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We developed a theory of the oscillatory magnetic coupling across nonmagnetic, ordered or disordered
layers and illustrate its use by explicit calculations for Co/Cu/Co trilayerd @), (110), and(111) orienta-
tions. Our approach to the problem is based on the layered, screened Korringa-Kohn-Raskdkerand
KKR-coherent-potential approximation electronic structure methods and employs a saddle-point approxima-
tion for calculating the coupling energy for asymptotically large spacer thicknédsd@se results of the
asymptotic analysis are tested against full calculations, and other important issues concerning the general
validity of the approach are examined. Our results for the oscillation periods as well as the amplitudes and
phases are in good agreement with experiments and other calculations.

I. INTRODUCTION calculated the OEC for two Co slabs embedded in Cu using
Korringa-Kohn-Rostoke(KKR) method and found values

Since the discovery of giant magnetoresistance GMRor the amplitudes of the right order of magnitude, although
(Refs. 1,2 and oscillatory exchange Coupli‘}]gOEC) in to explain the relative sizes of the short and long periods a
magnetic multilayers such as Co/Cu/Co sandwiches a decadodel of surface roughness had to be invoketf.
ago, these phenomena have been among the most popu'a.rFor the(llO) Orienta.tion- the Ferm| surface analysi? pre-
subjects of both scientific and technological inquiries. Thedicts four different oscillation periods,***three of which
basic experimental geometry in which this phenomenon oc&® Small and not seen in experiments but the Iagge one I1s
curred is depicted in Fig. 1. In short, what is measured is th§imilar in size to the observed oscillation pe_rﬂ@tf._The_:
coupling energy3(), » between the magnetization of the reason for t_he Iack of ok_Jservmg the s_mall periods is still an
layerL, M, , and that of layeR, namelyM g, as a function open question. It is believed, and this work also suggests,

of the spacer thickneds, and what is found is that the ex- ]Egﬁtn(? tt;egjfn%gfeot';;hggl S|ihn0u:g gjr ngceuﬁiggge'rlthéssi -
change interactionJ(D), defined by the relationsQ, g pling : g

X X nificance of the large oscillation period is that a pronounced
:J(D)M'—' M oscillates as a function dd. ) feature of the Cu-like Fermi surfaces, namely the neck con-
Itis, by now, well established that the periods of OEC aréngciing Fermi surface spheres in the repeated zone scheme,
related to the Fermi surface of the spacer. This is part|cularl\élppears to be directly measured by the period of the OEC
the case for Cu spacers for which this relation has been corycross Co/Cu/Qd10). Thus, by alloying the Cu spacer with
firmed quantitatively® In this paper we shall focus on a Nj and measuring the oscillation period for this particular
first-principles theory of the amplitudes and the phases ofrowth direction Okuneet al?® measured the change of the
OEC in the regime of asymptotically large, spacer thicknessieck of Cy_,Ni, Fermi surface with Ni concentration. Re-
D. assuringly they found good agreement with KKR-coherent-
To summarize the current state of understanding for th@otential approximatiofCPA) calculations”?? as well as
particular sandwich structures we shall be concerned withtwo-dimensional-angular correlation gfositron annihila-
we recall that epitaxial Co/Cu/Cb00) was the system for
which antiferromagneti¢AF) coupling was observelf’ for

five monolayer§ML ) of Cu thickness, and subsequently the L C R
oscillatory behavior of the interaction was discovgj‘ﬁlnce O00|le o ® 0|10 00O
then the experiments have been repeated many %itesd
the emerging picture is that there are two oscillation periods: OO0 Ole e ® 6000
a short one £2.5 ML) and a large one<5.5-8.0 ML). SRENONOROI[ N BRI N JONONOREE
The periods predicted from the analysis of the Cu Fermi oNONOIl X ] ® 0|00 0O
surface are 2.6 and 5.9 ML for the short and long periods,
respectively*® in agreement with experiments. At first, both Cz) (1) (0) ’ : N.l : 1\(1)1 1\(1)2 1\(1)3

= - LI - +1 N+2 N+

the absolute sizes and the ratios of the amplitudes of the
various oscillatory contributions from the first first-principles  FIG. 1. Schematic view of a sandwich structure lofand R
calculations of the OEC for thel00) orientatio? **failed  |ayers separated by a spacer lag@mwhich could be optionally a
to agree with experiments. More recently, Laagal'**®  random binary alloy.
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tion radiation(2D—ACAR) measurements. duces the need to fit to either first-principles calculations or
Finally, we turn to trilayers of111) orientation. From the experiments. Alternatively, fully first-principles total-energy
theoretical point of view these are important examples beealculations offer a rather straightforward approach: The to-
cause only one period is predicted by the Fermi surfacéal energy of the system is calculated, using any electronic
analysi$'®”and hence there is less room for misinterpret-structure method, for the ferromagnetic as well as the anti-
ing the experiments. Unfortunately, the experimental situaferromagnetic orientation of the magnetic layer moments for
tion is far from simple. Although OEC had been observed fora given spacer thickness and their difference corresponds to
the sputtered111) samples$*?the molecular-beam epitaxy the OEC energy. While straightforward, the main disadvan-
grown ones initially did not show any AF couplif§Nev-  tages of total-energy calculations are the computational inef-
ertheless, later, OEC was also observed for the epitaxidiciency and the obscurity in relating the OEC to the elec-
sample€’~32In conclusion we note that although00) has  tronic structure of the spacer. In particular, it is not very
been much studied theoretically there is a lack of such invesefficient to take the Fourier transform of the calculated os-
tigation for the(110 and (111) growth directions. This is cillatory coupling energy and compare the wavelengths of
especially the case for first-principles calculations of interesthe dominant component with the Fermi-surface caliper vec-
here. It is one of the aims of the present paper to fill that gaptors. Indeed, this procedure becomes unworkable for
Namely, we shall provide first-principles calculations for thetransition-metal spacers like Cr with complicated Fermi sur-
oscillatory exchange coupling across Cu layers for all thdfaces and thus a large number of nonequivalent caliper vec-
(100), (110, and(111) orientations within the same theoret- tors with similar sizes.
ical framework. From the computational point of view, the most difficult
From the theoretical point of view, the attempts to inves-part of these total-energy calculations for layered structures
tigate the OEC fall into two main categories: The first isis the two-dimensional Brillouin-zone integration. The ad-
models based on semiphenomenological approaches whistantage of the model approaches mentioned above is that
usually involve asymptotic analysis for large spacerthis integration is considered in the asymptotic limit of large
thickness">333* The second is a first-principles approach spacer thicknesses and only the neighborhood of a small
based on density-functional calculations of the totalnumber ofk points contribute. Moreover, the asymptotic
energy?1®>3%|n what follows we shall present an approach analysis defines the connection between the OEC and the
which combines, for the first time, full asymptotic analysis extremal vectors of the Fermi surface of the bulk spacer. In
with first-principles calculations based on the local-densitythe present paper we introduce an approach for the study of

