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First-principles asymptotics for the oscillatory exchange coupling in CoÕCuÕCo of „100…, „110…,
and „111… orientations

N. N. Lathiotakis* and B. L. Györffy
H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

B. Újfalussy
Research Institute for Solid State Physics, P.O. Box 49, H-1525 Budapest, Hungary

~Received 1 November 1999!

We developed a theory of the oscillatory magnetic coupling across nonmagnetic, ordered or disordered
layers and illustrate its use by explicit calculations for Co/Cu/Co trilayers of~100!, ~110!, and~111! orienta-
tions. Our approach to the problem is based on the layered, screened Korringa-Kohn-Rostoker~KKR! and
KKR-coherent-potential approximation electronic structure methods and employs a saddle-point approxima-
tion for calculating the coupling energy for asymptotically large spacer thicknessesD. The results of the
asymptotic analysis are tested against full calculations, and other important issues concerning the general
validity of the approach are examined. Our results for the oscillation periods as well as the amplitudes and
phases are in good agreement with experiments and other calculations.
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I. INTRODUCTION

Since the discovery of giant magnetoresistance G
~Refs. 1,2! and oscillatory exchange coupling3 ~OEC! in
magnetic multilayers such as Co/Cu/Co sandwiches a de
ago, these phenomena have been among the most po
subjects of both scientific and technological inquiries. T
basic experimental geometry in which this phenomenon
curred is depicted in Fig. 1. In short, what is measured is
coupling energydVLR between the magnetization of th
layerL, ML , and that of layerR, namelyMR , as a function
of the spacer thicknessD, and what is found is that the ex
change interactionJ(D), defined by the relationdVLR

5J(D)ML•MR oscillates as a function ofD.
It is, by now, well established that the periods of OEC a

related to the Fermi surface of the spacer. This is particul
the case for Cu spacers for which this relation has been
firmed quantitatively.4,5 In this paper we shall focus on
first-principles theory of the amplitudes and the phases
OEC in the regime of asymptotically large, spacer thickn
D.

To summarize the current state of understanding for
particular sandwich structures we shall be concerned w
we recall that epitaxial Co/Cu/Co~100! was the system for
which antiferromagnetic~AF! coupling was observed,6,7 for
five monolayers~ML ! of Cu thickness, and subsequently t
oscillatory behavior of the interaction was discovered.8 Since
then the experiments have been repeated many times9–11 and
the emerging picture is that there are two oscillation perio
a short one ('2.5 ML) and a large one ('5.5–8.0 ML).
The periods predicted from the analysis of the Cu Fe
surface are 2.6 and 5.9 ML for the short and long perio
respectively,4,5 in agreement with experiments. At first, bo
the absolute sizes and the ratios of the amplitudes of
various oscillatory contributions from the first first-principle
calculations of the OEC for the~100! orientation12–16 failed
to agree with experiments. More recently, Langet al.12,13
PRB 610163-1829/2000/61~10!/6854~12!/$15.00
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calculated the OEC for two Co slabs embedded in Cu us
Korringa-Kohn-Rostoker~KKR! method and found value
for the amplitudes of the right order of magnitude, althou
to explain the relative sizes of the short and long period
model of surface roughness had to be invoked.12,13

For the~110! orientation the Fermi surface analysis pr
dicts four different oscillation periods,4,16–18 three of which
are small and not seen in experiments but the large on
similar in size to the observed oscillation period.19,20 The
reason for the lack of observing the small periods is still
open question. It is believed, and this work also sugge
that at least one of them should be observed,21 since it is
found to dominate the coupling in our calculations. The s
nificance of the large oscillation period is that a pronounc
feature of the Cu-like Fermi surfaces, namely the neck c
necting Fermi surface spheres in the repeated zone sch
appears to be directly measured by the period of the O
across Co/Cu/Co~110!. Thus, by alloying the Cu spacer wit
Ni and measuring the oscillation period for this particu
growth direction Okunoet al.20 measured the change of th
neck of Cu12xNix Fermi surface with Ni concentration. Re
assuringly they found good agreement with KKR-cohere
potential approximation~CPA! calculations17,22 as well as
two-dimensional–angular correlation of~positron! annihila-

FIG. 1. Schematic view of a sandwich structure ofL and R
layers separated by a spacer layerC which could be optionally a
random binary alloy.
6854 ©2000 The American Physical Society
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tion radiation~2D–ACAR! measurements.23

Finally, we turn to trilayers of~111! orientation. From the
theoretical point of view these are important examples
cause only one period is predicted by the Fermi surf
analysis4,16,17 and hence there is less room for misinterpr
ing the experiments. Unfortunately, the experimental sit
tion is far from simple. Although OEC had been observed
the sputtered~111! samples,24,25 the molecular-beam epitax
grown ones initially did not show any AF coupling.26 Nev-
ertheless, later, OEC was also observed for the epita
samples.27–32 In conclusion we note that although~100! has
been much studied theoretically there is a lack of such inv
tigation for the~110! and ~111! growth directions. This is
especially the case for first-principles calculations of inter
here. It is one of the aims of the present paper to fill that g
Namely, we shall provide first-principles calculations for t
oscillatory exchange coupling across Cu layers for all
~100!, ~110!, and~111! orientations within the same theore
ical framework.

From the theoretical point of view, the attempts to inve
tigate the OEC fall into two main categories: The first
models based on semiphenomenological approaches w
usually involve asymptotic analysis for large spac
thickness.4,5,33,34 The second is a first-principles approa
based on density-functional calculations of the to
energy.21,35,36In what follows we shall present an approa
which combines, for the first time, full asymptotic analys
with first-principles calculations based on the local-dens
approximation~LDA ! of the density functional theory.

