

k1v1k2v2k3v3

k1•k2G̃0~k1 ,v1!

3C̃0~k1 ,v122y!C̃0~k2 ,v2!G̃0~k2 ,22y2v2!

3C̃0~k3 ,v3!C̃0~k11k21k3 ,v11v21v3!,

~5.4!

in Eq. ~5.1!. As with the integralĨ 2(y) ~4.22! for the discon-
nected piece, we evaluate the frequency integrals in E
~5.2!–~5.4! with contour integration and use the Feynm
formula ~4.33! to perform the wave-vector integrals. Upo
e-expanding the results we have

Ĩ b~y!52
Ad

96F S 1

4
2

1

2
ln

4

3D 1

e2
2S 3

4
2

3

2
ln

4

3D1

e
Re@ f 1~y!#

1
0.057

e
1Fb~y!1O~e!G , ~5.5!

Ĩ c
(1)~y!52

Ad

96F 2

e2
ln

4

3
2

6

e
ln

4

3
Re@ f 1~y!#

1
0.279

e
1F c

(1)~y!1O~e!G , ~5.6!

Ĩ c
(2)~y!52

Ad

96F0.618

e
1F c

(2)~y!1O~e!G , ~5.7!

where Ad and f 1 were defined in Eqs.~4.37! and ~4.38!,
respectively. As before,Fb , F c

(1) , and F c
(2) are O(e0)

functions ofy that do not need to be determined. Equatio
s.

s

~5.5!–~5.7! are substituted into Eq.~5.1! and the result, ex-
pressed in terms of a product ofū2 and a series ine, is

s (4)~v!5
e2

2G
s̄k2eū2F 2

3e2
2

2

e
ln x1

2

e
S1~y!

1
0.086

e
20.258 lnx13~ ln x!226S1~y!ln x

1C~y!1O~e!G , ~5.8!

where

C~y!50.78722S1~y!1
2

3
Re@4Fb~y!1F c

(1)~y!1F c
(2)~y!#.

~5.9!

In Eq. ~5.8! we have used the relation~4.40! betweenf 1 and
S1, Eq. ~3.9!.

VI. ADDITIVE RENORMALIZATION
OF THE CONDUCTIVITY

The real part of the conductivity~2.15! is a sum of the
disconnected contributions, Eqs.~4.18! and ~4.42!, and the
connected piece, Eq.~5.8!:

s8~v!5
e2

2G
s̄k2e~122.6ū2!H 1

e
2

2

3e2
cū21

1.4

e
ū22 ln x

1
e12cū2

2
~ ln x!22

e2

6
~ ln x!3

1F12~e12cū2!ln x1
e2

2
~ ln x!2GS1~y!

1~e12cū2!~12e ln x!S2~y!

1~c11!~h22ū2!y]yS1~y!ln x1ū2F~y!

1O~ ū2e,e3!J , ~6.1!

where

F~y!52.1S1~y!23cS2~y!1
e2

ū2
S3~y!1D~y!

1C~y!2~c11!y]yS2~y! ~6.2!

is anO(e0) function of y @remember thatū is O(e)#. Even
after renormalizing the bare quantities in the theory so
poles ine remain in Eq.~6.1!. In fact, this problem arises
even in the Gaussian theory@the 1/e term in ~6.1!# and indi-
cates that we must be more careful when we set the cutoL
to infinity. We should write the conductivity ford,4 as

s8~v;d,L!5s8~v;d,`!2A~v;d,L!, ~6.3!

with

A~v;d,L!5s8~v,d,`!2s8~v;d,L!. ~6.4!
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The s8(v;d,`) term in Eq.~6.3! is just Eq.~6.1!. By sub-
tractingA ~6.4! from s8(v;d,`) we render the conductivity
finite in four dimensions, since we recover the theory w
finite L. At low frequencies, nearTc , we expect to be able
to approximateA by its value atTc andv50: near critical-
ity, the IR singularities, which appear ins8(v;d,`), are
absent inA since only UV physics contributes to the diffe
ence in~6.4!. In the minimal subtraction scheme the poles
s8(v50;d,`) which contain no singular temperature d
pendence are simply subtracted from Eq.~6.1!. This situation
is reminiscent of the additive renormalization of the spec
heat in the static theory.32

Inspection of Eq.~6.1! gives

A5
e2

2G
s̄k2e~122.6ū2!F1

e
2

2

3e2
cū21

1.4

e
ū21O~ ū3!G ,

~6.5!

and thus we write the fully renormalized conductivi
sR8 (v)5s8(v)2A as

sR8 ~v!5
e2

2G
s̄k2e~122.6ū2!H 2 ln x1

e12cū2

2
~ ln x!2

2
e2

6
~ ln x!31F12~e12cū2!ln x

1
e2

2
~ ln x!2GS1~y!1~e12cū2!~12e ln x!S2~y!