approximation(LDA) of the density functional theory. OEC based on the screened, layered KKR electronic struc-
All theoretical models agree in the asymptotic form of theture method® and illustrate its use by explicit calculations
coupling for large spacer thickness: for the Co/Cu/Co system mentioned above. In Sec. Il, we

summarize the theory as will be applied in the computational

1 part of this work. In the Appendix, the theory is completed
JD)=— > AicogQiD+¢y), (1) by the derivation of an analytic formula in the more general
D= i case of binary alloy spacers. Although that formula is not

whereD is the spacer thickness ard,Q; ¢; are the ampli- applied in this work we found it useful in Sec. IV. The linear
i @i . . .- . . . .

tude, the size of the corresponding extremal wave vector ang1S€ approximation, the validity of which is examined in

the phase, respectively, for each oscillatory contribution. The>6C- !ll; has also been introduced in the Appendix. The com-

first such modéI® proposed for the OEC was based on theputational part of the present work is included in Sec. lll,
perturbative  Ruderman-Kittel-Kasuya-Yosida(RKKY) where we present our results for the OEC in the Co/Cu/Co

theory for the interaction of isolated magnetic impurities in alflayer system for all thg100), (110, and (111) orienta-

nonmagnetic host metal. In the case of layered magneti

Ehons. The comparison of the asymptotic analysis results with
structures the role of the isolated impurities in the RKKY € full integration ones and with experiments are also dis-

theory is played by the magnetic layers. Among other fea_cussed in Sec. lll. Finally, in Sec. IV we discuss how first-

tures J(D) was found to be given by an integral over the principles_calculations based on a_symptotic analysis, such as
wave vectors parallel to the layeks and, for largeD, this the ones in the present work, facilitate the use of the OEC

was evaluated by the saddle-point method. Encouragingl)m
the result obtained displayed similarity with the experimentalb'nalry alloy spacers.
observations. In particular the oscillation periods predicted
by the study _of the Ferrm surface of Cu fitted well to the Il. A KKR THEORY OF THE OSCILLATORY EXCHANGE
observed oscillation periods for all th@00), (110, and INTERACTION
(111 directions>’ Unfortunately, the same analysis is very
complicated for complex Fermi surfaces such as the transi- The reference structure considered in the following theo-
tion metal ones. Thus, for example, until recently, the largeetical discussion is shown in Fig. 1. It consists of two semi-
oscillation period for Cr spacer was an open questiof. infinite layers of magnetic material which are separated by a
Theories based on more complete models, which empharonmagnetic spacer of finite thickne3sA perfect structure
sized the confinement of certain electrons to within theis assumed, i.e., there is no lattice mismatch at the interfaces.
spacer was developed by Edwastsal®® and Stiles” Usu-  Neither is surface roughness present. When desirable, the
ally, the models we have mentioned so far are based on spacer could be optionally substitutionally disordered, con-
semiempirical tight-binding description of the electronic sisting of two different kinds of atoms randomly distributed
structure which facilitates the asymptotic analysis but intro-on a perfect underlying lattice.
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Following the spirit of Ref. 40, we will start from a gen- an alloy described by 5 ,. It should also be stressed that all
eral expression for the LDA grand potenti@l in terms of  the quantities in the above formula should be considered spin
the integrated density of states, which in the KKR and KKR-dependent, since we are interested in calculating the energy
CPA formalism can be written in a particularly transparentdifference between parallel and antiparallel alignment of the
form. Namely, we write magnetic layers. The purpose of the above, rather abstract,
notation is to facilitate the separation of the relevant,
D-dependent part of the Grand potenfiaf? To proceed
with this goal, using Eq4), the logarithm of the determinant

1
Q=- E< >, In(1+e Ales=m)
of M can be written as follows:

1 59
—— (eff)
W'mf,wdEf(E)'””M e, 2) Inf[M ]| =Tr{In M }+ Tr{In Mo} + Tr{in Mg}

where we have neglected the double counting +TrH{IN(1=7ccAL— TccARr)} (5)
correctiong>*? The first part of the above equation is a gen- _

eral definition of the grand potential in terms of the one-Whe[e1 AL:GCLleLGLC' AR:qclRTRR_GRC’. while  7cc
particle energy eigenvalues of the systep the chemical =Mcc, 7L=M, and 7gr=Mgg. It is evident that the
potential, and the temperatufe(3=1/KgT). The symbols first three terms in Eq5) do not corrgsp_ond to interactions

( and) denote the averaging over all the configurations if thebetwee'n dlffe'rent slabs. Thus, substituting the expression of
spacer is a random binary alloy. On the right-hand side wéd- (5) in the integral of Eq(2) we can concentrate only on
replaced(In|M||) by |n||<M>||:|n||M(eff)” neglecting the so- the part coming from the only term which involves scattering
called vertex corrections using the arguments of Vélitky On both sides of the spacer layer, namely the last term of Eq.
The quantityM ¢™ is an effective KKR matrix for the case (5). Of course, the isolated, single interface interactions be-
where the necessary averaging is carried out employing th&veenL and C slabs as well a€ andR slabs are also in-
CPA. Also f(E) is the Fermi-Dirac distribution function. Ccluded in the last term of E¢5) and should be separated off

The matrixM (€D in the KKR-CPA theor{/* is given by and left out of consideration due to the fact that we are in-
terested in the interaction &f andR slabs only. To achieve