All theoretical models agree in the asymptotic form of t
coupling for large spacer thickness:

J~D !5
1

D2 (
i

Ai cos~QiD1f i !, ~1!

whereD is the spacer thickness andAi ,Qif i are the ampli-
tude, the size of the corresponding extremal wave vector
the phase, respectively, for each oscillatory contribution. T
first such model4,5 proposed for the OEC was based on t
perturbative Ruderman-Kittel-Kasuya-Yosida~RKKY !
theory for the interaction of isolated magnetic impurities in
nonmagnetic host metal. In the case of layered magn
structures the role of the isolated impurities in the RKK
theory is played by the magnetic layers. Among other f
tures J(D) was found to be given by an integral over th
wave vectors parallel to the layerski and, for largeD, this
was evaluated by the saddle-point method. Encouragin
the result obtained displayed similarity with the experimen
observations. In particular the oscillation periods predic
by the study of the Fermi surface of Cu fitted well to t
observed oscillation periods for all the~100!, ~110!, and
~111! directions.5,7 Unfortunately, the same analysis is ve
complicated for complex Fermi surfaces such as the tra
tion metal ones. Thus, for example, until recently, the la
oscillation period for Cr spacer was an open question.37,38

Theories based on more complete models, which emp
sized the confinement of certain electrons to within
spacer was developed by Edwardset al.33 and Stiles.34 Usu-
ally, the models we have mentioned so far are based o
semiempirical tight-binding description of the electron
structure which facilitates the asymptotic analysis but int
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duces the need to fit to either first-principles calculations
experiments. Alternatively, fully first-principles total-energ
calculations offer a rather straightforward approach: The
tal energy of the system is calculated, using any electro
structure method, for the ferromagnetic as well as the a
ferromagnetic orientation of the magnetic layer moments
a given spacer thickness and their difference correspond
the OEC energy. While straightforward, the main disadv
tages of total-energy calculations are the computational in
ficiency and the obscurity in relating the OEC to the ele
tronic structure of the spacer. In particular, it is not ve
efficient to take the Fourier transform of the calculated
cillatory coupling energy and compare the wavelengths
the dominant component with the Fermi-surface caliper v
tors. Indeed, this procedure becomes unworkable
transition-metal spacers like Cr with complicated Fermi s
faces and thus a large number of nonequivalent caliper v
tors with similar sizes.

From the computational point of view, the most difficu
part of these total-energy calculations for layered structu
is the two-dimensional Brillouin-zone integration. The a
vantage of the model approaches mentioned above is
this integration is considered in the asymptotic limit of lar
spacer thicknesses and only the neighborhood of a s
number of k points contribute. Moreover, the asymptot
analysis defines the connection between the OEC and
extremal vectors of the Fermi surface of the bulk spacer
the present paper we introduce an approach for the stud
OEC based on the screened, layered KKR electronic st
ture method39 and illustrate its use by explicit calculation
for the Co/Cu/Co system mentioned above. In Sec. II,
summarize the theory as will be applied in the computatio
part of this work. In the Appendix, the theory is complet
by the derivation of an analytic formula in the more gene
case of binary alloy spacers. Although that formula is n
applied in this work we found it useful in Sec. IV. The line
phase approximation, the validity of which is examined
Sec. III, has also been introduced in the Appendix. The co
putational part of the present work is included in Sec.
where we present our results for the OEC in the Co/Cu
trilayer system for all the~100!, ~110!, and ~111! orienta-
tions. The comparison of the asymptotic analysis results w
the full integration ones and with experiments are also d
cussed in Sec. III. Finally, in Sec. IV we discuss how fir
principles calculations based on asymptotic analysis, suc
the ones in the present work, facilitate the use of the O
measurements as a probe for the Fermi surface of ran
binary alloy spacers.

II. A KKR THEORY OF THE OSCILLATORY EXCHANGE
INTERACTION

The reference structure considered in the following th
retical discussion is shown in Fig. 1. It consists of two sem
infinite layers of magnetic material which are separated b
nonmagnetic spacer of finite thicknessD. A perfect structure
is assumed, i.e., there is no lattice mismatch at the interfa
Neither is surface roughness present. When desirable,
spacer could be optionally substitutionally disordered, c
sisting of two different kinds of atoms randomly distribute
on a perfect underlying lattice.
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Following the spirit of Ref. 40, we will start from a gen
eral expression for the LDA grand potentialV in terms of
the integrated density of states, which in the KKR and KK
CPA formalism can be written in a particularly transpare
form. Namely, we write

V52
1

b K (
n

ln~11e2b(«n2m)!L
5

1

p
ImE

2`

`

dE f~E!lniM (e f f)~E!i , ~2!

where we have neglected the double count
corrections.41,42The first part of the above equation is a ge
eral definition of the grand potential in terms of the on
particle energy eigenvalues of the system«n , the chemical
potential, and the temperatureT (b51/KBT). The symbols
^ and& denote the averaging over all the configurations if
spacer is a random binary alloy. On the right-hand side
replaced^ lniMi& by lni^M&i5lniM(ef f)i neglecting the so-
called vertex corrections using the arguments of Velicky´.43

The quantityM (e f f) is an effective KKR matrix for the cas
where the necessary averaging is carried out employing
CPA. Also f (E) is the Fermi-Dirac distribution function
The matrixM (e f f) in the KKR-CPA theory44 is given by

M (e f f)5@ t (e f f)#212G, ~3!

where, in the usual site, angular momentum, and spin re
sentation,t (e f f) is a single site scattering matrix andG is the
structure constant matrix. The disorder in the case of
random binary alloy spacer is introduced through the eff
tive t (e f f) matrix which in the spacer region C in Fig. 1,
calculated within the CPA,44 while in regionsL and R it is
the usualt-matrix describing the pure metal magnetic laye
A major disadvantage of the plain KKR method when a
plied to systems with reduced periodicity, such as laye
structures, is the extended form of the structure consta
That problem was overcome in both LMTO and KKR met
ods by the recent screening revolution.39 Thus, we will work
in the screened representation39 and the real-space structu
constant matrixGLL8(Rj2Ri ;E) will be assumed to be shor
ranged.

The screened form ofM (e f f) allows us to write it in the
form

M (e f f)5S MLL MLC 0

MCL MCC MCR

0 MRC MRR
D 5S MLL 0 0

0 MCC 0

0 0 MRR
D

2S 0 GLC 0

GCL 0 GCR

0 GRC 0
D , ~4!

whereL, C, andR stand for the left, center, and right layer
respectively. Obviously,MLR ,MRL50 due to the short-
ranged form of the structure constants in the screened re
sentation. For clarity we note thatMLL and MRR are de-
scribed by the pure metalt matrices:tL

21 andtR
(21) andMCC

corresponds to either a pure metal spacer described bytC
21 or
-
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an alloy described bytCPA
21 . It should also be stressed that a

the quantities in the above formula should be considered
dependent, since we are interested in calculating the en
difference between parallel and antiparallel alignment of
magnetic layers. The purpose of the above, rather abst
notation is to facilitate the separation of the releva
D-dependent part of the Grand potential.41,42 To proceed
with this goal, using Eq.~4!, the logarithm of the determinan
of M can be written as follows:

lniM i5Tr$ ln MLL%1Tr$ ln MCC%1Tr$ ln MRR%

1Tr$ ln~12tCCDL2tCCDR!%, ~5!