1~c11!~h22ū2!y]yS1~y!ln x1ū2F~y!

1O~ ū2e,e3!J . ~6.6!

Now we have a theory that is UV convergent ase→0, but
has IR divergences asT→Tc and x→0. Near four dimen-
sions, the coupling constantū flows in the IR to its
XY-model fixed-point valueū* @see Eq.~2.35!#, with h
52(ū* )2 @see Eq.~2.36!# and, after resumming, the series
e takes the form

sR8 ~v!5
e2

2G
s̄k2eFx2p21

p
1x2pS1~y!1px2pS2~y!

1
p2

100
F~y!1O~p3!G , ~6.7!

wherep is O(e) and is defined as

p5e1ch ~6.8!

522d1z1O~e3! ~6.9!

5
2

z
~22d1z!1O~e3!. ~6.10!

The (122.6ū2) factor in Eq. ~6.7! has been absorbed b
changing the normalization ofsR8 (v50). As T→Tc and x
→0 terms proportionalx2p in Eq. ~6.7! dominate the
conductivity.34 From Eq.~4.13! we have
f

c

x2p5~jk!p@11O~e3!#, ~6.11!

and asT→Tc we write

sR8 ~v!5
e2

2G
s̄k2e

~jk!p

p
@11pS1~y!1p2S2~y!1O~p3!#.

~6.12!

In Eq. ~6.12!, the series inp coincides, toO(p2), with thee
expansion for the Gaussian scaling formSG8 , Eq.~3.8!. Thus,
by resumming the series in Eq.~6.12! we obtain, correct to
O(e2), the Gaussian scaling formSG8 , Eq. ~3.6!, now as a
function of the critical scaled frequencyy ~4.14! and with
occurrences ofe replaced byp. Resummation of the series i
Eq. ~6.12! is necessary if one is to have a scaling functi
which is uniform iny ~here uniform means the expansion
asymptotic ine for all y). In particular, resummation is nec
essary if one is to recover the power-law behavior~1.2! at
large-scaled frequencies.

The final result for complex ac conductivity in the critic
regime is then~dropping theR suffix!

s~v!5
e2

2G
s̄k2e

~jk!22d1z

~22d1z!
@S~y!1O~e3!#, ~6.13!

with the scaled frequencyy given by Eq.~4.14! and the uni-
versal complex scaling functionS(y) given by Eq.~1.7!.

VII. COMPARISON WITH EXPERIMENT

It is instructive to compare the universal functionS(y),
Eq. ~1.7!, for the critical theory~extrapolated tod53), with
both the prediction of the Gaussian theory, Eq.~3.7!, and the
experimental results of Ref. 18. Strictly speaking, it is inco
sistent to compare scaled data from different theories
experiments if the axes have been scaled using different
ponents. However, for the sake of comparison, we take
viewpoint that the theory and experiment each determin
particular universal functional dependenceS(y) and ignore
exactly howS(y) andy are achieved.

In this spirit, the magnitude ofS(y) as a function ofy is
plotted on a log-log scale in Fig. 1 for the critical and Gau
ian theories. Sincez*2 in the critical theory, the power-law
behavior at largey @a consequence of~1.2!# for the critical
theory lies only slightly below the Gaussian theory.

In Fig. 5, the critical theory is compared with measur
ments of the microwave conductivity of a thin-film sample
YBa2Cu3O72d in the range 45 MHz–45 GHz nearTc .18 In
this experiment, the exponentz52.6560.3 and the transition
temperatureTc589.160.1 K, were determined from the
power-law behavior~1.2! expected atTc . The best scaling
collapse of the data determined the valuen51.060.2 for the
static exponent.35 In Fig. 5~a! the magnitude ofS(y) is again
plotted as a function ofy on a log-log scale. The Gaussia
theory is not plotted since it lies so close to the critic
theory. SinceG, k, and the prefactor ofj, which appear in
both the scaled frequencyy ~4.14! and the prefactor to the
conductivity ~6.13!, are parameters in the TDGL theor
there is freedom to choose the horizontal and vertical p
tioning of the theory so as to give the best fit to the data.
with the Gaussian theory, the critical theory fits the expe
mental scaling curve well over almost four decades in sca
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frequencyy, but deviates from the experimental data tak
nearest toTc .