MEMD=[eN]-1_g, (3)  this end, we write the last term of E¢p) in the form

Where-, in the L!sual §ite, angular momentum,- and spin repre- Tr{In(1— 7ccA L — 7cCAR)}

sentationt¢™ is a single site scattering matrix a@lis the

structure constant matrix. The disorder in the case of the =Tr{In(1—7ccA)H+TH{IN(1— 7ccAr)}

random binary alloy spacer is introduced through the effec- - -

tive t) matrix which in the spacer region C in Fig. 1, is +TH{IN(1— 7ccAL7ecAR)) (6)

calculated within the CPA? while in regionsL andR it is _ o

the usuat-matrix describing the pure metal magnetic layers.Where we have introduced the notationd =A, (1

A major disadvantage of the plain KKR method when ap-—7ccA) ! andAg=Ag(1—7ccAg) 1. As shown in Ref.
plied to systems with reduced periodicity, such as layere®9, the first two terms correspond to the single interface in-
structures, is the extended form of the structure constantgeractions and the third one is the one we will focus our
That problem was overcome in both LMTO and KKR meth-interest. In this term th&, andAg are properties of the two
ods by the recent screening revolutfSiThus, we will work  interfaces oL andR layers with theC layer in the sense that
in the screened representatfdand the real-space structure they are localized around the interface. On the other hand
constant matrdG_ _/(R; — R; ;E) will be assumed to be short .. is property of the spacer. Thus, at this point we can

ranged. separate thé andR interaction and write it as
The screened form of1(¢"" allows us to write it in the
form 1 o
80 g=— ImJ dE f(E)Tr{In(1—-J(E))}, (7)
M, M O M, O 0 T e
me=| Mc. Mcc Mcr|_| 0 Mcc O with J(E)=A| 7ccAr7cc. Note that the formal expression
0 Mgc Mgr 0 0 Mgr in Eqg. (7) allows us to compute the interaction energy di-
rectly instead of as a difference between two large total en-
0 G O ergies. Hence, it is in itself a significant step forward. How-

ever, we shall carry the analytic considerations still further
= Gc 0 Gcrl, (4 before we begin numerical computations. Clearly, to evalu-
0 Ggre O ate the Tr operation in Ed7) a plane by plane representa-
tion is the most convenient, since all the quantities have two-
whereL, C, andRstand for the left, center, and right layers, dimensional translational invariance. Also the principal
respectively. ObviouslyM g,Mr =0 due to the short- |ayers formulation introduced in Refs. 39,45 will be adopted.
ranged form of the structure constants in the screened reprgyithin that formulation the atomic planes are grouped to-
sentation. For clarity we note thafl | and Mg are de-  gether into the so-called principal layers of varying size and
scribed by the pure metamatricest, ! andt§ ) andMcc  the structure constants matrix elements are nonzero only be-
corresponds to either a pure metal spacer describég’bgr  tween neighboring principal layers. Thus, we can write
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[GCL]P, :G105P,15 01 [GLC]P, 26015P,05 1
Q Q Q Q kJ_

[GRC]P,Q: G015P,N5Q,N+1a [GRC]P,Q: Glo5P,N+15Q,N ) \/k““____&.i/

®) k...

]
where P,Q are the principal layer indices. The convention n/d :
]

adopted for principal layers indexing is shown in Fig. 1. The Band 2 ——

| >
~ ~ . e
A, andAg as well asA; and Ay are localized at the layers Band 1
with indices 1 andN, respectively. As a consequence the 0

matrix element of] in the plane-by-plane representation is

[I1p.0=ALl 7cclinARl Tecln.gdp - 9 -n/d

As a next step, we approximate the logarithm in E.by
its first-order power series expansiondnThis approxima-

tion is valid for largeN, since in Eq.(9) nondiagonal matrix o )
elements ofr contribute toJ and these are also expected to F.IG' 2. Schematic view of a cut of the surjace defmedEQ_y
=E in the repeated zone scheme, with the pélfgs encountered in

?5?) Smr?(l)l dgzctoomsecsreenlng. The interaction grand pmentla}he k, integrations of Eq(A2). ForE=E;, whereE; is the Fermi
Lr NOW energy, we have a cut of the bulk spacer Fermi surface. The span-
ning vectorsQW,=kﬁn—kfr; are also shown for a particuldq

1 (= for which they are extremal.
5QLR=—J dE f(E) J 2K
T)—= (2m)°J(sB2
R R method to evaluate the integral over in the surface Bril-
XTHA [ 7eclinArl Tecn i) (10 louin zone we have recasf), g of Eq. (10), in the Appendix
as follows:
where thek| integration is taken over the first surface Bril-
louin zone(SB2), Sis the real space area per surface unit
cell, and finally Tr stands for the trace over the omitted in- 5QLR:f dzkHE h,. (k)
dices like the spin and angular momentum. (s vy’
The derivation of an analytic formula for the OEC in the
general case of a binary alloy spacer is continued in the sf deHZ 9, (ky)e' QPP (11)
Appendix. The same derivation has also been presented in (SBZ) vy’

Ref. 40 and we included it in the Appendix with more detalil
for completeness and future reference. We also note thathere the general integramd, (k) has been approximated
similar formulas have been derived by Dederiehsl>* but by the formg,, (k) exdiQ,,/(k))D] amenable to an appli-
without the full first-principles treatment of all three compo- cation of the saddle-point method. Moreover, the indices
nents of the sandwich structure. In the remainder of this secy, v’ label the different branches of the Fermi surface and the
tion we will present the formal details of the scheme we usedvave number®),, (k) are assumed to be spanning vectors
in our actual calculations. In brief, the expression of @)  of the Fermi surface of the bulk spacer connecting the
was evaluated either fully numerically, or by approximatingbranchegsee Fig. 2. As explained in the Appendix the form
the surface Brillouin zone integration by asymptotic estimateof the phaseQ,, D is the consequence of the linear phase
using the stationary phase metHd’ approximation responsible for involving the bulk spacer
The calculation ofA, ,Ag requires the calculation of, | Fermi surface. The validity of this approximation has been
and g which in the case of screened KKR can be per-tested explicitly by comparing the phases of the integrand to
formed for the required semi-infinite geometry using itera-the extremal vectors of the bulk spacer Fermi surface multi-
tive techniques? By contrast, the inversion dflc for the  plied by the spacer thickness. Integrals such as the ones in
spacer slab is a straightforward inversion since the matrixhe right-hand side of Eq11) have the advantage that an
has finite thickness. In the Appendix we show how{),,  analytic result for the integral can be written for the spacer

can be evaluated in thB—o limit, using the formula that thicknessD—c. The fact thatQ,, (k) are real for pure
will be given in Eq.(A1). spacers makes it convenient to use the stationary phase