where DL5GCLtLLGLC , DR5GCRtRRGRC , while tCC

5MCC
21 , tLL5MLL

21, and tRR5MRR
21 . It is evident that the

first three terms in Eq.~5! do not correspond to interaction
between different slabs. Thus, substituting the expressio
Eq. ~5! in the integral of Eq.~2! we can concentrate only o
the part coming from the only term which involves scatteri
on both sides of the spacer layer, namely the last term of
~5!. Of course, the isolated, single interface interactions
tweenL and C slabs as well asC and R slabs are also in-
cluded in the last term of Eq.~5! and should be separated o
and left out of consideration due to the fact that we are
terested in the interaction ofL andR slabs only. To achieve
this end, we write the last term of Eq.~5! in the form

Tr$ ln~12tCCDL2tCCDR!%

5Tr$ ln~12tCCDL!%1Tr$ ln~12tCCDR!%

1Tr$ ln~12tCCD̂LtCCD̂R!%, ~6!

where we have introduced the notation:D̂L5DL(1
2tCCDL)21 and D̂R5DR(12tCCDR)21. As shown in Ref.
39, the first two terms correspond to the single interface
teractions and the third one is the one we will focus o
interest. In this term theD̂L andD̂R are properties of the two
interfaces ofL andR layers with theC layer in the sense tha
they are localized around the interface. On the other ha
tCC is property of the spacer. Thus, at this point we c
separate theL andR interaction and write it as

dVLR5
1

p
ImE

2`

`

dE f~E!Tr$ ln„12J~E!…%, ~7!

with J(E)5D̂LtCCD̂RtCC . Note that the formal expressio
in Eq. ~7! allows us to compute the interaction energy d
rectly instead of as a difference between two large total
ergies. Hence, it is in itself a significant step forward. Ho
ever, we shall carry the analytic considerations still furth
before we begin numerical computations. Clearly, to eva
ate the Tr operation in Eq.~7! a plane by plane representa
tion is the most convenient, since all the quantities have tw
dimensional translational invariance. Also the princip
layers formulation introduced in Refs. 39,45 will be adopte
Within that formulation the atomic planes are grouped
gether into the so-called principal layers of varying size a
the structure constants matrix elements are nonzero only
tween neighboring principal layers. Thus, we can write
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@GCL#P,Q5G10dP,1dQ,0 , @GLC#P,Q5G01dP,0dQ,1 ,

@GRC#P,Q5G01dP,NdQ,N11 , @GRC#P,Q5G10dP,N11dQ,N ,

~8!

where P,Q are the principal layer indices. The conventio
adopted for principal layers indexing is shown in Fig. 1. T
DL andDR as well asD̂L and D̂R are localized at the layer
with indices 1 andN, respectively. As a consequence t
matrix element ofJ in the plane-by-plane representation i

@J#P,Q5D̂L@tCC#1,ND̂R@tCC#N,QdP,1 . ~9!

As a next step, we approximate the logarithm in Eq.~7! by
its first-order power series expansion inJ. This approxima-
tion is valid for largeN, since in Eq.~9! nondiagonal matrix
elements oft contribute toJ and these are also expected
be small due to screening. The interaction grand poten
dVLR now becomes

dVLR5
1

pE2`

`

dE f~E!
S

~2p!2E(SBZ)
d2ki

3Tr$D̂L@tCC#1,ND̂R@tCC#N,1%, ~10!

where theki integration is taken over the first surface Br
louin zone~SBZ!, S is the real space area per surface u
cell, and finally Tr stands for the trace over the omitted
dices like the spin and angular momentum.

The derivation of an analytic formula for the OEC in th
general case of a binary alloy spacer is continued in
Appendix. The same derivation has also been presente
Ref. 40 and we included it in the Appendix with more det
for completeness and future reference. We also note
similar formulas have been derived by Dederichset al.53 but
without the full first-principles treatment of all three comp
nents of the sandwich structure. In the remainder of this s
tion we will present the formal details of the scheme we u
in our actual calculations. In brief, the expression of Eq.~10!
was evaluated either fully numerically, or by approximati
the surface Brillouin zone integration by asymptotic estim
using the stationary phase method.46,47

The calculation ofD̂L ,D̂R requires the calculation oftLL
and tRR which in the case of screened KKR can be p
formed for the required semi-infinite geometry using ite
tive techniques.39 By contrast, the inversion ofMCC for the
spacer slab is a straightforward inversion since the ma
has finite thickness. In the Appendix we show how (tCC)1,N
can be evaluated in theD→` limit, using the formula that
will be given in Eq.~A1!.

In order to calculate the integral overE in Eq. ~10! the
Matsubara poles technique was used for finite tempera
T5300 K and in our case 5–10 Matsubara poles w
found to be enough to achieve convergence. The remai
double integration over the surface Brillouin zone is comp
tationally the most difficult task of our calculation. As w
shall now discuss, we performed that integration both
merically and using asymptotics.

In order to introduce the asymptotic stationary pha
al

t
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e
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method to evaluate the integral overki in the surface Bril-
louin zone we have recastdVLR of Eq. ~10!, in the Appendix
as follows:

dVLR5E
(SBZ)

d2ki(
nn8

hnn8~ki!

>E
(SBZ)

d2ki(
nn8

gnn8~ki!e
iQnn8(ki)D, ~11!

where the general integrandhnn8(ki) has been approximate
by the formgnn8(ki)exp@iQnn8(ki)D# amenable to an appli
cation of the saddle-point method. Moreover, the indic
n,n8 label the different branches of the Fermi surface and
wave numbersQnn8(ki) are assumed to be spanning vecto
of the Fermi surface of the bulk spacer connecting then,n8
branches~see Fig. 2!. As explained in the Appendix the form
of the phaseQnn8D is the consequence of the linear pha
approximation responsible for involving the bulk spac
Fermi surface. The validity of this approximation has be
tested explicitly by comparing the phases of the integrand
the extremal vectors of the bulk spacer Fermi surface mu
plied by the spacer thickness. Integrals such as the one
the right-hand side of Eq.~11! have the advantage that a
analytic result for the integral can be written for the spa
thicknessD→`. The fact thatQnn8(ki) are real for pure
spacers makes it convenient to use the stationary ph
method instead of the more general saddle-point method
employed in the Appendix, where spacer disorder is ta
into account. Following the standard stationary pha
method46,47 the main contribution to the integral of Eq.~11!
comes from the neighborhoods of pointski

(m) where
Qnn8(ki) becomes stationary. ExpandingQnn8(ki) about one
such stationary point to second order inki2ki