The dynamic exponent for the relaxational 3DXY model
is known to have the valuez'2.015. Nevertheless, it is in
structive to consider thez appearing inS(y), Eq. ~1.7!, as an
adjustable parameter. By choosing the experimental valuz
52.65 and adjusting the horizontal offset of the theory
Fig. 5, a better fit to the experimental data closest toTc is
achieved—at the expense of worse agreement with the
of the data. This comparison emphasizes that the experim
tal value z52.65 seems to originate in the data set tak
closest toTc .

The phasef(y), Eq. ~1.3!, of the conductivity is plotted
against log10y in Fig. 5~b! for the critical theory (z52.015),
‘‘pseudo’’-theory (z52.65) and the experiment.18 As with
the Gaussian theory, the critical theory predicts a sma
phase nearTc than seen experimentally. The ‘‘pseudo
theory is in better agreement with experiment nearTc than
the critical theory, but again does a poorer job fitting the r
of the curve.

FIG. 5. Comparison between the scaled ac conductivity d
from Boothet al., Ref. 18, on YBCO and the relaxational 3DXY
critical theory.~a! The scaling functionS(y), Eq. ~1.7!, using the
relaxational 3DXY value z52.015 ~dashed curve! and using the
experimental valuez52.65 ~dotted curve! are compared with the
experimental results~solid curves!. The magnitude ofS(y) is plot-
ted againsty on a log-log scale. The theory is fit to the experime
using horizontal and vertical offsets~the horizontal offset depend
on the value ofz used!. ~b! The normalized phase, 2f(y)/p, of the
conductivity is plotted against log10y for the relaxational 3DXY
critical theory withz52.015 ~dashed curve!, the theory using the
experimental valuez52.65 ~dotted curve! and experiment~solid
curves!. The horizontal offsets are the same as in~a!.
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VIII. CONCLUSIONS

We have examined a theory for the ac conductivity o
superconductor that includes the strong, interacting ord
parameter fluctuations expected near criticality. The F
scaling hypothesis, Eq.~1.1!, is shown to hold atO(e2) in
thee expansion for relaxationalXY-model critical dynamics.
The universal scaling functionS(y) appearing in Eq.~1.1! is
explicitly calculated toO(e2) for this dynamics, with the
result given in Eq.~1.7!. The frequency and phase behavi
expected atTc , Eqs.~1.2! and~1.4!, respectively, is demon
strated. The critical scaling functionS(y) generalizes the
Gaussian result, Eq.~3.7!, and reduces to it whenz52.
These results are quite general and hold, in the critical
gime, for any bulk superconductor described by a comp
order parameter with relaxational dynamics.

Since z'2 for this model, the scaling function of Eq
~1.7! is, for practical purposes, indistinguishable from t
prediction of the Gaussian theory~see Fig. 1!. Therefore, in a
measurement of the ac conductivity, the only indication o
crossover from the Gaussian to critical fluctuation regi
would be a crossover in the static exponentn. This may
explain why the Gaussian theory fits the experimental dat
Boothet al.18 so well over much of the curve in Fig. 5, eve
though the experiment is supposedly accessing the cri
regime.

The inclusion of critical order-parameter fluctuations
the framework of relaxational dynamics does not seem s
ficient to explain the deviation between the Gaussian sca
form and experiment18 observed nearTc ~see Fig. 5!. As
highlighted by the fit of the ‘‘pseudo’’ theory in Fig. 5, thi
deviation is connected to the large valuez52.65 obtained in
the experiment, which cannot be explained within a
present theory.36 It is possible that this discrepancy may b
due to the strong influence that uncertainties in the exp
mental determination ofTc have on the scaling of the dat
closest toTc . More ac conductivity measurements wi
higher temperature resolution nearTc may resolve this issue
allow a more accurate determination ofz, and provide a
check on the scaling collapse for largey. It is also possible
that the films studied contain strong disorder, which co
affect the scaling nearTc .