In order to calculate the integral ov&rin Eq. (10) the ~ method instead of the more general saddle-point method we
Matsubara poles technique was used for finite temperatur@mployed in the Appendix, where spacer disorder is taken
T=300 K and in our case 5-10 Matsubara poles werdnto account. Following the standard stationary phase
found to be enough to achieve convergence. The remainingiethod®*’ the main contribution to the integral of E€L1)
double integration over the surface Brillouin zone is compucomes from the neighborhoods of pointg*) where
tationally the most difficult task of our calculation. As we Q,,(k|) becomes stationary. Expandi@,, (kj) about one
shall now discuss, we performed that integration both nusuch stationary point to second order k- k‘”) and per-
merically and using asymptotics. forming the corresponding Gaussian integral leads to the fa-

In order to introduce the asymptotic stationary phasemiliar resulf®4’
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(a) (b)

|~ L~
Q(111)0)

(1)
: L, Di s
=) =)
[110] [100]
(©

[-110]

FIG. 3. The extremal vectors of Cu Fermi surface on three cuts plotted in the repeated zone scheme: a cut perpendidulskCo the
direction at a distancAk=0 to thel point (a), perpendicular to thf001], Ak=0 (b) and perpendicular to tha 11|, Ak= V312 (0).

2. vh® OEC directly to the extremal spanning vectors of the Fermi
with surface and thereby identifies the physical causes of the os-

dzkH hw/(kH) =
f(ssa D V|£:1£5 cillations.

1 for ££,<0 Ill. RESULTS AND DISCUSSION

v= i £1,6,>0 (12 In this section we report our calculations of the OEC for
i £1,6,<0 all three principal orientationg100), (110, and (111), for
be2= the Co/Cu/Co system. In Fig. 3, different cuts of the Cu

Fermi surface, which was calculated with the KKR method,
whereh(®) is the value of the integrand at the extremal pointare shown and the extremal vectors have also been included
k*) and £, ,£, are the eigenvalues of the second derivativefor easy reference.
matrix of Q,,, at the extremal point. Apparently*) is an
oscillatory function ofD with a corresponding wave vector A. (100) orientation

equal to the size of thath extremal vector. The difficulty in
applying the stationary phase method is that it requires the There are two different extremal vectors alofi0) di-

search for the stationary spanning vectors of the Fermi surrection, namely, the{},) and Q{f), shown in Fig. %a),

face of the spacer, which in cases such as the transition-metgpanning the so-called “dogs bone.” The corresponding os-
spacers is fairly complicated. In addition, it requires thecillation periods, predicted from the Fermi surface which
evaluation of the second derivative matrix of these vectors awas calculated using the KKR method for the bulk spacer,
the extremal points. However, this is a small price to pay forare 6.3 and 2.5 ML, respectively. In Fig. 4 we report our
having avoided the necessity of a computationally even moreesults for the OEC energy as a function of spacer thickness.
demandingk; integration. Moreover, the result relates theIn Fig. 4@ we compare the results of computing the two-
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~~
R

tioned, the(100) is the most theoretically studied orientation

for the Co/Cu/Co system. In Fig. 4 we compare our nhumeri-
2 cal integration result with the calculation of Largal? The
1 \ Quon agreement is rather remarkable if we consider the fact that
0 mv"‘vva«w although the KKR method was also used in Ref. 12, the
4 v whole approach is different and is based on embedding a
” finite number of ferromagnetic layers in bulk Cu host. The
5 ke vy agreement is improved for large spacer thickness as seen in

Fig. 4b). There is also agreement with the semiempirical

calculations of Leeet al,'® where a coupling strength of
6.7 mJ/n3 is reported for 10 A of Cu spacer thickness.
This compares well with our value for 6 ML (10.8 A).

15

10

@ (x10°° Rydberg)

8Q, , (10”° Rydberg)

o—=o Numerical Integration

o-—0 Asymptotic analysis

-10 B. (110 orientation
5 10 15 20 25 30 35

Cu Thickness (ML) From the point of view of the oscillatory coupling this is

the most complicated orientation since four different ex-
(b) tremal vectorng)lg), Qﬁ)lo), Q¥)o) andQ(}),, (Fig. 3) are
15 found to contribute:*®'The corresponding oscillation peri-
ods, predicted from the bulk Fermi surface calculation, are
2.07, 10.4, 2.5, and 3.2 ML, respectively. The first one cor-
responds to the belly diameter which is equivalent, due to the
aliasing effect, to the “dogs bone” length, while the second
of these extremal vectors correspond to the Fermi surface
neck diameter along th@.10), as shown in Fig. 3. This is the
only one that originates a long period oscillation. The con-
tribution from Q{}) andQ()) extremal vectors were found
: to dominate the OEC as shown in Fig. 5. The amplitude of
=51 WdyE 5= Numerical Integration the short period oscillation is the largest one, but the contri-
I & Lang et al bution fromQ{$),, is also significant as can be seen in Fig. 5.
~10 Evidently, the sum of the stationary phase contributions is
5 10 15 20 25 30 35 significantly larger in size than the full numerical result for
Cu Thickness (ML) relatively small Cu slab thicknesses and the convergence is
achieved only for approximately 40 ML thickness. By con-
FIG. 4. Calculated OEC energy per surface atail(g) for trast, for the phase, convergence is achieved for very small