(m) and per-
forming the corresponding Gaussian integral leads to the
miliar result46,47

FIG. 2. Schematic view of a cut of the surface defined byEk

5E in the repeated zone scheme, with the polesk'm
n6 encountered in

the k' integrations of Eq.~A2!. For E5Ef , whereEf is the Fermi
energy, we have a cut of the bulk spacer Fermi surface. The s

ning vectorsQnn85k'm
n12k'm

n82 are also shown for a particularki
for which they are extremal.
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FIG. 3. The extremal vectors of Cu Fermi surface on three cuts plotted in the repeated zone scheme: a cut perpendicular to@1-10#
direction at a distanceDk50 to theG point ~a!, perpendicular to the@001#, Dk50 ~b! and perpendicular to the@111#, Dk5A3/2 ~c!.
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d2ki hnn8~ki!>
2pnh(m)

DAuj1j2u
with

n5H 1 for j1j2,0

i j1 ,j2.0

2 i j1 ,j2,0,

~12!

whereh(m) is the value of the integrand at the extremal po
ki

(m) andj1 ,j2 are the eigenvalues of the second derivat
matrix of Qnn8 at the extremal point. Apparentlyh(m) is an
oscillatory function ofD with a corresponding wave vecto
equal to the size of themth extremal vector. The difficulty in
applying the stationary phase method is that it requires
search for the stationary spanning vectors of the Fermi
face of the spacer, which in cases such as the transition-m
spacers is fairly complicated. In addition, it requires t
evaluation of the second derivative matrix of these vector
the extremal points. However, this is a small price to pay
having avoided the necessity of a computationally even m
demandingki integration. Moreover, the result relates t
t
e

e
r-
tal

at
r
re

OEC directly to the extremal spanning vectors of the Fe
surface and thereby identifies the physical causes of the
cillations.

III. RESULTS AND DISCUSSION

In this section we report our calculations of the OEC f
all three principal orientations,~100!, ~110!, and ~111!, for
the Co/Cu/Co system. In Fig. 3, different cuts of the C
Fermi surface, which was calculated with the KKR metho
are shown and the extremal vectors have also been inclu
for easy reference.

A. „100… orientation

There are two different extremal vectors along~100! di-
rection, namely, theQ(100)

(1) and Q(100)
(2) , shown in Fig. 3~a!,

spanning the so-called ‘‘dogs bone.’’ The corresponding
cillation periods, predicted from the Fermi surface whi
was calculated using the KKR method for the bulk spac
are 6.3 and 2.5 ML, respectively. In Fig. 4 we report o
results for the OEC energy as a function of spacer thickn
In Fig. 4~a! we compare the results of computing the tw
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dimensionalki integration fully and that obtained by evalu
ating the formulas derived by the stationary pha
asymptotic method. In the stationary phase calculation o
Q(100)

(2) was used since the contribution from theQ(100)
(1) is

negligible. In fact the contribution from the stationary vect
Q(100)

(2) was found to be two orders of magnitude smaller th
the small period oscillation. To be yet more precise, at 6 M
of Cu thickness, where we have an AF peak for both con
butions, the energy ratio was 67. Clearly, the station
phase method results are in satisfactory agreement with
numerical integration for spacer thicknessD>15. Reassur-
ingly, concerning the amplitude of the OEC energy there
also agreement with experiment. In particular, John
et al.19 have measured 0.4 mJ/m2 for the OEC energy for an
average spacer thickness 6.7 ML. Our values for 6 M
(10.8 Å) and 7 ML (12.6 Å) are significantly higher, bein
3.3 and21.0 mJ/m2, respectively. However, in other mea
surements on samples prepared differently the deduced
ues can be significantly different.48 As we have already men

FIG. 4. Calculated OEC energy per surface atom (dVLR) for
Co/Cu/Co~100! as a function of Cu spacer slab thickness. Comp
son of the numerical integration with the asymptotic analysis res
is shown in ~a!, while in ~b! comparison between the numeric
integration result of the present work and the calculations of L
et al., ~Ref. 12! is shown. The contributiondVLR originating from
Q(100)

(1) is shown in the inset in~a!.
,
ly

r
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y
he
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al-

tioned, the~100! is the most theoretically studied orientatio
for the Co/Cu/Co system. In Fig. 4 we compare our nume
cal integration result with the calculation of Langet al.12 The
agreement is rather remarkable if we consider the fact
although the KKR method was also used in Ref. 12,
whole approach is different and is based on embeddin
finite number of ferromagnetic layers in bulk Cu host. T
agreement is improved for large spacer thickness as see
Fig. 4~b!. There is also agreement with the semiempiric
calculations of Leeet al.,16 where a coupling strength o
6.7 mJ/m2 is reported for 10 Å of Cu spacer thicknes
This compares well with our value for 6 ML (10.8 Å).

B. „110… orientation

From the point of view of the oscillatory coupling this
the most complicated orientation since four different e
tremal vectorsQ(110)

(1) , Q(110)
(2) , Q(110)

(3) , andQ(110)
(4) ~Fig. 3! are

found to contribute.7,16,17The corresponding oscillation per
ods, predicted from the bulk Fermi surface calculation,
2.07, 10.4, 2.5, and 3.2 ML, respectively. The first one c
responds to the belly diameter which is equivalent, due to
aliasing effect, to the ‘‘dogs bone’’ length, while the seco
of these extremal vectors correspond to the Fermi surf
neck diameter along the~110!, as shown in Fig. 3. This is the
only one that originates a long period oscillation. The co
tribution fromQ(110)

(1) andQ(110)
(2) extremal vectors were found

to dominate the OEC as shown in Fig. 5. The amplitude
the short period oscillation is the largest one, but the con
bution fromQ(110)

(2) is also significant as can be seen in Fig.
Evidently, the sum of the stationary phase contributions
significantly larger in size than the full numerical result f
relatively small Cu slab thicknesses and the convergenc
achieved only for approximately 40 ML thickness. By co
trast, for the phase, convergence is achieved for very sm
spacer thickness~10 ML!. The effect of late convergence o
the amplitudes can be explained by the relatively flat Fe
surface in the neighborhood of the endpoints of theQ(110)