In this paper we have identified and dealt with the tec
nical challenges involved in the organization and renorm
ization of the theory for the ac conductivity in the critic
region. This work serves as a basis for examining more co
plicated models, such as modelF of Hohenberg and
Halperin21 involving reversible couplings to a conserve
energy-mass density field, as in superfluid4He. In three di-
mensionsz53/2 for modelF,30,37 which, although not ob-
served in the ac conductivity data,18 is seen in some dc con
ductivity experiments4,12,14 and simulations.38 Another
extension of the present theory is to consider a nonzero m
netic field, with the aim of examining the crossover from t
zero-field critical scaling of the 3DXY model to the lowest-
Landau-level scaling which obtains in high fields.13,39
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APPENDIX A

To illustrate the calculation of wave-vector integrals, w
use this appendix to provide the details of thee expansion of
Ĩ 2

a(y), Eq. ~4.26!, which is reproduced, in the notation o
Sec. IV B, as

Ĩ 2
a~y!5E

0

1

dv~12v !E
k1k2k3

k1
2F 2

a1
3

2
1

~a11 iyv !3G
3

1

a2a3~a21a31a4!~a512iy !
. ~A1!

We parametrize the wave-vector factors in the denomin
of Eq. ~A1! in pairs using the Feynman parameterizati
~4.33!, beginning with factors on the right containingk3. The
denominator of thek3 integral is thereby transformed into
quadratic form ink3 and the integral is solved. The proce
is repeated for the remaining two wave-vector integrals, p
ducing

Ĩ 2
a~y!5

Ad

3eE0

1

dv~12v !@2J~v50,y!2J~v,y!# ~A2!

with

J~v,y!5E
0

1

du1du2du3du4u2~11u2!e21u3
e/2

3~12u4!2u4
e21

g̃0
23e/2

g2
22e/2g̃1

32e/2
, ~A3!

where we have defined

g̃05~12u4!~11 iyv !1u4g0 , ~A4!

g̃1511u4~g121!, ~A5!

g0512u31u3~11u2!$11u2@21u1~112iy !#%,
~A6!

g15
u2u3

g2
$g2@11u1~11u2!#2u2u3%, ~A7!

g2512u31u2u3~21u2!. ~A8!

In thee expansionJ in Eq. ~A3! is O(e21) at leading order.
The singularity ine is isolated by writingJ as

J~v,y!5Ja~v,y!1Jb~v,y!, ~A9!
a
ic
y
d

or

-

where

Ja~v,y!5~11 iyv !23e/2E
0

1

du2du3du4u2

3~11u2!e21
u3

e/2

g2
22e/2

u4
e21 , ~A10!

Jb~v,y!5E
0

1

du1du2du3du4u2~11u2!e21
u3

e/2

g2
22e/2

u4
e21

3F ~12u4!2
g̃0

23e/2

g̃1
32e/2

2~11 iyv !23e/2G . ~A11!

In the e expansion, Eq.~A10! becomes

Ja~v,y!5
1

eE0

1

du2du3

u2

g2
2~11u2!

2
3

2

3 ln~11 iyv !E
0

1

du2du3

u2

g2
2~11u2!

1E
0

1

du2du3

u2

g2
2~11u2!

F ln~11u2!1
1

2
ln u3

1
1

2
ln g2G1eFa~v,y!1O~e2!, ~A12!

whereFa(v,y) is a function ofv andy. The integrals in Eq.
~A12! are evaluated to produce

Ja~v,y!5
1

e
ln

4

3
2

3

2
ln

4

3
3 ln~11 iyv !20.0871eFa~v,y!

1O~e2!. ~A13!

The nonsingular integralJb , Eq. ~A11!, has the expansion

Jb~v,y!5E
0

1

du1du2du3du4

u2

g2
2~11u2!

1

u4
F ~12u4!2

g̃1
3

21G
1eFb~v,y!1O~e2!

50.1031eFb~v,y!1O~e2!, ~A14!

whereFb(v,y) is a function ofv andy. By combining Eqs.
~A13! and~A14! in Eq. ~A9! we may use this result forJ in
Ĩ 2

a , Eq. ~A2!, to obtain the result quoted in Eq.~4.34!, with

F 2
a~y!5

1

3E0

1

dv~12v !$2@Fa~0,y!1Fb~0,y!#

2@Fa~v,y!1Fb~v,y!#%. ~A15!
s.
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