Co/Cu/Cd100 asa f‘%”C“O” 9f Cu_spacer slab thlc_kness. C.ompa”'spacer thicknes€l0 ML). The effect of late convergence of
son of the numerical integration with the asymptotic analysis result

is shown in(a), while in (b) comparison between the numerical ?he amplitudes can be explained by the relatively flat Fermi

integration result of the present work and the calculations of Langsurface in the neighborhood of the e”dPO'”tS of Q@m)
et al, (Ref. 12 is shown. The contributio®Q, ; originating from  €xtremal vector. Apparently, the quadratic expansion of the
Q%o is shown in the inset ira). exponent which leads to the result of the stationary phase

method’ is not enough for this case and higher order

correctioné® are necessary for relatively small spacer thick-
dimensionak; integration fully and that obtained by evalu- nesses. It is clearly a puzzle that the long period oscillation is
ating the formulas derived by the stationary phasethe only one seen experimentally although its strength in the
asymptotic method. In the stationary phase calculation onlya|culation appears to be much smaller. There are no reports
Q{f)o) was used since the contribution from t¥1)o is  so far for the short period, which is approximately two
negligible. In fact the contribution from the stationary vector monolayers long and is almost commensurate with the lay-
Q{f)) Was found to be two orders of magnitude smaller tharers. At this stage of theory, one cannot but argue that such
the small period oscillation. To be yet more precise, at 6 MLshort period oscillations are destroyed by interfacial disorder.
of Cu thickness, where we have an AF peak for both contriWhile this is a plausible explanatidfithe subject deserves
butions, the energy ratio was 67. Clearly, the stationaryfurther scrutiny. Focusing our attention to the short period
phase method results are in satisfactory agreement with theontribution (Fig. 5), the agreement with the experimental
numerical integration for spacer thickne®s=15. Reassur- amplitudes is restricted to the order of magnitude:
ingly, concerning the amplitude of the OEC energy there i€0.7 mJ/nf is the experimental vald&for the first AF peak,
also agreement with experiment. In particular, Johnsomwhile our calculated one is 1.8 mJ?nOn the other hand,
et al’® have measured 0.4 mJ#ror the OEC energy for an there is fairly good agreement with the KKR calculation re-
average spacer thickness 6.7 ML. Our values for 6 MLsult of Nordstromet al*®in both the amplitudes and periods.
(10.8 A) and 7 ML (12.6 A) are significantly higher, being Interestingly, Nordsthm et al. simulated the effect of surface
3.3 and—1.0 mJ/m, respectively. However, in other mea- roughness for thg110] orientation and observed the smear-
surements on samples prepared differently the deduced vahg out of the small period oscillation in agreement with
ues can be significantly differefft As we have already men- experiments and despite the fact that in their calculation, as

8Q, , (10”° Rydberg)
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;c; FIG. 5. The contributions
30 s 508,502 to the interaction en-
5 15 25 35 5 15 25 35 ergy 804, arising from theQ{1}
Cu Thickness (ML) Cu Thickness (ML)

(@ and the Q) (b) extremal
© vectors, and the comparison of the
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in ours, the small oscillation is the dominant for the perfectonly one extremal vector exists, thil1) orientation is ideal
structure. To be more specific, the position of the AF peak$or comparison between both the stationary phase result and
they found in the case of rough surfaces are in agreemettihe full numerical result with experiment. In Fig. 6 we again
with experiment. Our result for the large period shows simi-compare the stationary phase result with the full numerical
lar agreement, as seen in Figbpbwhere the vertical lines result. In the same figure the positions of the experimental
indicate the positions of the experimental AF peaks. TheAF peaks are marked by vertical lines for two different

slight shift towards larger spacer thicknesses in our result isxperiment$®°° Clearly, theory and experiments are in re-
due to a small difference in the period and a small shift of the

first AF peak. It is also noteworthy that the result of Nord-
strom et al. for the rough surface seems to be slightly closer 6 0—o Full Integration
to the experiment than our result for the large oscillation 1

contribution. In addition, the size of the first AF peak for the
rough surface result of Nordstroet al. is approximately
four times larger than our large period oscillation. We be-
lieve that these differences are consequences of the fact that
the small period oscillation is still contributing especially for
the small spacer thicknesses. Indeed, our stationary phase
result for perfect interfaces and isolating the large period
contribution cannot be directly compared to their result,
where the smearing out the small period oscillation was a
result of simulating the interface roughness. —4

O- -0 Asymptotic analysis

A~
Exper. 2
Exper. 1

=)
E'\‘J/D
Exper. 1
{
% Exper. 1
:

8Q,, (x10~° Rydberg)
[\*)

0 10 20

Cu Thickness (ML)
C. (111) orientation

. . . . FIG. 6. The calculated OEC energy per surface a@@fh for

For this orientation there is only one extremal vectorco/cu/cd111) as a function of Cu spacer slab thickness. The po-
Qfﬂl)- It spans the neck of the Fermi surface at an angle O§ition of experimental AF peaks is indicated by the vertical lines
19.47° as can be seen in Fig@Band corresponds to an and correspond to experiments of Johnsoml. (Ref. 19 (Exper.
oscillation period of 5.0 ML size. Being the only case wherel) and Parkinet al. (Ref. 50 (Exper. 2.
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0.40 IV. MEASURING THE FERMI SURFACE
_ //\\\\//\\\/AV“‘*‘“ Summing up the results of the OEC over the past 10
g 030 year$®® including those reported in the present paper, we
< may conclude that the evidence for the effect being a direct,
§ 0.20 gquantitative consequence of the Fermi surface is overwhelm-
2 ing. Thus having illuminated the physical origin of the oscil-
g latory exchange coupling, perhaps it is time to turn around
5 0.10 and use the measurements of the OEC to learn about the
geometry of the Fermi surface. This point of view lends par-
ticular relevance to the subject matter of the present paper.
00 5 2 Evidently, the reconstruction of the Fermi surface from mea-

Cu Thickness (ML) surements of the OEC requires the accomplishment of two
separate tasks: the first is that of deducing the size and ori-
FIG. 7. TheQ{3),, extremal vector calculated using the KKR entation of the extremal wave vectd@%g‘)ﬁy) from the mea-
method for bulk Cuhorizontal ling compared with the value ob- g, .o ments and the other is a construction of the Fermi sur-
tained from the phase of the integrand in the numerical |ntegrat|or?aCe from a collection of measured extremal wave vectors
overk as function of spacer thickness. In the limit of infinite spacer . ’
thickness the two values are equal and the linear phase approximE'—ere we wish to comment only Qn hO,W our resglts fgrthgr
tion exact. the cause of the former. The main point to consider is this:
only theories which are based on an asymptotic analysis like
. ours and give the OEC as separate contributions from the
markably good agreement. We believe that the better agregyecific calipers of the Fermi surface are useful in the inter-
ment with experiment for th¢111) case, compared to the ogation of the experimental data with the above purpose in
(110, is due to the fact that only one period is present.mind, and to be effective, the confrontation between the data
Again, let us compare the amplitudes to experiment: for 4and theory will involve the theoretical determination of
ML the OEC energy has been measured by Johret@l.  phases and the amplitudes as well as the periods of the indi-
and was found 1.1 mJ/nwhile our calculated value is vidual oscillations. The principle achievement of the present
2.1 mJ/n for the same spacer thickness. paper is to provide a first-principles and, therefore,
For the case ofl111) orientation we also examined the parameter-free prescription for calculating all three of these
question: to what extent the linear phase approximation, dequantities on the same footing. This result is encapsulated in
lineated in the Appendix, is valid? In particular we examinedEQ. (A7). As a scrutiny of this formula reveals, the ampli-
the dependence db of the phase of the integrand in the tudes_ and phases depend nqt only on the curvature of the
integration evaluated at the extremal point for that orientaf€rmi surface near the endpoints of the extremal wave vec-
tion, i.e., at thatk Wher6kl=Q8)11) occurs. More specifi-  t0rs, but also on a full self-consistent first-principles descrip-