(1)

extremal vector. Apparently, the quadratic expansion of
exponent which leads to the result of the stationary ph
method47 is not enough for this case and higher ord
corrections49 are necessary for relatively small spacer thic
nesses. It is clearly a puzzle that the long period oscillatio
the only one seen experimentally although its strength in
calculation appears to be much smaller. There are no rep
so far for the short period, which is approximately tw
monolayers long and is almost commensurate with the
ers. At this stage of theory, one cannot but argue that s
short period oscillations are destroyed by interfacial disord
While this is a plausible explanation,13 the subject deserve
further scrutiny. Focusing our attention to the short per
contribution ~Fig. 5!, the agreement with the experiment
amplitudes is restricted to the order of magnitud
0.7 mJ/m2 is the experimental value19 for the first AF peak,
while our calculated one is 1.8 mJ/m2. On the other hand
there is fairly good agreement with the KKR calculation r
sult of Nordstromet al.13 in both the amplitudes and period
Interestingly, Nordstro¨m et al.simulated the effect of surfac
roughness for the@110# orientation and observed the smea
ing out of the small period oscillation in agreement wi
experiments and despite the fact that in their calculation
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FIG. 5. The contributions
dV12

(1) ,dV12
(2) to the interaction en-

ergy dV12 arising from theQ(110)
(1)

~a! and the Q(110)
(2) ~b! extremal

vectors, and the comparison of th
total asymptotic analysis resu
with that of the full numerical in-
tegration~c!. The vertical lines in
~b! marked with~Exper. 1! corre-
spond to the position of the AF
peaks found in the experiment o
Johnsonet al. ~Ref. 19!.
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in ours, the small oscillation is the dominant for the perfe
structure. To be more specific, the position of the AF pe
they found in the case of rough surfaces are in agreem
with experiment. Our result for the large period shows sim
lar agreement, as seen in Fig. 5~b! where the vertical lines
indicate the positions of the experimental AF peaks. T
slight shift towards larger spacer thicknesses in our resu
due to a small difference in the period and a small shift of
first AF peak. It is also noteworthy that the result of Nor
ström et al. for the rough surface seems to be slightly clos
to the experiment than our result for the large oscillat
contribution. In addition, the size of the first AF peak for t
rough surface result of Nordstro¨m et al. is approximately
four times larger than our large period oscillation. We b
lieve that these differences are consequences of the fact
the small period oscillation is still contributing especially f
the small spacer thicknesses. Indeed, our stationary p
result for perfect interfaces and isolating the large per
contribution cannot be directly compared to their resu
where the smearing out the small period oscillation wa
result of simulating the interface roughness.

C. „111… orientation

For this orientation there is only one extremal vec
Q(111)

(1) . It spans the neck of the Fermi surface at an angle
19.47° as can be seen in Fig. 3~a! and corresponds to a
oscillation period of 5.0 ML size. Being the only case whe
t
s
nt
-

e
is
e

r

-
hat

se
d
,
a

r
f

only one extremal vector exists, the~111! orientation is ideal
for comparison between both the stationary phase result
the full numerical result with experiment. In Fig. 6 we aga
compare the stationary phase result with the full numer
result. In the same figure the positions of the experimen
AF peaks are marked by vertical lines for two differe
experiments.19,50 Clearly, theory and experiments are in r

FIG. 6. The calculated OEC energy per surface atomdV for
Co/Cu/Co~111! as a function of Cu spacer slab thickness. The p
sition of experimental AF peaks is indicated by the vertical lin
and correspond to experiments of Johnsonet al. ~Ref. 19! ~Exper.
1! and Parkinet al. ~Ref. 50! ~Exper. 2!.
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markably good agreement. We believe that the better ag
ment with experiment for the~111! case, compared to th
~110!, is due to the fact that only one period is prese
Again, let us compare the amplitudes to experiment: fo
ML the OEC energy has been measured by Johnsonet al.
and was found 1.1 mJ/m2, while our calculated value is
2.1 mJ/m2 for the same spacer thickness.

For the case of~111! orientation we also examined th
question: to what extent the linear phase approximation,
lineated in the Appendix, is valid? In particular we examin
the dependence onD of the phase of the integrand in theki
integration evaluated at the extremal point for that orien
tion, i.e., at thatki wherek'5Q(111)

(1) occurs. More specifi-
cally we compared the wave vector that comes from the
tegrand and the extremal vector obtained by a sepa
Fermi-surface calculation for the bulk spacer using the sa
atomic KKR potential and the bulk KKR code. A difficult
in finding the wave vector from the integrand is of course
selection of the correct branch of the logarithm of the co
plex integrand. Nevertheless, the result is shown in Fig
As we see the wave vector obtained from the integrand
close to the extremal vector size and the agreement is rap
improved as the number of spacer layers in increased.
deed, the linear phase approximation is exact atD→` as
pointed out in the Appendix, but we see that even for re
tively small thicknesses the size of the fluctuations is sm
compared to the absolute value ofQ(111)

(1) . Anyway, as our
results indicate, roughly speaking, the Fermi surface
tremal vectors agree well with the oscillation periods of t
OEC, but when more accurate measurements of the O
energy become available deviations from the linear ph
approximation should definitely be taken into account in
dition to higher-order corrections in the stationary pha
expansion.49 Nevertheless, given the present state of the
periments, the fact that the phase of the integrand oscill
about the linear increaseQ(111)

(1) D does not prevent us from
comparing, successfully, the OEC periods to the bulk spa
Fermi surface extremal vectors even if the experiments
respond to small spacer thicknesses.

FIG. 7. TheQ(111)
(1) extremal vector calculated using the KK

method for bulk Cu~horizontal line! compared with the value ob
tained from the phase of the integrand in the numerical integra
overki as function of spacer thickness. In the limit of infinite spac
thickness the two values are equal and the linear phase approx
tion exact.
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IV. MEASURING THE FERMI SURFACE

Summing up the results of the OEC over the past
years7,53 including those reported in the present paper,
may conclude that the evidence for the effect being a dir
quantitative consequence of the Fermi surface is overwhe
ing. Thus having illuminated the physical origin of the osc
latory exchange coupling, perhaps it is time to turn arou
and use the measurements of the OEC to learn about
geometry of the Fermi surface. This point of view lends p
ticular relevance to the subject matter of the present pa
Evidently, the reconstruction of the Fermi surface from me
surements of the OEC requires the accomplishment of
separate tasks: the first is that of deducing the size and
entation of the extremal wave vectorsQ(abg)

(m) from the mea-
surements and the other is a construction of the Fermi
face from a collection of measured extremal wave vecto
Here we wish to comment only on how our results furth
the cause of the former. The main point to consider is th
only theories which are based on an asymptotic analysis
ours and give the OEC as separate contributions from
specific calipers of the Fermi surface are useful in the in
rogation of the experimental data with the above purpose
mind, and to be effective, the confrontation between the d
and theory will involve the theoretical determination
phases and the amplitudes as well as the periods of the
vidual oscillations. The principle achievement of the pres
paper is to provide a first-principles and, therefo
parameter-free prescription for calculating all three of the
quantities on the same footing. This result is encapsulate
Eq. ~A7!. As a scrutiny of this formula reveals, the amp
tudes and phases depend not only on the curvature of
Fermi surface near the endpoints of the extremal wave v
tors, but also on a full self-consistent first-principles descr
tion of the magnetic layer-spacer layer interface through
quantitiesD. Thus, our calculation takes into account t
material specific nature of the interface using the same L
crystal potential far from the interface as is used for t
Fermi-surface calculation. Clearly, this consistent treatm
of the magnetic layers, spacer layers, and the interface
tween them is necessary if we are to calculate reliably
relative contributions from each of the extremal wave ve
tors.