cally we compared the wave vector that comes from the infion of the magnetic layer-spacer layer interface through the
&uantltlesA. Thus, our calculation takes into account the

tegrand and the extremal vector obtained by a separal terial i q fthe interf ing th LDA
Fermi-surface calculation for the bulk spacer using the sam aterial specitic nature of the interface using the same
crystal potential far from the interface as is used for the

atomic KKR potential and the bulk KKR code. A difficulty Fermi-surface calculation. Clearly, this consistent treatment

in finding the wave vector from the integrand is of course theOf the magnetic layers, spacer layers, and the interface be-

selec_tlon of the correct branch of the Iog_anthm of Fhe COMtween them is necessary if we are to calculate reliably the
plex integrand. Nevertheless, the result is shown in Fig. 7

. ! ‘relative contributions from each of the extremal wave vec-
As we see the wave vector obtained from the integrand ig; o

close to the extremal vector size and the agreement is rapidly l\iote that Eq.(A7) is an analog of the Lifshitz-Kosevich
improved as the number of spacer layers in increased. Iformula (Ref. 57, which is commonly used to interpret de
deed, the linear phase approximation is exacDat> as  Haas—van Alpher(dHvA) oscillations in terms of Fermi-
pointed out in the Appendix, but we see that even for relasurface cross-sectional areas. Clearly, because of the signifi-
tively small thicknesses the size of the fluctuations is smaltant role played by the interface and the orders of magni-
compared to the absolute value @fy};). Anyway, as our tudes higher accuracy of the dHVA experiments,
results indicate, roughly speaking, the Fermi surface exmeasurements of the OEC are not likely to compete with the
tremal vectors agree well with the oscillation periods of theresults of the former in pure metals. However, in the case of
OEC, but when more accurate measurements of the OEfandom alloys where dHvA becomes ineffective, due to the
energy become available deviations from the linear phasgequirement of long lifetimes, experimental determination
approximation should definitely be taken into account in adfor the OEC may have an important role to play. Here, 2D-
dition to higher-order corrections in the stationary phaseACAR experiment¥ are the only competitors to OEC mea-
expansiorf® Nevertheless, given the present state of the exsurement as a new probe of the Fermi surface. To some
periments, the fact that the phase of the integrand oscillatesxtent the present work was undertaken in the hope that in
about the linear increas@%})ll)D does not prevent us from this role the study of OEC may lead to significant progress.
comparing, successfully, the OEC periods to the bulk spacer It is to make the above point that we have presented, in
Fermi surface extremal vectors even if the experiments corthe Appendix, a generalized version of the otherwise more or
respond to small spacer thicknesses. less conventional, asymptotic analysis which is applicable
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when the stationary points of the integrand in Etfl) is in  the bulk KKR-CPA code developed by them and for their
the complex plane. As a result we find that for alloy spacer$elp on the implementation and use of the code. N.N.L. had
financial support from the TMR network on “Interface Mag-
1 _ netism” (Contract No. ERBFMRXCT96008%f the Euro-
J(D)= o2 EV A,co8Q,D+¢,)e” P (13) pean Union. Also B.U. was partly supported by the Hungar-
ian National Science Foundatig®@TKA T2 2609. Finally,

As before, in addition to the periods the KKR-CPA theory B.L.G. would like to thank the Insitute of Theoretical Phys-
determines both the amplitudes and the phases. Clearly, thes at the University of California—Santa Barbara for the hos-
qualitative new feature of Eq13) is the exponential decay. pitality during the preparation of this manuscript.

Thus, one expects to observe OEC only for spacer thick-

nessePD <A ,. Fortunately, the KKR-CPA theory also pro- APPENDIX

vides an unambiguous, quantitative answer Agr. As ex- . . o )

plained in the Appendix, it is related to the width of the In this appendlx the derivation of an analytic form_ula for
spectral functionAg(k,E) at the endpoints of the extremal the OEC W|I_I be presented based on the KKR descr|pt|0n_ of
wave vectorsQ,. So far, these decay constants have beeﬁhe ele_ctrom_c structur_e. More specifically, we shall e_stabllsh
evaluated only for two alloy spacets™®%€Both in the case a relatlon.sh_|p, used in _S.ec. II, between the Ferml-surfac_e
of Cuy;_ iy for x<0.42 and G, _,V alloys A was found characteristics of the |nf|n|t§, bulk spacer and the asymptotic
to be much larger than the thickness of the spacers in th{P'M Of the OEC. As one might have expected, the properties
experimentally investigated structures. Thus, no exponentid@f the single interface will also be involved, through the
cutoff was expected and encouraging|y, none was found ifnatrices introduced in Sec. Il, in determining the amplitudes
these experimental studié$®>+%of cases wher&@<A,. and phases of the OEC.

Here we digressed to consider the effect of disorder only to Let us begin with Eq(10) and introduce our first major
point out that in the case of random alloys, whose Ferm@pproximation, namely the assumption that the phase of the
surface is most likely to be studied with profit by measuringintegrand is a linear function d@. Note that this approxima-
the OEC and the KKR-CPA based asymptotic analysis, théion is crucial for all the theoretical models relating the
method we have presented in this paper, will also provide afrermi surface of the bulk spacer material to the OEC peri-
account of the observability of the OEC. ods. In our formalism this approximation is expressed as

ld

d .
V. CONCLUSION [reclin= 2_f, e N )

In conclusion, a first-principles theoretical method, based (A1)
on the KKR and KKR-CPA description of the electronic o o .
structure and an asymptotic analysis technique was presentét the above expressiauis the principal layer spacing and
in full detail for the study of the oscillatory exchange cou- 7c(K) is the inverse KKR matrix for the infinite spacer kn
pling of two ferromagnetic layers across a nonmagneticPace(complete lattice Fourier transfoymin short, we ap-
spacer which could optionally be a pure metal or a randonProximate the rcc]y y for the finite spacer, witfirc]; y for
binary alloy. The use of the saddle-point asymptotic techthe infinite spacer. This approximation introduces the simple
nique resulted, on the one hand, in a much faster comput&xponential form with the phase linear in the spacer thick-
tion of Brillouin-zone integrals ovek; vectors parallel to the Nness which will give rise to the oscillatory behavior as we
layers technique and on the other hand, in an explicit decomwill now demonstrate. The validity of this approximation
position of the OEC into contributions arising from the ex- €xamined in Sec. Il for the trilayer Co/Cu/Cd 1). Substi-
tremal vectors of the Fermi surface. The method was useBiting the expression of E¢A1) in Eq. (10) we have the
for the study of the Co/Cu/Co trilayer system for all the €xpanded expression
(100, (110, and(111) orientations and the obtained results L S g y
were found to be in satisfactory agreement with experiments . * 2 m
and other calculations, both first principles and semiempir- O R=~ T ImexdE f(E) (277)2Jsszdk” EJfﬂ,ddki
ical, concerning all the coupling characteristics, i.e., the pe-
riods, amplitudes, and phases. Some of the details of the d (=
method, such as the linear phase approximation which is X o
crucial in all theoretical approaches of this kind in connect-
ing the oscillations with the bulk spacer Fermi surface, werevhere
also tested in realistic calculations. OEC is proven to be a

d . !
dk] €'k ~KDN=Ddpp £ (A2)
—ald

powerful probe of the Fermi surface of random binary alloys, JEK| Kk, ,ki)zAL(E;k”)rC(E;kHJr k,)
for which the dHVA oscillations technique fails. Certainly, .
from this point of view it is clear that a first-principles tech- X AR(E;Kk)) 7c(Eskj+k]).

nique for interpreting OEC experiments is required, and our

method serves that need. At this stage it should be stressed that within the plane-by-

plane representation its more convenient to redefine the

k-space unit cell over which the integrations are carried out.
The authors would like to thank B. Ginatempo and E.Thus we have selected a prism with the base being the sur-

Bruno from the University of Messina, for providing us with face of the first Brillouin zone and the height equal to/2,

ACKNOWLEDGMENTS
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whered is the real-space neighboring plane distarfcélith imaginary part. In the case of spacers with substitutional dis-
this definition of the unit cell the limits of thle, integrations order, i.e., random binary alloy spacers, the poles move off
do not depend ork, while thek; integration is extended the real axis by a finite amount and are given by an equation
over the surface Brillouin zone corresponding to the orientaof the form
tion of interest. .

In what follows we will calculate the integrals in Eq. E—Eg= i HIT(Egimtk)=0. (A4)
(A2). In brief, the integrations ovek, will be carried out
using Cauchy’s theorem and the spanning vectors along thEhe fact that in the case of many binary alloy systems the
k, direction of the surfac&,=E for givenE will be intro-  Bloch spectral functions are very well fitted to Lorentzians,
duced. Next, the two-dimensional integration over the sureven for relatively large concentrations, suggests khdoes
face Brillouin zone will be calculated asymptotically, for not vary much withE in the neighborhood of the pole and
spacer thickness tending to infinity, using the saddle-pointaking it to be small is a good approximation. We will con-
asymptotic method and the extremal spanning vectors will b&entrate on the limit of small disorder and will regdicas a
picked up. Finally, the integration over the energy will be small quantity. Up to first order il, we have that
done also employing asymptotic analysis davill be re-
stricted to the Fermi enerdy; only. Thus, at the end, a final
formula will be derived where the extremal spanning vectors
of the bulk spacer Fermi surface will be involved as well as

the Fermi-surface curvature at the end points of the spanninghere uﬁ: (aEk/akJ_)kII‘ Thus, the effect of disorder is
m

vectors. All the quantities needed to calculate the periods, . .. : ; .
amplitudes and phases of the oscillations depending 0agaln to add a small imaginary part to the pole defined by the

. feal part of Eq(A4) in perfect analogy to the nondisordered,
E, kt”’ ?r:g K, V;”” halve to b_e comr;uted only at the end- pure spacer case. The difference is that for the case of pure
points of the extremal spanning vectors. spacerss is included for technical reasons and consequently
Apparently, due to the translational invariancergf, the

. . f boths andq?}, should go to zero at the end, while for binary
integrations ovek, andk; can be extended by any number allovs o~ is a small but nonzero quantity. with phvsical
of periods (27/d) as long as the integral is normalized, i.e., YS Aim q Y. pny

" . . . .’ meaning, resulting to an extra exponential dumping term. In
divided by the length over which the integral is taken. Th'SF_ig. 2 only the real part of these poles is shown. Finally, the

maneuver makes the Cauchy theorem appllcable_for evalu%oles are repeated in each unitary cell in the repeated zone
ing th_ese mtggrals. Consequently, for the_mtegratlon ayer _scheme. Indexn in k¥~ in Fig. 2 stands for thenth unitary

we will consider a closed contour consisting of the real aX|sCeII olés Its also \L/vn:)rth méntionin that the order of the
and the infinite radius semicircular path on the positive P : 9

imaginary part half-plane, thus encountering only the pole§)OIe IS th? band 'deg'eneracy number. In summary, the result
with positive imaginary part. On the other hand for the inte-Of thek, integration is
gration overk| we should consider the semicircular path on e
negative imaginary part half-plane, i.e., encountering the [Teclin=id > W' (E;k)edimN =14,
negative imaginary part poles. As is well kno#hthe poles v
of the 7 matrix correspond to the zeros of the KKR determi-
nant for the infinite spacer, i.e., for thelsg, for givenE and i =2 —g¥ (N=1)d
kj that the dispersion relatioB . =E is satisfied. Since [7ecln Isz: W (ke . (A9
the integration limits are taken to infinity the poles in the e rel N 1 )
repeateg zone scheme should be cons>i/deredr.) A schemawgeie W (E'k“)_“m‘&Hgﬁ{TCC(E;kWkL)(ki
view of the location of these poles is shown in Fig. 2. Each—915) "}, i.e., the residue ofc at the poleg|; . After the
pole in the Oth unit cell is labeled Wy , with » being the ~ integrations ovek, and k| the expression for thed( g
band index. There are pairs of poles due to the reflectiofiakes the following form:
symmetry and+ stands for a pair of such poles.