Note that Eq.~A7! is an analog of the Lifshitz-Kosevich
formula ~Ref. 51!, which is commonly used to interpret d
Haas–van Alphen~dHvA! oscillations in terms of Fermi-
surface cross-sectional areas. Clearly, because of the sig
cant role played by the interface and the orders of mag
tudes higher accuracy of the dHvA experimen
measurements of the OEC are not likely to compete with
results of the former in pure metals. However, in the case
random alloys where dHvA becomes ineffective, due to
requirement of long lifetimes, experimental determinati
for the OEC may have an important role to play. Here, 2
ACAR experiments52 are the only competitors to OEC mea
surement as a new probe of the Fermi surface. To so
extent the present work was undertaken in the hope tha
this role the study of OEC may lead to significant progre

It is to make the above point that we have presented
the Appendix, a generalized version of the otherwise more
less conventional, asymptotic analysis which is applica

n
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when the stationary points of the integrand in Eq.~11! is in
the complex plane. As a result we find that for alloy spac

J~D !5
1

D2 (
n

An cos~QnD1fn!e2(D/Ln). ~13!

As before, in addition to the periods the KKR-CPA theo
determines both the amplitudes and the phases. Clearly
qualitative new feature of Eq.~13! is the exponential decay
Thus, one expects to observe OEC only for spacer th
nessesD,Ln . Fortunately, the KKR-CPA theory also pro
vides an unambiguous, quantitative answer forLn . As ex-
plained in the Appendix, it is related to the width of th
spectral functionAB(k,E) at the endpoints of the extrema
wave vectorsQn . So far, these decay constants have b
evaluated only for two alloy spacers.17,18,38Both in the case
of Cu(12x)Nix for x<0.42 and Cr(12x)Vx alloysL was found
to be much larger than the thickness of the spacers in
experimentally investigated structures. Thus, no exponen
cutoff was expected and encouragingly, none was found
these experimental studies17,20,54,55of cases whereD<Ln .
Here we digressed to consider the effect of disorder only
point out that in the case of random alloys, whose Fe
surface is most likely to be studied with profit by measuri
the OEC and the KKR-CPA based asymptotic analysis,
method we have presented in this paper, will also provide
account of the observability of the OEC.

V. CONCLUSION

In conclusion, a first-principles theoretical method, bas
on the KKR and KKR-CPA description of the electron
structure and an asymptotic analysis technique was prese
in full detail for the study of the oscillatory exchange co
pling of two ferromagnetic layers across a nonmagne
spacer which could optionally be a pure metal or a rand
binary alloy. The use of the saddle-point asymptotic te
nique resulted, on the one hand, in a much faster comp
tion of Brillouin-zone integrals overki vectors parallel to the
layers technique and on the other hand, in an explicit dec
position of the OEC into contributions arising from the e
tremal vectors of the Fermi surface. The method was u
for the study of the Co/Cu/Co trilayer system for all th
~100!, ~110!, and~111! orientations and the obtained resu
were found to be in satisfactory agreement with experime
and other calculations, both first principles and semiem
ical, concerning all the coupling characteristics, i.e., the
riods, amplitudes, and phases. Some of the details of
method, such as the linear phase approximation which
crucial in all theoretical approaches of this kind in conne
ing the oscillations with the bulk spacer Fermi surface, w
also tested in realistic calculations. OEC is proven to b
powerful probe of the Fermi surface of random binary allo
for which the dHvA oscillations technique fails. Certainl
from this point of view it is clear that a first-principles tec
nique for interpreting OEC experiments is required, and
method serves that need.
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APPENDIX

In this appendix the derivation of an analytic formula f
the OEC will be presented based on the KKR description
the electronic structure. More specifically, we shall estab
a relationship, used in Sec. II, between the Fermi-surf
characteristics of the infinite, bulk spacer and the asympt
form of the OEC. As one might have expected, the proper
of the single interface will also be involved, through theD̂
matrices introduced in Sec. II, in determining the amplitud
and phases of the OEC.

Let us begin with Eq.~10! and introduce our first majo
approximation, namely the assumption that the phase of
integrand is a linear function ofD. Note that this approxima-
tion is crucial for all the theoretical models relating th
Fermi surface of the bulk spacer material to the OEC p
ods. In our formalism this approximation is expressed as

@tCC#1,N>
d

2pE2p/d

p/d

dk'e2 ik'(12N)dtC~ki1k'!.

~A1!

In the above expressiond is the principal layer spacing an
tC(k) is the inverse KKR matrix for the infinite spacer ink
space~complete lattice Fourier transform!. In short, we ap-
proximate the@tCC#1,N for the finite spacer, with@tC#1,N for
the infinite spacer. This approximation introduces the sim
exponential form with the phase linear in the spacer thi
ness which will give rise to the oscillatory behavior as w
will now demonstrate. The validity of this approximatio
examined in Sec. III for the trilayer Co/Cu/Co~111!. Substi-
tuting the expression of Eq.~A1! in Eq. ~10! we have the
expanded expression

dVLR52
1

p
ImE

2`

`

dE f~E!
S

~2p!2ESBZ
dki

2 d

2pE2p/d

p/d

dk'

3
d

2pE2p/d

p/d

dk'8 ei (k'2k'8 )(N21)dTra$J%, ~A2!

where

J~E;ki ;k' ,k'8 !5D̂L~E;ki!tC~E;ki1k'!

3D̂R~E;ki!tC~E;ki1k'8 !.
.

At this stage it should be stressed that within the plane-
plane representation its more convenient to redefine
k-space unit cell over which the integrations are carried o
Thus we have selected a prism with the base being the
face of the first Brillouin zone and the height equal to 2p/d,
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whered is the real-space neighboring plane distance.56 With
this definition of the unit cell the limits of thek' integrations
do not depend onki , while the ki integration is extended
over the surface Brillouin zone corresponding to the orien
tion of interest.

In what follows we will calculate the integrals in Eq
~A2!. In brief, the integrations overk' will be carried out
using Cauchy’s theorem and the spanning vectors along
k' direction of the surfaceEk5E for given E will be intro-
duced. Next, the two-dimensional integration over the s
face Brillouin zone will be calculated asymptotically, fo
spacer thickness tending to infinity, using the saddle-po
asymptotic method and the extremal spanning vectors wil
picked up. Finally, the integration over the energy will
done also employing asymptotic analysis andE will be re-
stricted to the Fermi energyEf only. Thus, at the end, a fina
formula will be derived where the extremal spanning vect
of the bulk spacer Fermi surface will be involved as well
the Fermi-surface curvature at the end points of the span
vectors. All the quantities needed to calculate the perio
amplitudes and phases of the oscillations depending
E, ki , and k' will have to be computed only at the end
points of the extremal spanning vectors.

Apparently, due to the translational invariance oftC , the
integrations overk' andk'8 can be extended by any numb
of periods (2p/d) as long as the integral is normalized, i.e
divided by the length over which the integral is taken. Th
maneuver makes the Cauchy theorem applicable for eva
ing these integrals. Consequently, for the integration overk'

we will consider a closed contour consisting of the real a
and the infinite radius semicircular path on the posit
imaginary part half-plane, thus encountering only the po
with positive imaginary part. On the other hand for the in
gration overk'8 we should consider the semicircular path
negative imaginary part half-plane, i.e., encountering
negative imaginary part poles. As is well known,44 the poles
of thet matrix correspond to the zeros of the KKR determ
nant for the infinite spacer, i.e., for thesek' , for givenE and
ki that the dispersion relationEki1k'

5E is satisfied. Since
the integration limits are taken to infinity the poles in t
repeated zone scheme should be considered. A schem
view of the location of these poles is shown in Fig. 2. Ea
pole in the 0th unit cell is labeled byk'0

n6 , with n being the
band index. There are pairs of poles due to the reflec
symmetry and6 stands for a pair of such poles.

At this point, we would like to mention that the abov
poles are not on the real axis but are shifted into the comp
k' plane not only for disordered spacer materials but
pure materials as well. Let us define the complex poles
writing

g'm
n6 5k'm

n6 1 iq'm
n6 , ~A3!

whereq'm
n6 is the, as we shall argue, presently small ima

nary part of the poles. In the case of pure spacer an in
tesimal imaginary part must be included in the energy ar
ment of tC(E1 is), where s is an infinitesimal positive
number, as a matter of definition. Thus, even in this case,
poles are slightly shifted off the real axis. It could be eas
seen that for each pole with an infinitesimal positive ima
nary part there is one~its pair counterpart! with a negative
-
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imaginary part. In the case of spacers with substitutional d
order, i.e., random binary alloy spacers, the poles move
the real axis by a finite amount and are given by an equa
of the form

E2Eg
'm
n6 1ki

1 iG~E;g'm
n6 1ki!50. ~A4!

The fact that in the case of many binary alloy systems
Bloch spectral functions are very well fitted to Lorentzian
even for relatively large concentrations, suggests thatG does
not vary much withE in the neighborhood of the pole an
taking it to be small is a good approximation. We will co
centrate on the limit of small disorder and will regardG as a
small quantity. Up to first order inG, we have that

g'm
n6 5k'm

n6 1 i
G~E;k'm

n6 1ki!

u'm
n6

, ~A5!

where u'm
n6 5(]Ek /]k')k

'm
n6 . Thus, the effect of disorder is

again to add a small imaginary part to the pole defined by
real part of Eq.~A4! in perfect analogy to the nondisordere
pure spacer case. The difference is that for the case of
spacerss is included for technical reasons and consequen
boths andq'm

n6 should go to zero at the end, while for bina
alloys q'm

n6 is a small but nonzero quantity, with physic
meaning, resulting to an extra exponential dumping term
Fig. 2 only the real part of these poles is shown. Finally,
poles are repeated in each unitary cell in the repeated z
scheme. Indexm in k'm

n6 in Fig. 2 stands for themth unitary
cell poles. Its also worth mentioning that the order of t
pole is the band degeneracy number. In summary, the re
of the k' integration is

@tCC#1N5 id(
n

Wn1~E;ki!e
g'm

n1 (N21)d,

@tCC#N152 id(
n

Wn2~E;ki!e
2g'm

n2 (N21)d, ~A6!

where Wn6(E;ki)5 limk'→g
'0
n6$tCC(E;ki1k')(k'

2g'0
n6)gn%, i.e., the residue oftCC at the poleg'0

n6 . After the
integrations overk' and k'8 the expression for thedVLR

takes the following form:

dVLR52
1

p (
nn8

ImE
2`

`

dE f~E!
Sd2

~2p!2

3E
SBZ

d2kiTnn8~E;ki!e
iQnn8(E;ki)D, ~A7!

whereD5Nd is the spacer thickness,Qnn85g'0
n12g'0

n82 are
the spanning vectors between branches of the surface de
by Ek5E along the k' direction ~see Fig. 2! and Tnn8
5e2 iQnn8d Tr$D̂LWn1D̂RWn82%. All the quantities
Qnn8 ,D̂L ,D̂R ,Wn1,Wn82 are functions ofki and E. Note
that each of the quantitiesQnn8 is always a distance in thek'

direction between a pole with positive imaginary part and
pole with negative imaginary part. Another important issue
that an arbitrary number of 2p/d could be added to them. I
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is convenient to select the smallest in size from these equ
lent Qnn8 . This is a physical effect which gives rise to th
aliasing effect.7,57

Integrals of the form of Eq.~A7! can be evaluated ana
lytically in the limit of infinite D using the standard saddle
point method also called method of steepest descent.46,47 In
the case of pure metallic spacers we encounter the statio
points of the functionQnn8(E;ki), i.e., the stationary span
ning vectors of the surfaceEk5E on the real axis. In the
case of disordered spacerQnn8 is complex (Qnn85Qnn8

R

1 iQnn8
I ). Nevertheless, in the limit of small disorder i

imaginary partQnn8
I is small and the problem remains tra

table. Typically Qnn8
I is stationary at the pointski

! where
Qnn8

R is also stationary, i.e., (]Qnn8
I /]ki)ki

!5(]Qnn8
R /]ki)ki

!