At this point, we would like to mention that the above 1
poles are not on the real axis but are shifted into the complex OQr=—— E ImJ
k, plane not only for disordered spacer materials but for

ure materials as well. Let us define the complex poles b . .
evr|t|ng P P y Xf deHTVVr(E;kH)e'Qw’(E'k\I)D, (A?)
SBZ

 T(EKE 4k
g'n =k i — (A5)

vt
m

) dE f(E) S¢
' - ( (277)2

9im=KIm 107, (A3)  \whereD=Nd is the spacer thicknesg,, =g’ —g" are

e - . the spanning vectors between branches of the surface defined
here s the, as we shall argue, presently small imagi- S .
W Gim ! W gue. p y Imagi by E,=E along thek, direction (see Fig. 2 and T,/

nary part of the poles. In the case of pure spacer an infini=” — . . , v
tesimal imaginary part must be included in the energy argu= eﬂQA””'dATr{ALWHARWV "} Al the quantities
ment of 7o(E+is), where s is an infinitesimal positive Q,,,A_ ,Ag,W"*,W" ~ are functions ofk, and E. Note
number, as a matter of definition. Thus, even in this case, ththat each of the quantiti€3,, is always a distance in the
poles are slightly shifted off the real axis. It could be easilydirection between a pole with positive imaginary part and a
seen that for each pole with an infinitesimal positive imagi-pole with negative imaginary part. Another important issue is
nary part there is onéts pair counterpajtwith a negative that an arbitrary number of2/d could be added to them. It
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is convenient to select the smallest in size from these equivas | |g4” ang g =|g)e ") are the eigenvalues of the

lentQ,, . This is a physical effect which gives rise 1o the second derivative matrix d(k)) at theth extremal point.
aliasing effect” The remaining integration ove will also be carried out
Integrals of the form of Eq(A7) can be evaluated ana- ysing the variant of the saddle-point method for the case
lytically in the limit of infinite D using the standard saddle- where there are no extremal points, i.e., the functions
point method also called method of steepest destéhtn  Q(#)(E) are monotonic. Note that, sin€*)(E) is always a
the case of pure metallic spacers we encounter the stationacfference between & point of positive velocity and a point
points of the functiorQ,,,(E;kj), i.e., the stationary span- of negative velocity, it is a typical case that this function is a
ning vectors of the surfacE,=E on the real axis. In the monotonically increasing function &. This is equivalent to
case of disordered spac€,,  is complex vi’:st the fact that the electron pockets of the surfage=E in-
+iQ'W,). Nevertheless, in the limit of small disorder its crease in size witf. Following the recipe of Ref. 46, we

] Y L ] find that
imaginary partQ  , is small and the problem remains trac-

table. TypicaIIyQ'W, is stationary at the pointk[ where

st, is also stationary, i.e.,&Q'W,/ak”)lez(<9Q5V,/(9k”)k”*

=0. This is a consequence of the fact that the extremal vec- ) () ()
tors are usually symmetry points connecting symmetric parts A — S exp{—i(¢+ )2} T (A9)
of the surfaceE,=E. Later E will be set equal to the Fermi 2m? \JEMEM[dQWI(E)IdE] ’
energy, thus the surface will be the Fermi surface of the

spacer. In the case of small disorder the Fermi surface of th@here all the energy-dependent quantities including the de-

i (1) —
bulk alloy is well defined by sharp peaks of the Bloch spec-Vative [dQ™(E)/dE]are evaluated dE=E. The above

- - - tion is the final and central result of this Appendix.
tral function Ag(k,E¢) and thus it enters the calculation of equa . : .
. ' o . Clearly, this formula is equivalent to that of E¢.3) and the
tmhgtea:zccsplgczr;nanner similar to that in the case of PUrEOEC has an oscillatory part coming from the real part of the

. (Iu) . . ._ .
To proceed with the saddle-point method let us define thguantltyQ , 1€, the size of the Fermi-surface spanning

. . . . | vector, and a dumping factor resulting from the imaginary
fulnctloF? G(kH).:'Qv?’:GF_{f'Gl' with G*=-Q,,, and part of Q). In the light of an argument advanced in Refs.
G'=Q,,, and investigate it in the neighborhood of the ex-17 18, in the limit of small disorder QM) = (1 (¥)
tremal pointk| . In order to calculate the integral ovierin -~ —(1/\(®), where \{*) \{*) are the coherence lengths,
Eq. (A7) analytically we should consider the coordinakgs  closely related to the mean free paths of the quasiparticle
ky in the k| plane in such a way that the second derivativestates at the end points of the corresponding extremal vector.
matrix of G is diagonal. One step further, we continue theseThese mean free paths are given in the KKR-CPA method as
variables to the complex plang,=k.+iq, and g,=k, the inverse of the half widths of the Lorentzian-like Bloch
+iqy . Although the stationary vectors correspond to kgal  spectral function$BSF’s). The small disorder limit is proven
the integration along the steepest descent direction involve® be correct in most of the random binary alloy cases, whose
G in the complex plane. Following the usual proced®fé  Fermi surfaces are well defined and the BSF well fitted to
for g, andg, independently we find sums of Lorentzian&€*4%8|n this limit, the widths of the

o Lorentzian-like BSF's are small compared to the extremal
Et . vector size. Thus the corresponding mean free paths are
5QLR_2W2D % Imf_wdE h(B)exdiQ(E)D], much larger than the OEC periods.

We will close this Appendix by mentioning that we have
where considered a typical case for Fermi surface extremal vectors.
Exceptions of course might exist and the results of this sec-
h()(E) = (A8) tion shoyld be modified. A sim_ple exar.nple. is the case whe(e

J] §§u)§§u)| ' a spanning vector is extremal in one direction but constant in
the perpendicular direction. In that case the treatment is dif-
The indexu enumerates the stationary poitkis for all the  ferent of course and the# power law will be modified to
different pairs »,»', so TW=T,,(kf). The &*  a1D'°one®

1 _
5QLR:§2 Im{AeR“P1 " with
7

Twe-i(#{)+s{))2
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