50. This is a consequence of the fact that the extremal v
tors are usually symmetry points connecting symmetric p
of the surfaceEk5E. LaterE will be set equal to the Ferm
energy, thus the surface will be the Fermi surface of
spacer. In the case of small disorder the Fermi surface of
bulk alloy is well defined by sharp peaks of the Bloch sp
tral function AB(k,Ef) and thus it enters the calculation o
the OEC in a manner similar to that in the case of p
metallic spacers.

To proceed with the saddle-point method let us define
function G(ki)5 iQnn85GR1 iGI , with GR52Qnn8

I and
GI5Qnn8

R and investigate it in the neighborhood of the e
tremal pointki

! . In order to calculate the integral overki in
Eq. ~A7! analytically we should consider the coordinateskx ,
ky in the ki plane in such a way that the second derivat
matrix of G is diagonal. One step further, we continue the
variables to the complex plane,gx5kx1 iqx and gy5ky
1 iqy . Although the stationary vectors correspond to realki ,
the integration along the steepest descent direction invo
G in the complex plane. Following the usual procedure46,47

for gx andgy independently we find

dVLR5
Sd2

2p2D
(
m

ImE
2`

Ef
dE h(m)~E!exp@ iQ (m)~E!D#,

where

h(m)~E!5
T(m)e2 i (fx

(m)
1fy

(m))/2

Aujx
(m)jy

(m)u
. ~A8!

The indexm enumerates the stationary pointski
! for all the

different pairs n,n8, so T(m)5Tnn8(ki
!). The jx

(m)
.
la

R

a-

ry

c-
ts

e
he
-

e

e

e

es

5ujx
(m)ueifx

(m)
andjy

(m)5ujy
(m)ueify

(m)
are the eigenvalues of th

second derivative matrix ofG(ki) at themth extremal point.
The remaining integration overE will also be carried out

using the variant of the saddle-point method for the c
where there are no extremal points, i.e., the functio
Q(m)(E) are monotonic. Note that, sinceQ(m)(E) is always a
difference between ak point of positive velocity and a poin
of negative velocity, it is a typical case that this function is
monotonically increasing function ofE. This is equivalent to
the fact that the electron pockets of the surfaceEk5E in-
crease in size withE. Following the recipe of Ref. 46, we
find that

dVLR5
1

D2 (
m

Im$A(m)eiQ(m)D%, with

A(m)52
Sd2

2p2

exp$2 i ~fx
(m)1fy

(m)!/2#%T(m)

Aujx
(m)jy

(m)u@dQ(m)~E!/dE#
, ~A9!

where all the energy-dependent quantities including the
rivative @dQ(m)(E)/dE#are evaluated atE5Ef . The above
equation is the final and central result of this Append
Clearly, this formula is equivalent to that of Eq.~13! and the
OEC has an oscillatory part coming from the real part of
quantity Q(m), i.e., the size of the Fermi-surface spanni
vector, and a dumping factor resulting from the imagina
part of Q(m). In the light of an argument advanced in Re
17,18, in the limit of small disorder Im$Q(m)%5(1/l'1

(m) )
2(1/l'2

(m) ), where l'1
(m) ,l'2

(m) are the coherence length
closely related to the mean free paths of the quasipart
states at the end points of the corresponding extremal ve
These mean free paths are given in the KKR-CPA method
the inverse of the half widths of the Lorentzian-like Bloc
spectral functions~BSF’s!. The small disorder limit is proven
to be correct in most of the random binary alloy cases, wh
Fermi surfaces are well defined and the BSF well fitted
sums of Lorentzians.18,44,58 In this limit, the widths of the
Lorentzian-like BSF’s are small compared to the extrem
vector size. Thus the corresponding mean free paths
much larger than the OEC periods.

We will close this Appendix by mentioning that we hav
considered a typical case for Fermi surface extremal vect
Exceptions of course might exist and the results of this s
tion should be modified. A simple example is the case wh
a spanning vector is extremal in one direction but constan
the perpendicular direction. In that case the treatment is
ferent of course and the 1/D2 power law will be modified to
a 1/D1.5 one.59
,

r.

n

*Author to whom correspondence should be addressed.
1M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F

Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chaze
Phys. Rev. Lett.61, 2472~1988!.

2G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. R
B 394, 828 ~1989!.

3S.S.P. Parkin, N. More, and K.P. Roche, Phys. Rev. Lett.64,
2304 ~1990!.

4P. Bruno and C. Chappert, Phys. Rev. Lett.67, 1602~1991!.
5P. Bruno and C. Chappert, Phys. Rev. B46, 261 ~1992!.
6A. Cebollada, J.L. Martinez, J.M. Gallego, J.J. de Miguel,
s,

ev.

.

Miranda, S. Ferrer, F. Batallan, G. Fillion, and J.P. Rebouillat
Phys. Rev. B39, 9726~1989!.

7Ultrathin Magnetic Structures II, edited by B. Heinrich and
J.A.C. Bland~Springer-Verlag, Berlin, 1994!.

8J.J. de Miguel, A. Cebollada, J.M. Gallego, R. Miranda, C.M.
Schneider, P. Schuster, and J. Kirschner, J. Magn. Magn. Mate
93, 1 ~1991!.

9M.T. Johnson, S.T. Purcell, N.W.E. McGee, R. Coehoorn, J. aa
de Stegge, and W. Hoving, Phys. Rev. Lett.68, 2688~1992!.

10Z.Q. Qiu, J. Pearson, and S.D. Bader, Phys. Rev. B46, 8659
~1992!.



-

ev

.

.

n-

aa

s
23

s,
9

hy

E

.
n.

ag

.

s.

ys

n-

.

,
er-

r

e-

m,

r-

ett.

Y.

PRB 61 6865FIRST-PRINCIPLES ASYMPTOTICS FOR THE . . .
11R. Allenspach and W. Weber, IBM J. Res. Dev.42, 7 ~1998!.
12P. Lang, L. Nordstro¨m, K. Wildberger, R. Zeller, and P.H. De

derichs, Phys. Rev. B53, 9092~1996!.
13L. Nordström, P. Lang, R. Zeller, and P.H. Dederichs, Phys. R

B 50, 13 058~1994!.
14P.H. Dederichs, K. Wildberger, and R. Zeller, Physica B237-238,

239 ~1997!.
15J. Mathon, M. Villeret, R.B. Muniz, J.D.E. Castro, and D.M

Edwards, Phys. Rev. Lett.74, 3696~1995!.
16B. Lee and Y.-Ch. Chang, Phys. Rev. B52, 3499~1995!.
17N.N. Lathiotakis, B.L. Gyo¨rffy, B. Újfalussy, and J. Staunton, J
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